EP3607098B1 - Temperature control station for partially thermally treating a metal component - Google Patents

Temperature control station for partially thermally treating a metal component Download PDF

Info

Publication number
EP3607098B1
EP3607098B1 EP18726327.2A EP18726327A EP3607098B1 EP 3607098 B1 EP3607098 B1 EP 3607098B1 EP 18726327 A EP18726327 A EP 18726327A EP 3607098 B1 EP3607098 B1 EP 3607098B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
component
temperature control
control station
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18726327.2A
Other languages
German (de)
French (fr)
Other versions
EP3607098A1 (en
Inventor
Andreas Reinartz
Jörg Winkel
Frank WILDEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwartz GmbH
Original Assignee
Schwartz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwartz GmbH filed Critical Schwartz GmbH
Priority to PL18726327T priority Critical patent/PL3607098T3/en
Publication of EP3607098A1 publication Critical patent/EP3607098A1/en
Application granted granted Critical
Publication of EP3607098B1 publication Critical patent/EP3607098B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the invention relates to a temperature control station for the partial heat treatment of a metallic component, a device for the heat treatment of a metallic component and the use of at least one tangential nozzle in a temperature control station for the partial heat treatment of a metallic component.
  • the invention can be used in particular in connection with a press hardening line in which a press hardening tool is arranged downstream of a continuous furnace, in particular a roller hearth furnace.
  • the upper and lower end areas of the B-pillar should have a comparatively low strength in order to be able to absorb deformation energy during a side impact on the one hand and during a side impact on the other the assembly of the B-pillar to enable simple connectivity with other body components.
  • the hardened component In order to form such a partially hardened body component, it is necessary for the hardened component to have different strength properties in the subregions.
  • the tempering station is provided and set up to set different temperatures in the subareas of the component, which is initially uniformly heated, so that different strength properties are set in the subareas during the subsequent press hardening.
  • Optimal cycle times which play an important role in the vehicle industry in particular, can be achieved here in particular if the components oven, temperature control station and press hardening tool are arranged one behind the other.
  • one or more specific sub-areas of the component which should have a higher ductility or lower strength in the hardened component than other, hardened sub-areas of the component, are specifically cooled in the temperature control station, in particular while the others, parts of the component to be hardened are kept at a high temperature.
  • partitions which are also referred to as bulkheads, are regularly used, which are arranged next to the nozzles in the temperature control station and which are provided and set up for the (thermal) delimitation of the respective sub-areas of different strength.
  • the partition walls can even touch the component, if necessary, but a gap, which is to be kept as small as possible, must regularly be provided between the lower end of the respective partition and the component.
  • the gap between the partition and the component is not small enough to reliably prevent a possible leakage of cold air to the hotter and hot part of the component. This leads to an unwanted blurring in the transition area, as a result of which the transition area is usually larger than necessary or desired.
  • warping of the hot component or insufficiently precise positioning of the component can lead to undesired enlargements of the gap.
  • the automotive industry is increasingly placing great importance on the smallest possible transition areas so that the subsequent crash behavior can be better mapped in the previous design, in particular in the previous simulation of the crash behavior. Therefore, there is an increasing effort to be able to set the transition areas as precisely and as small as possible, which is made more difficult in particular by the leakage flows between the partition and the component that have occurred in previous temperature control stations.
  • Thermal treatment methods are from the DE 10 2015 112 293 A1 and DE 10 2012 021 576 A1 known.
  • a temperature control station and a device for heat treatment of a metallic component are to be specified, which it allow a transition area between differently heat-treated sub-areas of the component to be set as reliably and / or exactly as possible, in particular as small as possible.
  • the temperature control station and the device should in particular allow contact of the component with a partition wall for (thermal) delimitation of the differently temperature-controlled subregions of the component is no longer necessary.
  • a temperature control station for the partial heat treatment of a metallic component has at least one (horizontal) processing plane arranged in the temperature control station, in which the component can be arranged, and at least one nozzle, which is oriented towards the processing plane and for discharging a fluid flow for cooling at least a first sub-area of the component is provided and set up.
  • the at least one nozzle is a tangential nozzle.
  • the tangential nozzle is characterized in particular by the fact that it generates and / or discharges a fluid flow at at least one nozzle outlet which has at least one directional component or a streamline that is essentially tangential and / or parallel to the processing plane and / or a surface of the component .
  • the terms "essentially tangential” and “im “Essentially parallel” here includes in particular deviations from the ideal shape ("tangential” or “parallel") in the range from -10 ° to + 20 ° [degrees], preferably 0 ° to 20 °.
  • the tangential nozzle preferably generates a horizontal flow downstream of its nozzle outlet.
  • a plane in which a nozzle outlet cross-section or an opening of a nozzle outlet of the tangential nozzle is located can enclose an angle of 0 ° to 135 ° [degrees], preferably 0 ° to 75 ° and in particular 20 ° to 75 ° with the (horizontal) processing plane .
  • the tangential nozzle contributes in particular to directing the air flow in such a way that an air pulse in the direction of a second partial area of the component is suppressed at the nozzle outlet. It is particularly preferred if a nozzle outlet or a nozzle outlet opening of the tangential nozzle points or is directed towards the first partial area of the component and / or away from a second partial area of the component.
  • the solution presented here advantageously allows a type of “aerodynamic seal” to be provided in the direction of the second partial area of the component. This helps to ensure that essentially no leakage of the fluid flow reaches the second sub-area of the component, which should change its high component temperature as little or as little as possible during the cooling of the first sub-area in the temperature control station for the purpose of hardening the second sub-area.
  • very sharply delimited transition areas can be represented in an advantageous manner.
  • a transition area that can be achieved by means of the solution presented here lies approximately in the range from 1 mm to 60 mm [millimeters].
  • the size, in particular the width of the transition area is mainly (only) determined by the physically unavoidable heat conduction in the component.
  • soft outer flanges can be easily produced on hard components.
  • the metallic component (to be treated by means of the temperature control station) is preferably a metallic blank, a sheet steel or an at least partially preformed semi-finished product.
  • the metallic component is preferably made with or made of a (hardenable) steel, for example a boron (manganese) steel, e.g. B. with the designation 22MnB5 formed.
  • the metallic component is further preferably provided or precoated at least to a large extent with a (metallic) coating.
  • the metallic coating can be, for example, a (primarily) zinc-containing coating or a (primarily) aluminum and / or silicon-containing coating, in particular a so-called aluminum / silicon (Al / Si) coating.
  • the metallic component can (alternatively) also be formed with or from aluminum or with or from an aluminum alloy.
  • the temperature control station is preferably arranged downstream of a first furnace and / or upstream of a second furnace.
  • a processing plane in which the component can be or is arranged is arranged in the temperature control station.
  • the processing level here refers in particular to the level into which the component can be brought for treatment in the temperature control station and / or in which the component is arranged and / or fixable during the treatment in the temperature control station.
  • the working plane is preferably aligned essentially horizontally.
  • the temperature control station has at least one nozzle.
  • the nozzle is oriented towards the working plane.
  • the nozzle for discharging a fluid stream for cooling at least a first sub-area of the component is provided and set up, in particular so that a temperature difference between the at least one first (more ductile in the finished component) sub-area and at least one second (in the finished component in Compared to this, the harder) partial area of the component is adjustable.
  • a plurality of nozzles is preferably provided, the nozzles particularly preferably being arranged in a nozzle field. When a plurality of nozzles are provided, at least one of the nozzles is a tangential nozzle.
  • the fluid flow is preferably formed with a cooling fluid.
  • the cooling fluid can be formed with a gas, for example nitrogen, or with a gas mixture, in particular air.
  • the cooling fluid can be formed with a gas-liquid mixture, for example an air-water mixture.
  • the temperature control station can have one or more further nozzles which have a different, in particular structurally simpler, nozzle geometry.
  • at least one further nozzle can be provided which has or forms, in particular surrounds, at least one nozzle channel running essentially perpendicular to the processing plane.
  • the further nozzle is preferably arranged next to the (tangential) nozzle in the temperature control station, but in particular not between the (tangential) nozzle and a partition.
  • the further nozzle and the (tangential) nozzle can be held at the same height within the temperature control station and / or above the processing plane.
  • the at least one further nozzle is preferably designed in the manner of a shower head. In other words, this means in particular that the at least one further nozzle has a multiplicity of outlet openings on an underside pointing towards the processing plane.
  • a combination of (tangential) nozzles and further nozzles, each designed in the manner of a shower is particularly advantageous in the event that large-area first partial areas of the component are to be cooled. It is particularly advantageous if the (tangential) nozzles are arranged in the area of a partition and the further nozzles (in comparison to this) are arranged more towards the center of the first partial area of the component to be cooled. If the deformation of the component due to residual stress increases over large areas so that with pure horizontal flow (from the tangential nozzles) behind the elevations, dead areas with a lower flow velocity can arise, this leads to slower cooling in places. Therefore, large areas should (also) be flown vertically.
  • the vertical flow can be provided in a particularly advantageous manner in that, in addition to the at least one (tangential) nozzle, one or more further nozzles are provided, each of which is formed in the manner of a shower.
  • a nozzle geometry of the at least one nozzle is designed such that at least one component of the fluid flow flowing (within the nozzle) in the direction of a second sub-area of the component is deflected towards the first sub-area of the component.
  • the component of the fluid flow is preferably deflected within the nozzle and / or directly upstream of a nozzle outlet opening towards the first partial area.
  • the nozzle geometry of the at least one nozzle is designed such that at least one component of the fluid flow initially flows through the nozzle in a direction towards a second sub-area of the component and is then deflected towards the first sub-area.
  • the fluid flow is preferably deflected from a deflection area of the nozzle to the first partial area, the deflection area regularly being arranged (directly) upstream of a nozzle outlet and / or a nozzle outlet opening.
  • the nozzle geometry of the at least one nozzle is designed in such a way that the (entire flowing through the respective nozzle) fluid flow initially flows through the nozzle in a direction towards a second sub-area of the component and then towards the first sub-area is diverted. (Immediately) after the fluid flow has been deflected towards the first sub-area, the fluid flow can leave the at least one nozzle essentially tangentially and / or parallel to the processing plane and / or a surface of the first sub-area of the component.
  • the nozzle geometry of the at least one nozzle is preferably designed in such a way that at least one component of the fluid flow, at least one (central) streamline of the fluid flow or even the entire fluid flow flowing through the respective nozzle flows through the nozzle (initially) in a first direction, then is deflected and then flows through the nozzle in a second direction.
  • the first direction (predominantly) has a directional component directed radially outward
  • the second direction predominantly) has a directional component directed radially inward.
  • the information "radially outwards" and "radially inwards" are defined in relation to a nozzle inlet section or nozzle inlet channel running essentially perpendicular to the processing plane.
  • the fluid flow thus regularly or firstly flows through a nozzle inlet section or nozzle inlet channel running essentially perpendicular to the processing plane, is then deflected radially outward, then deflected so that it is radially inward in the area of a nozzle outlet or towards the nozzle outlet is directed.
  • the at least one nozzle preferably has a deflection area.
  • the deflection area is particularly preferably at least partially curved or executed curved.
  • the deflection area can be arranged directly upstream of a nozzle outlet.
  • a nozzle outlet of the at least one nozzle is designed, roughly aligned and / or arranged relative to a deflection area of the nozzle that one (each) flow pulse in the direction of a second sub-area (7) of the component (2) is suppressed at the nozzle outlet.
  • the nozzle outlet is preferably arranged downstream and / or after a curvature of the nozzle geometry, a curved section of the nozzle and / or a deflection area of the nozzle.
  • a concave inside of the curvature, the curvature section or the deflection region preferably points towards the first partial region of the component.
  • a convex outside of the curvature, the curvature section or the deflection region preferably points towards a second partial region of the component.
  • the nozzle outlet is particularly preferably oriented (directly) towards the first sub-area and / or in the direction of the first sub-area.
  • the at least one nozzle is preferably arranged adjacent to and / or (directly) in the area of a partition which (thermally) delimits the first sub-area from a second sub-area of the component.
  • the partition wall can be a part of the temperature control station and / or (in any case also) be arranged above the component.
  • the at least one nozzle has a cranked design.
  • the at least one nozzle is particularly preferably cranked in such a way that a nozzle outlet of the at least one nozzle has a smaller (horizontal) distance from the partition than a nozzle inlet of the at least one nozzle.
  • the nozzle outlet can be arranged very close to or even at least partially below the partition and thus very close to the transition area to be generated, while still being sufficient remaining space between the nozzle inlet and the partition wall for thermal insulation attached to the partition wall.
  • the at least one nozzle has a deflection area which extends towards and / or at least partially below a partition wall which delimits the first partial area from a second partial area of the component.
  • the partition is preferably a part of the temperature control station and is regularly (at least also) arranged above the component.
  • a convex outside of the deflection area is preferably directed towards the partition and / or towards a second partial area of the component.
  • the at least one nozzle in particular a deflection area of the at least one nozzle, is designed so that the fluid flow is directed on a side facing the processing plane and / or on an area facing a second sub-area of the component creates a negative pressure area around the nozzle.
  • the negative pressure area is an area with a pressure that is lower than the ambient pressure.
  • a flow pulse in the direction of the first partial area of the component is preferably to be set or adjusted by the geometry of the deflection area in such a way that a (slight) negative pressure is created on the underside of the nozzle. The resulting ejector effect even allows some warm air from the hot area of the temperature control station, i.e. H.
  • a distance between the processing plane and the at least one nozzle be adjustable in this way or it is set so that the at least one nozzle does not contact the component.
  • the distance is preferably in the range from 0.01 mm to 6 mm [millimeters], particularly preferably in the range from 0.5 mm to 5 mm or even in the range from 1 mm to 3.5 mm.
  • the nozzle geometry and / or an outer contour of the nozzle is preferably designed in such a way that the negative pressure area described above arises itself or, in particular, when the nozzle does not contact the component.
  • the solution presented here can thus be designed to be very fault-tolerant with regard to positioning errors and / or temperature-related or residual stress-related geometry errors of the component.
  • the at least one nozzle in the temperature control station is preferably movable, in particular held or supported in a displaceable manner.
  • the exact position of the transition area can advantageously be readjusted in a simple manner in the horizontal direction.
  • At least one heat source which is (thermally) separated from the at least one nozzle in the temperature control station, is preferably arranged in the temperature control station.
  • the heat source and the nozzle can be (thermally) separated from one another and / or shielded by means of a partition.
  • the at least one heat source is preferably at least one radiant heat source.
  • the heat source is preferably an actively operable, in particular electrically operable or energizable heat source.
  • the heat source is particularly preferably formed with an electrically operated heating element (which does not physically or electrically contact the component).
  • the heating element can be a heating loop, an all-ceramic heating element and / or a heating wire.
  • the heat source with a (gas-heated) radiant tube be formed.
  • the heat source and the nozzle are advantageously held in a nozzle box arranged in the temperature control station, the nozzle box having at least one partition between the heat source and the nozzle. It is particularly preferred if a nozzle outlet or a nozzle outlet opening of the tangential nozzle points or is directed away from the heat source.
  • the press hardening tool is provided and set up in particular to reshape the component at the same time or at least partially in parallel and (at least partially) to quench it.
  • the press hardening tool can be part of a press or be formed by a press.
  • the first furnace, the temperature control station, the second furnace and the press hardening tool (in the order mentioned) are preferably arranged in particular directly one behind the other. However, between the first furnace and the temperature control station, between the temperature control station and the second furnace and / or between the second furnace and the press hardening tool, an optionally by means of at least one Handling device to be bridged distance be provided, which is preferably at least 0.5 m [meters].
  • the first furnace or the second furnace is a continuous furnace or a chamber furnace.
  • the first furnace is preferably a continuous furnace, in particular a roller hearth furnace.
  • the second furnace is particularly preferably a continuous furnace, in particular a roller hearth furnace, or a chamber furnace, in particular a multi-layer chamber furnace with at least two chambers arranged one above the other.
  • the second furnace preferably has a furnace interior which can in particular (exclusively) be heated by means of radiant heat, in which an (almost) uniform internal temperature can preferably be set or set.
  • the second furnace is designed as a multi-layer chamber furnace, several such furnace interiors can be present, depending on the number of chambers.
  • Radiant heat sources are preferably arranged in the first oven and / or in the second oven.
  • at least one electrically operated heating element (which does not contact the component), such as at least one electrically operated heating loop, an all-ceramic heating element and / or at least one electrically operated heating wire, is arranged in an oven interior of the first oven and / or in an oven interior of the second oven .
  • at least one, in particular gas-heated, radiant tube can be arranged in the oven interior of the first oven and / or the oven interior of the second oven.
  • a plurality of radiant tube gas burners or radiant tubes, into each of which at least one gas burner burns, are arranged in the furnace interior of the first furnace and / or the furnace interior of the second furnace. It is particularly advantageous here if the inner area of the steel pipes into which the gas burners burn is atmospherically separated from the furnace interior so that no combustion gases or exhaust gases enter enter the furnace interior and thus influence the furnace atmosphere. Such an arrangement is also referred to as "indirect gas heating".
  • the use of at least one tangential nozzle in a temperature control station is proposed for the partial heat treatment of a metallic component, in particular for the partial cooling of a first partial area of the component.
  • the tangential nozzle is preferably used to discharge an essentially horizontally oriented air stream that flows along a surface of a first sub-area of the component in order to reduce the strength of the first sub-area (compared to a second sub-area) in the finished heat-treated (i.e. press-hardened) component cool.
  • the tangential nozzle can be aligned in such a way that the air stream flows from an edge (to be set) or a contour of the first sub-area and / or from a partition wall towards a center of the first sub-area.
  • Fig. 1 shows a schematic representation of a temperature control station 1 for the partial heat treatment of a metallic component 2.
  • a processing plane 3 is arranged, in which the component 2 lies.
  • a nozzle 4 is arranged in the temperature control station 1 here, by way of example, which is oriented towards the processing plane 3 and for discharging a fluid stream 5 (in Fig. 1 shown in dashed lines) is provided and set up for cooling a first partial area 6 of the component 2.
  • the nozzle 4 is a tangential nozzle 13. This is characterized in that it generates a fluid flow 5 at a nozzle outlet 9 of the nozzle 4, which is essentially tangential or parallel to a surface of the component 2, here to a surface of the first partial area 6 of the component 2. This alignment is illustrated by the arrow at the end of the fluid flow 5 shown in dashed lines. Furthermore, a (in Fig. 1 cut) nozzle geometry 8 of the nozzle 4 is designed such that at least one component of the fluid flow 5 flowing in the direction of a second sub-area 7 of the component 2 is deflected towards the first sub-area 6. According to the illustration after Fig.
  • the nozzle geometry is even designed in such a way that the entire fluid flow 5 flowing through the nozzle 4 initially flows through the nozzle 4 in one direction towards a second sub-area 7 of the component 2 and is then deflected towards the first sub-area 6 of the component 2.
  • the nozzle 4 has in FIG Fig. 1 a deflection area 10.
  • a nozzle outlet 9 of the nozzle 4 follows downstream of the deflection area 10.
  • the nozzle outlet 9 is designed, roughly aligned and arranged relative to the deflection area 10 that a flow impulse in the direction of the second sub-area 7 of the component 2 is suppressed at the nozzle outlet 9.
  • Fig. 1 it is also shown that the deflection area 10 of the nozzle 4 extends towards and at least partially below a partition 11 which (thermally) delimits the first sub-area 6 of the component 2 from the second sub-area 7 of the component 2.
  • the partition wall 11 is formed here, for example, as part of a nozzle box 19, in which a heat source 20 is kept (thermally) separated or isolated from the nozzle 4.
  • the partition wall 11 helps to (thermally) seal off the nozzle 4 and the first sub-area 6 of the component 2 from the heat source 20 and thus the first sub-area 6 of the component 2, which is cooled by the nozzle 4, from the second sub-area 7 of the component 2, which is heated (thermally) by means of the heat source 20, so that different component temperatures can be set in the subregions 6, 7, which lead to different structures and / or strength properties in the subregions 6, 7 of the component.
  • nozzle 4 in Fig. 1 is designed in such a way that the fluid flow 5 is on a side of the Nozzle 4 and a negative pressure area 12 is generated at an area of the nozzle 4 pointing towards a second partial area 7 of the component 2.
  • a distance between the processing plane 3 and the nozzle 4 is set in such a way that the nozzle 4 does not contact the component 2.
  • the temperature control station 1 has a further nozzle 18 here.
  • the further nozzle 18 is formed, for example, in the manner of a shower and is held next to the tangential nozzle 13 in the temperature control station 1.
  • Fig. 2 shows a schematic representation of a device 14 according to the invention for heat treatment of a metallic component 2.
  • the device 14 has a heatable first furnace 15, a temperature control station 1 (directly) downstream of the first furnace 15, and a heatable second furnace 16 (directly) downstream of the temperature control station 1 and a press hardening tool 17 arranged (directly) downstream of the second furnace 16.
  • the device 14 here represents a hot forming line for (partial) press hardening.
  • the press hardening tool 17 is part of a press or is formed by a press.
  • a temperature control station and a device for heat treatment of a metallic component are specified here, which at least partially solve the problems described with reference to the prior art.
  • the temperature control station and the device allow a transition area between differently heat-treated sub-areas of the component to be set as reliably and / or exactly as possible, in particular as small as possible.
  • the temperature control station and the device allow, in particular, that contact of the component with a partition wall for (thermal) delimitation of the differently temperature-controlled subregions of the component is no longer necessary.

Description

Die Erfindung betrifft eine Temperierstation zur partiellen Wärmebehandlung eines metallischen Bauteils, eine Vorrichtung zur Wärmebehandlung eines metallischen Bauteils sowie eine Verwendung mindestens einer Tangentialdüse in einer Temperierstation, zum partiellen Wärmebehandeln eines metallischen Bauteils. Die Erfindung kann insbesondere im Zusammenhang mit einer Presshärtelinien zur Anwendung kommen, in der einem Durchlaufofen, insbesondere Rollenherdofen, ein Presshärtewerkzeug nachgeordnet ist.The invention relates to a temperature control station for the partial heat treatment of a metallic component, a device for the heat treatment of a metallic component and the use of at least one tangential nozzle in a temperature control station for the partial heat treatment of a metallic component. The invention can be used in particular in connection with a press hardening line in which a press hardening tool is arranged downstream of a continuous furnace, in particular a roller hearth furnace.

Zur Herstellung sicherheitsrelevanter Fahrzeug-Karosseriebauteile aus Stahlblech ist es regelmäßig erforderlich das Stahlblech während oder nach der Umformung zu dem Karosseriebauteil zu härten. Hierzu hat sich ein Wärmebehandlungsverfahren etabliert, das als "Presshärten" bezeichnet wird. Dabei wird das Stahlblech, das regelmäßig in der Form einer Platine bereitgestellt zunächst in einem Ofen aufgeheizt und anschließend während der Umformung in einer Presse abgekühlt und dadurch gehärtet.To manufacture safety-relevant vehicle body components from sheet steel, it is regularly necessary to harden the sheet steel during or after the deformation to form the body component. For this purpose, a heat treatment process called "press hardening" has been established. The steel sheet, which is regularly provided in the form of a blank, is first heated in an oven and then cooled in a press during the forming process and thereby hardened.

Seit einigen Jahren besteht nun das Bestreben mittels des Presshärtens Karosseriebauteile von Kraftfahrzeugen, wie z. B. A- und B-Säulen, Seitenaufprallschutzträger in Türen, Schweller, Rahmenteile, Stoßstangenfänger, Querträger für Boden und Dach, vordere und hintere Längsträger, bereitzustellen, die in Teilbereichen unterschiedliche Festigkeiten aufweisen, sodass das Karosseriebauteil partiell unterschiedliche Funktionen erfüllen kann. So soll zum Beispiel der mittlere Bereich einer B-Säule eines Fahrzeugs eine hohe Festigkeit aufweisen, um die Insassen im Falle eines Seitenaufpralls zu schützen. Gleichzeitig sollen der obere und untere Endbereich der B-Säule eine vergleichsweise geringe Festigkeit aufweisen, um zum einen Verformungsenergie während eines Seitenaufpralls aufnehmen zu können und zum anderen während der Montage der B-Säule eine einfache Verbindbarkeit mit anderen Karosseriebauteilen zu ermöglichen.For some years now there has been an effort by means of press hardening body components of motor vehicles, such as. B. A- and B-pillars, side impact protection beams in doors, sills, frame parts, bumper guards, cross members for the floor and roof, front and rear side members, which have different strengths in some areas, so that the body component can partially fulfill different functions. For example, the central area of a B-pillar of a vehicle should have a high degree of strength in order to protect the occupants in the event of a side impact. At the same time, the upper and lower end areas of the B-pillar should have a comparatively low strength in order to be able to absorb deformation energy during a side impact on the one hand and during a side impact on the other the assembly of the B-pillar to enable simple connectivity with other body components.

Zur Ausbildung eines solchen partiell gehärteten Karosseriebauteils ist es erforderlich, dass das gehärtete Bauteil in den Teilbereichen unterschiedliche Festigkeitseigenschaften aufweist. Hierzu besteht zum Beispiel die Möglichkeit, eine oder mehrere Temperierstation(en) zwischen dem Ofen und dem Presshärtewerkzeug anzuordnen. Die Temperierstation ist hierbei dazu vorgesehen und eingerichtet, in den Teilbereichen des zunächst uniform aufgeheizten Bauteils unterschiedliche Temperaturen einzustellen, sodass während des anschließenden Presshärtens sich unterschiedliche Festigkeitseigenschaften in den Teilbereichen einstellen. Optimale Taktzeiten, die insbesondere in der Fahrzeugindustrie eine wesentliche Rolle spielen, können hierbei insbesondere dann erreicht werden, wenn die Komponenten Ofen, Temperierstation und Presshärtewerkzeug hintereinander angeordnet sind.In order to form such a partially hardened body component, it is necessary for the hardened component to have different strength properties in the subregions. For this purpose it is possible, for example, to arrange one or more temperature control station (s) between the furnace and the press hardening tool. The tempering station is provided and set up to set different temperatures in the subareas of the component, which is initially uniformly heated, so that different strength properties are set in the subareas during the subsequent press hardening. Optimal cycle times, which play an important role in the vehicle industry in particular, can be achieved here in particular if the components oven, temperature control station and press hardening tool are arranged one behind the other.

Es hat sich als vorteilhaft herausgestellt, wenn in der Temperierstation ein oder mehrere bestimmte Teilbereiche des Bauteils, die in dem gehärteten Bauteil eine höhere Duktilität beziehungsweise geringere Festigkeit als andere, gehärtete Teilbereiche des Bauteils aufweisen sollen, gezielt abgekühlt werden, insbesondere, während die anderen, zu härtenden Teilbereiche des Bauteils auf einer hohen Temperatur gehalten werden. In diesem Zusammenhang hat es sich als besonders vorteilhaft herausgestellt, wenn zur Abkühlung des oder der bestimmten Teilbereiche mit geringerer Festigkeit Luft mit hoher Geschwindigkeit durch Düsen auf den oder die entsprechenden Teilbereiche des Bauteils geblasen wird.It has been found to be advantageous if one or more specific sub-areas of the component, which should have a higher ductility or lower strength in the hardened component than other, hardened sub-areas of the component, are specifically cooled in the temperature control station, in particular while the others, parts of the component to be hardened are kept at a high temperature. In this context, it has been found to be particularly advantageous if air is blown at high speed through nozzles onto the corresponding sub-area or areas of the component in order to cool the specific sub-area or areas with lower strength.

Bei einer solchen Luftkühlung ergibt sich jedoch regelmäßig das Problem, dass die sich in dem Bauteil einstellende Grenze zwischen den Teilbereichen unterschiedlicher Festigkeit, die auch als Übergangsbereich bezeichnet wird, nicht klar genug definierbar und/oder exakt genug einstellbar ist. Um eine möglichst exakte Einstellbarkeit des Übergangsbereichs zu erreichen, werden regelmäßig Trennwände, die auch als Schottwände bezeichnet werden, verwendet, die neben den Düsen in der Temperierstation angeordnet sind und die zur (thermischen) Abgrenzung der jeweiligen Teilbereiche unterschiedlicher Festigkeit vorgesehen und eingerichtet sind. Hierzu können die Trennwände das Bauteil gegebenenfalls sogar berühren, regelmäßig ist jedoch ein möglichst klein zu haltender Spalt zwischen dem unteren Ende der jeweiligen Trennwand und dem Bauteil vorzusehen.With such air cooling, however, the problem regularly arises that the boundary between the sub-areas of different strength, which is also referred to as the transition area, does not arise in the component clearly enough definable and / or precisely enough adjustable. In order to achieve the most exact adjustability of the transition area possible, partitions, which are also referred to as bulkheads, are regularly used, which are arranged next to the nozzles in the temperature control station and which are provided and set up for the (thermal) delimitation of the respective sub-areas of different strength. For this purpose, the partition walls can even touch the component, if necessary, but a gap, which is to be kept as small as possible, must regularly be provided between the lower end of the respective partition and the component.

Unter Umständen kommt es vor, dass der Spalt zwischen der Trennwand und dem Bauteil nicht klein genug ist, um eine mögliche Leckage von kalter Luft hin zu dem heißeren und heiß zu haltenden Teilbereich des Bauteils zuverlässig zu verhindern. Dadurch kommt es zu einer ungewollten Unschärfe im Übergangsbereich, durch die der Übergangsbereich in der Regel größer als notwendig oder gewollt wird. Hinzukommen kann, dass es durch beispielsweise Verwerfungen des heißen Bauteils oder nicht ausreichend präzise Positionierung des Bauteils zu ungewollten Spaltvergrößerungen kommt. Die Automobilindustrie legt jedoch vermehrt großen Wert auf möglichst kleine Übergangsbereiche, damit das spätere Crashverhalten in der vorausgehenden Auslegung, insbesondere in der vorausgehenden Simulation des Crashverhaltens besser abzubilden ist. Daher besteht zunehmend das Bestreben, die Übergangsbereiche möglich exakt und klein einstellen zu können, was insbesondere durch die bei bisherigen Temperierstationen auftretenden Leckageströme zwischen der Trennwand und dem Bauteil erschwert wird.It may happen that the gap between the partition and the component is not small enough to reliably prevent a possible leakage of cold air to the hotter and hot part of the component. This leads to an unwanted blurring in the transition area, as a result of which the transition area is usually larger than necessary or desired. In addition, warping of the hot component or insufficiently precise positioning of the component can lead to undesired enlargements of the gap. However, the automotive industry is increasingly placing great importance on the smallest possible transition areas so that the subsequent crash behavior can be better mapped in the previous design, in particular in the previous simulation of the crash behavior. Therefore, there is an increasing effort to be able to set the transition areas as precisely and as small as possible, which is made more difficult in particular by the leakage flows between the partition and the component that have occurred in previous temperature control stations.

Verfahren zur thermischen Behandlung sind aus der DE 10 2015 112 293 A1 und DE 10 2012 021 576 A1 bekannt.Thermal treatment methods are from the DE 10 2015 112 293 A1 and DE 10 2012 021 576 A1 known.

Hiervon ausgehend ist es Aufgabe der vorliegenden Erfindung, die mit Bezug auf den Stand der Technik geschilderten Probleme zumindest teilweise zu lösen. Insbesondere sollen eine Temperierstation und eine Vorrichtung zur Wärmebehandlung eines metallischen Bauteils angegeben werden, die es erlauben, einen Übergangsbereich zwischen unterschiedlich wärmebehandelten Teilbereichen des Bauteils möglichst zuverlässig und/oder exakt, insbesondere möglichst klein einzustellen. Darüber hinaus sollen die Temperierstation und die Vorrichtung insbesondere erlauben, dass eine Berührung des Bauteils mit einer Trennwand zur (thermischen) Abgrenzung der unterschiedlich temperierten Teilbereiche des Bauteils nicht mehr erforderlich ist.Proceeding from this, it is the object of the present invention to at least partially solve the problems described with reference to the prior art. In particular, a temperature control station and a device for heat treatment of a metallic component are to be specified, which it allow a transition area between differently heat-treated sub-areas of the component to be set as reliably and / or exactly as possible, in particular as small as possible. In addition, the temperature control station and the device should in particular allow contact of the component with a partition wall for (thermal) delimitation of the differently temperature-controlled subregions of the component is no longer necessary.

Diese Aufgaben werden gelöst durch die Merkmale der unabhängigen Patentansprüche. Weitere vorteilhafte Ausgestaltungen der hier vorgeschlagenen Lösung sind in den abhängigen Patentansprüchen angegeben. Es ist darauf hinzuweisen, dass die in den abhängigen Patentansprüchen einzeln aufgeführten Merkmale in beliebiger, technologisch sinnvoller, Weise miteinander kombiniert werden können und weitere Ausgestaltungen der Erfindung definieren. Darüber hinaus werden die in den Patentansprüchen angegebenen Merkmale in der Beschreibung näher präzisiert und erläutert, wobei weitere bevorzugte Ausgestaltungen der Erfindung dargestellt werden.These objects are achieved by the features of the independent patent claims. Further advantageous configurations of the solution proposed here are specified in the dependent claims. It should be pointed out that the features listed individually in the dependent claims can be combined with one another in any desired, technologically sensible manner and define further embodiments of the invention. In addition, the features specified in the patent claims are specified and explained in more detail in the description, with further preferred embodiments of the invention being presented.

Eine erfindungsgemäße Temperierstation zur partiellen Wärmebehandlung eines metallischen Bauteils weist zumindest eine in der Temperierstation angeordnete (horizontale) Bearbeitungsebene, in der das Bauteil anordenbar ist sowie mindestens eine Düse auf, die hin zu der Bearbeitungsebene ausgerichtet und zum Austragen eines Fluidstroms zum Kühlen mindestens eines ersten Teilbereichs des Bauteils vorgesehen und eingerichtet ist. Dabei ist die mindestens eine Düse eine Tangentialdüse.A temperature control station according to the invention for the partial heat treatment of a metallic component has at least one (horizontal) processing plane arranged in the temperature control station, in which the component can be arranged, and at least one nozzle, which is oriented towards the processing plane and for discharging a fluid flow for cooling at least a first sub-area of the component is provided and set up. The at least one nozzle is a tangential nozzle.

Die Tangentialdüse zeichnet insbesondere dadurch aus, dass sie an mindestens einem Düsenaustritt eine Fluidströmung erzeugt und/oder austrägt, die zumindest eine Richtungskomponente oder eine Stromlinie aufweist, die im Wesentlichen tangential und/oder parallel zu der Bearbeitungsebene und/oder einer Oberfläche des Bauteils ausgerichtet ist. Die Begriffe "im Wesentlichen tangential" und "im Wesentlichen parallel" umfassen hierbei insbesondere Abweichungen von der Idealform ("tangential" beziehungsweise "parallel") im Bereich von - 10° bis + 20° [Grad], bevorzugt 0° bis 20°. Bevorzugt erzeugt die Tangentialdüse stromab ihres Düsenaustritts eine Horizontalströmung.The tangential nozzle is characterized in particular by the fact that it generates and / or discharges a fluid flow at at least one nozzle outlet which has at least one directional component or a streamline that is essentially tangential and / or parallel to the processing plane and / or a surface of the component . The terms "essentially tangential" and "im "Essentially parallel" here includes in particular deviations from the ideal shape ("tangential" or "parallel") in the range from -10 ° to + 20 ° [degrees], preferably 0 ° to 20 °. The tangential nozzle preferably generates a horizontal flow downstream of its nozzle outlet.

Hierzu kann eine Ebene, in der ein Düsenaustrittsquerschnitt beziehungsweise eine Öffnung eines Düsenaustritts der Tangentialdüse liegt einen Winkel von 0° bis 135° [Grad], vorzugsweise von 0° bis 75° und insbesondere 20° bis 75° mit der (horizontalen) Bearbeitungsebene einschließen. Die Tangentialdüse trägt insbesondere dazu bei, die Luftführung so zu lenken, dass am Düsenaustritt ein Luftimpuls in Richtung eines zweiten Teilbereichs des Bauteils unterbunden wird. Besonders bevorzugt ist es, wenn ein Düsenaustritt beziehungsweise eine Düsenaustrittsöffnung der Tangentialdüse zu dem ersten Teilbereich des Bauteils hin und/oder von einem zweiten Teilbereich des Bauteils weg weist oder gerichtet ist.For this purpose, a plane in which a nozzle outlet cross-section or an opening of a nozzle outlet of the tangential nozzle is located can enclose an angle of 0 ° to 135 ° [degrees], preferably 0 ° to 75 ° and in particular 20 ° to 75 ° with the (horizontal) processing plane . The tangential nozzle contributes in particular to directing the air flow in such a way that an air pulse in the direction of a second partial area of the component is suppressed at the nozzle outlet. It is particularly preferred if a nozzle outlet or a nozzle outlet opening of the tangential nozzle points or is directed towards the first partial area of the component and / or away from a second partial area of the component.

Die hier vorgestellte Lösung erlaubt in vorteilhafter Weise eine Art "aerodynamische Abdichtung" in Richtung des zweiten Teilbereichs des Bauteils bereitzustellen. Dies trägt dazu bei, dass im Wesentlichen keine Leckage des Fluidstroms bis hin zu dem zweiten Teilbereich des Bauteils gelangt, der während des Kühlens des ersten Teilbereichs in der Temperierstation seine hohe Bauteiltemperatur zwecks Härtung des zweiten Teilbereichs möglichst nicht oder nur sehr wenig ändern soll. So lassen sich in vorteilhafter Weise sehr scharf abgegrenzte Übergangsbereiche darstellen. Insbesondere liegt ein mittels der hier vorgestellten Lösung erzielbarer Übergangsbereich etwa im Bereich von 1 mm bis 60 mm [Millimeter]. Bei einer vorteilhaften Anwendung der hier vorgestellten Lösung wird die Größe, insbesondere Breite des Übergangsbereichs hauptsächlich (nur noch) durch die physikalisch unvermeidbare Wärmeleitung im Bauteil bestimmt. Mit der hier vorgestellten Lösung lassen sich beispielsweise weiche Außenflansche an harten Bauteilen einfach herstellen.The solution presented here advantageously allows a type of “aerodynamic seal” to be provided in the direction of the second partial area of the component. This helps to ensure that essentially no leakage of the fluid flow reaches the second sub-area of the component, which should change its high component temperature as little or as little as possible during the cooling of the first sub-area in the temperature control station for the purpose of hardening the second sub-area. In this way, very sharply delimited transition areas can be represented in an advantageous manner. In particular, a transition area that can be achieved by means of the solution presented here lies approximately in the range from 1 mm to 60 mm [millimeters]. In an advantageous application of the solution presented here, the size, in particular the width of the transition area is mainly (only) determined by the physically unavoidable heat conduction in the component. With the solution presented here, for example, soft outer flanges can be easily produced on hard components.

Bei dem (mittels der Temperierstation zu behandelnden) metallischen Bauteil handelt es sich vorzugsweise um eine metallische Platine, ein Stahlblech oder ein zumindest teilweise vorgeformtes Halbzeug. Das metallische Bauteil ist bevorzugt mit beziehungsweise aus einem (härtbaren) Stahl, beispielweise einem Bor-(Mangan-)Stahl, z. B. mit der Bezeichnung 22MnB5, gebildet. Weiter bevorzugt ist das metallische Bauteil zumindest zu einem Großteil mit einer (metallischen) Beschichtung versehen beziehungsweise vorbeschichtet. Bei der metallischen Beschichtung kann es sich beispielsweise um eine (vorrangig) Zink enthaltende Beschichtung oder eine (vorrangig) Aluminium und/oder Silizium enthaltende Beschichtung, insbesondere eine sogenannte Aluminium/Silizium(Al/Si)-Beschichtung handeln. Jedoch kann das metallische Bauteil (alternativ) auch mit beziehungsweise aus Aluminium oder mit oder aus einer Aluminiumlegierung gebildet sein.The metallic component (to be treated by means of the temperature control station) is preferably a metallic blank, a sheet steel or an at least partially preformed semi-finished product. The metallic component is preferably made with or made of a (hardenable) steel, for example a boron (manganese) steel, e.g. B. with the designation 22MnB5 formed. The metallic component is further preferably provided or precoated at least to a large extent with a (metallic) coating. The metallic coating can be, for example, a (primarily) zinc-containing coating or a (primarily) aluminum and / or silicon-containing coating, in particular a so-called aluminum / silicon (Al / Si) coating. However, the metallic component can (alternatively) also be formed with or from aluminum or with or from an aluminum alloy.

Die Temperierstation ist bevorzugt einem ersten Ofen nachgeordnet und/oder einem zweiten Ofen vorgeordnet. In der Temperierstation ist eine Bearbeitungsebene angeordnet, in der das Bauteil anordenbar beziehungsweise angeordnet ist. Die Bearbeitungsebene bezeichnet hierbei insbesondere die Ebene, in die das Bauteil zur Behandlung in der Temperierstation verbringbar und/oder in der das Bauteil während der Behandlung in der Temperierstation angeordnet und/oder fixierbar ist. Bevorzugt ist die Bearbeitungsebene im Wesentlichen horizontal ausgerichtet.The temperature control station is preferably arranged downstream of a first furnace and / or upstream of a second furnace. A processing plane in which the component can be or is arranged is arranged in the temperature control station. The processing level here refers in particular to the level into which the component can be brought for treatment in the temperature control station and / or in which the component is arranged and / or fixable during the treatment in the temperature control station. The working plane is preferably aligned essentially horizontally.

Die Temperierstation weist mindestens eine Düse auf. Die Düse ist hin zu der Bearbeitungsebene ausgerichtet. Zudem ist die Düse zum Austragen eines Fluidstroms zum Kühlen mindestens eines ersten Teilbereichs des Bauteils vorgesehen und eingerichtet, insbesondere so, dass eine Temperaturdifferenz zwischen dem mindestens einen ersten (im fertig behandelten Bauteil duktileren) Teilbereich und mindestens einem zweiten (im fertig behandelten Bauteil im Vergleich dazu härteren) Teilbereich des Bauteils einstellbar ist. Bevorzugt ist eine Vielzahl von Düsen vorgesehen, wobei die Düsen besonders bevorzugt zu einem Düsenfeld angeordnet sind. Wenn eine Vielzahl von Düsen vorgesehen ist, ist mindestens eine der Düsen eine Tangentialdüse.The temperature control station has at least one nozzle. The nozzle is oriented towards the working plane. In addition, the nozzle for discharging a fluid stream for cooling at least a first sub-area of the component is provided and set up, in particular so that a temperature difference between the at least one first (more ductile in the finished component) sub-area and at least one second (in the finished component in Compared to this, the harder) partial area of the component is adjustable. A plurality of nozzles is preferably provided, the nozzles particularly preferably being arranged in a nozzle field. When a plurality of nozzles are provided, at least one of the nozzles is a tangential nozzle.

Der Fluidstrom ist vorzugsweise mit einem Kühlfluid gebildet. Das Kühlfluid kann mit einem Gas, etwa Stickstoff oder mit einem Gasgemisch, insbesondere Luft gebildet sein. Darüber hinaus kann das Kühlfluid mit einem Gas-Flüssigkeits-Gemisch gebildet sein, etwa einem Luft-Wasser-Gemisch.The fluid flow is preferably formed with a cooling fluid. The cooling fluid can be formed with a gas, for example nitrogen, or with a gas mixture, in particular air. In addition, the cooling fluid can be formed with a gas-liquid mixture, for example an air-water mixture.

Zusätzlich zu der mindestens einen Düse, welche als Tangentialdüse ausgeführt ist, kann die Temperierstation eine oder mehrere weitere Düsen aufweisen, die eine andere, insbesondere konstruktiv einfachere Düsengeometrie aufweisen. So kann zusätzlich zu der mindestens einen (Tangential-)Düse mindestens eine weitere Düse vorgesehen sein, die mindestens einen im Wesentlichen senkrecht zu der Bearbeitungsebene verlaufenden Düsenkanal aufweist oder bildet, insbesondere umgibt. Die weitere Düse ist vorzugsweise neben der (Tangential-) Düse in der Temperierstation angeordnet, jedoch insbesondere nicht zwischen der (Tangential-)Düse und einer Trennwand. Dabei können die weitere Düse und die (Tangential-)Düse auf derselben Höhe innerhalb der Temperierstation und/oder oberhalb der Bearbeitungsebene gehalten sein. Bevorzugt ist die mindestens eine weitere Düse in der Art einer Brause gebildet. Dies bedeutet mit anderen Worten insbesondere, dass die mindestens eine weitere Düse an einer hin zu der Bearbeitungsebene weisenden Unterseite eine Vielzahl von Auslassöffnungen aufweist.In addition to the at least one nozzle, which is designed as a tangential nozzle, the temperature control station can have one or more further nozzles which have a different, in particular structurally simpler, nozzle geometry. Thus, in addition to the at least one (tangential) nozzle, at least one further nozzle can be provided which has or forms, in particular surrounds, at least one nozzle channel running essentially perpendicular to the processing plane. The further nozzle is preferably arranged next to the (tangential) nozzle in the temperature control station, but in particular not between the (tangential) nozzle and a partition. The further nozzle and the (tangential) nozzle can be held at the same height within the temperature control station and / or above the processing plane. The at least one further nozzle is preferably designed in the manner of a shower head. In other words, this means in particular that the at least one further nozzle has a multiplicity of outlet openings on an underside pointing towards the processing plane.

Insbesondere für den Fall, dass großflächige erste Teilbereiche des Bauteils abgekühlt werden sollen, ist eine Kombination von (Tangential-)Düsen und weiteren Düsen, die jeweils in der Art einer Brause gebildet sind (auch als "Brauseköpfe" bezeichnet) vorteilhaft. Hierbei ist es besonders vorteilhaft, wenn die (Tangential-)Düsen im Bereich einer Trennwand und die weiteren Düsen (im Vergleich dazu) eher hin zum Zentrum des zu kühlenden ersten Teilbereichs des Bauteils angeordnet sind. Nimmt die eigenspannungsbedingte Verformung des Bauteils auf großen Flächen derart zu, dass bei reiner Horizontalströmung (aus den Tangentialdüsen) hinter den Erhebungen Totgebiete mit geringerer Strömungsgeschwindigkeit entstehen können, führt das zu stellenweise langsamerer Abkühlung. Deshalb sollten große Flächen (auch) vertikal angeströmt werden. Die vertikale Anströmung kann in besonders vorteilhafter Weise dadurch bereitgestellt werden, dass zusätzlich zu der mindestens einen (Tangential-)Düse eine oder mehrere weitere Düsen vorgesehen sind, die jeweils in der Art einer Brause gebildet sind.A combination of (tangential) nozzles and further nozzles, each designed in the manner of a shower (also referred to as "shower heads"), is particularly advantageous in the event that large-area first partial areas of the component are to be cooled. It is particularly advantageous if the (tangential) nozzles are arranged in the area of a partition and the further nozzles (in comparison to this) are arranged more towards the center of the first partial area of the component to be cooled. If the deformation of the component due to residual stress increases over large areas so that with pure horizontal flow (from the tangential nozzles) behind the elevations, dead areas with a lower flow velocity can arise, this leads to slower cooling in places. Therefore, large areas should (also) be flown vertically. The vertical flow can be provided in a particularly advantageous manner in that, in addition to the at least one (tangential) nozzle, one or more further nozzles are provided, each of which is formed in the manner of a shower.

Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass eine Düsengeometrie der mindestens einen Düse so gestaltet ist, dass zumindest eine (innerhalb der Düse) in Richtung eines zweiten Teilbereichs des Bauteils strömende Komponente des Fluidstroms hin zu dem ersten Teilbereich des Bauteils umgelenkt wird. Bevorzugt wird die Komponente des Fluidstroms innerhalb der Düse und/oder unmittelbar stromauf einer Düsenaustrittsöffnung hin zu dem ersten Teilbereich umgelenkt.According to an advantageous embodiment, it is proposed that a nozzle geometry of the at least one nozzle is designed such that at least one component of the fluid flow flowing (within the nozzle) in the direction of a second sub-area of the component is deflected towards the first sub-area of the component. The component of the fluid flow is preferably deflected within the nozzle and / or directly upstream of a nozzle outlet opening towards the first partial area.

Nach einer weiteren vorteilhaften Ausgestaltung wird vorgeschlagen, dass die Düsengeometrie der mindestens einen Düse so gestaltet ist, dass zumindest eine Komponente des Fluidstroms die Düse zunächst in einer Richtung hin zu einem zweiten Teilbereich des Bauteils durchströmt und sodann hin zu dem ersten Teilbereich umgelenkt wird. Bevorzugt wird die Fluidströmung von einem Umlenkbereich der Düse hin zu dem ersten Teilbereich umgelenkt, wobei der Umlenkbereich regelmäßig einem Düsenaustritt und/oder einer Düsenaustrittsöffnung (unmittelbar) vorgeordnet ist.According to a further advantageous embodiment, it is proposed that the nozzle geometry of the at least one nozzle is designed such that at least one component of the fluid flow initially flows through the nozzle in a direction towards a second sub-area of the component and is then deflected towards the first sub-area. The fluid flow is preferably deflected from a deflection area of the nozzle to the first partial area, the deflection area regularly being arranged (directly) upstream of a nozzle outlet and / or a nozzle outlet opening.

Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass die Düsengeometrie der mindestens einen Düse so gestaltet ist, dass der (gesamte durch die jeweilige Düse strömende) Fluidstrom die Düse zunächst in einer Richtung hin zu einem zweiten Teilbereich des Bauteils durchströmt und sodann hin zu dem ersten Teilbereich umgelenkt wird. (Unmittelbar) nach dem Umlenken des Fluidstroms hin zu dem ersten Teilbereich kann der Fluidstrom die mindestens eine Düse im Wesentlichen tangential und/oder parallel zu der Bearbeitungsebene und/oder einer Oberfläche des ersten Teilbereichs des Bauteils verlassen.According to an advantageous embodiment, it is proposed that the nozzle geometry of the at least one nozzle is designed in such a way that the (entire flowing through the respective nozzle) fluid flow initially flows through the nozzle in a direction towards a second sub-area of the component and then towards the first sub-area is diverted. (Immediately) after the fluid flow has been deflected towards the first sub-area, the fluid flow can leave the at least one nozzle essentially tangentially and / or parallel to the processing plane and / or a surface of the first sub-area of the component.

Bevorzugt ist die Düsengeometrie der mindestens einen Düse so gestaltet, dass zumindest eine Komponente des Fluidstroms, mindestens eine (zentrale) Stromlinie des Fluidstroms oder sogar der gesamte durch die jeweilige Düse strömende Fluidstrom die Düse (zunächst) in einer ersten Richtung durchströmt, sodann umgelenkt wird und die Düse anschließend in einer zweiten Richtung durchströmt. Hierbei weist die erste Richtung (überwiegend) eine radial nach außen gerichtete Richtungskomponente und die zweite Richtung (überwiegend) eine radial nach innen gerichtete Richtungskomponente auf. Dabei sind die Angaben "radial nach außen" und "radial nach innen" bezüglich eines im Wesentlichen senkrecht zu der Bearbeitungsebene verlaufenden Düseneinlassabschnitts beziehungsweise Düseneinlasskanals definiert. Auf ihrem Weg durch die Düse durchströmt die Fluidströmung somit regelmäßig zunächst oder zuerst einen im Wesentlichen senkrecht zu der Bearbeitungsebene verlaufenden Düseneinlassabschnitt beziehungsweise Düseneinlasskanal, wird anschließend radial nach außen gelenkt, dann umgelenkt, sodass sie im Bereich eines Düsenaustritts oder hin zu dem Düsenaustritt radial nach innen gerichtet ist.The nozzle geometry of the at least one nozzle is preferably designed in such a way that at least one component of the fluid flow, at least one (central) streamline of the fluid flow or even the entire fluid flow flowing through the respective nozzle flows through the nozzle (initially) in a first direction, then is deflected and then flows through the nozzle in a second direction. Here, the first direction (predominantly) has a directional component directed radially outward and the second direction (predominantly) has a directional component directed radially inward. The information "radially outwards" and "radially inwards" are defined in relation to a nozzle inlet section or nozzle inlet channel running essentially perpendicular to the processing plane. On its way through the nozzle, the fluid flow thus regularly or firstly flows through a nozzle inlet section or nozzle inlet channel running essentially perpendicular to the processing plane, is then deflected radially outward, then deflected so that it is radially inward in the area of a nozzle outlet or towards the nozzle outlet is directed.

Bevorzugt hat die mindestens eine Düse einen Umlenkbereich. Der Umlenkbereich ist besonders bevorzugt zumindest teilweise gebogen oder gekrümmt ausgeführt. Der Umlenkbereich kann unmittelbar stromauf eines Düsenaustritts angeordnet sein.The at least one nozzle preferably has a deflection area. The deflection area is particularly preferably at least partially curved or executed curved. The deflection area can be arranged directly upstream of a nozzle outlet.

Erfindungsgemäß ist ein Düsenaustritt der mindestens einen Düse so gestaltet, etwa ausgerichtet und/oder relativ zu einem Umlenkbereich der Düse angeordnet, dass an dem Düsenaustritt ein (jeder) Strömungsimpuls in Richtung eines zweiten Teilbereiches (7) des Bauteils (2) unterbunden wird. Vorzugsweise ist der Düsenaustritt stromab und/oder nach einer Krümmung der Düsengeometrie, einem Krümmungsabschnitt der Düse und/oder einem Umlenkbereich der Düse angeordnet. Bevorzugt weist eine konkave Innenseite der Krümmung, des Krümmungsabschnitts beziehungsweise des Umlenkbereichs hin zu dem ersten Teilbereich des Bauteils. Weiterhin bevorzugt weist eine konvexe Außenseite der Krümmung, des Krümmungsabschnitts beziehungsweise des Umlenkbereichs hin zu einem zweiten Teilbereich des Bauteils. Besonders bevorzugt ist der Düsenaustritt (direkt) hin zu dem ersten Teilbereich und/oder in Richtung des ersten Teilbereichs ausgerichtet.According to the invention, a nozzle outlet of the at least one nozzle is designed, roughly aligned and / or arranged relative to a deflection area of the nozzle that one (each) flow pulse in the direction of a second sub-area (7) of the component (2) is suppressed at the nozzle outlet. The nozzle outlet is preferably arranged downstream and / or after a curvature of the nozzle geometry, a curved section of the nozzle and / or a deflection area of the nozzle. A concave inside of the curvature, the curvature section or the deflection region preferably points towards the first partial region of the component. Furthermore, a convex outside of the curvature, the curvature section or the deflection region preferably points towards a second partial region of the component. The nozzle outlet is particularly preferably oriented (directly) towards the first sub-area and / or in the direction of the first sub-area.

Weiterhin bevorzugt ist die mindestens eine Düse benachbart zu und/oder (unmittelbar) im Bereich einer Trennwand angeordnet, die den ersten Teilbereich von einem zweiten Teilbereich des Bauteils (thermisch) abgrenzt. Hierbei kann die Trennwand ein Teil der Temperierstation und/oder (jedenfalls auch) oberhalb des Bauteils angeordnet sein. Darüber hinaus ist es bevorzugt, wenn die mindestens eine Düse eine gekröpfte Bauform aufweist. Besonders bevorzugt ist die mindestens eine Düse derart gekröpft, dass ein Düsenaustritt der mindestens einen Düse einen geringeren (horizontalen) Abstand zu der Trennwand aufweist als ein Düseneintritt der mindestens einen Düse. Durch die gekröpfte Bauform kann insbesondere erreicht werden, dass der Düsenaustritt sehr nah bei oder sogar zumindest teilweise unterhalb der Trennwand und damit sehr nah an dem zu erzeugenden Übergangsbereich anordenbar ist, bei gleichwohl genügend verbleibendem Raum zwischen dem Düseneintritt und der Trennwand für eine an der Trennwand befestigte Wärmedämmung.Furthermore, the at least one nozzle is preferably arranged adjacent to and / or (directly) in the area of a partition which (thermally) delimits the first sub-area from a second sub-area of the component. Here, the partition wall can be a part of the temperature control station and / or (in any case also) be arranged above the component. In addition, it is preferred if the at least one nozzle has a cranked design. The at least one nozzle is particularly preferably cranked in such a way that a nozzle outlet of the at least one nozzle has a smaller (horizontal) distance from the partition than a nozzle inlet of the at least one nozzle. As a result of the cranked design, it can be achieved in particular that the nozzle outlet can be arranged very close to or even at least partially below the partition and thus very close to the transition area to be generated, while still being sufficient remaining space between the nozzle inlet and the partition wall for thermal insulation attached to the partition wall.

Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass die mindestens eine Düse einen Umlenkbereich hat, der sich hin zu und/oder zumindest teilweise unterhalb einer Trennwand erstreckt, die den ersten Teilbereich von einem zweiten Teilbereich des Bauteils abgrenzt. Die Trennwand ist vorzugsweise ein Teil der Temperierstation und regelmäßig (jedenfalls auch) oberhalb des Bauteils angeordnet. Bevorzugt ist eine konvexe Außenseite des Umlenkbereichs hin zu der Trennwand und/oder hin zu einem zweiten Teilbereich des Bauteils gerichtet.According to an advantageous embodiment, it is proposed that the at least one nozzle has a deflection area which extends towards and / or at least partially below a partition wall which delimits the first partial area from a second partial area of the component. The partition is preferably a part of the temperature control station and is regularly (at least also) arranged above the component. A convex outside of the deflection area is preferably directed towards the partition and / or towards a second partial area of the component.

Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass die mindestens eine Düse, insbesondere ein Umlenkbereich der mindestens einen Düse, so gestaltet ist, dass der Fluidstrom an einer hin zu der Bearbeitungsebene weisenden Seite und/oder an einem hin zu einem zweiten Teilbereich des Bauteils weisenden Bereich der Düse ein Unterdruckgebiet erzeugt. Das Unterdruckgebiet ist hierbei ein Gebiet mit einem gegenüber dem Umgebungsdruck verminderten Druck. Bevorzugt ist ein Strömungsimpuls in Richtung des ersten Teilbereichs des Bauteils durch die Geometrie des Umlenkbereichs so einzustellen oder eingestellt, dass an der Unterseite der Düse ein (leichter) Unterdruck entsteht. Durch die dabei entstehende Ejektorwirkung kann sogar etwas warme Luft aus dem Heißbereich der Temperierstation, d. h. dem Bereich oberhalb oder unterhalb eines zweiten Teilbereichs des Bauteils abgezogen werden. Aufgrund der geringen Dichte der heißen Luft und der geringen Menge ist der Effekt auf der kalten Seite, d. h. oberhalb oder unterhalb des ersten Teilbereichs des Bauteils regelmäßig vernachlässigbar. So lässt sich in besonders vorteilhafter Weise ein sehr scharf abgegrenzter Übergangsbereich darstellen.According to an advantageous embodiment, it is proposed that the at least one nozzle, in particular a deflection area of the at least one nozzle, is designed so that the fluid flow is directed on a side facing the processing plane and / or on an area facing a second sub-area of the component creates a negative pressure area around the nozzle. In this case, the negative pressure area is an area with a pressure that is lower than the ambient pressure. A flow pulse in the direction of the first partial area of the component is preferably to be set or adjusted by the geometry of the deflection area in such a way that a (slight) negative pressure is created on the underside of the nozzle. The resulting ejector effect even allows some warm air from the hot area of the temperature control station, i.e. H. can be deducted from the area above or below a second sub-area of the component. Due to the low density of the hot air and the small amount, the effect is on the cold side, i.e. H. regularly negligible above or below the first partial area of the component. In this way, a very sharply delimited transition area can be represented in a particularly advantageous manner.

Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass ein Abstand zwischen der Bearbeitungsebene und der mindestens einen Düse derart einstellbar oder eingestellt ist, dass die mindestens eine Düse das Bauteil nicht kontaktiert. Bevorzugt liegt der Abstand im Bereich von 0,01 mm bis 6 mm [Millimeter], besonders bevorzugt im Bereich von 0,5 mm bis 5 mm oder sogar im Bereich von 1 mm bis 3,5 mm.According to an advantageous embodiment, it is proposed that a distance between the processing plane and the at least one nozzle be adjustable in this way or it is set so that the at least one nozzle does not contact the component. The distance is preferably in the range from 0.01 mm to 6 mm [millimeters], particularly preferably in the range from 0.5 mm to 5 mm or even in the range from 1 mm to 3.5 mm.

Bevorzugt ist die Düsengeometrie und/oder eine Außenkontur der Düse derart gestaltet, dass das vorstehend beschriebene Unterdruckgebiet selbst oder insbesondere dann entsteht, wenn die Düse das Bauteil nicht kontaktiert. Damit kann die hier vorgestellte Lösung sehr fehlertolerant hinsichtlich Positionierfehlern und/oder temperaturbedingten beziehungsweise eigenspannungsbedingten Geometriefehlern des Bauteils ausgeführt sein.The nozzle geometry and / or an outer contour of the nozzle is preferably designed in such a way that the negative pressure area described above arises itself or, in particular, when the nozzle does not contact the component. The solution presented here can thus be designed to be very fault-tolerant with regard to positioning errors and / or temperature-related or residual stress-related geometry errors of the component.

Weiterhin bevorzugt ist die mindestens eine Düse in der Temperierstation bewegbar, insbesondere verschiebbar gehalten oder gelagert. Bei entsprechend variabler Befestigung der Düse lässt sich die genaue Position des Übergangsbereichs in horizontaler Richtung in vorteilhafter Weise einfach nachjustieren.Furthermore, the at least one nozzle in the temperature control station is preferably movable, in particular held or supported in a displaceable manner. With a correspondingly variable fastening of the nozzle, the exact position of the transition area can advantageously be readjusted in a simple manner in the horizontal direction.

Vorzugsweise ist mindestens eine Wärmequelle in der Temperierstation angeordnet, die (thermisch) getrennt von der mindestens eine Düse in der Temperierstation gehalten ist. Hierbei können die Wärmequelle und die Düse mittels eine Trennwand voneinander (thermisch) getrennt und/oder abgeschirmt sein. Die mindestens eine Wärmequelle ist vorzugsweise mindestens eine Strahlungswärmequelle. Bevorzugt handelt es sich bei der Wärmequelle um eine aktiv betreibbare, insbesondere elektrisch betreibbare beziehungsweise bestrombare Wärmequelle. Besonders bevorzugt ist die Wärmequelle mit einem elektrisch betriebenen (das Bauteil nicht körperlich oder elektrisch kontaktierenden) Heizelement gebildet. Bei dem Heizelement kann es sich um eine Heizschleife, ein vollkeramisches Heizelement und/oder einen Heizdraht handeln. Alternativ oder zusätzlich kann die Wärmequelle mit einem (gasbeheizten) Strahlrohr gebildet sein. Vorteilhafterweise sind die Wärmequelle und die Düse in einem in der Temperierstation angeordneten Düsenkasten gehalten, wobei der Düsenkasten über mindestens eine Trennwand zwischen der Wärmequelle und der Düse verfügt. Besonders bevorzugt ist es, wenn ein Düsenaustritt beziehungsweise eine Düsenaustrittsöffnung der Tangentialdüse von der Wärmequelle weg weist oder gerichtet ist.At least one heat source, which is (thermally) separated from the at least one nozzle in the temperature control station, is preferably arranged in the temperature control station. Here, the heat source and the nozzle can be (thermally) separated from one another and / or shielded by means of a partition. The at least one heat source is preferably at least one radiant heat source. The heat source is preferably an actively operable, in particular electrically operable or energizable heat source. The heat source is particularly preferably formed with an electrically operated heating element (which does not physically or electrically contact the component). The heating element can be a heating loop, an all-ceramic heating element and / or a heating wire. Alternatively or in addition, the heat source with a (gas-heated) radiant tube be formed. The heat source and the nozzle are advantageously held in a nozzle box arranged in the temperature control station, the nozzle box having at least one partition between the heat source and the nozzle. It is particularly preferred if a nozzle outlet or a nozzle outlet opening of the tangential nozzle points or is directed away from the heat source.

Nach einem weiteren Aspekt wird eine Vorrichtung zur (partiellen) Wärmebehandlung eines metallischen Bauteils vorgeschlagen, die zumindest umfasst:

  • einen, insbesondere mittels Strahlungswärme und/oder Konvektion beheizbaren ersten Ofen,
  • eine dem ersten Ofen nachgeordnete, hier vorgestellte Temperierstation.
According to a further aspect, a device for the (partial) heat treatment of a metallic component is proposed which comprises at least:
  • a first furnace that can be heated in particular by means of radiant heat and / or convection,
  • a temperature control station presented here, downstream of the first furnace.

Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass die Vorrichtung weiterhin zumindest umfasst:

  • einen der Temperierstation nachgeordneten, insbesondere mittels Strahlungswärme und/oder Konvektion beheizbaren zweiten Ofen, und/oder
  • ein der Temperierstation und/oder dem zweiten Ofen nachgeordnetes Presshärtewerkzeug.
According to an advantageous embodiment, it is proposed that the device further comprises at least:
  • a second furnace which is arranged downstream of the temperature control station, in particular can be heated by means of radiant heat and / or convection, and / or
  • a press hardening tool downstream of the temperature control station and / or the second furnace.

Das Presshärtewerkzeug ist insbesondere dazu vorgesehen und eingerichtet, das Bauteil gleichzeitig oder zumindest teilweise parallel umzuformen und (zumindest teilweise) abzuschrecken. Das Presshärtewerkzeug kann Teil einer Presse sein oder durch eine Presse gebildet sein. Vorzugsweise sind der erste Ofen, die Temperierstation, der zweite Ofen und das Presshärtewerkzeug (in der genannten Reihenfolge) insbesondere unmittelbar hintereinander angeordnet. Jedoch kann zwischen dem ersten Ofen und der Temperierstation, zwischen der Temperierstation und dem zweite Ofen und/oder zwischen dem zweiten Ofen und dem Presshärtewerkzeug eine gegebenenfalls mittels mindestens einer Handlingseinrichtung zu überbrückende Distanz vorgesehen sein, die vorzugsweise mindestens 0,5 m [Meter] beträgt.The press hardening tool is provided and set up in particular to reshape the component at the same time or at least partially in parallel and (at least partially) to quench it. The press hardening tool can be part of a press or be formed by a press. The first furnace, the temperature control station, the second furnace and the press hardening tool (in the order mentioned) are preferably arranged in particular directly one behind the other. However, between the first furnace and the temperature control station, between the temperature control station and the second furnace and / or between the second furnace and the press hardening tool, an optionally by means of at least one Handling device to be bridged distance be provided, which is preferably at least 0.5 m [meters].

Es ist besonders vorteilhaft, wenn zumindest der erste Ofen oder der zweite Ofen ein Durchlaufofen oder ein Kammerofen ist. Bevorzugt ist der erste Ofen ein Durchlaufofen, insbesondere ein Rollenherdofen. Besonders bevorzugt ist der zweite Ofen ein Durchlaufofen, insbesondere ein Rollenherdofen, oder ein Kammerofen, insbesondere ein Mehrlagenkammerofen mit mindestens zwei übereinander angeordneten Kammern. Bevorzugt weist der zweite Ofen einen, insbesondere (ausschließlich) mittels Strahlungswärme beheizbaren, Ofeninnenraum auf, in dem vorzugsweise eine (nahezu) einheitliche Innentemperatur einstellbar oder eingestellt ist. Insbesondere wenn der zweite Ofen als Mehrlagenkammerofen ausgeführt ist, können, entsprechend der Anzahl der Kammern, mehrere solcher Ofeninnenräume vorhanden sein.It is particularly advantageous if at least the first furnace or the second furnace is a continuous furnace or a chamber furnace. The first furnace is preferably a continuous furnace, in particular a roller hearth furnace. The second furnace is particularly preferably a continuous furnace, in particular a roller hearth furnace, or a chamber furnace, in particular a multi-layer chamber furnace with at least two chambers arranged one above the other. The second furnace preferably has a furnace interior which can in particular (exclusively) be heated by means of radiant heat, in which an (almost) uniform internal temperature can preferably be set or set. In particular if the second furnace is designed as a multi-layer chamber furnace, several such furnace interiors can be present, depending on the number of chambers.

Bevorzugt sind in dem ersten Ofen und/oder in dem zweiten Ofen (ausschließlich) Strahlungswärmequellen angeordnet. Besonders bevorzugt ist in einem Ofeninnenraum des ersten Ofens und/oder in einem Ofeninnenraum des zweiten Ofens mindestens ein elektrisch betriebenes (das Bauteil nicht kontaktierendes) Heizelement, wie beispielsweise mindestens eine elektrisch betriebene Heizschleife, ein vollkeramisches Heizelement und/oder mindestens ein elektrisch betriebener Heizdraht angeordnet. Alternativ oder zusätzlich kann in dem Ofeninnenraum des ersten Ofens und/oder dem Ofeninnenraum des zweiten Ofens mindestens ein insbesondere gasbeheiztes Strahlrohr angeordnet sein. Vorzugsweise sind in dem Ofeninnenraum des ersten Ofens und/oder dem Ofeninnenraum des zweiten Ofens mehrere Strahlrohrgasbrenner beziehungsweise Strahlrohre angeordnet, in die jeweils mindestens ein Gasbrenner hineinbrennt. Hierbei ist es besonders vorteilhaft, wenn der innere Bereich der Stahlrohre, in den die Gasbrenner hineinbrennen, atmosphärisch von dem Ofeninnenraum getrennt ist, so dass keine Verbrennungsgase oder Abgase in den Ofeninnenraum gelangen und somit die Ofenatmosphäre beeinflussen können. Eine solche Anordnung wird auch als "indirekte Gasbeheizung" bezeichnet.Radiant heat sources (exclusively) are preferably arranged in the first oven and / or in the second oven. Particularly preferably, at least one electrically operated heating element (which does not contact the component), such as at least one electrically operated heating loop, an all-ceramic heating element and / or at least one electrically operated heating wire, is arranged in an oven interior of the first oven and / or in an oven interior of the second oven . Alternatively or additionally, at least one, in particular gas-heated, radiant tube can be arranged in the oven interior of the first oven and / or the oven interior of the second oven. Preferably, a plurality of radiant tube gas burners or radiant tubes, into each of which at least one gas burner burns, are arranged in the furnace interior of the first furnace and / or the furnace interior of the second furnace. It is particularly advantageous here if the inner area of the steel pipes into which the gas burners burn is atmospherically separated from the furnace interior so that no combustion gases or exhaust gases enter enter the furnace interior and thus influence the furnace atmosphere. Such an arrangement is also referred to as "indirect gas heating".

Die im Zusammenhang mit den Temperierstationen erörterten Details, Merkmale und vorteilhaften Ausgestaltungen können entsprechend auch bei der hier vorgestellten Vorrichtung auftreten und umgekehrt. Insoweit wird auf die dortigen Ausführungen zur näheren Charakterisierung der Merkmale vollumfänglich Bezug genommen.The details, features and advantageous configurations discussed in connection with the temperature control stations can correspondingly also occur in the device presented here and vice versa. In this respect, reference is made in full to the statements made there for a more detailed characterization of the features.

Nach einem weiteren Aspekt wird eine Verwendung mindestens einer Tangentialdüse in einer Temperierstation, zum partiellen Wärmebehandeln eines metallischen Bauteils, insbesondere zum partiellen Kühlen eines ersten Teilbereichs des Bauteils vorgeschlagen. Bevorzugt wird die Tangentialdüse dazu verwendet, einen im Wesentlichen horizontal ausgerichteten Luftstrom auszutragen, der entlang einer Oberfläche eines ersten Teilbereichs des Bauteils strömt, um den ersten Teilbereich zwecks (im Vergleich zu einem zweiten Teilbereich) geringerer Festigkeiten im fertig wärmebehandelten (d. h. pressgehärteten) Bauteil zu kühlen. Hierbei kann die Tangentialdüse derart ausgerichtet sein, dass der Luftstrom von einem (einzustellenden) Rand oder einer Kontur des ersten Teilbereichs und/oder von einer Trennwand ausgehend, hin zu einem Zentrum des ersten Teilbereichs strömt.According to a further aspect, the use of at least one tangential nozzle in a temperature control station is proposed for the partial heat treatment of a metallic component, in particular for the partial cooling of a first partial area of the component. The tangential nozzle is preferably used to discharge an essentially horizontally oriented air stream that flows along a surface of a first sub-area of the component in order to reduce the strength of the first sub-area (compared to a second sub-area) in the finished heat-treated (i.e. press-hardened) component cool. Here, the tangential nozzle can be aligned in such a way that the air stream flows from an edge (to be set) or a contour of the first sub-area and / or from a partition wall towards a center of the first sub-area.

Die im Zusammenhang mit der Temperierstation und/oder der Vorrichtung erörterten Details, Merkmale und vorteilhaften Ausgestaltungen können entsprechend auch bei der hier vorgestellten Verwendung auftreten und umgekehrt. Insoweit wird auf die dortigen Ausführungen zur näheren Charakterisierung der Merkmale vollumfänglich Bezug genommen.The details, features and advantageous configurations discussed in connection with the temperature control station and / or the device can correspondingly also occur in the use presented here and vice versa. In this respect, reference is made in full to the statements made there for a more detailed characterization of the features.

Die Erfindung, sowie das technische Umfeld werden nachfolgend anhand der Figuren näher erläutert. Es ist darauf hinzuweisen, dass die Erfindung durch die gezeigten Ausführungsbeispiele nicht beschränkt werden soll. Insbesondere ist es, soweit nicht explizit anders dargestellt, auch möglich, Teilaspekte der in den Figuren erläuterten Sachverhalte zu extrahieren und mit anderen Bestandteilen und/oder Erkenntnissen aus anderen Figuren und/oder der vorliegenden Beschreibung zu kombinieren. Es zeigen:

Fig. 1:
eine schematische Darstellung einer erfindungsgemäßen Temperierstation, und
Fig. 2:
eine schematische Darstellung einer erfindungsgemäßen Vorrichtung.
The invention and the technical environment are explained in more detail below with reference to the figures. It should be pointed out that the invention is not intended to be restricted by the exemplary embodiments shown. In particular, unless explicitly stated otherwise, it is also possible to extract partial aspects of the facts explained in the figures and to combine them with other components and / or findings from other figures and / or the present description. Show it:
Fig. 1:
a schematic representation of a temperature control station according to the invention, and
Fig. 2:
a schematic representation of a device according to the invention.

Fig. 1 zeigt eine schematische Darstellung einer Temperierstation 1 zur partiellen Wärmebehandlung eines metallischen Bauteils 2. In der Temperierstation 1 ist eine Bearbeitungsebene 3 angeordnet, in der das Bauteil 2 liegt. Darüber hinaus ist in der Temperierstation 1 hier beispielhaft eine Düse 4 angeordnet, die hin zu der Bearbeitungsebene 3 ausgerichtet und zum Austragen eines Fluidstroms 5 (in Fig. 1 gestrichelt dargestellt) zum Kühlen eines ersten Teilbereichs 6 des Bauteils 2 vorgesehen und eingerichtet ist. Fig. 1 shows a schematic representation of a temperature control station 1 for the partial heat treatment of a metallic component 2. In the temperature control station 1, a processing plane 3 is arranged, in which the component 2 lies. In addition, a nozzle 4 is arranged in the temperature control station 1 here, by way of example, which is oriented towards the processing plane 3 and for discharging a fluid stream 5 (in Fig. 1 shown in dashed lines) is provided and set up for cooling a first partial area 6 of the component 2.

Zudem veranschaulicht Fig. 1, dass die Düse 4 eine Tangentialdüse 13 ist. Diese zeichnet sich dadurch aus, dass sie an einem Düsenaustritt 9 der Düse 4 eine Fluidströmung 5 erzeugt, die im Wesentlichen tangential beziehungsweise parallel zu einer Oberfläche des Bauteils 2, hier zu einer Oberfläche des ersten Teilbereichs 6 des Bauteils 2 ausgerichtet ist. Diese Ausrichtung ist durch den Pfeil am Ende der gestrichelt dargestellten Fluidströmung 5 veranschaulicht. Ferner ist eine (in Fig. 1 geschnitten dargestellte) Düsengeometrie 8 der Düse 4 so gestaltet ist, dass zumindest eine in Richtung eines zweiten Teilbereichs 7 des Bauteils 2 strömende Komponente des Fluidstroms 5 hin zu dem ersten Teilbereich 6 umgelenkt wird. Gemäß der Darstellung nach Fig. 1 ist die Düsengeometrie sogar derart gestaltet, dass der gesamte durch die Düse 4 strömende Fluidstrom 5 die Düse 4 zunächst in einer Richtung hin zu einem zweiten Teilbereich 7 des Bauteils 2 durchströmt und sodann hin zu dem ersten Teilbereich 6 des Bauteils 2 umgelenkt wird. Zur Umlenkung des Fluidstroms 5 hin zu dem ersten Teilbereich 6 weist die Düse 4 in Fig. 1 einen Umlenkbereich 10 auf. Auf den Umlenkbereich 10 folgt stromab ein Düsenaustritt 9 der Düse 4. Der Düsenaustritt 9 ist so gestaltet, etwa ausgerichtet und relativ zu dem Umlenkbereich 10 angeordnet, dass an dem Düsenaustritt 9 ein Strömungsimpuls in Richtung des zweiten Teilbereichs 7 des Bauteils 2 unterbunden wird.Also illustrated Fig. 1 that the nozzle 4 is a tangential nozzle 13. This is characterized in that it generates a fluid flow 5 at a nozzle outlet 9 of the nozzle 4, which is essentially tangential or parallel to a surface of the component 2, here to a surface of the first partial area 6 of the component 2. This alignment is illustrated by the arrow at the end of the fluid flow 5 shown in dashed lines. Furthermore, a (in Fig. 1 cut) nozzle geometry 8 of the nozzle 4 is designed such that at least one component of the fluid flow 5 flowing in the direction of a second sub-area 7 of the component 2 is deflected towards the first sub-area 6. According to the illustration after Fig. 1 the nozzle geometry is even designed in such a way that the entire fluid flow 5 flowing through the nozzle 4 initially flows through the nozzle 4 in one direction towards a second sub-area 7 of the component 2 and is then deflected towards the first sub-area 6 of the component 2. In order to deflect the fluid flow 5 towards the first partial area 6, the nozzle 4 has in FIG Fig. 1 a deflection area 10. A nozzle outlet 9 of the nozzle 4 follows downstream of the deflection area 10. The nozzle outlet 9 is designed, roughly aligned and arranged relative to the deflection area 10 that a flow impulse in the direction of the second sub-area 7 of the component 2 is suppressed at the nozzle outlet 9.

In Fig. 1 ist zudem gezeigt, dass der Umlenkbereich 10 der Düse 4 sich hin zu und zumindest teilweise unterhalb einer Trennwand 11 erstreckt, die den ersten Teilbereich 6 des Bauteils 2 von dem zweiten Teilbereich 7 des Bauteils 2 (thermisch) abgrenzt. Die Trennwand 11 ist hier beispielhaft als Teil eines Düsenkastens 19 gebildet, in dem eine Wärmequelle 20 (thermisch) getrennt beziehungsweise isoliert von der Düse 4 gehalten ist. Die Trennwand 11 trägt dazu bei, die Düse 4 und den ersten Teilbereich 6 des Bauteils 2 von der Wärmequelle 20 (thermisch) abzuschotten und damit den ersten Teilbereich 6 des Bauteils 2, der mittels der Düse 4 gekühlt wird von dem zweiten Teilbereich 7 des Bauteils 2, der mittels der Wärmequelle 20 erwärmt wird (thermisch) abzugrenzen, sodass sich in den Teilbereichen 6, 7 unterschiedliche Bauteiltemperaturen einstelle lassen, die zu voneinander verschiedenen Gefüge und/oder Festigkeitseigenschaften in den Teilbereichen 6, 7 des Bauteils führen.In Fig. 1 it is also shown that the deflection area 10 of the nozzle 4 extends towards and at least partially below a partition 11 which (thermally) delimits the first sub-area 6 of the component 2 from the second sub-area 7 of the component 2. The partition wall 11 is formed here, for example, as part of a nozzle box 19, in which a heat source 20 is kept (thermally) separated or isolated from the nozzle 4. The partition wall 11 helps to (thermally) seal off the nozzle 4 and the first sub-area 6 of the component 2 from the heat source 20 and thus the first sub-area 6 of the component 2, which is cooled by the nozzle 4, from the second sub-area 7 of the component 2, which is heated (thermally) by means of the heat source 20, so that different component temperatures can be set in the subregions 6, 7, which lead to different structures and / or strength properties in the subregions 6, 7 of the component.

Darüber hinaus ist in Fig. 1 gezeigt, dass die Düse 4 in Fig. 1 so gestaltet ist, dass der Fluidstrom 5 an einer hin zu der Bearbeitungsebene 3 weisenden Seite der Düse 4 und an einem hin zu einem zweiten Teilbereich 7 des Bauteils 2 weisenden Bereich der Düse 4 ein Unterdruckgebiet 12 erzeugt. Zudem ist in Fig. 1 zu erkennen, dass ein Abstand zwischen der Bearbeitungsebene 3 und der Düse 4 derart eingestellt ist, dass die Düse 4 das Bauteil 2 nicht kontaktiert.In addition, in Fig. 1 shown that the nozzle 4 in Fig. 1 is designed in such a way that the fluid flow 5 is on a side of the Nozzle 4 and a negative pressure area 12 is generated at an area of the nozzle 4 pointing towards a second partial area 7 of the component 2. In addition, in Fig. 1 it can be seen that a distance between the processing plane 3 and the nozzle 4 is set in such a way that the nozzle 4 does not contact the component 2.

Zusätzlich zu der Düse 4, die als Tangentialdüse 13 ausgeführt ist, weist die Temperierstation 1 hier eine weitere Düsen 18 auf. Die weitere Düse 18 ist beispielhaft in der Art einer Brause gebildet und neben der Tangentialdüse 13 in der Temperierstation 1 gehalten.In addition to the nozzle 4, which is designed as a tangential nozzle 13, the temperature control station 1 has a further nozzle 18 here. The further nozzle 18 is formed, for example, in the manner of a shower and is held next to the tangential nozzle 13 in the temperature control station 1.

Fig. 2 zeigt eine schematische Darstellung einer erfindungsgemäßen Vorrichtung 14 zur Wärmebehandlung eines metallischen Bauteils 2. Die Vorrichtung 14 weist einen beheizbaren ersten Ofen 15, eine dem ersten Ofen 15 (direkt) nachgeordnete Temperierstation 1, einen der Temperierstation 1 (direkt) nachgeordneten, beheizbaren zweiten Ofen 16 und ein dem zweiten Ofen 16 (direkt) nachgeordnetes Presshärtewerkzeug 17 auf. Die Vorrichtung 14 stellt hier eine Warmformlinie für das (partielle) Presshärten dar. Das Presshärtewerkzeug 17 ist Teil einer Presse oder durch eine Presse gebildet. Fig. 2 shows a schematic representation of a device 14 according to the invention for heat treatment of a metallic component 2. The device 14 has a heatable first furnace 15, a temperature control station 1 (directly) downstream of the first furnace 15, and a heatable second furnace 16 (directly) downstream of the temperature control station 1 and a press hardening tool 17 arranged (directly) downstream of the second furnace 16. The device 14 here represents a hot forming line for (partial) press hardening. The press hardening tool 17 is part of a press or is formed by a press.

Es werden hier eine Temperierstation und eine Vorrichtung zur Wärmebehandlung eines metallischen Bauteils angegeben, die die mit Bezug auf den Stand der Technik geschilderten Probleme zumindest teilweise lösen. Insbesondere erlauben die Temperierstation und die Vorrichtung, einen Übergangsbereich zwischen unterschiedlich wärmebehandelten Teilbereichen des Bauteils möglichst zuverlässig und/oder exakt, insbesondere möglichst klein einzustellen. Darüber hinaus erlauben die Temperierstation und die Vorrichtung insbesondere, dass eine Berührung des Bauteils mit einer Trennwand zur (thermischen) Abgrenzung der unterschiedlich temperierten Teilbereiche des Bauteils nicht mehr erforderlich ist.A temperature control station and a device for heat treatment of a metallic component are specified here, which at least partially solve the problems described with reference to the prior art. In particular, the temperature control station and the device allow a transition area between differently heat-treated sub-areas of the component to be set as reliably and / or exactly as possible, in particular as small as possible. In addition, the temperature control station and the device allow, in particular, that contact of the component with a partition wall for (thermal) delimitation of the differently temperature-controlled subregions of the component is no longer necessary.

BezugszeichenlisteList of reference symbols

11
TemperierstationTemperature control station
22
BauteilComponent
33
BearbeitungsebeneMachining plane
44th
Düsejet
55
FluidstromFluid flow
66th
erster Teilbereichfirst part
77th
zweiter Teilbereichsecond sub-area
88th
DüsengeometrieNozzle geometry
99
DüsenaustrittNozzle outlet
1010
UmlenkbereichDeflection area
1111
Trennwandpartition wall
1212th
UnterdruckgebietLow pressure area
1313th
TangentialdüseTangential nozzle
1414th
Vorrichtungcontraption
1515th
erster Ofenfirst oven
1616
zweiter Ofensecond oven
1717th
PresshärtewerkzeugPress hardening tool
1818th
weitere Düseanother nozzle
1919th
DüsenkastenNozzle box
2020th
WärmequelleHeat source

Claims (10)

  1. Temperature control station (1) for the partial heat treatment of a metal component (2), comprising a processing plane (3), which is arranged in the temperature control station (1) and in which the component (2) can be arranged, at least one nozzle (4), which is directed toward the processing plane (3) and is provided and designed for discharging a fluid stream (5) for cooling at least a first portion (6) of the component (2), wherein the at least one nozzle (4) is a tangential nozzle (13), wherein a nozzle outlet (9) of the at least one nozzle (4) is designed such that a flow pulse in the direction of a second portion (7) of the component (2) is prevented at the nozzle outlet (9).
  2. Temperature control station according to claim 1, wherein a nozzle geometry (8) of the at least one nozzle (4) is designed such that at least one element of the fluid stream (5) flowing in the direction of a second portion (7) of the component (2) is deflected toward the first portion (6).
  3. Temperature control station according to either claim 1 or claim 2, wherein the nozzle geometry (8) of the at least one nozzle (4) is designed such that at least one element of the fluid stream (5) flows through the nozzle (4) initially in a direction toward a second portion (7) of the component (2) and then is deflected toward the first portion (6).
  4. Temperature control station according to any of the preceding claims, wherein the nozzle geometry (8) of the at least one nozzle (4) is designed such that the fluid stream (5) first flows through the nozzle (4) in a direction toward a second portion (7) of the component (2) and is then deflected toward the first portion (6).
  5. Temperature control station according to any of the preceding claims, wherein the at least one nozzle (4) has a deflection region (10) which extends toward and/or at least partially below a partition (11) which separates the first portion (6) from a second portion (7) of the component (2).
  6. Temperature control station according to any of the preceding claims, wherein the at least one nozzle (4) is designed such that the fluid stream (5) generates a negative pressure region (12) at a side pointing toward the processing plane (3) and/or at a region of the nozzle (4) pointing toward a second portion (7) of the component (2).
  7. Temperature control station according to any of the preceding claims, wherein a distance between the processing plane (3) and the at least one nozzle (4) is adjustable such that the at least one nozzle (4) does not contact the component (2).
  8. Apparatus (14) for the heat treatment of a metal component (2), comprising at least:
    - a heatable first furnace (15),
    - a temperature control station (1) downstream of the first furnace (15), which station is designed according to any of the preceding claims.
  9. Apparatus according to claim 8, further comprising at least:
    - a heatable second furnace (16) downstream of the temperature control station (1), and/or
    - a press-hardening tool (17) downstream of the temperature control station (1) and/or the second furnace (16).
  10. Use of at least one tangential nozzle (13) in a temperature control station (1) according to any of claims 1 to 7 for the partial heat treatment of a metal component (2).
EP18726327.2A 2017-04-07 2018-03-28 Temperature control station for partially thermally treating a metal component Active EP3607098B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18726327T PL3607098T3 (en) 2017-04-07 2018-03-28 Temperature control station for partially thermally treating a metal component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017107549.6A DE102017107549A1 (en) 2017-04-07 2017-04-07 Temperature control station for the partial heat treatment of a metallic component
PCT/EP2018/057945 WO2018184947A1 (en) 2017-04-07 2018-03-28 Temperature control station for partially thermally treating a metal component

Publications (2)

Publication Number Publication Date
EP3607098A1 EP3607098A1 (en) 2020-02-12
EP3607098B1 true EP3607098B1 (en) 2021-03-17

Family

ID=62222576

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18726327.2A Active EP3607098B1 (en) 2017-04-07 2018-03-28 Temperature control station for partially thermally treating a metal component

Country Status (11)

Country Link
US (1) US11313003B2 (en)
EP (1) EP3607098B1 (en)
JP (1) JP7008723B2 (en)
KR (1) KR102487730B1 (en)
CN (1) CN110462068B (en)
DE (1) DE102017107549A1 (en)
ES (1) ES2871084T3 (en)
HU (1) HUE054324T2 (en)
PL (1) PL3607098T3 (en)
PT (1) PT3607098T (en)
WO (1) WO2018184947A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020103276A1 (en) 2020-02-10 2021-08-12 Benteler Automobiltechnik Gmbh Furnace for partial heating of metal components
DE102020121672A1 (en) 2020-08-18 2022-02-24 Schwartz Gmbh Thermal treatment of components

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881907A (en) * 1974-01-30 1975-05-06 Ppg Industries Inc Method of tempering glass sheets
US4367597A (en) * 1979-12-13 1983-01-11 Nippon Steel Corporation Gas-liquid cooling apparatus
SE437675B (en) * 1981-05-14 1985-03-11 Asea Ab REFRIGERANT BODY COOLING DEVICE
US4834344A (en) * 1987-02-20 1989-05-30 Surface Combustion, Inc. Apparatus for inside-outside tube quenching
JP2807134B2 (en) * 1992-09-16 1998-10-08 川崎製鉄株式会社 Gas jet chamber sealing device
US5640872A (en) * 1994-07-20 1997-06-24 Alusuisse-Lonza Services Ltd. Process and device for cooling heated metal plates and strips
AT502239B1 (en) * 2005-08-01 2007-07-15 Ebner Ind Ofenbau Device for cooling metal strip, e.g. steel strip after heat treatment, comprises groups of nozzles arranged in parallel nozzle strips with flow channels between them for removing cooling gas deflected from the metal strip
DE102008039264A1 (en) * 2008-08-22 2010-03-04 Schuler Cartec Gmbh & Co. Kg Method for tempering with intermediate cooling
JP4825882B2 (en) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
KR101277864B1 (en) * 2011-03-31 2013-06-21 주식회사 포스코 Apparatus for heat treatment of hot forming blank and method for manufacturing hot formed parts
JP5380632B1 (en) * 2012-03-13 2014-01-08 株式会社アステア Method for strengthening steel plate members
DE102012021576A1 (en) * 2012-11-02 2013-05-16 Daimler Ag Deterring a workpiece, by supplying a partially heated workpiece with a cooling medium, and subjecting deterred area of workpiece to turbulence of gaseous cooling medium, where a cold gas flow of medium is created by eddy-current generator
DE102013101489B3 (en) * 2013-02-14 2014-06-05 Benteler Automobiltechnik Gmbh Heat treatment line and method for operating the heat treatment line
CN105073291B (en) * 2013-03-11 2018-02-06 诺维尔里斯公司 Improve the flatness of rolled sheet
CN105695727B (en) * 2014-11-28 2018-01-30 宝山钢铁股份有限公司 A kind of board-shape control method of steel plate on-line solution processing
CN104668326B (en) * 2015-03-05 2016-08-24 山东大王金泰集团有限公司 A kind of hot stamping method of high strength steel parts capability gradientization distribution
DE102015112293A1 (en) * 2015-07-28 2017-02-02 Hydro Aluminium Rolled Products Gmbh Method and apparatus for the adaption of temperature-adapting metal bands
KR20180001308A (en) * 2016-06-27 2018-01-04 주식회사 성우하이텍 Partial softening hot stamping method
DE102016121699A1 (en) * 2016-11-11 2018-05-17 Schwartz Gmbh Temperature control station for the partial heat treatment of a metallic component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20200040415A1 (en) 2020-02-06
PT3607098T (en) 2021-05-19
EP3607098A1 (en) 2020-02-12
PL3607098T3 (en) 2021-09-13
KR102487730B1 (en) 2023-01-11
HUE054324T2 (en) 2021-08-30
CN110462068B (en) 2021-06-08
KR20190137773A (en) 2019-12-11
ES2871084T3 (en) 2021-10-28
US11313003B2 (en) 2022-04-26
JP7008723B2 (en) 2022-01-25
DE102017107549A1 (en) 2018-10-11
JP2020516767A (en) 2020-06-11
CN110462068A (en) 2019-11-15
WO2018184947A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
EP3045551B1 (en) Process for partial heat treatment of a warm formed and press hardened motor vehicle component
EP3652352B1 (en) Method and device for the heat treatment of a metal component
DE102011056444C5 (en) Method and device for partial hardening of sheet metal components
WO2016192993A1 (en) Method for contactlessly cooling steel sheets and device therefor
EP3851546A1 (en) Heat treatment device
WO2017129599A1 (en) Method and device for the heat treatment of a metal component
DE102015103307A1 (en) A method of manufacturing a hot formed and quench hardened hydroformed automotive component
DE102012012518A1 (en) Hot forming tool for the production of molded parts
DE102016118252A1 (en) Method and device for heat treatment of a metallic component
EP3607098B1 (en) Temperature control station for partially thermally treating a metal component
WO2017129600A1 (en) Method for heat treatment of a metal component
EP3538677B1 (en) Temperature control station for partially thermally treating a metal component
EP3408416B1 (en) Heat treatment method and heat treatment device
DE102016124539B4 (en) Process for manufacturing locally hardened sheet steel components
EP3420111B1 (en) Process for targeted heat treatment of individual component zones
DE102015113056A1 (en) Method for the contactless cooling of steel sheets and device therefor
EP3414350A1 (en) Heat treatment method and heat treatment device
DE102018109579A1 (en) Temperature control device for partial cooling of a component
DE202022100505U1 (en) heat treatment device
DE102016118253A1 (en) Process for heat treatment of a metallic component
DE102020111615A1 (en) Process for retrofitting a heat treatment system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018004377

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0008000000

Ipc: C21D0001673000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 8/00 20060101ALI20201127BHEP

Ipc: C21D 1/673 20060101AFI20201127BHEP

Ipc: C21D 1/667 20060101ALI20201127BHEP

Ipc: C21D 9/48 20060101ALI20201127BHEP

INTG Intention to grant announced

Effective date: 20201222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004377

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1372298

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3607098

Country of ref document: PT

Date of ref document: 20210519

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210512

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210618

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210317

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E054324

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2871084

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018004377

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210328

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210328

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

26N No opposition filed

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 6

Ref country code: CZ

Payment date: 20230320

Year of fee payment: 6

Ref country code: AT

Payment date: 20230322

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230314

Year of fee payment: 6

Ref country code: PT

Payment date: 20230316

Year of fee payment: 6

Ref country code: PL

Payment date: 20230222

Year of fee payment: 6

Ref country code: IT

Payment date: 20230328

Year of fee payment: 6

Ref country code: HU

Payment date: 20230323

Year of fee payment: 6

Ref country code: GB

Payment date: 20230322

Year of fee payment: 6

Ref country code: DE

Payment date: 20230321

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230529

Year of fee payment: 6