EP3408417B1 - Heat treatment method - Google Patents

Heat treatment method Download PDF

Info

Publication number
EP3408417B1
EP3408417B1 EP17703346.1A EP17703346A EP3408417B1 EP 3408417 B1 EP3408417 B1 EP 3408417B1 EP 17703346 A EP17703346 A EP 17703346A EP 3408417 B1 EP3408417 B1 EP 3408417B1
Authority
EP
European Patent Office
Prior art keywords
temperature
furnace
steel component
areas
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17703346.1A
Other languages
German (de)
French (fr)
Other versions
EP3408417A1 (en
Inventor
Andreas Reinartz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwartz GmbH
Original Assignee
Schwartz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwartz GmbH filed Critical Schwartz GmbH
Priority to EP21162238.6A priority Critical patent/EP3851546A1/en
Publication of EP3408417A1 publication Critical patent/EP3408417A1/en
Application granted granted Critical
Publication of EP3408417B1 publication Critical patent/EP3408417B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • F27B9/028Multi-chamber type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • press hardening was developed to produce a component from hardened sheet steel.
  • Steel sheets are first heated to the austenite temperature, then placed in a press tool, quickly formed and quickly quenched to less than the martensite start temperature by the water-cooled tool.
  • This creates a hard, solid martensite structure with a strength of approx. 1,500 MPa.
  • a steel sheet hardened in this way has only a low elongation at break. Therefore, the kinetic energy of an impact cannot be sufficiently converted into heat of deformation.
  • first areas solid areas
  • second areas stretchable areas
  • high-strength components are fundamentally desirable in order to obtain low-weight components that can withstand high mechanical loads.
  • high-strength components should also be able to have partially soft areas. This brings the desired, partially increased deformability in the event of a crash. This is the only way to reduce the kinetic energy of an impact and thus the acceleration forces on the occupants and the rest vehicle are minimized.
  • modern joining processes require softened areas that enable the joining of similar or different materials. Folded, crimped or riveted connections, for example, often have to be used, which require deformable areas in the component.
  • the object of the invention is therefore to specify a method for the specific component zone-specific heat treatment of a steel component, areas of different hardness and ductility being achievable, in which the influence on the cycle time of the entire heat treatment device is minimized.
  • the steel component is first heated above the austenitization temperature AC3 so that the structure can be completely transformed into austenite.
  • a subsequent hardening process for example the press hardening process, it is quenched so quickly that a primarily martensitic structure is formed and strengths of around 1,500 MPa are achieved.
  • the quenching is advantageously carried out from the fully austenitized microstructure.
  • cooling must take place at least at the lower critical cooling rate once the microstructure start temperature ⁇ 1 has been fallen below, at which microstructure transformations can start.
  • ⁇ 1 For example around 660°C should be considered as the limit ⁇ 1 for the material 22MnB5 usually used for press hardening.
  • This temperature curve is common in the press hardening process, particularly for fully hardened components.
  • a second area or several second areas are first also heated to above the austenitization temperature AC3 so that the structure can be completely transformed into austenite. It is then cooled as quickly as possible within a treatment time t B down to a cooling stop temperature ⁇ 2 .
  • the martensite start temperature for 22MnB5 is around 410 °C. A slight transient in temperature ranges below the martensite start temperature is also possible. There is no further rapid cooling afterwards, so that a predominantly bainitic structure is formed. This structural change does not take place suddenly, but requires a treatment period. The conversion is exothermic.
  • the cooling stop temperature ⁇ 2 the temperature increase in the component caused by recalescence can be clearly seen.
  • the desired strength and elongation values can be set, which lie between the maximum achievable strength of the structure in the first area and the values of the untreated component. Investigations have shown that suppressing the temperature rise as a result of recalescence through further, forced cooling is rather disadvantageous for the achievable strain values. Holding isothermally at the cooling temperature therefore does not appear to be advantageous. Reheating, on the other hand, is beneficial.
  • the second area or the second areas are additionally actively heated in this phase. This can be done, for example, by thermal radiation.
  • the cooling stop temperature ⁇ 2 is selected above the martensite start temperature M S .
  • the cooling stop temperature ⁇ 2 is selected below the martensite start temperature M S .
  • the heat treatment of the first and second areas is fundamentally different, with the treatment of the second area or the second areas primarily being dependent on the treatment duration.
  • second areas in a first furnace are partially cooled down to the cooling stop temperature ⁇ 2 within a treatment time t B of a few seconds in order to reach the austenitization temperature.
  • the first area or areas are not treated in a special way.
  • the treatment station can also be heated for this purpose.
  • the introduction of heat via convection or heat radiation can be used.
  • the components are transferred to a second oven, which preferably does not have specific devices for treating the different areas differently.
  • a furnace temperature ⁇ 4 ie an essentially homogeneous temperature ⁇ 4 in the entire furnace space, is set, which generally lies between the austenitizing temperature AC3 and the minimum quenching temperature.
  • An advantageous value is between 660°C and 850°C, for example. In this way, the different areas approach the temperature ⁇ 4 of the second furnace.
  • the temperature profile of the first zones kind approaches the temperature ⁇ 4 of the second oven from above.
  • the minimum cooling temperature, ie the cooling stop temperature ⁇ 2 in the areas of the second type is lower than the selected temperature ⁇ 4 of the second furnace.
  • the temperature profile of the second areas approaches Temperature ⁇ 4 of the second oven from below.
  • the first area or areas give off heat in the second oven when they enter the second oven at a higher temperature than the internal temperature ⁇ 4 of the second oven.
  • the second or second areas absorb heat in the second furnace. Overall, this requires only a relatively small amount of heating power in the second furnace. If necessary, further heating can be dispensed with entirely during the production process. This treatment step is particularly energy-efficient.
  • a continuous furnace or a batch furnace, such as a chamber furnace, for example, can be provided as the first furnace. Continuous furnaces usually have a large capacity and are particularly well suited for mass production because they can be loaded and operated without great effort.
  • the treatment station can have a device for rapid cooling of one or more second regions of the steel component.
  • the device preferably has a nozzle for blowing a gaseous fluid, for example air or an inert gas such as nitrogen, onto the second area or areas of the steel component.
  • the second or the second regions are blown on by blowing on them with a gaseous fluid, water being added to the gaseous fluid, for example in nebulized form.
  • the device has one or more atomizing nozzles. Blowing on with the gaseous fluid mixed with water increases the heat dissipation from the second region or regions. With the evaporation of the water on the steel component, a large heat dissipation and a high energy transport is achieved.
  • a continuous furnace or a batch furnace, for example a chamber furnace, can also be provided as the second furnace.
  • the second or the second area(s) is/are cooled via heat conduction, for example by bringing it into contact with one or more stamps, one or more stamps being significantly lower Has or have temperature than the steel component.
  • the stamp can be made of a material with good thermal conductivity and/or be cooled directly or indirectly. A combination of the types of cooling is also conceivable.
  • Such measures can be, for example, the attachment of a thermal radiation reflector and/or the insulation of surfaces of the treatment station in the area of the first area or the first areas.
  • Heat treatment device which is not claimed, steel components with one or more first and / or second areas, which can also be shaped complex, can be economically imprinted with a corresponding temperature profile, since the different areas can be brought to the necessary process temperatures very quickly with sharp contours.
  • Clearly contoured delimitations of the individual areas can be realized between the two areas and the distortion of the components is minimized due to the small temperature difference. Small spreads in the temperature level of the component have an advantageous effect during further processing in the press.
  • the necessary dwell times for the second area or the second areas can be implemented, for example, in a continuous furnace depending on the component length by adjusting the conveying speed and the design of the furnace length. An influence on the cycle time of the heat treatment device is minimized in this way, it can even be avoided entirely.
  • the method shown and with the corresponding heat treatment device which is not claimed, to set almost any number of second areas, which can also have different strength and elongation values within a steel component.
  • the selected geometry of the partial areas can also be freely selected. Dotted or line-shaped areas can be displayed as well as, for example, large-area areas. The location of the areas is also irrelevant.
  • the second areas can be completely enclosed by the first areas or can be located at the edge of the steel component. Even a full-surface treatment is conceivable.
  • a special orientation of the steel component to the direction of passage is for the purpose of the method according to the invention for the targeted heat treatment of a steel component for individual component zones not mandatory.
  • the number of steel components treated at the same time is limited at most by the press-hardening tool or the conveyor technology of the entire heat treatment device.
  • the process can also be used on preformed steel components.
  • the three-dimensionally shaped surfaces of already preformed steel components only result in a higher design effort for the representation of the counter surfaces.
  • In the 1 12 is a typical temperature curve during the heat treatment of a steel component 200 having a first region 210 and a second region 220 according to the inventive method.
  • the steel component 200 is heated in the first furnace 110 according to the temperature curve ⁇ 200,110 shown schematically during the residence time in the first furnace t 110 to a temperature above the AC3 temperature.
  • the steel component 200 is then transferred to the treatment station 150 with a transfer time t 120 . In the process, the steel component loses heat.
  • a second region 220 of the steel component 200 is rapidly cooled, with the second region 220 rapidly losing heat according to the curve ⁇ 220,150 shown.
  • the treatment time t B is equal to the residence time t 150 in the treatment station 150.
  • the second area 220 has now reached the cooling stop temperature ⁇ 2 above the martensite start temperature M S .
  • the temperature of the first area 210 in the treatment station 150 has also fallen according to the temperature profile ⁇ 210,150 shown , with the first area 210 not being located in the area of the cooling device.
  • the steel component 200 is transferred into the second furnace 130 during the transfer time t 121 , during which it continues to lose heat if its temperature is greater than the internal temperature ⁇ 4 of the second furnace 130 .
  • the temperature of the first region 210 of the steel component 200 changes according to the temperature profile ⁇ 210,130 shown schematically during the dwell time t 130 , ie the temperature of the first region 210 of the steel component 200 slowly continues to decrease.
  • the temperature of the first region 210 of the steel component 200 can fall below the AC3 temperature, but this does not necessarily have to happen.
  • the temperature of the second region 220 of the steel component 200 increases again according to the temperature profile ⁇ 220,130 shown during the dwell time t 130 without reaching the AC3 temperature.
  • the second oven 130 does not have any specific devices for treating the different areas 210, 220 differently only a furnace temperature ⁇ 4 , ie an essentially homogeneous temperature in the entire interior of the second furnace 130, is set, which lies between the austenitization temperature AC3 and the cooling stop temperature ⁇ 2 , for example between 660° C. and 850° C. In this way, the various areas 210 , 220 approach the internal temperature ⁇ 4 of the second oven 130 .
  • the temperature profile ⁇ 210,130 approaches the first Range of temperature ⁇ 4 of the second oven 130 from above.
  • the cooling stop temperature ⁇ 2 is lower than the selected temperature ⁇ 4 of the second oven 130.
  • the temperature profile ⁇ 220,130 of the second region approaches the temperature 94 of the second oven 130 from below. The temperature of region 210 does not fall below the fabric transformation start temperature ⁇ 1 .
  • the necessary dwell time t 130 for the second region 220 can be implemented as a function of the length of the steel component by adjusting the conveying speed and designing the length of the second furnace 130 . An influencing of the cycle time of the heat treatment device 100 is thus minimized, it can even be completely avoided.
  • the first region 220 of the steel component 200 gives off heat in the second furnace 130 .
  • the second region 220 of the steel component 200 absorbs heat in the second furnace 130, the heat absorption being limited by the heat released during the recalescence of the microstructure in the second region 220 of the steel component 200. Overall, this requires only a relatively small amount of heat output in the second oven 130. If necessary, additional heating of the second oven 130 can be dispensed with entirely. This treatment step is particularly energy-efficient.
  • Figure 12 shows a heat treatment device 100, not claimed, in a 90° arrangement.
  • Heat treatment device 100 has a loading station 101 via which the steel components are fed to the first furnace 110 . Furthermore, the heat treatment device 100 has the treatment station 150 and the second furnace 130 arranged behind it in the main flow direction D. Arranged further downstream in the main flow direction D is a removal station 131 which is equipped with a positioning device (not shown). The main flow direction now bends by essentially 90° in order to be followed by a press-hardening tool 160 in a press (not shown), in which the steel component 200 is press-hardened. In the axial direction of the first furnace 110 and the second furnace 130 there is a container 161 into which rejects can be placed. In this arrangement, the first furnace 110 and the second furnace 120 are preferably designed as continuous furnaces, for example roller hearth furnaces.
  • Figure 12 shows a heat treatment apparatus 100, not claimed, in a straight configuration.
  • Heat treatment device 100 has a loading station 101 via which the steel components are fed to the first furnace 110 . Furthermore, the heat treatment device 100 has the treatment station 150 and the second furnace 130 arranged behind it in the main flow direction D. Arranged further downstream in the main flow direction D is a removal station 131 which is equipped with a positioning device (not shown). A press-hardening tool 160 in a press (not shown), in which the steel component 200 is press-hardened, follows in the main flow direction, which is now further straight. A container 161 into which rejects can be placed is arranged essentially at 90° to the removal station 131 . In this arrangement, the first furnace 110 and the second furnace 120 are also preferably designed as continuous furnaces, for example roller hearth furnaces.
  • FIG. 1 shows another variant of a heat treatment device 100 which is not claimed.
  • the heat treatment device 100 again has a loading station 101 via which the steel components are fed to the first furnace 110 .
  • the first oven 110 is with this one Execution again preferably designed as a continuous furnace.
  • the heat treatment device 100 has the treatment station 150 which is combined with a removal station 131 in this example.
  • the removal device 131 can have a gripping device (not shown), for example.
  • the removal station 131 removes the steel components 200 from the first furnace 110, for example by means of the gripping device.
  • the heat treatment with the cooling of the second or the second regions 220 is carried out and the steel component or the steel components 200 are in a substantially 90 ° to the axis of the first Furnace 110 arranged second furnace 130 inserts.
  • this second furnace 130 is preferably provided as a chamber furnace, for example with several chambers.
  • the steel components 200 are removed from the second furnace 130 via the removal station 131 and placed in an opposite press-hardening tool 160 built into a press (not shown).
  • the removal station 131 can have a positioning device (not shown).
  • a container 161 is arranged behind the removal station 131, into which rejects can be placed.
  • the main flow direction D describes a deflection of essentially 90°.
  • no second positioning system for the treatment station 150 is required.
  • this example is advantageous if there is not enough space available in the axial direction of the first oven 110, for example in a production hall.
  • the cooling of the second regions 220 of the steel component 200 can also take place between the removal station 131 and the second furnace 130, so that no stationary treatment station 150 is required.
  • a cooling device for example a blowing nozzle, can be integrated into the gripping device.
  • the removal device 131 ensures that the steel component 200 is transferred from the first furnace 110 into the second furnace 130 and into the press-hardening tool 160 or into the container 161.
  • the position of press-hardening tool 160 and container 161 can be swapped, as in FIG figure 5 to see.
  • the main flow direction D describes two deflections of essentially 90°.
  • a heat treatment device which is not claimed, according to FIG 6 an: Compared to the in 4
  • the second oven 130 is offset to a second level above the first oven 110 .
  • the cooling of the second regions 220 of the steel component 200 can likewise take place between the removal station 131 and the second furnace 130, so that no stationary treatment station 150 is required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

Wärmebehandlung eines Stahlbauteils.Heat treatment of a steel component.

In der Technik besteht bei vielen Anwendungsfällen in unterschiedlichen Branchen der Wunsch nach hochfesten Metallblechteilen bei geringem Teilegewicht. Beispielsweise ist es in der Fahrzeugindustrie das Bestreben, den Kraftstoffverbrauch von Kraftfahrzeugen zu reduzieren und den CO2 -Ausstoß zu senken, dabei aber gleichzeitig die Insassensicherheit zu erhöhen. Es besteht daher ein stark zunehmender Bedarf an Karosseriebauteilen mit einem günstigen Verhältnis von Festigkeit zu Gewicht. Zu diesen Bauteilen gehören insbesondere A- und B-Säulen, Seitenaufprallschutzträger in Türen, Schweller, Rahmenteile, Stoßstangenfänger, Querträger für Boden und Dach, vordere und hintere Längsträger. Bei modernen Kraftfahrzeugen besteht die Rohkarosse mit einem Sicherheitskäfig üblicherweise aus einem gehärteten Stahlblech mit ca. 1.500 MPa Festigkeit. Dabei werden vielfach Al-Sibeschichtete Stahlbleche verwendet. Zur Herstellung eines Bauteils aus gehärtetem Stahlblech wurde der Prozess des so genannten Presshärtens entwickelt. Dabei werden Stahlbleche zuerst auf Austenittemperatur erwärmt, dann in ein Pressenwerkzeug gelegt, schnell geformt und durch das wassergekühlte Werkzeug zügig auf weniger als Martensitstarttemperatur abgeschreckt. Dabei entsteht hartes, festes Martensitgefüge mit ca. 1.500 MPa Festigkeit. Ein solcherart gehärtetes Stahlblech weist aber nur eine geringe Bruchdehnung auf. Die kinetische Energie eines Aufpralls kann deshalb nicht ausreichend in Verformungswärme umgesetzt werden.In technology, there is a desire for high-strength sheet metal parts with low part weight in many applications in different sectors. For example, in the vehicle industry, there is an effort to reduce the fuel consumption of motor vehicles and lower CO 2 emissions, but at the same time to increase passenger safety. There is therefore a rapidly increasing need for body components with a favorable strength-to-weight ratio. These components include, in particular, A and B pillars, side impact protection beams in doors, rocker panels, frame parts, bumper catchers, cross members for the floor and roof, and front and rear side members. In modern motor vehicles, the bodyshell with a safety cage usually consists of hardened sheet steel with a strength of around 1,500 MPa. Al-Si-coated steel sheets are often used for this. The process of so-called press hardening was developed to produce a component from hardened sheet steel. Steel sheets are first heated to the austenite temperature, then placed in a press tool, quickly formed and quickly quenched to less than the martensite start temperature by the water-cooled tool. This creates a hard, solid martensite structure with a strength of approx. 1,500 MPa. However, a steel sheet hardened in this way has only a low elongation at break. Therefore, the kinetic energy of an impact cannot be sufficiently converted into heat of deformation.

Für die Automobilindustrie ist es daher wünschenswert, Karosseriebauteile herstellen zu können, die mehrere unterschiedliche Dehnungs- und Festigkeitszonen im Bauteil aufweisen, so dass eher feste Bereiche (im Folgenden erste Bereiche) einerseits und eher dehnfähige Bereiche (im Folgenden zweite Bereiche) andererseits in einem Bauteil vorliegen. Einerseits sind Bauteile mit hoher Festigkeit grundsätzlich wünschenswert, um mechanisch hoch belastbare Bauteile mit geringem Gewicht zu erhalten. Auf der anderen Seite sollen auch hochfeste Bauteile partiell weiche Bereiche haben können. Dieses bringt die gewünschte, partiell erhöhte Deformierbarkeit im Crashfall. Nur damit kann die kinetische Energie eines Aufpralls abgebaut werden und so die Beschleunigungskräfte auf Insassen und das übrige Fahrzeug minimiert werden. Zudem erfordern moderne Fügeverfahren entfestigte Stellen, die das Fügen artgleicher oder unterschiedlicher Materialien ermöglichen. Oft müssen beispielsweise Falz- Crimp- oder Nietverbindungen zum Einsatz kommen, die verformbare Bereiche im Bauteil voraussetzen.For the automotive industry, it is therefore desirable to be able to produce body components that have several different expansion and strength zones in the component, so that more solid areas (hereinafter first areas) on the one hand and more stretchable areas (hereinafter second areas) on the other hand in one component present. On the one hand, high-strength components are fundamentally desirable in order to obtain low-weight components that can withstand high mechanical loads. On the other hand, high-strength components should also be able to have partially soft areas. This brings the desired, partially increased deformability in the event of a crash. This is the only way to reduce the kinetic energy of an impact and thus the acceleration forces on the occupants and the rest vehicle are minimized. In addition, modern joining processes require softened areas that enable the joining of similar or different materials. Folded, crimped or riveted connections, for example, often have to be used, which require deformable areas in the component.

Dabei sollten die allgemeinen Ansprüche an eine Produktionsanlage weiterhin beachtet sein: so sollte es zu keiner Taktzeiteinbuße an der Presshärteanlage kommen, die Gesamtanlage sollte uneingeschränkt allgemein verwendet und schnell produktspezifisch umgerüstet werden können. Der Prozess sollte robust und wirtschaftlich sein und die Produktionsanlage nur minimalen Platz benötigen. Die Form und Kantengenauigkeit des Bauteils sollte hoch sein.The general demands on a production plant should continue to be observed: there should be no loss of cycle time in the press hardening plant, the entire plant should be used in general without restrictions and be able to be quickly converted to suit the product. The process should be robust and economical and the production plant should only require minimal space. The shape and edge accuracy of the component should be high.

Aus der EP 2 548 975 A1 ist ein Verfahren zur Herstellung eines gehärteten metallischen Bauteils mit mindestens zwei Bereichen unterschiedliche Duktilität bekannt.From the EP 2 548 975 A1 a method for producing a hardened metallic component with at least two areas of different ductility is known.

Bei allen bekannten Verfahren erfolgt die gezielte Wärmebehandlung des Bauteils in einem zeitintensiven Behandlungsschritt, der wesentlichen Einfluss auf die Taktzeit der gesamten Wärmebehandlungsvorrichtung hat.In all known methods, the specific heat treatment of the component takes place in a time-consuming treatment step, which has a significant influence on the cycle time of the entire heat treatment device.

Aufgabe der Erfindung ist es daher, ein Verfahren zur gezielten bauteilzonenindividuellen Wärmebehandlung eines Stahlbauteils anzugeben, wobei Bereiche unterschiedlicher Härte und Duktilität erzielbar sind, bei dem der Einfluss auf die Taktzeit der gesamten Wärmebehandlungsvorrichtung minimiert ist.The object of the invention is therefore to specify a method for the specific component zone-specific heat treatment of a steel component, areas of different hardness and ductility being achievable, in which the influence on the cycle time of the entire heat treatment device is minimized.

Erfindungsgemäß wird diese Aufgabe durch ein Verfahren mit den Merkmalen des unabhängigen Anspruches 1 gelöst. Vorteilhafte Weiterbildungen des Verfahrens ergeben sich aus den Unteransprüchen 2 bis 5.According to the invention, this object is achieved by a method having the features of independent claim 1 . Advantageous developments of the method result from the dependent claims 2 to 5.

Das Stahlbauteil wird zunächst bis oberhalb Austenitisierungstemperatur AC3 erwärmt, damit sich das Gefüge vollständig in Austenit umwandeln kann. Bei einem nachfolgenden Härteprozess, beispielsweise dem Presshärteprozess wird dann derart schnell abgeschreckt, dass sich vorrangig martensitisches Gefüge ausbildet und Festigkeiten von rund 1.500 MPa erreicht werden. Das Abschrecken erfolgt dabei vorteilhafterweise aus dem vollständig austenitisierten Gefüge. Dazu muss spätestens nach Unterschreiten der Gefügeumwandlungsstarttemperatur ϑ1, bei der Gefügeumwandlungen starten können, mit mindestens der unteren kritischen Abkühlgeschwindigkeit abgekühlt werden. Beispielsweise sollten bei dem üblicherweise zum Presshärten verwendeten Werkstoff 22MnB5 rund 660°C als Grenze ϑ1 angesehen werden. Ein zumindest teilweise martensitisches Gefüge kann zwar auch noch entstehen, wenn die Abschreckung bei tieferer Temperatur startet, es ist aber dann eine reduzierte Festigkeit des Bauteils in diesem Bereich zu erwarten.The steel component is first heated above the austenitization temperature AC3 so that the structure can be completely transformed into austenite. In a subsequent hardening process, for example the press hardening process, it is quenched so quickly that a primarily martensitic structure is formed and strengths of around 1,500 MPa are achieved. The quenching is advantageously carried out from the fully austenitized microstructure. For this purpose, cooling must take place at least at the lower critical cooling rate once the microstructure start temperature ϑ 1 has been fallen below, at which microstructure transformations can start. For example around 660°C should be considered as the limit ϑ 1 for the material 22MnB5 usually used for press hardening. Although an at least partially martensitic microstructure can still form if quenching starts at a lower temperature, a reduced strength of the component is to be expected in this area.

Dieser Temperaturverlauf ist beim Presshärteverfahren insbesondere für vollständig gehärtete Bauteile üblich.This temperature curve is common in the press hardening process, particularly for fully hardened components.

Ein zweiter Bereich oder mehrere zweite Bereiche werden zunächst ebenfalls bis oberhalb der Austenitisierungstemperatur AC3 erwärmt, damit sich das Gefüge vollständig in Austenit umwandeln kann. Anschließend wird möglichst rasch innerhalb einer Behandlungszeit tB bis zu einer Abkühlstopptemperatur ϑ2 abgekühlt. Die Martensit-Starttemperatur liegt beispielsweise für 22MnB5 bei ca. 410 °C. Ein leichtes Einschwingen in Temperaturbereiche unterhalb der Martensitstarttemperatur ist ebenfalls möglich. Anschließend wird nicht weiter schnell abgekühlt, so dass sich mehrheitlich bainitisches Gefüge ausbildet. Diese Gefügeumwandlung erfolgt nicht schlagartig, sondern bedarf einer Behandlungszeit. Die Umwandlung erfolgt exotherm. Lässt man diese Umwandlung in beheizter Umgebung mit ähnlicher Temperatur wie bei der am Abkühlende vorhandenen Bauteiltemperatur, der Abkühlstopptemperatur ϑ2, stattfinden, kann man die durch die Rekaleszenz verursachte Temperaturerhöhung im Bauteil deutlich erkennen. Durch Einstellung der Abkühlgeschwindigkeit und/oder der Temperatur, auf die abgekühlt wird, sowie der Verweilzeit bis zum Abpressen des Bauteils, lassen sich grundsätzlich die gewünschten Festigkeits- und Dehnungswerte einstellen, die zwischen der maximal erreichbaren Festigkeit des Gefüges im ersten Bereich und den Werten des unbehandelten Bauteils liegen. Untersuchungen haben gezeigt, dass ein Unterdrücken des Temperaturanstieges infolge der Rekaleszenz durch ein weiteres, erzwungenes Abkühlen eher nachteilig für die erreichbaren Dehnungswerte ist. Ein isothermes Halten auf der Abkühltemperatur scheint deshalb nicht vorteilhaft zu sein. Ein erneutes Erwärmen ist dagegen vorteilhaft.A second area or several second areas are first also heated to above the austenitization temperature AC3 so that the structure can be completely transformed into austenite. It is then cooled as quickly as possible within a treatment time t B down to a cooling stop temperature θ 2 . For example, the martensite start temperature for 22MnB5 is around 410 °C. A slight transient in temperature ranges below the martensite start temperature is also possible. There is no further rapid cooling afterwards, so that a predominantly bainitic structure is formed. This structural change does not take place suddenly, but requires a treatment period. The conversion is exothermic. If this conversion is allowed to take place in a heated environment with a temperature similar to the component temperature at the end of cooling, the cooling stop temperature ϑ 2 , the temperature increase in the component caused by recalescence can be clearly seen. By adjusting the cooling rate and/or the temperature to which cooling takes place, as well as the dwell time before the component is pressed, the desired strength and elongation values can be set, which lie between the maximum achievable strength of the structure in the first area and the values of the untreated component. Investigations have shown that suppressing the temperature rise as a result of recalescence through further, forced cooling is rather disadvantageous for the achievable strain values. Holding isothermally at the cooling temperature therefore does not appear to be advantageous. Reheating, on the other hand, is beneficial.

In einer Ausführungsform werden der zweite Bereich oder die zweiten Bereiche in dieser Phase zusätzlich aktiv beheizt. Dies kann beispielsweise durch Wärmestrahlung erfolgen.In one embodiment, the second area or the second areas are additionally actively heated in this phase. This can be done, for example, by thermal radiation.

In einer Ausführungsform wird die Abkühlstopptemperatur ϑ2 oberhalb der Martensit-Starttemperatur MS gewählt.In one embodiment, the cooling stop temperature θ 2 is selected above the martensite start temperature M S .

In einer alternativen Ausführungsform wird die Abkühlstopptemperatur ϑ2 unterhalb der Martensit-Starttemperatur MS gewählt.In an alternative embodiment, the cooling stop temperature θ 2 is selected below the martensite start temperature M S .

Die Wärmebehandlung der ersten und zweiten Bereiche ist prinzipiell unterschiedlich, wobei in erster Linie die Behandlung des zweiten Bereichs oder der zweiten Bereiche eine Abhängigkeit zur Behandlungsdauer hat. Erfindungsgemäß werden zweite Bereiche in einem ersten Ofen zur Erreichung der Austenitisierungstemperatur nachgeordneten Behandlungsstation innerhalb einer Behandlungszeit tB von wenigen Sekunden partiell bis zur Abkühlstopptemperatur ϑ2 abgekühlt. In dieser Behandlungsstation wird der erste Bereich beziehungsweise werden die ersten Bereiche nicht besonders behandelt.The heat treatment of the first and second areas is fundamentally different, with the treatment of the second area or the second areas primarily being dependent on the treatment duration. According to the invention, second areas in a first furnace are partially cooled down to the cooling stop temperature ϑ 2 within a treatment time t B of a few seconds in order to reach the austenitization temperature. In this treatment station, the first area or areas are not treated in a special way.

Optional kann die Behandlungsstation zu diesem Zweck auch beheizt sein. Dazu kann beispielsweise die Wärmeeinbringung über Konvektion oder Wärmestrahlung verwendet werden.Optionally, the treatment station can also be heated for this purpose. For this purpose, for example, the introduction of heat via convection or heat radiation can be used.

Die Bauteile werden nach wenigen Sekunden in der Behandlungsstation, die zudem über eine Positioniervorrichtung verfügen kann, um die genaue Positionierung der unterschiedlichen Bereiche zu gewährleisten, in einen zweiten Ofen befördert, der vorzugsweise keine speziellen Vorrichtungen zur unterschiedlichen Behandlung der verschiedenen Bereiche besitzt. Es wird lediglich eine Ofentemperatur ϑ4, d.h. eine im Wesentlichen homogene Temperatur ϑ4 im gesamten Ofenraum, eingestellt, die in der Regel zwischen der Austenitisierungstemperatur AC3 und der minimalen Abschrecktemperatur liegt. Eine vorteilhafte Größe liegt beispielsweise zwischen 660°C und 850°C. So nähern sich die verschiedenen Bereiche der Temperatur ϑ4 des zweiten Ofens an. Sofern die Temperaturverluste in den ersten Bereichen während des Aufenthaltes in der Behandlungsstation für die zweiten Bereiche so niedrig sind, dass die Temperatur nicht niedriger als die Temperatur ϑ4 des zweiten Ofens fällt, nähert sich das Temperaturprofil der ersten Bereiche Art der Temperatur ϑ4 des zweiten Ofens von oben her an. In einer vorteilhaften Ausführungsform ist die minimale Abkühltemperatur, d.h. die Abkühlstopptemperatur ϑ2 in den Bereichen zweiter Art tiefer als die gewählte Temperatur ϑ4 des zweiten Ofens. Insofern nähert sich das Temperaturprofil der zweiten Bereiche der Temperatur ϑ4 des zweiten Ofens von unten her an. Durch diese Verfahrensführung nähern sich die Temperaturen der unterschiedlich behandelten Bereiche gegenseitig an.After a few seconds in the treatment station, which can also have a positioning device to ensure the precise positioning of the different areas, the components are transferred to a second oven, which preferably does not have specific devices for treating the different areas differently. Only a furnace temperature θ 4 , ie an essentially homogeneous temperature θ 4 in the entire furnace space, is set, which generally lies between the austenitizing temperature AC3 and the minimum quenching temperature. An advantageous value is between 660°C and 850°C, for example. In this way, the different areas approach the temperature ϑ 4 of the second furnace. If the temperature losses in the first zones during the stay in the treatment station for the second zones are so low that the temperature does not fall below the temperature ϑ 4 of the second furnace, the temperature profile of the first zones kind approaches the temperature ϑ 4 of the second oven from above. In an advantageous embodiment, the minimum cooling temperature, ie the cooling stop temperature θ 2 in the areas of the second type, is lower than the selected temperature θ 4 of the second furnace. In this respect, the temperature profile of the second areas approaches Temperature ϑ 4 of the second oven from below. As a result of this procedure, the temperatures of the differently treated areas approach one another.

Der erste oder die ersten Bereiche geben im zweiten Ofen Wärme ab, wenn sie mit höherer Temperatur als die Innentemperatur ϑ4 des zweiten Ofens in den zweiten Ofen gelangen. Der zweite oder die zweiten Bereiche nehmen im zweiten Ofen Wärme auf. Dies erfordert in der Summe nur einen relativ geringen Bedarf an Heizleistung im zweiten Ofen. Gegebenenfalls kann während des Produktionsprozesses gänzlich auf eine weitere Beheizung verzichtet werden. So ist dieser Behandlungsschritt besonders energieeffizient. Als erster Ofen kann beispielsweise ein Durchlaufofen oder ein Batchofen, wie beispielsweise ein Kammerofen, vorgesehen sein. Durchlauföfen weisen in der Regel eine große Kapazität auf und sind für die Massenproduktion besonders gut geeignet, da sie sich ohne großen Aufwand beschicken und betreiben lassen.The first area or areas give off heat in the second oven when they enter the second oven at a higher temperature than the internal temperature θ 4 of the second oven. The second or second areas absorb heat in the second furnace. Overall, this requires only a relatively small amount of heating power in the second furnace. If necessary, further heating can be dispensed with entirely during the production process. This treatment step is particularly energy-efficient. A continuous furnace or a batch furnace, such as a chamber furnace, for example, can be provided as the first furnace. Continuous furnaces usually have a large capacity and are particularly well suited for mass production because they can be loaded and operated without great effort.

Die Behandlungsstation kann eine Vorrichtung zum schnellen Abkühlen eines oder mehrerer zweiter Bereiche des Stahlbauteils aufweisen. Bevorzugt weist die Vorrichtung eine Düse zum Anblasen des oder der zweiten Bereiche des Stahlbauteils mit einem gasförmigen Fluid, beispielsweise Luft oder ein Schutzgas, wie beispielsweise Stickstoff auf.The treatment station can have a device for rapid cooling of one or more second regions of the steel component. The device preferably has a nozzle for blowing a gaseous fluid, for example air or an inert gas such as nitrogen, onto the second area or areas of the steel component.

In einer weiteren vorteilhaften Ausführungsform des Verfahrens erfolgt das Anblasen des zweiten oder der zweiten Bereiche durch Anblasen mit einem gasförmigen Fluid, wobei dem gasförmigen Fluid Wasser, beispielsweise in vernebelter Form, beigefügt ist. Dazu weist die Vorrichtung in einer vorteilhaften Ausführungsform eine oder mehrere Vernebelungsdüsen auf. Durch das Anblasen mit dem mit Wasser versetzten gasförmigen Fluid wird die Wärmeabfuhr aus dem oder aus den zweiten Bereichen erhöht. Mit der Verdampfung des Wassers auf dem Stahlbauteil wird eine große Wärmeabfuhr und ein hoher Energietransport erreicht.In a further advantageous embodiment of the method, the second or the second regions are blown on by blowing on them with a gaseous fluid, water being added to the gaseous fluid, for example in nebulized form. For this purpose, in an advantageous embodiment, the device has one or more atomizing nozzles. Blowing on with the gaseous fluid mixed with water increases the heat dissipation from the second region or regions. With the evaporation of the water on the steel component, a large heat dissipation and a high energy transport is achieved.

Auch als zweiter Ofen kann beispielsweise ein Durchlaufofen oder ein Batchofen, beispielsweise ein Kammerofen, vorgesehen sein.A continuous furnace or a batch furnace, for example a chamber furnace, can also be provided as the second furnace.

In einer weiteren bevorzugten Ausführungsform wird der zweite beziehungsweise werden die zweiten Bereiche über Wärmeleitung, beispielsweise durch das Inkontaktbringen mit einem Stempel oder mehreren Stempeln gekühlt, der beziehungsweise die eine deutlich niedrigere Temperatur als das Stahlbauteil aufweist oder aufweisen. Dazu kann der Stempel aus einem gut wärmeleitenden Werkstoff hergestellt sein und / oder direkt oder indirekt gekühlt sein. Auch eine Kombination der Kühlungsarten ist denkbar.In a further preferred embodiment, the second or the second area(s) is/are cooled via heat conduction, for example by bringing it into contact with one or more stamps, one or more stamps being significantly lower Has or have temperature than the steel component. For this purpose, the stamp can be made of a material with good thermal conductivity and/or be cooled directly or indirectly. A combination of the types of cooling is also conceivable.

Es hat sich als vorteilhaft erwiesen, wenn in der Behandlungsstation Maßnahmen für die Verringerung der Temperaturverluste des ersten beziehungsweise der ersten Bereiche getroffen sind. Solche Maßnahmen können beispielsweise das Anbringen eines Wärmestrahlungsreflektors und/oder das Isolieren von Oberflächen der Behandlungsstation im Bereich des ersten beziehungsweise der ersten Bereiche sein.It has proven to be advantageous if measures are taken in the treatment station to reduce the temperature losses in the first area or areas. Such measures can be, for example, the attachment of a thermal radiation reflector and/or the insulation of surfaces of the treatment station in the area of the first area or the first areas.

Mit dem erfindungsgemäßen Verfahren und einer entsprechendenWith the method according to the invention and a corresponding

Wärmebehandlungsvorrichtung, die nicht beansprucht wird, kann Stahlbauteilen mit jeweils einem oder mehreren ersten und/oder zweiten Bereichen, die auch komplex geformt sein können, wirtschaftlich ein entsprechendes Temperaturprofil aufgeprägt werden, da die unterschiedlichen Bereiche konturscharf sehr schnell auf die notwendigen Prozesstemperaturen gebracht werden können. Zwischen den beiden Bereichen sind klar konturierte Abgrenzungen der einzelnen Bereiche realisierbar und durch den geringen Temperaturunterschied wird der Verzug der Bauteile minimiert. Geringe Spreizungen im Temperaturniveau des Bauteils wirken sich vorteilhaft bei der weiteren Verarbeitung in der Presse aus. Die notwendigen Verweilzeiten für den zweiten Bereich beziehungsweise die zweiten Bereiche können beispielsweise in einem Durchlaufofen in Abhängigkeit von der Bauteillänge über die Einstellung der Fördergeschwindigkeit und der Auslegung der Ofenlänge realisiert werden. Eine Beeinflussung der Taktzeit der Wärmebehandlungsvorrichtung wird so minimiert, sie kann sogar gänzlich vermieden werden.Heat treatment device, which is not claimed, steel components with one or more first and / or second areas, which can also be shaped complex, can be economically imprinted with a corresponding temperature profile, since the different areas can be brought to the necessary process temperatures very quickly with sharp contours. Clearly contoured delimitations of the individual areas can be realized between the two areas and the distortion of the components is minimized due to the small temperature difference. Small spreads in the temperature level of the component have an advantageous effect during further processing in the press. The necessary dwell times for the second area or the second areas can be implemented, for example, in a continuous furnace depending on the component length by adjusting the conveying speed and the design of the furnace length. An influence on the cycle time of the heat treatment device is minimized in this way, it can even be avoided entirely.

Erfindungsgemäß ist es mit dem gezeigten Verfahren und mit der entsprechenden Wärmebehandlungsvorrichtung, die nicht beansprucht wird, möglich, nahezu beliebig viele zweite Bereiche einzustellen, die innerhalb eines Stahlbauteils zudem jeweils untereinander noch unterschiedliche Festigkeits- und Dehnungswerte aufweisen können. Auch ist die gewählte Geometrie der Teilbereiche frei wählbar. Punkt- oder linienförmige Bereiche sind ebenso wie z.B. großflächige Bereiche darstellbar. Auch die Lage der Bereiche ist unerheblich. Die zweiten Bereiche können vollständig von ersten Bereichen umschlossen sein oder sich am Rand des Stahlbauteils befinden. Selbst eine vollflächige Behandlung ist denkbar. Eine besondere Orientierung des Stahlbauteils zur Durchlaufrichtung ist zum Zwecke des erfindungsgemäßen Verfahrens zur gezielten bauteilzonenindividuellen Wärmebehandlung eines Stahlbauteils nicht erforderlich. Eine Begrenzung der Anzahl der gleichzeitig behandelten Stahlbauteile ist allenfalls durch das Presshärtewerkzeug oder die Fördertechnik der gesamten Wärmebehandlungsvorrichtung gegeben. Die Anwendung des Verfahrens auf bereits vorgeformte Stahlbauteile ist ebenfalls möglich. Durch die dreidimensional ausgeformten Oberflächen bereits vorgeformter Stahlbauteile ergibt sich lediglich ein höherer konstruktiver Aufwand zur Darstellung der Gegenflächen.According to the invention, it is possible with the method shown and with the corresponding heat treatment device, which is not claimed, to set almost any number of second areas, which can also have different strength and elongation values within a steel component. The selected geometry of the partial areas can also be freely selected. Dotted or line-shaped areas can be displayed as well as, for example, large-area areas. The location of the areas is also irrelevant. The second areas can be completely enclosed by the first areas or can be located at the edge of the steel component. Even a full-surface treatment is conceivable. A special orientation of the steel component to the direction of passage is for the purpose of the method according to the invention for the targeted heat treatment of a steel component for individual component zones not mandatory. The number of steel components treated at the same time is limited at most by the press-hardening tool or the conveyor technology of the entire heat treatment device. The process can also be used on preformed steel components. The three-dimensionally shaped surfaces of already preformed steel components only result in a higher design effort for the representation of the counter surfaces.

Weiterhin ist es vorteilhaft, dass auch bereits vorhandene Wärmebehandlungsanlangen auf das erfindungsgemäße Verfahren adaptiert werden können. Hierzu muss bei einer konventionellen Wärmebehandlungsvorrichtung mit nur einem Ofen hinter diesem nur die Behandlungsstation und der zweite Ofen installiert werden. Je nach Ausgestaltung des vorhandenen Ofens ist es auch möglich, diesen zu teilen, so dass aus dem ursprünglichen einen Ofen der erste und der zweite Ofen entstehen.Furthermore, it is advantageous that already existing heat treatment plants can be adapted to the method according to the invention. For this purpose, in a conventional heat treatment device with only one furnace, only the treatment station and the second furnace have to be installed behind it. Depending on the design of the existing oven, it is also possible to divide it so that the first and second ovens are created from the original one oven.

Weitere Vorteile, Besonderheiten und zweckmäßige Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Darstellung bevorzugter Ausführungsbeispiele anhand der Abbildungen.Further advantages, special features and expedient developments of the invention result from the subclaims and the following description of preferred exemplary embodiments with reference to the illustrations.

Von den Abbildungen zeigt:

  • Fig. 1 eine typische Temperaturkurve bei der Wärmebehandlung eines Stahlbauteils mit einem ersten und einem zweiten Bereich;
  • Fig. 2 eine thermische Wärmebehandlungsvorrichtung in einer Draufsicht als Schemazeichnung;
  • Fig. 3 eine weitere thermische Wärmebehandlungsvorrichtung in einer Draufsicht als Schemazeichnung;
  • Fig. 4 eine weitere thermische Wärmebehandlungsvorrichtung in einer Draufsicht als Schemazeichnung;
  • Fig. 5 eine weitere thermische Wärmebehandlungsvorrichtung in einer Draufsicht als Schemazeichnung;
  • Fig. 6 eine weitere thermische Wärmebehandlungsvorrichtung in einer Draufsicht als Schemazeichnung; und
  • Fig. 7 eine weitere thermische Wärmebehandlungsvorrichtung in einer Draufsicht als Schemazeichnung.
From the illustrations shows:
  • 1 a typical temperature curve during the heat treatment of a steel component with a first and a second area;
  • 2 a thermal heat treatment device in a plan view as a schematic drawing;
  • 3 another thermal heat treatment device in a plan view as a schematic drawing;
  • 4 another thermal heat treatment device in a plan view as a schematic drawing;
  • figure 5 another thermal heat treatment device in a plan view as a schematic drawing;
  • 6 another thermal heat treatment device in a plan view as a schematic drawing; and
  • 7 another thermal heat treatment device in a plan view as a schematic drawing.

In der Fig. 1 ist eine typische Temperaturkurve bei der Wärmebehandlung eines Stahlbauteils 200 mit einem ersten Bereich 210 und einem zweiten Bereich 220 gemäß dem erfinderischen Verfahren. Das Stahlbauteil 200 wird im ersten Ofen 110 gemäß des schematisch eingezeichneten Temperaturlaufs ϑ200,110 während der Verweilzeit im ersten Ofen t110 aufgeheizt auf eine Temperatur oberhalb der AC3- Temperatur. Anschließend wird das Stahlbauteil 200 mit einer Transferzeit t120 in die Behandlungsstation 150 transferiert. Dabei verliert das Stahlbauteil Wärme. In der Behandlungsstation wird ein zweiter Bereich 220 des Stahlbauteils 200 schnell abgekühlt, wobei der zweite Bereich 220 schnell gemäß des eingezeichneten Verlaufs ϑ220,150 an Wärme verliert. Das Abkühlen endet nach Ablauf der Behandlungszeit tB, die in Abhängigkeit der Dicke des Stahlbauteils 200, den gewünschten Materialeigenschaften und der Größe des zweiten Bereichs 220 nur einige wenige Sekunden beträgt. In erster Näherung ist dabei die Behandlungszeit tB gleich der Verweilzeit t150 in der Behandlungsstation 150. Der zweite Bereich 220 hat nun die Abkühlstopptemperatur ϑ2 oberhalb der Martensitstarttemperatur MS erreicht. Zeitgleich ist auch die Temperatur des ersten Bereichs 210 in der Behandlungsstation 150 gemäß des eingezeichneten Temperaturverlaufs ϑ210,150 gefallen, wobei der erste Bereich 210 sich nicht im Bereich der Abkühleinrichtung befindet. Nach Ablauf der Behandlungszeit tB wird das Stahlbauteil 200 während der Transferzeit t121 in den zweiten Ofen 130 transferiert, wobei es weiter an Wärme verliert, sofern seine Temperatur größer als die Innentemperatur ϑ4 des zweiten Ofens 130 ist. Im zweiten Ofen 130 verändert sich die Temperatur des ersten Bereichs 210 des Stahlbauteils 200 gemäß dem schematisch eingezeichneten Temperaturverlauf ϑ210,130 während der Verweilzeit t130, d.h. die Temperatur des ersten Bereichs 210 des Stahlbauteils 200 nimmt langsam weiter ab. Dabei kann die Temperatur des ersten Bereichs 210 des Stahlbauteils 200 unter die AC3- Temperatur fallen, was aber nicht zwingend erfolgen muss. Dahingegen steigt die Temperatur des zweiten Bereichs 220 des Stahlbauteils 200 gemäß dem eingezeichneten Temperaturverlauf ϑ220,130 während der Verweilzeit t130 wieder an, ohne die AC3-Temperatur zu erreichen. Der zweite Ofen 130 verfügt über keine speziellen Vorrichtungen zur unterschiedlichen Behandlung der verschiedenen Bereiche 210, 220. Es wird lediglich eine Ofentemperatur ϑ4, d.h. eine im Wesentlichen homogene Temperatur im gesamten Innenraum des zweiten Ofens 130, eingestellt, die zwischen der Austenitisierungstemperatur AC3 und der Abkühlstopptemperatur ϑ2, beispielsweise zwischen 660°C und 850°C liegt. So nähern sich die verschiedenen Bereiche 210, 220 der Innentemperatur ϑ4 des zweiten Ofens 130 an. Sofern die Temperaturverluste in dem ersten Bereich 210 während der Verweilzeit t150 in der Behandlungsstation 150 für den zweiten Bereich 220 so niedrig sind, dass die Temperatur nicht niedriger als die Temperatur ϑ4 des zweiten Ofens 130 fällt, nähert sich das Temperaturprofil ϑ210,130 des ersten Bereichs der Temperatur ϑ4 des zweiten Ofens 130 von oben her an. Die Abkühlstopptemperatur ϑ2 ist in dieser Ausführungsform niedriger als die gewählte Temperatur ϑ4 des zweiten Ofens 130. Das Temperaturprofil ϑ220,130 des zweiten Bereichs nähert sich der Temperatur 94 des zweiten Ofens 130 von unten her an. Die Temperatur des Bereichs 210 fällt nicht unter die Gefügeumwandlungsstarttemperatur ϑ1. Durch den geringen Temperaturunterschied zwischen den beiden Bereichen 210, 220 sind klar konturierte Abgrenzungen der einzelnen Bereiche 210, 220 realisierbar und der Verzug des Stahlbauteils 200 wird minimiert. Geringe Spreizungen im Temperaturniveau des Stahlbauteils 200 wirken sich vorteilhaft bei der weiteren Verarbeitung in dem Presshärtewerkzeug 160 aus. Die notwendige Verweilzeit t130 für den zweiten Bereich 220 kann in Abhängigkeit von der Länge des Stahlbauteils über die Einstellung der Fördergeschwindigkeit und der Auslegung der Länge des zweiten Ofens 130 realisiert werden. Eine Beeinflussung der Taktzeit der Wärmebehandlungsvorrichtung 100 wird so minimiert, sie kann sogar gänzlich vermieden werden. Der erste Bereich 220 des Stahlbauteils 200 gibt im zweiten Ofen 130 Wärme ab. Der zweite Bereich 220 des Stahlbauteils 200 nimmt im zweiten Ofen 130 Wärme auf, wobei die Wärmeaufnahme durch die bei der Rekaleszenz des Gefüges im zweiten Bereich 220 des Stahlbauteils 200 freiwerdende Wärme eingeschränkt ist. Dies erfordert in der Summe nur einen relativ geringen Bedarf an Heizleistung im zweiten Ofen 130. Gegebenenfalls kann gänzlich auf eine zusätzliche Beheizung des zweiten Ofens 130 verzichtet werden. So ist dieser Behandlungsschritt besonders energieeffizient.In the 1 12 is a typical temperature curve during the heat treatment of a steel component 200 having a first region 210 and a second region 220 according to the inventive method. The steel component 200 is heated in the first furnace 110 according to the temperature curve θ 200,110 shown schematically during the residence time in the first furnace t 110 to a temperature above the AC3 temperature. The steel component 200 is then transferred to the treatment station 150 with a transfer time t 120 . In the process, the steel component loses heat. In the treatment station, a second region 220 of the steel component 200 is rapidly cooled, with the second region 220 rapidly losing heat according to the curve θ 220,150 shown. The cooling ends after the treatment time t B has elapsed, which, depending on the thickness of the steel component 200, the desired material properties and the size of the second region 220, is only a few seconds. In a first approximation, the treatment time t B is equal to the residence time t 150 in the treatment station 150. The second area 220 has now reached the cooling stop temperature θ 2 above the martensite start temperature M S . At the same time, the temperature of the first area 210 in the treatment station 150 has also fallen according to the temperature profile θ 210,150 shown , with the first area 210 not being located in the area of the cooling device. After the treatment time t B has elapsed, the steel component 200 is transferred into the second furnace 130 during the transfer time t 121 , during which it continues to lose heat if its temperature is greater than the internal temperature θ 4 of the second furnace 130 . In the second furnace 130, the temperature of the first region 210 of the steel component 200 changes according to the temperature profile θ 210,130 shown schematically during the dwell time t 130 , ie the temperature of the first region 210 of the steel component 200 slowly continues to decrease. The temperature of the first region 210 of the steel component 200 can fall below the AC3 temperature, but this does not necessarily have to happen. In contrast, the temperature of the second region 220 of the steel component 200 increases again according to the temperature profile θ 220,130 shown during the dwell time t 130 without reaching the AC3 temperature. The second oven 130 does not have any specific devices for treating the different areas 210, 220 differently only a furnace temperature θ 4 , ie an essentially homogeneous temperature in the entire interior of the second furnace 130, is set, which lies between the austenitization temperature AC3 and the cooling stop temperature θ 2 , for example between 660° C. and 850° C. In this way, the various areas 210 , 220 approach the internal temperature θ 4 of the second oven 130 . If the temperature losses in the first area 210 during the dwell time t 150 in the treatment station 150 for the second area 220 are so low that the temperature does not fall below the temperature ϑ 4 of the second oven 130, the temperature profile ϑ 210,130 approaches the first Range of temperature ϑ 4 of the second oven 130 from above. In this embodiment, the cooling stop temperature θ 2 is lower than the selected temperature θ 4 of the second oven 130. The temperature profile θ 220,130 of the second region approaches the temperature 94 of the second oven 130 from below. The temperature of region 210 does not fall below the fabric transformation start temperature ϑ 1 . Due to the small temperature difference between the two areas 210, 220, clearly contoured delimitations of the individual areas 210, 220 can be realized and the distortion of the steel component 200 is minimized. Small spreads in the temperature level of the steel component 200 have an advantageous effect during further processing in the press-hardening tool 160 . The necessary dwell time t 130 for the second region 220 can be implemented as a function of the length of the steel component by adjusting the conveying speed and designing the length of the second furnace 130 . An influencing of the cycle time of the heat treatment device 100 is thus minimized, it can even be completely avoided. The first region 220 of the steel component 200 gives off heat in the second furnace 130 . The second region 220 of the steel component 200 absorbs heat in the second furnace 130, the heat absorption being limited by the heat released during the recalescence of the microstructure in the second region 220 of the steel component 200. Overall, this requires only a relatively small amount of heat output in the second oven 130. If necessary, additional heating of the second oven 130 can be dispensed with entirely. This treatment step is particularly energy-efficient.

Nach Beendigung der Verweilzeit t130 des Stahlbauteils 200 im zweiten Ofen 130 wird es während der Transferzeit t131 in ein Presshärtewerkzeug 160 transferiert, wo es während der Verweilzeit t160 umgeformt und gehärtet wird.After the end of the dwell time t 130 of the steel component 200 in the second furnace 130 it is transferred during the transfer time t 131 into a press hardening tool 160 where it is shaped and hardened during the dwell time t 160 .

Fig. 2 zeigt eine Wärmebehandlungsvorrichtung 100, die nicht beansprucht wird, in 90°- Anordnung. Die 2 Figure 12 shows a heat treatment device 100, not claimed, in a 90° arrangement. the

Wärmebehandlungsvorrichtung 100 weist eine Beladungsstation 101 auf, über die Stahlbauteile dem ersten Ofen 110 zugeführt werden. Weiterhin weist die Wärmebehandlungsvorrichtung 100 die Behandlungsstation 150 und in Hauptdurchflussrichtung D dahinter angeordnet den zweiten Ofen 130 auf. Weiter in Hauptdurchflussrichtung D dahinter angeordnet befindet sich eine Entnahmestation 131, die mit einer Positioniervorrichtung (nicht gezeigt) ausgerüstet ist. Die Hauptdurchflussrichtung knickt nun um im Wesentlichen 90° ab, um ein Presshärtewerkzeug 160 in einer Presse (nicht gezeigt) folgen zu lassen, in dem das Stahlbauteil 200 pressgehärtet wird. In Achsrichtung des ersten Ofens 110 und des zweiten Ofens 130 ist ein Behälter 161 angeordnet, in den Ausschussteile verbracht werden können. Der erste Ofen 110 und der zweite Ofen 120 sind bei dieser Anordnung bevorzugt als Durchlauföfen, beispielsweise Rollenherdöfen, ausgeführt.Heat treatment device 100 has a loading station 101 via which the steel components are fed to the first furnace 110 . Furthermore, the heat treatment device 100 has the treatment station 150 and the second furnace 130 arranged behind it in the main flow direction D. Arranged further downstream in the main flow direction D is a removal station 131 which is equipped with a positioning device (not shown). The main flow direction now bends by essentially 90° in order to be followed by a press-hardening tool 160 in a press (not shown), in which the steel component 200 is press-hardened. In the axial direction of the first furnace 110 and the second furnace 130 there is a container 161 into which rejects can be placed. In this arrangement, the first furnace 110 and the second furnace 120 are preferably designed as continuous furnaces, for example roller hearth furnaces.

Fig. 3 zeigt eine Wärmebehandlungsvorrichtung 100, die nicht beansprucht wird, in gerader Anordnung. Die 3 Figure 12 shows a heat treatment apparatus 100, not claimed, in a straight configuration. the

Wärmebehandlungsvorrichtung 100 weist eine Beladungsstation 101 auf, über die Stahlbauteile dem ersten Ofen 110 zugeführt werden. Weiterhin weist die Wärmebehandlungsvorrichtung 100 die Behandlungsstation 150 und in Hauptdurchflussrichtung D dahinter angeordnet den zweiten Ofen 130 auf. Weiter in Hauptdurchflussrichtung D dahinter angeordnet befindet sich eine Entnahmestation 131, die mit einer Positioniervorrichtung (nicht gezeigt) ausgerüstet ist. Weiter folgt in nun weiter gerader Hauptdurchflussrichtung ein Presshärtewerkzeug 160 in einer Presse (nicht gezeigt), in dem das Stahlbauteil 200 pressgehärtet wird. Im Wesentlichen in 90° zu der Entnahmestation 131 ist ein Behälter 161 angeordnet, in den Ausschussteile verbracht werden können. Der erste Ofen 110 und der zweite Ofen 120 sind bei dieser Anordnung ebenfalls bevorzugt als Durchlauföfen, beispielsweise Rollenherdöfen, ausgeführt.Heat treatment device 100 has a loading station 101 via which the steel components are fed to the first furnace 110 . Furthermore, the heat treatment device 100 has the treatment station 150 and the second furnace 130 arranged behind it in the main flow direction D. Arranged further downstream in the main flow direction D is a removal station 131 which is equipped with a positioning device (not shown). A press-hardening tool 160 in a press (not shown), in which the steel component 200 is press-hardened, follows in the main flow direction, which is now further straight. A container 161 into which rejects can be placed is arranged essentially at 90° to the removal station 131 . In this arrangement, the first furnace 110 and the second furnace 120 are also preferably designed as continuous furnaces, for example roller hearth furnaces.

Fig. 4 zeigt eine weitere Variante einer Wärmebehandlungsvorrichtung 100, die nicht beansprucht wird. Die Wärmebehandlungsvorrichtung 100 weist wieder eine Beladungsstation 101 auf, über die Stahlbauteile dem ersten Ofen 110 zugeführt werden. Der erste Ofen 110 ist bei dieser Ausführung wieder vorzugsweise als Durchlaufofen ausgebildet. Weiterhin weist die Wärmebehandlungsvorrichtung 100 die Behandlungsstation 150 auf, die in diesem Beispiel mit einer Entnahmestation 131 kombiniert ist. Die Entnahmevorrichtung 131 kann beispielsweise über eine Greifvorrichtung (nicht gezeigt) verfügen. Die Entnahmestation 131 entnimmt beispielsweise mittels der Greifvorrichtung die Stahlbauteile 200 aus dem ersten Ofen 110. Die Wärmebehandlung mit dem Abkühlen des zweiten beziehungsweise der zweiten Bereiche 220 wird durchgeführt und das Stahlbauteile beziehungsweise die Stahlbauteile 200 werden in einen im Wesentlichen um 90° zur Achse des ersten Ofens 110 angeordneten zweiten Ofen 130 einlegt. Dieser zweite Ofen 130 ist in diesem Beispiel vorzugsweise als Kammerofen, beispielsweise mit mehreren Kammern, vorgesehen. Nach Ablauf der Verweilzeit t130 der Stahlbauteile 200 im zweiten Ofen 130 werden die Stahlbauteile 200 über die Entnahmestation 131 aus dem zweiten Ofen 130 entnommen und in ein gegenüberliegendes, in eine Presse (nicht gezeigt) eingebautes Presshärtewerkzeug 160 eingelegt. Dazu kann die Entnahmestation 131 über eine Positioniereinrichtung (nicht gezeigt) verfügen. In Achsrichtung des ersten Ofens 110 ist hinter der Entnahmestation 131 ein Behälter 161 angeordnet, in den Ausschussteile verbracht werden können. Die Hauptdurchflussrichtung D beschreibt bei diesem Beispiel eine Umlenkung von im Wesentlichen 90°. In diesem Beispiel ist kein zweites Positioniersystem für die Behandlungsstation 150 erforderlich. Darüber hinaus ist dieses Beispiel vorteilhaft, wenn in Achsrichtung des ersten Ofens 110 nicht ausreichend Platz beispielsweise in einer Produktionshalle zur Verfügung steht. Die Abkühlung der zweiten Bereiche 220 des Stahlbauteils 200 kann bei diesem Beispiel auch zwischen Entnahmestation 131 und zweiten Ofen 130 erfolgen, so dass es keiner ortsfesten Behandlungsstation 150 bedarf. Beispielsweise kann eine Abkühlvorrichtung, beispielsweise eine Blasdüse, in die Greifvorrichtung integriert sein. Die Entnahmevorrichtung 131 sorgt für den Transfer des Stahlbauteils 200 von dem ersten Ofen 1 10 in den zweiten Ofen 130 und in das Presshärtewerkzeug 160 beziehungsweise in den Behälter 161. 4 FIG. 1 shows another variant of a heat treatment device 100 which is not claimed. The heat treatment device 100 again has a loading station 101 via which the steel components are fed to the first furnace 110 . The first oven 110 is with this one Execution again preferably designed as a continuous furnace. Furthermore, the heat treatment device 100 has the treatment station 150 which is combined with a removal station 131 in this example. The removal device 131 can have a gripping device (not shown), for example. The removal station 131 removes the steel components 200 from the first furnace 110, for example by means of the gripping device. The heat treatment with the cooling of the second or the second regions 220 is carried out and the steel component or the steel components 200 are in a substantially 90 ° to the axis of the first Furnace 110 arranged second furnace 130 inserts. In this example, this second furnace 130 is preferably provided as a chamber furnace, for example with several chambers. After the residence time t 130 of the steel components 200 in the second furnace 130 has elapsed, the steel components 200 are removed from the second furnace 130 via the removal station 131 and placed in an opposite press-hardening tool 160 built into a press (not shown). For this purpose, the removal station 131 can have a positioning device (not shown). In the axial direction of the first oven 110, a container 161 is arranged behind the removal station 131, into which rejects can be placed. In this example, the main flow direction D describes a deflection of essentially 90°. In this example, no second positioning system for the treatment station 150 is required. In addition, this example is advantageous if there is not enough space available in the axial direction of the first oven 110, for example in a production hall. In this example, the cooling of the second regions 220 of the steel component 200 can also take place between the removal station 131 and the second furnace 130, so that no stationary treatment station 150 is required. For example, a cooling device, for example a blowing nozzle, can be integrated into the gripping device. The removal device 131 ensures that the steel component 200 is transferred from the first furnace 110 into the second furnace 130 and into the press-hardening tool 160 or into the container 161.

Auch bei diesem Beispiel kann die Position von Presshärtewerkzeug 160 und Behälter 161 vertauscht werden, wie in Fig. 5 zu sehen. Die Hauptdurchflussrichtung D beschreibt bei diesem Beispiel zwei Umlenkungen von im Wesentlichen 90°.In this example, too, the position of press-hardening tool 160 and container 161 can be swapped, as in FIG figure 5 to see. In this example, the main flow direction D describes two deflections of essentially 90°.

Ist der Platz für die Aufstellung der Wärmebehandlungsvorrichtung beschränkt, bietet sich eine Wärmebehandlungsvorrichtung, die nicht beansprucht wird, gemäß Fig. 6 an: Im Vergleich zu dem in Fig. 4 gezeigten Beispiel ist der zweite Ofen 130 in eine zweite Ebene oberhalb des ersten Ofens 110 versetzt. Auch bei diesem Beispiel kann die Abkühlung der zweiten Bereiche 220 des Stahlbauteils 200 ebenfalls zwischen Entnahmestation 131 und zweiten Ofen 130 erfolgen, so dass es keiner ortsfesten Behandlungsstation 150 bedarf. Erneut ist es vorteilhaft, den ersten Ofen 110 als Durchlaufofen und den zweiten Ofen 120 als Kammerofen, eventuell mit mehreren Kammern auszuführen.If the space for installing the heat treatment device is limited, a heat treatment device, which is not claimed, according to FIG 6 an: Compared to the in 4 In the example shown, the second oven 130 is offset to a second level above the first oven 110 . In this example, too, the cooling of the second regions 220 of the steel component 200 can likewise take place between the removal station 131 and the second furnace 130, so that no stationary treatment station 150 is required. Again, it is advantageous to design the first furnace 110 as a continuous furnace and the second furnace 120 as a chamber furnace, possibly with multiple chambers.

In Fig. 7 schließlich ist ein letztes Beispiel einer Wärmebehandlungsvorrichtung, die nicht beansprucht wird, schematisch gezeigt. Im Vergleich zu dem in Fig. 6 gezeigten Beispiel sind die Positionen von Presshärtewerkzeug 160 und Behälter 161 vertauscht.In 7 finally a last example of a heat treatment device, which is not claimed, is shown schematically. Compared to the in 6 shown example, the positions of press-hardening tool 160 and container 161 are reversed.

Bezugszeichenliste:Reference list:

100100
Wärmebehandlungsvorrichtungheat treatment device
110110
erster Ofenfirst oven
130130
zweiter Ofensecond oven
131131
Entnahmestationextraction station
150150
Behandlungsstationtreatment station
160160
Presshärtewerkzeugpress hardening tool
161161
Behältercontainer
200200
Stahlbauteilsteel component
210210
erster Bereichfirst area
220220
zweiter Bereichsecond area
DD
Hauptdurchflussrichtungmain flow direction
MSMS
Martensit-Starttemperaturmartensite start temperature
tBtB
Behandlungszeittreatment time
t110t110
Verweilzeit im ersten OfenResidence time in the first oven
t120t120
Transferzeit Stahlbauteil in BehandlungsstationTransfer time steel component in treatment station
t121t121
Transferzeit Stahlbauteil in zweiten OfenTransfer time steel component in second furnace
t130t130
Verweilzeit im zweiten OfenResidence time in the second oven
t131t131
Transferzeit Stahlbauteil in PresshärtewerkzeugTransfer time of steel component in press-hardening tool
t150t150
Verweilzeit in BehandlungsstationResidence time in treatment station
t160t160
Verweilzeit im PresshärtewerkzeugResidence time in the press hardening tool
ϑ1ϑ1
Gefügeumwandlungsstarttemperaturmicrostructural transformation start temperature
ϑ2ϑ2
Abkühlstopptemperaturcooling stop temperature
ϑ3ϑ3
Innentemperatur erster OfenInternal temperature of the first oven
ϑ4ϑ4
Innentemperatur zweiter OfenInternal temperature of the second oven
ϑ200,110ϑ200,110
Temperaturverlauf des Stahlbauteils im ersten OfenTemperature profile of the steel component in the first furnace
ϑ210,150ϑ210,150
Temperaturverlauf des ersten Bereichs des Stahlbauteils in der BehandlungsstationTemperature profile of the first area of the steel component in the treatment station
ϑ220,150ϑ220,150
Temperaturverlauf des zweiten Bereichs des Stahlbauteils in der BehandlungsstationTemperature profile of the second area of the steel component in the treatment station
ϑ210,130ϑ210,130
Temperaturverlauf des ersten Bereichs des Stahlbauteils im zweiten OfenTemperature profile of the first area of the steel component in the second furnace
ϑ220,130ϑ220,130
Temperaturverlauf des zweiten Bereichs des Stahlbauteils im zweiten OfenTemperature profile of the second area of the steel component in the second furnace
ϑ200,160ϑ200,160
Temperaturverlauf des Stahlbauteils in dem PresshärtewerkzeugTemperature profile of the steel component in the press-hardening tool

Claims (5)

  1. Method for heat treating a steel component (200) in a targeted manner in individual component zones, it being possible for a predominantly austenitic structure to be produced in the steel component (200) in one or more first regions (210), from which structure a predominantly martensitic structure can be produced by quenching, and a predominantly bainitic structure being used in one or more second regions (220),
    the steel component (200) first being heated in a first furnace (110) to a temperature above the AC3 temperature, the steel component (200) then being transferred to a treatment station (150), where it can cool down during the transfer, and in the treatment station (150) the one or more second regions (220) of the steel component (200) being cooled to a cooling stop temperature ϑ2 during a treatment time tB, characterized in that the steel component is then transferred to a second furnace, in the second furnace a furnace temperature being set so that the different regions (210, 220) of the steel component (200) approach the furnace temperature of the second furnace, in the second furnace the one or more first regions (210) cooling to a temperature above the structural transformation start temperature ϑ1 of the steel component (220), from which temperature structural transformations from the austenitic structure can start, and the temperature of the one or more second regions (220) rising again to a temperature below the AC3 temperature.
  2. Method according to claim 1,
    wherein the cooling stop temperature ϑ2 is selected so as to be above the martensite start temperature Ms.
  3. Method according to claim 1,
    wherein the cooling stop temperature ϑ2 is selected so as to be below the martensite start temperature Ms.
  4. Method according to any of the preceding claims,
    wherein the reheating of the second region or regions (220) in the second furnace is assisted by supply of heat.
  5. Method according to any of the preceding claims,
    wherein the internal temperature in the second furnace ϑ4 is greater than the cooling stop temperature ϑ2.
EP17703346.1A 2016-01-25 2017-01-25 Heat treatment method Active EP3408417B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21162238.6A EP3851546A1 (en) 2016-01-25 2017-01-25 Heat treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016201024.7A DE102016201024A1 (en) 2016-01-25 2016-01-25 Heat treatment process and heat treatment device
PCT/EP2017/051514 WO2017129603A1 (en) 2016-01-25 2017-01-25 Heat treatment method and heat treatment device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP21162238.6A Division-Into EP3851546A1 (en) 2016-01-25 2017-01-25 Heat treatment device
EP21162238.6A Division EP3851546A1 (en) 2016-01-25 2017-01-25 Heat treatment device

Publications (2)

Publication Number Publication Date
EP3408417A1 EP3408417A1 (en) 2018-12-05
EP3408417B1 true EP3408417B1 (en) 2022-04-13

Family

ID=57965907

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17703346.1A Active EP3408417B1 (en) 2016-01-25 2017-01-25 Heat treatment method
EP21162238.6A Pending EP3851546A1 (en) 2016-01-25 2017-01-25 Heat treatment device

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21162238.6A Pending EP3851546A1 (en) 2016-01-25 2017-01-25 Heat treatment device

Country Status (14)

Country Link
US (1) US11359254B2 (en)
EP (2) EP3408417B1 (en)
JP (1) JP6940509B2 (en)
KR (1) KR20180117111A (en)
CN (2) CN206204366U (en)
AT (1) AT15722U1 (en)
BR (1) BR112018015072B1 (en)
DE (2) DE102016201024A1 (en)
ES (1) ES2920485T3 (en)
HU (1) HUE059496T2 (en)
MX (1) MX2018009036A (en)
PL (1) PL3408417T3 (en)
PT (1) PT3408417T (en)
WO (1) WO2017129603A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016201024A1 (en) * 2016-01-25 2017-07-27 Schwartz Gmbh Heat treatment process and heat treatment device
DE102017115755A1 (en) * 2017-07-13 2019-01-17 Schwartz Gmbh Method and device for heat treatment of a metallic component
CN110819786A (en) * 2019-11-20 2020-02-21 宿州市祁南工贸有限责任公司 Machining process suitable for sun wheel bearing of large speed reducer
EP3868901B1 (en) 2020-02-21 2022-09-21 C.R.F. Società Consortile per Azioni Method for moulding a sheet into a component of complex shape having areas with different mechanical properties, particularly a motor-vehicle component, and kiln for heating a sheet prior to a forming step.
DE102020116593A1 (en) 2020-06-24 2021-12-30 AICHELIN Holding GmbH Heat treatment plant and process for the production of molded components
DE202022100505U1 (en) 2022-01-28 2022-02-03 Schwartz Gmbh heat treatment device
DE102022130152A1 (en) * 2022-11-15 2024-05-16 Schwartz Gmbh Thermal treatment of a metallic component
DE102022130153A1 (en) * 2022-11-15 2024-05-16 Schwartz Gmbh Thermal treatment of a metallic component
DE102022130154A1 (en) * 2022-11-15 2024-05-16 Schwartz Gmbh Thermal treatment of a metallic component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010049205B4 (en) * 2010-10-13 2012-04-26 Elisabeth Braun Hot forming line and method for hot forming sheet metal
DE102013010946B3 (en) * 2013-06-28 2014-12-31 Daimler Ag Method and plant for producing a press-hardened sheet steel component

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021492B3 (en) * 2008-04-29 2009-07-23 Benteler Automobiltechnik Gmbh Producing hardened components made of hardening steel, comprises heating components on racks in continuous furnace, molding and hardening components in thermal molding- and press hardening process and removing components from molding press
DE102008051992B4 (en) * 2008-10-16 2011-03-24 Benteler Automobiltechnik Gmbh Method for producing a workpiece, workpiece and use of a workpiece
JP4795486B2 (en) 2009-06-22 2011-10-19 新日本製鐵株式会社 Steel plate hot press forming method, steel plate hot press forming apparatus, and steel forming member
DE102010048209C5 (en) * 2010-10-15 2016-05-25 Benteler Automobiltechnik Gmbh Method for producing a hot-formed press-hardened metal component
WO2012153008A1 (en) * 2011-05-12 2012-11-15 Arcelormittal Investigación Y Desarrollo Sl Method for the production of very-high-strength martensitic steel and sheet or part thus obtained
CN102212742B (en) * 2011-05-16 2013-08-28 马鸣图 Hot-stamping automobile part with flexibly-distributed intensity and control method thereof
EP2548975A1 (en) * 2011-07-20 2013-01-23 LOI Thermprocess GmbH Method and device for producing a hardened metallic component with at least two areas of different ductility
DE102011057007B4 (en) 2011-12-23 2013-09-26 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component and motor vehicle component
JP5380632B1 (en) * 2012-03-13 2014-01-08 株式会社アステア Method for strengthening steel plate members
DE102012016075B4 (en) * 2012-06-22 2014-02-27 Steinhoff & Braun's Gmbh Method and device for producing a metal component
DE102013008853A1 (en) * 2013-05-23 2014-11-27 Linde Aktiengesellschaft Plant and method for hot forming of blanks
DE102013107870A1 (en) * 2013-07-23 2015-01-29 Benteler Automobiltechnik Gmbh Process for the production of molded components as well as molded component and continuous furnace
CN103498105A (en) 2013-09-26 2014-01-08 宝山钢铁股份有限公司 High-strength seamless steel tube for geological drilling and preparation method thereof
DE102014201259A1 (en) 2014-01-23 2015-07-23 Schwartz Gmbh Heat treatment device
CN104942110A (en) * 2015-07-01 2015-09-30 上海凌云汽车模具有限公司 Method for producing various-strength hot-forming part and lower die base of die
DE102016201024A1 (en) * 2016-01-25 2017-07-27 Schwartz Gmbh Heat treatment process and heat treatment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010049205B4 (en) * 2010-10-13 2012-04-26 Elisabeth Braun Hot forming line and method for hot forming sheet metal
DE102013010946B3 (en) * 2013-06-28 2014-12-31 Daimler Ag Method and plant for producing a press-hardened sheet steel component

Also Published As

Publication number Publication date
JP2019506531A (en) 2019-03-07
CN109072325B (en) 2021-04-02
BR112018015072A2 (en) 2018-12-11
BR112018015072B1 (en) 2022-03-03
PT3408417T (en) 2022-07-04
US11359254B2 (en) 2022-06-14
CN109072325A (en) 2018-12-21
AT15722U1 (en) 2018-04-15
MX2018009036A (en) 2019-01-10
ES2920485T3 (en) 2022-08-04
JP6940509B2 (en) 2021-09-29
HUE059496T2 (en) 2022-11-28
DE202016104191U1 (en) 2017-04-27
US20190032163A1 (en) 2019-01-31
KR20180117111A (en) 2018-10-26
DE102016201024A1 (en) 2017-07-27
EP3408417A1 (en) 2018-12-05
EP3851546A1 (en) 2021-07-21
PL3408417T3 (en) 2022-08-29
CN206204366U (en) 2017-05-31
WO2017129603A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
EP3408417B1 (en) Heat treatment method
EP2497840B2 (en) Oven system for partially heating steel blanks
EP3045551B1 (en) Process for partial heat treatment of a warm formed and press hardened motor vehicle component
EP2143808B1 (en) Partial hot forming and hardening with infrared lamp heating
EP3420111B1 (en) Process for targeted heat treatment of individual component zones
EP2864506B1 (en) Method and device for producing a press-hardened metal component
EP3652352B1 (en) Method and device for the heat treatment of a metal component
DE202010018370U1 (en) Device for producing molded parts with at least two structural areas of different ductility
EP2905346B1 (en) Heat treatment process
EP3160667A1 (en) Method and forming tool for heat-forming, and corresponding work piece
EP2791372A1 (en) Method and device for partially hardening sheet metal components
EP3408420B1 (en) Method of heat treating a metallic component
EP3408416B1 (en) Heat treatment method and heat treatment device
WO2017025460A1 (en) Method for heat treatment of a sheet steel component and heat treatment apparatus therefor
DE102011102167A1 (en) Producing molded component with two structural regions of different ductility which are made of flat or preformed circuit board of hardenable steel, comprises heating circuit board in first region, shaping circuit board and partially curing
WO2018109034A1 (en) Method for producing locally hardened steel sheet components
EP3414350A1 (en) Heat treatment method and heat treatment device
EP3607098B1 (en) Temperature control station for partially thermally treating a metal component
DE202022100505U1 (en) heat treatment device
DE102016118253A1 (en) Process for heat treatment of a metallic component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180817

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200403

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 1/673 20060101ALI20211112BHEP

Ipc: C21D 1/667 20060101ALI20211112BHEP

Ipc: C21D 1/62 20060101ALI20211112BHEP

Ipc: C21D 1/613 20060101ALI20211112BHEP

Ipc: C21D 1/60 20060101ALI20211112BHEP

Ipc: C21D 1/19 20060101ALI20211112BHEP

Ipc: C21D 9/00 20060101ALI20211112BHEP

Ipc: C21D 8/00 20060101AFI20211112BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012960

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1483467

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3408417

Country of ref document: PT

Date of ref document: 20220704

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220627

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2920485

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220804

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220714

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E059496

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012960

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20231221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240123

Year of fee payment: 8

Ref country code: DE

Payment date: 20240119

Year of fee payment: 8

Ref country code: CZ

Payment date: 20240115

Year of fee payment: 8

Ref country code: GB

Payment date: 20240119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240119

Year of fee payment: 8

Ref country code: IT

Payment date: 20240129

Year of fee payment: 8

Ref country code: FR

Payment date: 20240122

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413