EP3607098A1 - Temperature control station for partially thermally treating a metal component - Google Patents

Temperature control station for partially thermally treating a metal component

Info

Publication number
EP3607098A1
EP3607098A1 EP18726327.2A EP18726327A EP3607098A1 EP 3607098 A1 EP3607098 A1 EP 3607098A1 EP 18726327 A EP18726327 A EP 18726327A EP 3607098 A1 EP3607098 A1 EP 3607098A1
Authority
EP
European Patent Office
Prior art keywords
nozzle
component
temperature control
control station
towards
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18726327.2A
Other languages
German (de)
French (fr)
Other versions
EP3607098B1 (en
Inventor
Andreas Reinartz
Jörg Winkel
Frank WILDEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwartz GmbH
Original Assignee
Schwartz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwartz GmbH filed Critical Schwartz GmbH
Priority to PL18726327T priority Critical patent/PL3607098T3/en
Publication of EP3607098A1 publication Critical patent/EP3607098A1/en
Application granted granted Critical
Publication of EP3607098B1 publication Critical patent/EP3607098B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the invention relates to a tempering for partial heat treatment of a metallic component, a device for heat treatment of a metallic component and a use of at least one Tangentialdüse in a tempering, for partial heat treatment of a metallic component.
  • the invention can in particular be used in connection with a press-hardening line in which a continuous-flow furnace, in particular roller hearth furnace, is followed by a press-hardening tool.
  • A- and B-pillars side impact protection in doors, sills, frame parts, bumper, cross member for floor and roof, front and rear side members to provide that have different strengths in sub-areas, so that the body part can fulfill partially different functions.
  • the center area of a B pillar of a vehicle should have high strength to protect the occupants in the event of a side impact.
  • the upper and lower end regions of the B-pillar should have a comparatively low strength in order to be able to absorb deformation energy during a side impact and, secondly, during the assembly of the B-pillar to allow easy connectivity with other body parts.
  • the hardened component it is necessary for the hardened component to have different strength properties in the subregions.
  • one or more tempering station (s) between the furnace and the press hardening tool.
  • the tempering station is provided and set up to set different temperatures in the subregions of the component, which is initially heated uniformly, so that different strength properties in the subregions occur during the subsequent press hardening.
  • Optimal cycle times which play an important role, in particular in the vehicle industry, can be achieved in this case, in particular, if the components of oven, tempering station and press hardening tool are arranged one behind the other.
  • one or more specific subareas of the component which are to have a higher ductility or lower strength than other, hardened subregions of the component in the hardened component are cooled in a targeted manner, in particular while the others, to be hardened portions of the component are kept at a high temperature.
  • air is blown at high speed through nozzles onto the one or the corresponding subregions of the component in order to cool the one or more specific subregions of lesser strength.
  • partitions are regularly used, which are also referred to as bulkhead walls, which are arranged next to the nozzles in the temperature control and which are provided and set up for the (thermal) delimitation of the respective sections of different strength.
  • the partitions may possibly even touch the component, however, a gap which is as small as possible to be kept between the lower end of the respective partition wall and the component is regularly provided.
  • the gap between the partition wall and the component is not small enough to reliably prevent possible leakage of cold air to the hotter and hot part of the component to be held. This leads to an unwanted blurring in the transition region, through which the transition region is usually larger than necessary or wanted. It can also be added that unwanted gap enlargement occurs, for example, due to distortions of the hot component or insufficiently precise positioning of the component.
  • the automotive industry is placing a great deal of value on the smallest possible transitional ranges so that the subsequent crash behavior in the previous design, in particular in the preceding simulation of the crash behavior, is better reflected. Therefore, there is an increasing desire to be able to adjust the transition areas possible exactly and small, which is particularly difficult due to the leakage currents occurring in previous tempering between the partition and the component.
  • a tempering station and a device for heat treatment of a metallic component are to be specified, which it allow a transition region between different heat-treated portions of the component as reliable and / or accurate, in particular as small as possible.
  • the temperature control station and the device should in particular allow that a contact of the component with a partition wall for (thermal) delimitation of the differently tempered portions of the component is no longer required.
  • a tempering station for the partial heat treatment of a metallic component has at least one (horizontal) processing plane arranged in the tempering station, in which the component can be arranged, and at least one nozzle which is aligned towards the processing plane and for discharging a fluid flow for cooling at least a first portion the component is provided and set up.
  • the at least one nozzle is a tangential nozzle.
  • the tangential nozzle is distinguished, in particular, in that it generates and / or discharges fluid flow at at least one nozzle outlet, which has at least one directional component or a streamline which is aligned substantially tangentially and / or parallel to the processing plane and / or a surface of the component ,
  • the tangential nozzle preferably generates a horizontal flow downstream of its nozzle outlet.
  • a plane in which a nozzle outlet cross-section or an opening of a nozzle outlet of the tangential nozzle is at an angle of 0 ° to 135 ° [degrees], preferably from 0 ° to 75 ° and in particular 20 ° to 75 ° with the (horizontal) working plane ,
  • the tangential nozzle contributes to directing the air duct so that an air pulse in the direction of a second partial area of the component is prevented at the nozzle exit. It is particularly preferred if a nozzle outlet or a nozzle outlet opening of the tangential nozzle faces or is directed toward the first subregion of the component and / or away from a second subregion of the component.
  • the solution presented here advantageously makes it possible to provide a kind of "aerodynamic seal" in the direction of the second subregion of the component .This contributes to substantially no leakage of the fluid flow up to the second subregion of the component which, during the cooling of the component For the purpose of hardening the second partial region, it is desirable if the first partial region in the tempering station is to change its high component temperature to very sharply delimited transition regions
  • the size, in particular width, of the transitional area is mainly (only) determined by the physically unavoidable heat conduction in the component For example, soft outer flanges on hard components easy to produce.
  • the metallic component (to be treated by means of the tempering station) is preferably a metallic blank, a steel sheet or an at least partially preformed semi-finished product.
  • the metallic component is preferably with or from a (hardenable) steel, for example, a boron-manganese) steel, z. B. with the name 22MnB5 formed. More preferably, the metallic component is at least for the most part provided with a (metallic) coating or precoated.
  • the metallic coating may be, for example, a (predominantly) zinc-containing coating or a (primarily) aluminum and / or silicon-containing coating, in particular a so-called aluminum / silicon (Al / Si) coating.
  • the metallic component (alternatively) may also be formed with or made from aluminum or with or from an aluminum alloy.
  • the tempering station is preferably arranged downstream of a first furnace and / or upstream of a second furnace.
  • a machining plane is arranged, in which the component can be arranged or arranged.
  • the working plane designates in particular the plane into which the component can be moved for treatment in the tempering station and / or in which the component is arranged and / or fixable in the tempering station during the treatment.
  • the working plane is aligned substantially horizontally.
  • the tempering station has at least one nozzle. The nozzle is aligned towards the working plane.
  • the nozzle for discharging a fluid flow for cooling at least a first portion of the component is provided and arranged, in particular so that a temperature difference between the at least one first (in the finished treated component ductile) portion and at least one second (in the finished treated component in Compared to harder) part of the component is adjustable.
  • a plurality of nozzles is provided, wherein the nozzles are particularly preferably arranged to a nozzle array. If a plurality of nozzles is provided, at least one of the nozzles is a tangential nozzle.
  • the fluid stream is preferably formed with a cooling fluid.
  • the cooling fluid may be formed with a gas, such as nitrogen or with a gas mixture, in particular air.
  • the cooling fluid may be formed with a gas-liquid mixture, such as an air-water mixture.
  • the tempering station may have one or more additional nozzles, which have a different, in particular structurally simpler, nozzle geometry.
  • at least one further nozzle may be provided, which has or forms, in particular surrounds, at least one nozzle channel extending essentially perpendicular to the working plane.
  • the further nozzle is preferably arranged next to the (tangential) nozzle in the tempering station, but in particular not between the (tangential) nozzle and a partition wall.
  • the additional nozzle and the (tangential) nozzle can be kept at the same height within the tempering station and / or above the working plane.
  • the at least one further nozzle is formed in the manner of a shower. In other words, this means, in particular, that the at least one further nozzle has a multiplicity of outlet openings on an underside pointing toward the working plane.
  • a combination of (tangential) nozzles and other nozzles, each formed in the manner of a shower is advantageous especially advantageous if the (tangential) nozzles in the region of a dividing wall and the further nozzles (in comparison thereto) are arranged more towards the center of the first partial region of the component to be cooled.
  • the vertical flow can be provided in a particularly advantageous manner, that in addition to the at least one (tangential) nozzle one or more further nozzles are provided, which are each formed in the manner of a shower.
  • a nozzle geometry of the at least one nozzle is designed so that at least one (within the nozzle) flowing in the direction of a second portion of the component component of the fluid flow is deflected towards the first portion of the component.
  • the component of the fluid flow within the nozzle and / or immediately upstream of a nozzle outlet opening is deflected towards the first portion.
  • the nozzle geometry of the at least one nozzle is designed such that at least one component of the fluid flow first flows through the nozzle in a direction towards a second partial region of the component and then is deflected towards the first partial region.
  • the fluid flow is deflected from a deflection region of the nozzle toward the first partial region, wherein the deflection region is arranged regularly (directly) upstream of a nozzle outlet and / or a nozzle outlet opening.
  • the nozzle geometry of the at least one nozzle is designed such that the (total current flowing through the respective nozzle) fluid flow first flows through the nozzle in one direction to a second portion of the component and then to the first portion is diverted. (Immediately) after the deflection of the fluid flow toward the first subregion, the fluid flow can leave the at least one nozzle essentially tangentially and / or parallel to the processing plane and / or a surface of the first subregion of the component.
  • the nozzle geometry of the at least one nozzle is preferably designed so that at least one component of the fluid flow, at least one (central) streamline of the fluid stream or even the entire fluid stream flowing through the respective nozzle flows through the nozzle (initially) in a first direction, then is deflected and the nozzle then flows through in a second direction.
  • the first direction predominantly
  • the second direction predominantly
  • the fluid flow thus regularly or first passes through a nozzle inlet section or nozzle inlet channel running essentially perpendicular to the processing plane on its way through the nozzle, is then directed radially outward, then deflected so that it is radially inward in the region of a nozzle outlet or toward the nozzle outlet is directed.
  • the at least one nozzle has a deflection region.
  • the deflection region is particularly preferably at least partially bent or curved executed.
  • the deflection region can be arranged immediately upstream of a nozzle outlet.
  • a nozzle outlet of the at least one nozzle is designed, aligned and / or arranged relative to a deflection region of the nozzle such that a (each) flow impulse in the direction of a second partial region of the component is prevented at the nozzle outlet.
  • the nozzle outlet is arranged downstream and / or after a curvature of the nozzle geometry, a curvature section of the nozzle and / or a deflection region of the nozzle.
  • a concave inner side of the curvature, of the curvature section or of the deflection region points towards the first subregion of the component.
  • a convex outer side of the curvature, of the curvature section or of the deflection region preferably points towards a second subregion of the component.
  • the nozzle outlet is aligned (directly) toward the first subarea and / or in the direction of the first subarea.
  • the at least one nozzle is preferably arranged adjacent to and / or (directly) in the region of a dividing wall, which delimits the first partial area from a second partial area of the component (thermally).
  • the dividing wall may be a part of the tempering station and / or (in any case) above the component.
  • the at least one nozzle has a cranked design.
  • the at least one nozzle is cranked in such a way that a nozzle exit of the at least one nozzle has a smaller (horizontal) distance to the dividing wall than a nozzle inlet of the at least one nozzle.
  • the cranked design can be achieved in particular that the nozzle outlet is very close to or even at least partially below the partition and thus very close to the transition region to be created can be arranged, nevertheless sufficient remaining space between the nozzle inlet and the partition for a wall mounted on the partition thermal insulation.
  • the at least one nozzle has a deflection region which extends towards and / or at least partially below a dividing wall which delimits the first partial region from a second partial region of the component.
  • the dividing wall is preferably a part of the tempering station and arranged regularly (in any case) above the component.
  • a convex outer side of the deflection region is directed toward the dividing wall and / or towards a second partial region of the component.
  • the at least one nozzle in particular a deflection region of the at least one nozzle, is designed such that the fluid flow is at a side facing towards the working plane and / or at an area pointing towards a second partial region of the component the nozzle generates a negative pressure area.
  • the negative pressure area here is an area with a reduced pressure compared to the ambient pressure.
  • a flow impulse in the direction of the first partial region of the component is adjusted or set by the geometry of the deflection region in such a way that a (lighter) negative pressure is created on the underside of the nozzle. Due to the resulting ejector effect even a little warm air from the hot zone of the tempering, d. H.
  • a distance between the working plane and the at least one nozzle can be adjusted in this way or is set that the at least one nozzle does not contact the component.
  • the distance is in the range of 0.01 mm to 6 mm [millimeter], more preferably in the range of 0.5 mm to 5 mm or even in the range of 1 mm to 3.5 mm.
  • the nozzle geometry and / or an outer contour of the nozzle is designed such that the above-described negative pressure area itself or in particular arises when the nozzle does not contact the component.
  • the solution presented here can be made very fault-tolerant with respect to positioning errors and / or temperature-related or intrinsic stress-related geometric errors of the component.
  • the at least one nozzle in the tempering station is movable, in particular held displaceable or stored.
  • the exact position of the transition region in the horizontal direction can be easily readjusted in an advantageous manner.
  • At least one heat source is arranged in the tempering station, which is held (thermally) separated from the at least one nozzle in the tempering station.
  • the heat source and the nozzle by means of a partition wall from each other (thermally) separated and / or shielded.
  • the at least one heat source is preferably at least one radiant heat source.
  • the heat source is preferably an actively operable, in particular electrically operable or energizable heat source.
  • the heat source is formed with an electrically operated (the component not physically or electrically contacting) heating element.
  • the heating element may be a heating loop, a full ceramic heating element and / or a heating wire.
  • the heat source and the nozzle are held in a nozzle box arranged in the tempering station, wherein the nozzle box has at least one partition wall between the heat source and the nozzle. It is particularly preferred if a nozzle outlet or a nozzle outlet opening of the tangential nozzle points away from the heat source or is directed.
  • a device for (partial) heat treatment of a metallic component which comprises at least:
  • the device further comprises at least
  • one of the tempering station downstream in particular by means of radiant heat and / or convection heated second oven, and / or a tempering station and / or the second furnace downstream press hardening tool.
  • the press-hardening tool is in particular provided and arranged to simultaneously or at least partially reshape the component and to quench it (at least partially).
  • the press hardening tool may be part of a press or formed by a press.
  • the first furnace, the tempering station, the second furnace and the press-hardening tool (in the stated order) are arranged, in particular, directly one behind the other.
  • one may optionally be provided by means of at least one Handling device to be bridged distance to be provided, which is preferably at least 0.5 m [meters].
  • the first furnace or the second furnace is a continuous furnace or a chamber furnace.
  • the first furnace is a continuous furnace, in particular a roller hearth furnace.
  • the second furnace is particularly preferably a continuous furnace, in particular a roller hearth furnace, or a chamber furnace, in particular a multilayer furnace with at least two chambers arranged one above the other.
  • the second furnace in particular (exclusively) by means of radiant heat heated, furnace interior, in which preferably a (nearly) uniform internal temperature is adjustable or adjusted.
  • a plurality of such furnace interior spaces may be present, corresponding to the number of chambers.
  • Radiation heat sources are preferably arranged in the first furnace and / or in the second furnace (exclusively).
  • at least one electrically operated (the component non-contacting) heating element such as at least one electrically operated heating loop, a full ceramic heating element and / or arranged at least one electrically operated heating wire
  • at least one in particular gas-heated jet pipe can be arranged in the furnace interior of the first furnace and / or the furnace interior of the second furnace.
  • a plurality of jet tube gas burners or jet tubes are arranged in the furnace interior of the first furnace and / or the furnace interior of the second furnace, in each of which at least one gas burner burns. It is particularly advantageous if the inner region of the steel tubes into which burn the gas burners, is separated from the atmosphere inside the furnace, so that no combustion gases or exhaust gases in enter the furnace interior and thus can influence the furnace atmosphere. Such an arrangement is also referred to as "indirect gas heating.”
  • the details, features, and advantageous embodiments discussed in connection with the temperature control stations can also occur accordingly in the device presented here, and vice versa In this respect, reference is made in full to the statements there for a more detailed characterization of the features taken.
  • a use of at least one tangential nozzle in a tempering station, for partial heat treatment of a metallic component, in particular for partial cooling of a first portion of the component is proposed.
  • the tangential nozzle is used to discharge a substantially horizontally oriented airflow flowing along a surface of a first portion of the component to the first portion for (compared to a second portion) lower strengths in the finished heat-treated (ie press-hardened) component cool.
  • the tangential nozzle can be aligned in such a way that the air flow flows from an edge (to be set) or a contour of the first partial area and / or from a dividing wall to a center of the first partial area.
  • Fig. 1 a schematic representation of an inventive
  • Fig. 2 a schematic representation of an inventive
  • FIG. 1 shows a schematic representation of a tempering station 1 for the partial heat treatment of a metallic component 2.
  • a processing level 3 is arranged, in which the component 2 is located.
  • a nozzle 4 is arranged here in the tempering station 1, for example, which is aligned towards the working plane 3 and provided for discharging a fluid flow 5 (shown in dashed lines in FIG. 1) for cooling a first subregion 6 of the component 2.
  • FIG. 1 illustrates that the nozzle 4 is a tangential nozzle 13.
  • the nozzle 4 is a tangential nozzle 13.
  • This is characterized in that it generates a fluid flow 5 at a nozzle outlet 9 of the nozzle 4, which is aligned substantially tangentially or parallel to a surface of the component 2, here to a surface of the first portion 6 of the component 2.
  • This orientation is illustrated by the arrow at the end of the fluid flow 5 shown in dashed lines.
  • a nozzle geometry 8 (shown in section in FIG. 1) of the nozzle 4 is designed such that at least one component of the fluid stream 5 flowing in the direction of a second subregion 7 of the component 2 is deflected towards the first subregion 6.
  • the nozzle geometry is even designed such that the entire fluid stream 5 flowing through the nozzle 4 flows through the nozzle 4 in one direction towards a second subregion 7 of the component 2 and then towards the first subregion 6 of the component 2 Part 2 is deflected.
  • the nozzle 4 in FIG. 1 has a deflection region 10. Downstream of the deflecting region 10 is a nozzle outlet 9 of the nozzle 4.
  • the nozzle outlet 9 is designed approximately aligned and arranged relative to the deflecting region 10 that a flow impulse in the direction of the second portion 7 of the component 2 is prevented at the nozzle outlet 9.
  • the deflection region 10 of the nozzle 4 extends towards and at least partially below a partition wall 11, which delimits the first portion 6 of the component 2 of the second portion 7 of the component 2 (thermal).
  • the partition wall 11 is here formed by way of example as part of a nozzle box 19, in which a heat source 20 (thermally) is kept separate or isolated from the nozzle 4.
  • the partition wall 11 helps to foreclose (thermally) the nozzle 4 and the first portion 6 of the component 2 from the heat source 20, and thus the first portion 6 of the component 2, which is cooled by means of the nozzle 4 of the second portion 7 of the component 2, which is heated by means of the heat source 20 (thermal) to delimit, so that in the subregions 6, 7 different component temperatures can be set, which lead to mutually different structure and / or strength properties in the sub-areas 6, 7 of the component.
  • nozzle 4 is designed in Fig. 1 so that the fluid flow 5 at a direction to the working plane 3 facing side of Nozzle 4 and on a side facing to a second portion 7 of the component 2 region of the nozzle 4, a negative pressure area 12 is generated.
  • a distance between the working plane 3 and the nozzle 4 is set such that the nozzle 4 does not contact the component 2.
  • the tempering station 1 In addition to the nozzle 4, which is designed as tangential nozzle 13, the tempering station 1 here has a further nozzle 18.
  • the further nozzle 18 is exemplified in the manner of a shower and held next to the Tangentialdüse 13 in the tempering 1.
  • FIG. 2 shows a schematic illustration of a device 14 according to the invention for heat treatment of a metallic component 2.
  • the device 14 has a heatable first furnace 15, a temperature control station 1 (directly) downstream of the first furnace 15, a heatable (directly) downstream of the temperature control station 1 second oven 16 and a second oven 16 (directly) downstream press hardening tool 17.
  • the device 14 here represents a hot forming line for (partial) press hardening.
  • the press hardening tool 17 is part of a press or formed by a press.
  • a tempering station and a device for heat treatment of a metallic component are specified which at least partially solve the problems described with reference to the prior art.
  • the tempering station and the device allow a transition region between differently heat-treated subregions of the component to be set as reliably and / or precisely as possible, in particular as small as possible.
  • the tempering station and the device allow in particular that a contact of the component with a partition wall for (thermal) delimitation of the differently tempered portions of the component is no longer required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

The invention relates to a temperature control station for partially thermally treating a metal component, a device for thermally treating a metal component and a use of at least one tangential nozzle in a temperature control station for partially thermally treating a metal component. The temperature control station (1) for partially thermally treating a metal component (2) has a processing plane (3) arranged in the temperature control station (1), in which processing plane the component (2) can be arranged, and at least one nozzle (4), which is directed towards the processing plane (3) and is provided and configured to dispense a fluid flow (5) for cooling at least a first portion (6) of the component (2). The at least one nozzle (4) is a tangential nozzle (13). The temperature control station and the device make it possible, in particular, to set a transition region between portions of the component that have been subjected to different thermal treatments as reliably and/or precisely as possible, particularly to be as small as possible.

Description

Temperierstation zur partiellen Wärmebehandlung eines metallischen Bauteils  Temperature control station for the partial heat treatment of a metallic component
Die Erfindung betrifft eine Temperierstation zur partiellen Wärmebehandlung eines metallischen Bauteils, eine Vorrichtung zur Wärmebehandlung eines metallischen Bauteils sowie eine Verwendung mindestens einer Tangentialdüse in einer Temperierstation, zum partiellen Wärmebehandeln eines metallischen Bauteils. Die Erfindung kann insbesondere im Zusammenhang mit einer Presshärtelinien zur Anwendung kommen, in der einem Durchlaufofen, insbesondere Rollenherdofen, ein Presshärtewerkzeug nachgeordnet ist. The invention relates to a tempering for partial heat treatment of a metallic component, a device for heat treatment of a metallic component and a use of at least one Tangentialdüse in a tempering, for partial heat treatment of a metallic component. The invention can in particular be used in connection with a press-hardening line in which a continuous-flow furnace, in particular roller hearth furnace, is followed by a press-hardening tool.
Zur Herstellung sicherheitsrelevanter Fahrzeug-Karosseriebauteile aus Stahlblech ist es regelmäßig erforderlich das Stahlblech während oder nach der Umformung zu dem Karosseriebauteil zu härten. Hierzu hat sich ein Wärmebehandlungsverfahren etabliert, das als „Presshärten" bezeichnet wird. Dabei wird das Stahlblech, das regelmäßig in der Form einer Platine bereitgestellt zunächst in einem Ofen aufgeheizt und anschließend während der Umformung in einer Presse abgekühlt und dadurch gehärtet. For the manufacture of safety-related vehicle body parts made of sheet steel, it is regularly necessary to harden the steel sheet during or after the forming of the body component. For this purpose, a heat treatment process has been established, which is referred to as "press hardening." The steel sheet, which is provided regularly in the form of a circuit board is first heated in an oven and then cooled in a press during forming and thereby cured.
Seit einigen Jahren besteht nun das Bestreben mittels des Presshärtens Karosseriebauteile von Kraftfahrzeugen, wie z. B. A- und B-Säulen, Seitenaufprallschutzträger in Türen, Schweller, Rahmenteile, Stoßstangenfänger, Querträger für Boden und Dach, vordere und hintere Längsträger, bereitzustellen, die in Teilbereichen unterschiedliche Festigkeiten aufweisen, sodass das Karosseriebauteil partiell unterschiedliche Funktionen erfüllen kann. So soll zum Beispiel der mittlere Bereich einer B-Säule eines Fahrzeugs eine hohe Festigkeit aufweisen, um die Insassen im Falle eines Seitenaufpralls zu schützen. Gleichzeitig sollen der obere und untere Endbereich der B-Säule eine vergleichsweise geringe Festigkeit aufweisen, um zum einen Verformungsenergie während eines Seitenaufpralls aufnehmen zu können und zum anderen während der Montage der B-Säule eine einfache Verbindbarkeit mit anderen Karosseriebauteilen zu ermöglichen. For some years now there is a desire by means of press hardening body components of motor vehicles, such. B. A- and B-pillars, side impact protection in doors, sills, frame parts, bumper, cross member for floor and roof, front and rear side members to provide that have different strengths in sub-areas, so that the body part can fulfill partially different functions. For example, the center area of a B pillar of a vehicle should have high strength to protect the occupants in the event of a side impact. At the same time, the upper and lower end regions of the B-pillar should have a comparatively low strength in order to be able to absorb deformation energy during a side impact and, secondly, during the assembly of the B-pillar to allow easy connectivity with other body parts.
Zur Ausbildung eines solchen partiell gehärteten Karosseriebauteils ist es erforderlich, dass das gehärtete Bauteil in den Teilbereichen unterschiedliche Festigkeitseigenschaften aufweist. Hierzu besteht zum Beispiel die Möglichkeit, eine oder mehrere Temperierstation(en) zwischen dem Ofen und dem Presshärtewerkzeug anzuordnen. Die Temperierstation ist hierbei dazu vorgesehen und eingerichtet, in den Teilbereichen des zunächst uniform aufgeheizten Bauteils unterschiedliche Temperaturen einzustellen, sodass während des anschließenden Presshärtens sich unterschiedliche Festigkeitseigenschaften in den Teilbereichen einstellen. Optimale Taktzeiten, die insbesondere in der Fahrzeugindustrie eine wesentliche Rolle spielen, können hierbei insbesondere dann erreicht werden, wenn die Komponenten Ofen, Temperierstation und Presshärtewerkzeug hintereinander angeordnet sind. To form such a partially hardened body component, it is necessary for the hardened component to have different strength properties in the subregions. For this purpose, for example, it is possible to arrange one or more tempering station (s) between the furnace and the press hardening tool. In this case, the tempering station is provided and set up to set different temperatures in the subregions of the component, which is initially heated uniformly, so that different strength properties in the subregions occur during the subsequent press hardening. Optimal cycle times, which play an important role, in particular in the vehicle industry, can be achieved in this case, in particular, if the components of oven, tempering station and press hardening tool are arranged one behind the other.
Es hat sich als vorteilhaft herausgestellt, wenn in der Temperierstation ein oder mehrere bestimmte Teilbereiche des Bauteils, die in dem gehärteten Bauteil eine höhere Duktilität beziehungsweise geringere Festigkeit als andere, gehärtete Teilbereiche des Bauteils aufweisen sollen, gezielt abgekühlt werden, insbesondere, während die anderen, zu härtenden Teilbereiche des Bauteils auf einer hohen Temperatur gehalten werden. In diesem Zusammenhang hat es sich als besonders vorteilhaft herausgestellt, wenn zur Abkühlung des oder der bestimmten Teilbereiche mit geringerer Festigkeit Luft mit hoher Geschwindigkeit durch Düsen auf den oder die entsprechenden Teilbereiche des Bauteils geblasen wird. It has proven to be advantageous if, in the tempering station, one or more specific subareas of the component which are to have a higher ductility or lower strength than other, hardened subregions of the component in the hardened component are cooled in a targeted manner, in particular while the others, to be hardened portions of the component are kept at a high temperature. In this context, it has been found to be particularly advantageous if air is blown at high speed through nozzles onto the one or the corresponding subregions of the component in order to cool the one or more specific subregions of lesser strength.
Bei einer solchen Luftkühlung ergibt sich jedoch regelmäßig das Problem, dass die sich in dem Bauteil einstellende Grenze zwischen den Teilbereichen unterschiedlicher Festigkeit, die auch als Übergangsbereich bezeichnet wird, nicht klar genug definierbar und/oder exakt genug einstellbar ist. Um eine möglichst exakte Einstellbarkeit des Übergangsbereichs zu erreichen, werden regelmäßig Trennwände, die auch als Schottwände bezeichnet werden, verwendet, die neben den Düsen in der Temperierstation angeordnet sind und die zur (thermischen) Abgrenzung der jeweiligen Teilbereiche unterschiedlicher Festigkeit vorgesehen und eingerichtet sind. Hierzu können die Trennwände das Bauteil gegebenenfalls sogar berühren, regelmäßig ist jedoch ein möglichst klein zu haltender Spalt zwischen dem unteren Ende der jeweiligen Trennwand und dem Bauteil vorzusehen. In the case of such air cooling, however, there is regularly the problem that the boundary which arises in the component between the regions of different strength, which is also referred to as the transition region, does not clearly definable and / or exactly enough adjustable. In order to achieve the most exact adjustability of the transition region, partitions are regularly used, which are also referred to as bulkhead walls, which are arranged next to the nozzles in the temperature control and which are provided and set up for the (thermal) delimitation of the respective sections of different strength. For this purpose, the partitions may possibly even touch the component, however, a gap which is as small as possible to be kept between the lower end of the respective partition wall and the component is regularly provided.
Unter Umständen kommt es vor, dass der Spalt zwischen der Trennwand und dem Bauteil nicht klein genug ist, um eine mögliche Leckage von kalter Luft hin zu dem heißeren und heiß zu haltenden Teilbereich des Bauteils zuverlässig zu verhindern. Dadurch kommt es zu einer ungewollten Unschärfe im Übergangsbereich, durch die der Übergangsbereich in der Regel größer als notwendig oder gewollt wird. Hinzukommen kann, dass es durch beispielsweise Verwerfungen des heißen Bauteils oder nicht ausreichend präzise Positionierung des Bauteils zu ungewollten Spaltvergrößerungen kommt. Die Automobilindustrie legt jedoch vermehrt großen Wert auf möglichst kleine Übergangsbereiche, damit das spätere Crashverhalten in der vorausgehenden Auslegung, insbesondere in der vorausgehenden Simulation des Crashverhaltens besser abzubilden ist. Daher besteht zunehmend das Bestreben, die Übergangsbereiche möglich exakt und klein einstellen zu können, was insbesondere durch die bei bisherigen Temperierstationen auftretenden Leckageströme zwischen der Trennwand und dem Bauteil erschwert wird. It may happen that the gap between the partition wall and the component is not small enough to reliably prevent possible leakage of cold air to the hotter and hot part of the component to be held. This leads to an unwanted blurring in the transition region, through which the transition region is usually larger than necessary or wanted. It can also be added that unwanted gap enlargement occurs, for example, due to distortions of the hot component or insufficiently precise positioning of the component. However, the automotive industry is placing a great deal of value on the smallest possible transitional ranges so that the subsequent crash behavior in the previous design, in particular in the preceding simulation of the crash behavior, is better reflected. Therefore, there is an increasing desire to be able to adjust the transition areas possible exactly and small, which is particularly difficult due to the leakage currents occurring in previous tempering between the partition and the component.
Hiervon ausgehend ist es Aufgabe der vorliegenden Erfindung, die mit Bezug auf den Stand der Technik geschilderten Probleme zumindest teilweise zu lösen. Insbesondere sollen eine Temperierstation und eine Vorrichtung zur Wärmebehandlung eines metallischen Bauteils angegeben werden, die es erlauben, einen Übergangsbereich zwischen unterschiedlich wärmebehandelten Teilbereichen des Bauteils möglichst zuverlässig und/oder exakt, insbesondere möglichst klein einzustellen. Darüber hinaus sollen die Temperierstation und die Vorrichtung insbesondere erlauben, dass eine Berührung des Bauteils mit einer Trennwand zur (thermischen) Abgrenzung der unterschiedlich temperierten Teilbereiche des Bauteils nicht mehr erforderlich ist. On this basis, it is an object of the present invention, at least partially solve the problems described with reference to the prior art. In particular, a tempering station and a device for heat treatment of a metallic component are to be specified, which it allow a transition region between different heat-treated portions of the component as reliable and / or accurate, in particular as small as possible. In addition, the temperature control station and the device should in particular allow that a contact of the component with a partition wall for (thermal) delimitation of the differently tempered portions of the component is no longer required.
Diese Aufgaben werden gelöst durch die Merkmale der unabhängigen Patentansprüche. Weitere vorteilhafte Ausgestaltungen der hier vorgeschlagenen Lösung sind in den abhängigen Patentansprüchen angegeben. Es ist darauf hinzuweisen, dass die in den abhängigen Patentansprüchen einzeln aufgeführten Merkmale in beliebiger, technologisch sinnvoller, Weise miteinander kombiniert werden können und weitere Ausgestaltungen der Erfindung definieren. Darüber hinaus werden die in den Patentansprüchen angegebenen Merkmale in der Beschreibung näher präzisiert und erläutert, wobei weitere bevorzugte Ausgestaltungen der Erfindung dargestellt werden. These objects are achieved by the features of the independent claims. Further advantageous embodiments of the solution proposed here are specified in the dependent claims. It should be noted that the features listed individually in the dependent claims can be combined with each other in any technologically meaningful manner and define further embodiments of the invention. In addition, the features specified in the claims are specified and explained in more detail in the description, wherein further preferred embodiments of the invention are shown.
Eine erfindungsgemäße Temperierstation zur partiellen Wärmebehandlung eines metallischen Bauteils weist zumindest eine in der Temperierstation angeordnete (horizontale) Bearbeitungsebene, in der das Bauteil anordenbar ist sowie mindestens eine Düse auf, die hin zu der Bearbeitungsebene ausgerichtet und zum Austragen eines Fluidstroms zum Kühlen mindestens eines ersten Teilbereichs des Bauteils vorgesehen und eingerichtet ist. Dabei ist die mindestens eine Düse eine Tangentialdüse. A tempering station according to the invention for the partial heat treatment of a metallic component has at least one (horizontal) processing plane arranged in the tempering station, in which the component can be arranged, and at least one nozzle which is aligned towards the processing plane and for discharging a fluid flow for cooling at least a first portion the component is provided and set up. The at least one nozzle is a tangential nozzle.
Die Tangentialdüse zeichnet insbesondere dadurch aus, dass sie an mindestens einem Düsenaustritt eine Fluidströmung erzeugt und/oder austrägt, die zumindest eine Richtungskomponente oder eine Stromlinie aufweist, die im Wesentlichen tangential und/oder parallel zu der Bearbeitungsebene und/oder einer Oberfläche des Bauteils ausgerichtet ist. Die Begriffe„im Wesentlichen tangential" und„im Wesentlichen parallel" umfassen hierbei insbesondere Abweichungen von der Idealform („tangential" beziehungsweise „parallel") im Bereich von - 10° bis + 20° [Grad], bevorzugt 0° bis 20°. Bevorzugt erzeugt die Tangentialdüse stromab ihres Düsenaustritts eine Horizontalströmung. The tangential nozzle is distinguished, in particular, in that it generates and / or discharges fluid flow at at least one nozzle outlet, which has at least one directional component or a streamline which is aligned substantially tangentially and / or parallel to the processing plane and / or a surface of the component , The terms "substantially tangential" and "im In this case, deviations from the ideal shape ("tangential" or "parallel") in the range from -10 ° to + 20 ° [degrees], preferably 0 ° to 20 °, comprise in particular "parallel." The tangential nozzle preferably generates a horizontal flow downstream of its nozzle outlet.
Hierzu kann eine Ebene, in der ein Düsenaustrittsquerschnitt beziehungsweise eine Öffnung eines Düsenaustritts der Tangentialdüse liegt einen Winkel von 0° bis 135° [Grad], vorzugsweise von 0° bis 75° und insbesondere 20° bis 75° mit der (horizontalen) Bearbeitungsebene einschließen. Die Tangentialdüse trägt insbesondere dazu bei, die Luftführung so zu lenken, dass am Düsenaustritt ein Luftimpuls in Richtung eines zweiten Teilbereichs des Bauteils unterbunden wird. Besonders bevorzugt ist es, wenn ein Düsenaustritt beziehungsweise eine Düsenaustrittsöffnung der Tangentialdüse zu dem ersten Teilbereich des Bauteils hin und/oder von einem zweiten Teilbereich des Bauteils weg weist oder gerichtet ist. For this purpose, a plane in which a nozzle outlet cross-section or an opening of a nozzle outlet of the tangential nozzle is at an angle of 0 ° to 135 ° [degrees], preferably from 0 ° to 75 ° and in particular 20 ° to 75 ° with the (horizontal) working plane , In particular, the tangential nozzle contributes to directing the air duct so that an air pulse in the direction of a second partial area of the component is prevented at the nozzle exit. It is particularly preferred if a nozzle outlet or a nozzle outlet opening of the tangential nozzle faces or is directed toward the first subregion of the component and / or away from a second subregion of the component.
Die hier vorgestellte Lösung erlaubt in vorteilhafter Weise eine Art „aerodynamische Abdichtung" in Richtung des zweiten Teilbereichs des Bauteils bereitzustellen. Dies trägt dazu bei, dass im Wesentlichen keine Leckage des Fluidstroms bis hin zu dem zweiten Teilbereich des Bauteils gelangt, der während des Kühlens des ersten Teilbereichs in der Temperierstation seine hohe Bauteiltemperatur zwecks Härtung des zweiten Teilbereichs möglichst nicht oder nur sehr wenig ändern soll. So lassen sich in vorteilhafter Weise sehr scharf abgegrenzte Übergangsbereiche darstellen. Insbesondere liegt ein mittels der hier vorgestellten Lösung erzielbarer Übergangsbereich etwa im Bereich von 1 mm bis 60 mm [Millimeter]. Bei einer vorteilhaften Anwendung der hier vorgestellten Lösung wird die Größe, insbesondere Breite des Übergangsbereichs hauptsächlich (nur noch) durch die physikalisch unvermeidbare Wärmeleitung im Bauteil bestimmt. Mit der hier vorgestellten Lösung lassen sich beispielsweise weiche Außenflansche an harten Bauteilen einfach herstellen. Bei dem (mittels der Temperierstation zu behandelnden) metallischen Bauteil handelt es sich vorzugsweise um eine metallische Platine, ein Stahlblech oder ein zumindest teilweise vorgeformtes Halbzeug. Das metallische Bauteil ist bevorzugt mit beziehungsweise aus einem (härtbaren) Stahl, beispielweise einem Bor- Mangan-) Stahl, z. B. mit der Bezeichnung 22MnB5, gebildet. Weiter bevorzugt ist das metallische Bauteil zumindest zu einem Großteil mit einer (metallischen) Beschichtung versehen beziehungsweise vorbeschichtet. Bei der metallischen Beschichtung kann es sich beispielsweise um eine (vorrangig) Zink enthaltende Beschichtung oder eine (vorrangig) Aluminium und/oder Silizium enthaltende Beschichtung, insbesondere eine sogenannte Aluminium/Silizium(Al/Si)- Beschichtung handeln. Jedoch kann das metallische Bauteil (alternativ) auch mit beziehungsweise aus Aluminium oder mit oder aus einer Aluminiumlegierung gebildet sein. The solution presented here advantageously makes it possible to provide a kind of "aerodynamic seal" in the direction of the second subregion of the component .This contributes to substantially no leakage of the fluid flow up to the second subregion of the component which, during the cooling of the component For the purpose of hardening the second partial region, it is desirable if the first partial region in the tempering station is to change its high component temperature to very sharply delimited transition regions In an advantageous application of the solution presented here, the size, in particular width, of the transitional area is mainly (only) determined by the physically unavoidable heat conduction in the component For example, soft outer flanges on hard components easy to produce. The metallic component (to be treated by means of the tempering station) is preferably a metallic blank, a steel sheet or an at least partially preformed semi-finished product. The metallic component is preferably with or from a (hardenable) steel, for example, a boron-manganese) steel, z. B. with the name 22MnB5 formed. More preferably, the metallic component is at least for the most part provided with a (metallic) coating or precoated. The metallic coating may be, for example, a (predominantly) zinc-containing coating or a (primarily) aluminum and / or silicon-containing coating, in particular a so-called aluminum / silicon (Al / Si) coating. However, the metallic component (alternatively) may also be formed with or made from aluminum or with or from an aluminum alloy.
Die Temperierstation ist bevorzugt einem ersten Ofen nachgeordnet und/oder einem zweiten Ofen vorgeordnet. In der Temperierstation ist eine Bearbeitungsebene angeordnet, in der das Bauteil anordenbar beziehungsweise angeordnet ist. Die Bearbeitungsebene bezeichnet hierbei insbesondere die Ebene, in die das Bauteil zur Behandlung in der Temperierstation verbringbar und/oder in der das Bauteil während der Behandlung in der Temperierstation angeordnet und/oder fixierbar ist. Bevorzugt ist die Bearbeitungsebene im Wesentlichen horizontal ausgerichtet. Die Temperierstation weist mindestens eine Düse auf. Die Düse ist hin zu der Bearbeitungsebene ausgerichtet. Zudem ist die Düse zum Austragen eines Fluidstroms zum Kühlen mindestens eines ersten Teilbereichs des Bauteils vorgesehen und eingerichtet, insbesondere so, dass eine Temperaturdifferenz zwischen dem mindestens einen ersten (im fertig behandelten Bauteil duktileren) Teilbereich und mindestens einem zweiten (im fertig behandelten Bauteil im Vergleich dazu härteren) Teilbereich des Bauteils einstellbar ist. Bevorzugt ist eine Vielzahl von Düsen vorgesehen, wobei die Düsen besonders bevorzugt zu einem Düsenfeld angeordnet sind. Wenn eine Vielzahl von Düsen vorgesehen ist, ist mindestens eine der Düsen eine Tangentialdüse. The tempering station is preferably arranged downstream of a first furnace and / or upstream of a second furnace. In the tempering a machining plane is arranged, in which the component can be arranged or arranged. In this case, the working plane designates in particular the plane into which the component can be moved for treatment in the tempering station and / or in which the component is arranged and / or fixable in the tempering station during the treatment. Preferably, the working plane is aligned substantially horizontally. The tempering station has at least one nozzle. The nozzle is aligned towards the working plane. In addition, the nozzle for discharging a fluid flow for cooling at least a first portion of the component is provided and arranged, in particular so that a temperature difference between the at least one first (in the finished treated component ductile) portion and at least one second (in the finished treated component in Compared to harder) part of the component is adjustable. Preferably, a plurality of nozzles is provided, wherein the nozzles are particularly preferably arranged to a nozzle array. If a plurality of nozzles is provided, at least one of the nozzles is a tangential nozzle.
Der Fluidstrom ist vorzugsweise mit einem Kühlfluid gebildet. Das Kühlfluid kann mit einem Gas, etwa Stickstoff oder mit einem Gasgemisch, insbesondere Luft gebildet sein. Darüber hinaus kann das Kühlfluid mit einem Gas- Flüssigkeits-Gemisch gebildet sein, etwa einem Luft- Wasser-Gemisch. The fluid stream is preferably formed with a cooling fluid. The cooling fluid may be formed with a gas, such as nitrogen or with a gas mixture, in particular air. In addition, the cooling fluid may be formed with a gas-liquid mixture, such as an air-water mixture.
Zusätzlich zu der mindestens einen Düse, welche als Tangentialdüse ausgeführt ist, kann die Temperierstation eine oder mehrere weitere Düsen aufweisen, die eine andere, insbesondere konstruktiv einfachere Düsengeometrie aufweisen. So kann zusätzlich zu der mindestens einen (Tangential-)Düse mindestens eine weitere Düse vorgesehen sein, die mindestens einen im Wesentlichen senkrecht zu der Bearbeitungsebene verlaufenden Düsenkanal aufweist oder bildet, insbesondere umgibt. Die weitere Düse ist vorzugsweise neben der (Tangential-) Düse in der Temperierstation angeordnet, jedoch insbesondere nicht zwischen der (Tangential-)Düse und einer Trennwand. Dabei können die weitere Düse und die (Tangential-)Düse auf derselben Höhe innerhalb der Temperierstation und/oder oberhalb der Bearbeitungsebene gehalten sein. Bevorzugt ist die mindestens eine weitere Düse in der Art einer Brause gebildet. Dies bedeutet mit anderen Worten insbesondere, dass die mindestens eine weitere Düse an einer hin zu der Bearbeitungsebene weisenden Unterseite eine Vielzahl von Auslassöffnungen aufweist. In addition to the at least one nozzle, which is designed as tangential nozzle, the tempering station may have one or more additional nozzles, which have a different, in particular structurally simpler, nozzle geometry. Thus, in addition to the at least one (tangential) nozzle, at least one further nozzle may be provided, which has or forms, in particular surrounds, at least one nozzle channel extending essentially perpendicular to the working plane. The further nozzle is preferably arranged next to the (tangential) nozzle in the tempering station, but in particular not between the (tangential) nozzle and a partition wall. In this case, the additional nozzle and the (tangential) nozzle can be kept at the same height within the tempering station and / or above the working plane. Preferably, the at least one further nozzle is formed in the manner of a shower. In other words, this means, in particular, that the at least one further nozzle has a multiplicity of outlet openings on an underside pointing toward the working plane.
Insbesondere für den Fall, dass großflächige erste Teilbereiche des Bauteils abgekühlt werden sollen, ist eine Kombination von (Tangential-)Düsen und weiteren Düsen, die jeweils in der Art einer Brause gebildet sind (auch als „Brauseköpfe" bezeichnet) vorteilhaft. Hierbei ist es besonders vorteilhaft, wenn die (Tangential-)Düsen im Bereich einer Trennwand und die weiteren Düsen (im Vergleich dazu) eher hin zum Zentrum des zu kühlenden ersten Teilbereichs des Bauteils angeordnet sind. Nimmt die eigenspannungsbedingte Verformung des Bauteils auf großen Flächen derart zu, dass bei reiner Horizontalströmung (aus den Tangentialdüsen) hinter den Erhebungen Totgebiete mit geringerer Strömungsgeschwindigkeit entstehen können, führt das zu stellenweise langsamerer Abkühlung. Deshalb sollten große Flächen (auch) vertikal angeströmt werden. Die vertikale Anströmung kann in besonders vorteilhafter Weise dadurch bereitgestellt werden, dass zusätzlich zu der mindestens einen (Tangential-)Düse eine oder mehrere weitere Düsen vorgesehen sind, die jeweils in der Art einer Brause gebildet sind. In particular, in the event that large-area first portions of the component to be cooled, a combination of (tangential) nozzles and other nozzles, each formed in the manner of a shower (also referred to as "shower heads") is advantageous especially advantageous if the (tangential) nozzles in the region of a dividing wall and the further nozzles (in comparison thereto) are arranged more towards the center of the first partial region of the component to be cooled. If the inherent stress-induced deformation of the component on large surfaces increases in such a way that dead zones with lower flow velocity can arise behind the elevations with pure horizontal flow (from the tangential nozzles), this leads to slower cooling in places. Therefore large surfaces should be (also) flowed vertically. The vertical flow can be provided in a particularly advantageous manner, that in addition to the at least one (tangential) nozzle one or more further nozzles are provided, which are each formed in the manner of a shower.
Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass eine Düsengeometrie der mindestens einen Düse so gestaltet ist, dass zumindest eine (innerhalb der Düse) in Richtung eines zweiten Teilbereichs des Bauteils strömende Komponente des Fluidstroms hin zu dem ersten Teilbereich des Bauteils umgelenkt wird. Bevorzugt wird die Komponente des Fluidstroms innerhalb der Düse und/oder unmittelbar stromauf einer Düsenaustrittsöffnung hin zu dem ersten Teilbereich umgelenkt. According to an advantageous embodiment, it is proposed that a nozzle geometry of the at least one nozzle is designed so that at least one (within the nozzle) flowing in the direction of a second portion of the component component of the fluid flow is deflected towards the first portion of the component. Preferably, the component of the fluid flow within the nozzle and / or immediately upstream of a nozzle outlet opening is deflected towards the first portion.
Nach einer weiteren vorteilhaften Ausgestaltung wird vorgeschlagen, dass die Düsengeometrie der mindestens einen Düse so gestaltet ist, dass zumindest eine Komponente des Fluidstroms die Düse zunächst in einer Richtung hin zu einem zweiten Teilbereich des Bauteils durchströmt und sodann hin zu dem ersten Teilbereich umgelenkt wird. Bevorzugt wird die Fluidströmung von einem Umlenkbereich der Düse hin zu dem ersten Teilbereich umgelenkt, wobei der Umlenkbereich regelmäßig einem Düsenaustritt und/oder einer Düsenaustrittsöffnung (unmittelbar) vorgeordnet ist. Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass die Düsengeometrie der mindestens einen Düse so gestaltet ist, dass der (gesamte durch die jeweilige Düse strömende) Fluidstrom die Düse zunächst in einer Richtung hin zu einem zweiten Teilbereich des Bauteils durchströmt und sodann hin zu dem ersten Teilbereich umgelenkt wird. (Unmittelbar) nach dem Umlenken des Fluidstroms hin zu dem ersten Teilbereich kann der Fluidstrom die mindestens eine Düse im Wesentlichen tangential und/oder parallel zu der Bearbeitungsebene und/oder einer Oberfläche des ersten Teilbereichs des Bauteils verlassen. According to a further advantageous embodiment, it is proposed that the nozzle geometry of the at least one nozzle is designed such that at least one component of the fluid flow first flows through the nozzle in a direction towards a second partial region of the component and then is deflected towards the first partial region. Preferably, the fluid flow is deflected from a deflection region of the nozzle toward the first partial region, wherein the deflection region is arranged regularly (directly) upstream of a nozzle outlet and / or a nozzle outlet opening. According to an advantageous embodiment, it is proposed that the nozzle geometry of the at least one nozzle is designed such that the (total current flowing through the respective nozzle) fluid flow first flows through the nozzle in one direction to a second portion of the component and then to the first portion is diverted. (Immediately) after the deflection of the fluid flow toward the first subregion, the fluid flow can leave the at least one nozzle essentially tangentially and / or parallel to the processing plane and / or a surface of the first subregion of the component.
Bevorzugt ist die Düsengeometrie der mindestens einen Düse so gestaltet, dass zumindest eine Komponente des Fluidstroms, mindestens eine (zentrale) Stromlinie des Fluidstroms oder sogar der gesamte durch die jeweilige Düse strömende Fluidstrom die Düse (zunächst) in einer ersten Richtung durchströmt, sodann umgelenkt wird und die Düse anschließend in einer zweiten Richtung durchströmt. Hierbei weist die erste Richtung (überwiegend) eine radial nach außen gerichtete Richtungskomponente und die zweite Richtung (überwiegend) eine radial nach innen gerichtete Richtungskomponente auf. Dabei sind die Angaben „radial nach außen" und „radial nach innen" bezüglich eines im Wesentlichen senkrecht zu der Bearbeitungsebene verlaufenden Düseneinlassabschnitts beziehungsweise Düseneinlasskanals definiert. Auf ihrem Weg durch die Düse durchströmt die Fluidströmung somit regelmäßig zunächst oder zuerst einen im Wesentlichen senkrecht zu der Bearbeitungsebene verlaufenden Düseneinlassabschnitt beziehungsweise Düseneinlasskanal, wird anschließend radial nach außen gelenkt, dann umgelenkt, sodass sie im Bereich eines Düsenaustritts oder hin zu dem Düsenaustritt radial nach innen gerichtet ist. The nozzle geometry of the at least one nozzle is preferably designed so that at least one component of the fluid flow, at least one (central) streamline of the fluid stream or even the entire fluid stream flowing through the respective nozzle flows through the nozzle (initially) in a first direction, then is deflected and the nozzle then flows through in a second direction. In this case, the first direction (predominantly) has a radially outwardly directed direction component and the second direction (predominantly) has a radially inwardly directed direction component. The data "radially outward" and "radially inward" are defined with respect to a nozzle inlet section or nozzle inlet channel running essentially perpendicular to the processing plane. The fluid flow thus regularly or first passes through a nozzle inlet section or nozzle inlet channel running essentially perpendicular to the processing plane on its way through the nozzle, is then directed radially outward, then deflected so that it is radially inward in the region of a nozzle outlet or toward the nozzle outlet is directed.
Bevorzugt hat die mindestens eine Düse einen Umlenkbereich. Der Umlenkbereich ist besonders bevorzugt zumindest teilweise gebogen oder gekrümmt ausgeführt. Der Umlenkbereich kann unmittelbar stromauf eines Düsenaustritts angeordnet sein. Preferably, the at least one nozzle has a deflection region. The deflection region is particularly preferably at least partially bent or curved executed. The deflection region can be arranged immediately upstream of a nozzle outlet.
Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass ein Düsenaustritt der mindestens einen Düse so gestaltet, etwa ausgerichtet und/oder relativ zu einem Umlenkbereich der Düse angeordnet ist, dass an dem Düsenaustritt ein (jeder) Strömungsimpuls in Richtung eines zweiten Teilbereichs des Bauteils unterbunden wird. Vorzugsweise ist der Düsenaustritt stromab und/oder nach einer Krümmung der Düsengeometrie, einem Krümmungsabschnitt der Düse und/oder einem Umlenkbereich der Düse angeordnet. Bevorzugt weist eine konkave Innenseite der Krümmung, des Krümmungsabschnitts beziehungsweise des Umlenkbereichs hin zu dem ersten Teilbereich des Bauteils. Weiterhin bevorzugt weist eine konvexe Außenseite der Krümmung, des Krümmungsabschnitts beziehungsweise des Umlenkbereichs hin zu einem zweiten Teilbereich des Bauteils. Besonders bevorzugt ist der Düsenaustritt (direkt) hin zu dem ersten Teilbereich und/oder in Richtung des ersten Teilbereichs ausgerichtet. According to an advantageous embodiment, it is proposed that a nozzle outlet of the at least one nozzle is designed, aligned and / or arranged relative to a deflection region of the nozzle such that a (each) flow impulse in the direction of a second partial region of the component is prevented at the nozzle outlet. Preferably, the nozzle outlet is arranged downstream and / or after a curvature of the nozzle geometry, a curvature section of the nozzle and / or a deflection region of the nozzle. Preferably, a concave inner side of the curvature, of the curvature section or of the deflection region points towards the first subregion of the component. Furthermore, a convex outer side of the curvature, of the curvature section or of the deflection region preferably points towards a second subregion of the component. Particularly preferably, the nozzle outlet is aligned (directly) toward the first subarea and / or in the direction of the first subarea.
Weiterhin bevorzugt ist die mindestens eine Düse benachbart zu und/oder (unmittelbar) im Bereich einer Trennwand angeordnet, die den ersten Teilbereich von einem zweiten Teilbereich des Bauteils (thermisch) abgrenzt. Hierbei kann die Trennwand ein Teil der Temperierstation und/oder (jedenfalls auch) oberhalb des Bauteils angeordnet sein. Darüber hinaus ist es bevorzugt, wenn die mindestens eine Düse eine gekröpfte Bauform aufweist. Besonders bevorzugt ist die mindestens eine Düse derart gekröpft, dass ein Düsenaustritt der mindestens einen Düse einen geringeren (horizontalen) Abstand zu der Trennwand aufweist als ein Düseneintritt der mindestens einen Düse. Durch die gekröpfte Bauform kann insbesondere erreicht werden, dass der Düsenaustritt sehr nah bei oder sogar zumindest teilweise unterhalb der Trennwand und damit sehr nah an dem zu erzeugenden Übergangsbereich anordenbar ist, bei gleichwohl genügend verbleibendem Raum zwischen dem Düseneintritt und der Trennwand für eine an der Trennwand befestigte Wärmedämmung. Furthermore, the at least one nozzle is preferably arranged adjacent to and / or (directly) in the region of a dividing wall, which delimits the first partial area from a second partial area of the component (thermally). In this case, the dividing wall may be a part of the tempering station and / or (in any case) above the component. Moreover, it is preferred if the at least one nozzle has a cranked design. Particularly preferably, the at least one nozzle is cranked in such a way that a nozzle exit of the at least one nozzle has a smaller (horizontal) distance to the dividing wall than a nozzle inlet of the at least one nozzle. By the cranked design can be achieved in particular that the nozzle outlet is very close to or even at least partially below the partition and thus very close to the transition region to be created can be arranged, nevertheless sufficient remaining space between the nozzle inlet and the partition for a wall mounted on the partition thermal insulation.
Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass die mindestens eine Düse einen Umlenkbereich hat, der sich hin zu und/oder zumindest teilweise unterhalb einer Trennwand erstreckt, die den ersten Teilbereich von einem zweiten Teilbereich des Bauteils abgrenzt. Die Trennwand ist vorzugsweise ein Teil der Temperierstation und regelmäßig (jedenfalls auch) oberhalb des Bauteils angeordnet. Bevorzugt ist eine konvexe Außenseite des Umlenkbereichs hin zu der Trennwand und/oder hin zu einem zweiten Teilbereich des Bauteils gerichtet. According to an advantageous embodiment, it is proposed that the at least one nozzle has a deflection region which extends towards and / or at least partially below a dividing wall which delimits the first partial region from a second partial region of the component. The dividing wall is preferably a part of the tempering station and arranged regularly (in any case) above the component. Preferably, a convex outer side of the deflection region is directed toward the dividing wall and / or towards a second partial region of the component.
Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass die mindestens eine Düse, insbesondere ein Umlenkbereich der mindestens einen Düse, so gestaltet ist, dass der Fluidstrom an einer hin zu der Bearbeitungsebene weisenden Seite und/oder an einem hin zu einem zweiten Teilbereich des Bauteils weisenden Bereich der Düse ein Unterdruckgebiet erzeugt. Das Unterdruckgebiet ist hierbei ein Gebiet mit einem gegenüber dem Umgebungsdruck verminderten Druck. Bevorzugt ist ein Strömungsimpuls in Richtung des ersten Teilbereichs des Bauteils durch die Geometrie des Umlenkbereichs so einzustellen oder eingestellt, dass an der Unterseite der Düse ein (leichter) Unterdruck entsteht. Durch die dabei entstehende Ejektorwirkung kann sogar etwas warme Luft aus dem Heißbereich der Temperierstation, d. h. dem Bereich oberhalb oder unterhalb eines zweiten Teilbereichs des Bauteils abgezogen werden. Aufgrund der geringen Dichte der heißen Luft und der geringen Menge ist der Effekt auf der kalten Seite, d. h. oberhalb oder unterhalb des ersten Teilbereichs des Bauteils regelmäßig vernachlässigbar. So lässt sich in besonders vorteilhafter Weise ein sehr scharf abgegrenzter Übergangsbereich darstellen. According to an advantageous embodiment, it is proposed that the at least one nozzle, in particular a deflection region of the at least one nozzle, is designed such that the fluid flow is at a side facing towards the working plane and / or at an area pointing towards a second partial region of the component the nozzle generates a negative pressure area. The negative pressure area here is an area with a reduced pressure compared to the ambient pressure. Preferably, a flow impulse in the direction of the first partial region of the component is adjusted or set by the geometry of the deflection region in such a way that a (lighter) negative pressure is created on the underside of the nozzle. Due to the resulting ejector effect even a little warm air from the hot zone of the tempering, d. H. the area above or below a second portion of the component are deducted. Due to the low density of the hot air and the small amount, the effect on the cold side, d. H. above or below the first portion of the component regularly negligible. Thus, a very sharply defined transition region can be represented in a particularly advantageous manner.
Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass ein Abstand zwischen der Bearbeitungsebene und der mindestens einen Düse derart einstellbar oder eingestellt ist, dass die mindestens eine Düse das Bauteil nicht kontaktiert. Bevorzugt liegt der Abstand im Bereich von 0,01 mm bis 6 mm [Millimeter], besonders bevorzugt im Bereich von 0,5 mm bis 5 mm oder sogar im Bereich von 1 mm bis 3,5 mm. According to an advantageous embodiment, it is proposed that a distance between the working plane and the at least one nozzle can be adjusted in this way or is set that the at least one nozzle does not contact the component. Preferably, the distance is in the range of 0.01 mm to 6 mm [millimeter], more preferably in the range of 0.5 mm to 5 mm or even in the range of 1 mm to 3.5 mm.
Bevorzugt ist die Düsengeometrie und/oder eine Außenkontur der Düse derart gestaltet, dass das vorstehend beschriebene Unterdruckgebiet selbst oder insbesondere dann entsteht, wenn die Düse das Bauteil nicht kontaktiert. Damit kann die hier vorgestellte Lösung sehr fehlertolerant hinsichtlich Positionierfehlern und/oder temperaturbedingten beziehungsweise eigenspannungsbedingten Geometriefehlern des Bauteils ausgeführt sein. Preferably, the nozzle geometry and / or an outer contour of the nozzle is designed such that the above-described negative pressure area itself or in particular arises when the nozzle does not contact the component. Thus, the solution presented here can be made very fault-tolerant with respect to positioning errors and / or temperature-related or intrinsic stress-related geometric errors of the component.
Weiterhin bevorzugt ist die mindestens eine Düse in der Temperierstation bewegbar, insbesondere verschiebbar gehalten oder gelagert. Bei entsprechend variabler Befestigung der Düse lässt sich die genaue Position des Übergangsbereichs in horizontaler Richtung in vorteilhafter Weise einfach nachjustieren. Further preferably, the at least one nozzle in the tempering station is movable, in particular held displaceable or stored. In accordance with variable attachment of the nozzle, the exact position of the transition region in the horizontal direction can be easily readjusted in an advantageous manner.
Vorzugsweise ist mindestens eine Wärmequelle in der Temperierstation angeordnet, die (thermisch) getrennt von der mindestens eine Düse in der Temperierstation gehalten ist. Hierbei können die Wärmequelle und die Düse mittels eine Trennwand voneinander (thermisch) getrennt und/oder abgeschirmt sein. Die mindestens eine Wärmequelle ist vorzugsweise mindestens eine Strahlungswärmequelle. Bevorzugt handelt es sich bei der Wärmequelle um eine aktiv betreibbare, insbesondere elektrisch betreibbare beziehungsweise bestrombare Wärmequelle. Besonders bevorzugt ist die Wärmequelle mit einem elektrisch betriebenen (das Bauteil nicht körperlich oder elektrisch kontaktierenden) Heizelement gebildet. Bei dem Heizelement kann es sich um eine Heizschleife, ein vollkeramisches Heizelement und/oder einen Heizdraht handeln. Alternativ oder zusätzlich kann die Wärmequelle mit einem (gasbeheizten) Strahlrohr gebildet sein. Vorteilhafterweise sind die Wärmequelle und die Düse in einem in der Temperierstation angeordneten Düsenkasten gehalten, wobei der Düsenkasten über mindestens eine Trennwand zwischen der Wärmequelle und der Düse verfügt. Besonders bevorzugt ist es, wenn ein Düsenaustritt beziehungsweise eine Düsenaustrittsöffnung der Tangentialdüse von der Wärmequelle weg weist oder gerichtet ist. Preferably, at least one heat source is arranged in the tempering station, which is held (thermally) separated from the at least one nozzle in the tempering station. Here, the heat source and the nozzle by means of a partition wall from each other (thermally) separated and / or shielded. The at least one heat source is preferably at least one radiant heat source. The heat source is preferably an actively operable, in particular electrically operable or energizable heat source. Particularly preferably, the heat source is formed with an electrically operated (the component not physically or electrically contacting) heating element. The heating element may be a heating loop, a full ceramic heating element and / or a heating wire. Alternatively or additionally, the heat source with a be formed (gas-heated) jet pipe. Advantageously, the heat source and the nozzle are held in a nozzle box arranged in the tempering station, wherein the nozzle box has at least one partition wall between the heat source and the nozzle. It is particularly preferred if a nozzle outlet or a nozzle outlet opening of the tangential nozzle points away from the heat source or is directed.
Nach einem weiteren Aspekt wird eine Vorrichtung zur (partiellen) Wärmebehandlung eines metallischen Bauteils vorgeschlagen, die zumindest umfasst: According to a further aspect, a device for (partial) heat treatment of a metallic component is proposed, which comprises at least:
einen, insbesondere mittels Strahlungswärme und/oder Konvektion beheizbaren ersten Ofen,  a, in particular by means of radiant heat and / or convection heated first furnace,
eine dem ersten Ofen nachgeordnete, hier vorgestellte Temperierstation. Nach einer vorteilhaften Ausgestaltung wird vorgeschlagen, dass die Vorrichtung weiterhin zumindest umfasst:  a temperature control station downstream of the first furnace, presented here. According to an advantageous embodiment, it is proposed that the device further comprises at least
einen der Temperierstation nachgeordneten, insbesondere mittels Strahlungswärme und/oder Konvektion beheizbaren zweiten Ofen, und/oder ein der Temperierstation und/oder dem zweiten Ofen nachgeordnetes Presshärtewerkzeug .  one of the tempering station downstream, in particular by means of radiant heat and / or convection heated second oven, and / or a tempering station and / or the second furnace downstream press hardening tool.
Das Presshärtewerkzeug ist insbesondere dazu vorgesehen und eingerichtet, das Bauteil gleichzeitig oder zumindest teilweise parallel umzuformen und (zumindest teilweise) abzuschrecken. Das Presshärtewerkzeug kann Teil einer Presse sein oder durch eine Presse gebildet sein. Vorzugsweise sind der erste Ofen, die Temperierstation, der zweite Ofen und das Presshärtewerkzeug (in der genannten Reihenfolge) insbesondere unmittelbar hintereinander angeordnet. Jedoch kann zwischen dem ersten Ofen und der Temperierstation, zwischen der Temperierstation und dem zweite Ofen und/oder zwischen dem zweiten Ofen und dem Presshärtewerkzeug eine gegebenenfalls mittels mindestens einer Handlingseinrichtung zu überbrückende Distanz vorgesehen sein, die vorzugsweise mindestens 0,5 m [Meter] beträgt. The press-hardening tool is in particular provided and arranged to simultaneously or at least partially reshape the component and to quench it (at least partially). The press hardening tool may be part of a press or formed by a press. Preferably, the first furnace, the tempering station, the second furnace and the press-hardening tool (in the stated order) are arranged, in particular, directly one behind the other. However, between the first furnace and the tempering station, between the tempering station and the second furnace, and / or between the second furnace and the press-hardening tool, one may optionally be provided by means of at least one Handling device to be bridged distance to be provided, which is preferably at least 0.5 m [meters].
Es ist besonders vorteilhaft, wenn zumindest der erste Ofen oder der zweite Ofen ein Durchlaufofen oder ein Kammerofen ist. Bevorzugt ist der erste Ofen ein Durchlaufofen, insbesondere ein Rollenherdofen. Besonders bevorzugt ist der zweite Ofen ein Durchlaufofen, insbesondere ein Rollenherdofen, oder ein Kammerofen, insbesondere ein Mehrlagenkammerofen mit mindestens zwei übereinander angeordneten Kammern. Bevorzugt weist der zweite Ofen einen, insbesondere (ausschließlich) mittels Strahlungswärme beheizbaren, Ofeninnenraum auf, in dem vorzugsweise eine (nahezu) einheitliche Innentemperatur einstellbar oder eingestellt ist. Insbesondere wenn der zweite Ofen als Mehrlagenkammerofen ausgeführt ist, können, entsprechend der Anzahl der Kammern, mehrere solcher Ofeninnenräume vorhanden sein. It is particularly advantageous if at least the first furnace or the second furnace is a continuous furnace or a chamber furnace. Preferably, the first furnace is a continuous furnace, in particular a roller hearth furnace. The second furnace is particularly preferably a continuous furnace, in particular a roller hearth furnace, or a chamber furnace, in particular a multilayer furnace with at least two chambers arranged one above the other. Preferably, the second furnace, in particular (exclusively) by means of radiant heat heated, furnace interior, in which preferably a (nearly) uniform internal temperature is adjustable or adjusted. In particular, when the second oven is designed as a multi-layer oven, a plurality of such furnace interior spaces may be present, corresponding to the number of chambers.
Bevorzugt sind in dem ersten Ofen und/oder in dem zweiten Ofen (ausschließlich) Strahlungswärmequellen angeordnet. Besonders bevorzugt ist in einem Ofeninnenraum des ersten Ofens und/oder in einem Ofeninnenraum des zweiten Ofens mindestens ein elektrisch betriebenes (das Bauteil nicht kontaktierendes) Heizelement, wie beispielsweise mindestens eine elektrisch betriebene Heizschleife, ein vollkeramisches Heizelement und/oder mindestens ein elektrisch betriebener Heizdraht angeordnet. Alternativ oder zusätzlich kann in dem Ofeninnenraum des ersten Ofens und/oder dem Ofeninnenraum des zweiten Ofens mindestens ein insbesondere gasbeheiztes Strahlrohr angeordnet sein. Vorzugsweise sind in dem Ofeninnenraum des ersten Ofens und/oder dem Ofeninnenraum des zweiten Ofens mehrere Strahlrohrgasbrenner beziehungsweise Strahlrohre angeordnet, in die jeweils mindestens ein Gasbrenner hineinbrennt. Hierbei ist es besonders vorteilhaft, wenn der innere Bereich der Stahlrohre, in den die Gasbrenner hineinbrennen, atmosphärisch von dem Ofeninnenraum getrennt ist, so dass keine Verbrennungsgase oder Abgase in den Ofeninnenraum gelangen und somit die Ofenatmosphäre beeinflussen können. Eine solche Anordnung wird auch als „indirekte Gasbeheizung" bezeichnet. Die im Zusammenhang mit den Temperierstationen erörterten Details, Merkmale und vorteilhaften Ausgestaltungen können entsprechend auch bei der hier vorgestellten Vorrichtung auftreten und umgekehrt. Insoweit wird auf die dortigen Ausführungen zur näheren Charakterisierung der Merkmale vollumfänglich Bezug genommen. Radiation heat sources are preferably arranged in the first furnace and / or in the second furnace (exclusively). Particularly preferably, in an oven interior of the first furnace and / or in a furnace interior of the second furnace, at least one electrically operated (the component non-contacting) heating element, such as at least one electrically operated heating loop, a full ceramic heating element and / or arranged at least one electrically operated heating wire , Alternatively or additionally, at least one in particular gas-heated jet pipe can be arranged in the furnace interior of the first furnace and / or the furnace interior of the second furnace. Preferably, a plurality of jet tube gas burners or jet tubes are arranged in the furnace interior of the first furnace and / or the furnace interior of the second furnace, in each of which at least one gas burner burns. It is particularly advantageous if the inner region of the steel tubes into which burn the gas burners, is separated from the atmosphere inside the furnace, so that no combustion gases or exhaust gases in enter the furnace interior and thus can influence the furnace atmosphere. Such an arrangement is also referred to as "indirect gas heating." The details, features, and advantageous embodiments discussed in connection with the temperature control stations can also occur accordingly in the device presented here, and vice versa In this respect, reference is made in full to the statements there for a more detailed characterization of the features taken.
Nach einem weiteren Aspekt wird eine Verwendung mindestens einer Tangentialdüse in einer Temperierstation, zum partiellen Wärmebehandeln eines metallischen Bauteils, insbesondere zum partiellen Kühlen eines ersten Teilbereichs des Bauteils vorgeschlagen. Bevorzugt wird die Tangentialdüse dazu verwendet, einen im Wesentlichen horizontal ausgerichteten Luftstrom auszutragen, der entlang einer Oberfläche eines ersten Teilbereichs des Bauteils strömt, um den ersten Teilbereich zwecks (im Vergleich zu einem zweiten Teilbereich) geringerer Festigkeiten im fertig wärmebehandelten (d. h. pressgehärteten) Bauteil zu kühlen. Hierbei kann die Tangentialdüse derart ausgerichtet sein, dass der Luftstrom von einem (einzustellenden) Rand oder einer Kontur des ersten Teilbereichs und/oder von einer Trennwand ausgehend, hin zu einem Zentrum des ersten Teilbereichs strömt. According to a further aspect, a use of at least one tangential nozzle in a tempering station, for partial heat treatment of a metallic component, in particular for partial cooling of a first portion of the component is proposed. Preferably, the tangential nozzle is used to discharge a substantially horizontally oriented airflow flowing along a surface of a first portion of the component to the first portion for (compared to a second portion) lower strengths in the finished heat-treated (ie press-hardened) component cool. In this case, the tangential nozzle can be aligned in such a way that the air flow flows from an edge (to be set) or a contour of the first partial area and / or from a dividing wall to a center of the first partial area.
Die im Zusammenhang mit der Temperierstation und/oder der Vorrichtung erörterten Details, Merkmale und vorteilhaften Ausgestaltungen können entsprechend auch bei der hier vorgestellten Verwendung auftreten und umgekehrt. Insoweit wird auf die dortigen Ausführungen zur näheren Charakterisierung der Merkmale vollumfänglich Bezug genommen. Die Erfindung, sowie das technische Umfeld werden nachfolgend anhand der Figuren näher erläutert. Es ist darauf hinzuweisen, dass die Erfindung durch die gezeigten Ausführungsbeispiele nicht beschränkt werden soll. Insbesondere ist es, soweit nicht explizit anders dargestellt, auch möglich, Teilaspekte der in den Figuren erläuterten Sachverhalte zu extrahieren und mit anderen Bestandteilen und/oder Erkenntnissen aus anderen Figuren und/oder der vorliegenden Beschreibung zu kombinieren. Es zeigen: The details, features and advantageous embodiments discussed in connection with the tempering station and / or the device can accordingly also occur with the use presented here and vice versa. In that regard, reference is made in full to the statements there for a more detailed characterization of the features. The invention and the technical environment will be explained in more detail with reference to the figures. It should be noted that the invention should not be limited by the embodiments shown. In particular, unless explicitly stated otherwise, it is also possible to extract partial aspects of the facts explained in the figures and to combine them with other components and / or findings from other figures and / or the present description. Show it:
Fig. 1 : eine schematische Darstellung einer erfindungsgemäßen Fig. 1: a schematic representation of an inventive
Temperierstation, und  Temperature control station, and
Fig. 2: eine schematische Darstellung einer erfindungsgemäßen Fig. 2: a schematic representation of an inventive
Vorrichtung. Fig. 1 zeigt eine schematische Darstellung einer Temperierstation 1 zur partiellen Wärmebehandlung eines metallischen Bauteils 2. In der Temperierstation 1 ist eine Bearbeitungsebene 3 angeordnet, in der das Bauteil 2 liegt. Darüber hinaus ist in der Temperierstation 1 hier beispielhaft eine Düse 4 angeordnet, die hin zu der Bearbeitungsebene 3 ausgerichtet und zum Austragen eines Fluidstroms 5 (in Fig. 1 gestrichelt dargestellt) zum Kühlen eines ersten Teilbereichs 6 des Bauteils 2 vorgesehen und eingerichtet ist.  Contraption. 1 shows a schematic representation of a tempering station 1 for the partial heat treatment of a metallic component 2. In the tempering station 1, a processing level 3 is arranged, in which the component 2 is located. In addition, a nozzle 4 is arranged here in the tempering station 1, for example, which is aligned towards the working plane 3 and provided for discharging a fluid flow 5 (shown in dashed lines in FIG. 1) for cooling a first subregion 6 of the component 2.
Zudem veranschaulicht Fig. 1, dass die Düse 4 eine Tangentialdüse 13 ist. Diese zeichnet sich dadurch aus, dass sie an einem Düsenaustritt 9 der Düse 4 eine Fluidströmung 5 erzeugt, die im Wesentlichen tangential beziehungsweise parallel zu einer Oberfläche des Bauteils 2, hier zu einer Oberfläche des ersten Teilbereichs 6 des Bauteils 2 ausgerichtet ist. Diese Ausrichtung ist durch den Pfeil am Ende der gestrichelt dargestellten Fluidströmung 5 veranschaulicht. Ferner ist eine (in Fig. 1 geschnitten dargestellte) Düsengeometrie 8 der Düse 4 so gestaltet ist, dass zumindest eine in Richtung eines zweiten Teilbereichs 7 des Bauteils 2 strömende Komponente des Fluidstroms 5 hin zu dem ersten Teilbereich 6 umgelenkt wird. Gemäß der Darstellung nach Fig. 1 ist die Düsengeometrie sogar derart gestaltet, dass der gesamte durch die Düse 4 strömende Fluidstrom 5 die Düse 4 zunächst in einer Richtung hin zu einem zweiten Teilbereich 7 des Bauteils 2 durchströmt und sodann hin zu dem ersten Teilbereich 6 des Bauteils 2 umgelenkt wird. Zur Umlenkung des Fluidstroms 5 hin zu dem ersten Teilbereich 6 weist die Düse 4 in Fig. 1 einen Umlenkbereich 10 auf. Auf den Umlenkbereich 10 folgt stromab ein Düsenaustritt 9 der Düse 4. Der Düsenaustritt 9 ist so gestaltet, etwa ausgerichtet und relativ zu dem Umlenkbereich 10 angeordnet, dass an dem Düsenaustritt 9 ein Strömungsimpuls in Richtung des zweiten Teilbereichs 7 des Bauteils 2 unterbunden wird. In Fig. 1 ist zudem gezeigt, dass der Umlenkbereich 10 der Düse 4 sich hin zu und zumindest teilweise unterhalb einer Trennwand 11 erstreckt, die den ersten Teilbereich 6 des Bauteils 2 von dem zweiten Teilbereich 7 des Bauteils 2 (thermisch) abgrenzt. Die Trennwand 11 ist hier beispielhaft als Teil eines Düsenkastens 19 gebildet, in dem eine Wärmequelle 20 (thermisch) getrennt beziehungsweise isoliert von der Düse 4 gehalten ist. Die Trennwand 11 trägt dazu bei, die Düse 4 und den ersten Teilbereich 6 des Bauteils 2 von der Wärmequelle 20 (thermisch) abzuschotten und damit den ersten Teilbereich 6 des Bauteils 2, der mittels der Düse 4 gekühlt wird von dem zweiten Teilbereich 7 des Bauteils 2, der mittels der Wärmequelle 20 erwärmt wird (thermisch) abzugrenzen, sodass sich in den Teilbereichen 6, 7 unterschiedliche Bauteiltemperaturen einstelle lassen, die zu voneinander verschiedenen Gefüge und/oder Festigkeitseigenschaften in den Teilbereichen 6, 7 des Bauteils führen. In addition, FIG. 1 illustrates that the nozzle 4 is a tangential nozzle 13. This is characterized in that it generates a fluid flow 5 at a nozzle outlet 9 of the nozzle 4, which is aligned substantially tangentially or parallel to a surface of the component 2, here to a surface of the first portion 6 of the component 2. This orientation is illustrated by the arrow at the end of the fluid flow 5 shown in dashed lines. Furthermore, a nozzle geometry 8 (shown in section in FIG. 1) of the nozzle 4 is designed such that at least one component of the fluid stream 5 flowing in the direction of a second subregion 7 of the component 2 is deflected towards the first subregion 6. According to the illustration according to FIG. 1, the nozzle geometry is even designed such that the entire fluid stream 5 flowing through the nozzle 4 flows through the nozzle 4 in one direction towards a second subregion 7 of the component 2 and then towards the first subregion 6 of the component 2 Part 2 is deflected. For deflecting the fluid flow 5 toward the first subregion 6, the nozzle 4 in FIG. 1 has a deflection region 10. Downstream of the deflecting region 10 is a nozzle outlet 9 of the nozzle 4. The nozzle outlet 9 is designed approximately aligned and arranged relative to the deflecting region 10 that a flow impulse in the direction of the second portion 7 of the component 2 is prevented at the nozzle outlet 9. In Fig. 1 it is also shown that the deflection region 10 of the nozzle 4 extends towards and at least partially below a partition wall 11, which delimits the first portion 6 of the component 2 of the second portion 7 of the component 2 (thermal). The partition wall 11 is here formed by way of example as part of a nozzle box 19, in which a heat source 20 (thermally) is kept separate or isolated from the nozzle 4. The partition wall 11 helps to foreclose (thermally) the nozzle 4 and the first portion 6 of the component 2 from the heat source 20, and thus the first portion 6 of the component 2, which is cooled by means of the nozzle 4 of the second portion 7 of the component 2, which is heated by means of the heat source 20 (thermal) to delimit, so that in the subregions 6, 7 different component temperatures can be set, which lead to mutually different structure and / or strength properties in the sub-areas 6, 7 of the component.
Darüber hinaus ist in Fig. 1 gezeigt, dass die Düse 4 in Fig. 1 so gestaltet ist, dass der Fluidstrom 5 an einer hin zu der Bearbeitungsebene 3 weisenden Seite der Düse 4 und an einem hin zu einem zweiten Teilbereich 7 des Bauteils 2 weisenden Bereich der Düse 4 ein Unterdruckgebiet 12 erzeugt. Zudem ist in Fig. 1 zu erkennen, dass ein Abstand zwischen der Bearbeitungsebene 3 und der Düse 4 derart eingestellt ist, dass die Düse 4 das Bauteil 2 nicht kontaktiert. In addition, it is shown in Fig. 1, that the nozzle 4 is designed in Fig. 1 so that the fluid flow 5 at a direction to the working plane 3 facing side of Nozzle 4 and on a side facing to a second portion 7 of the component 2 region of the nozzle 4, a negative pressure area 12 is generated. In addition, it can be seen in FIG. 1 that a distance between the working plane 3 and the nozzle 4 is set such that the nozzle 4 does not contact the component 2.
Zusätzlich zu der Düse 4, die als Tangentialdüse 13 ausgeführt ist, weist die Temperierstation 1 hier eine weitere Düsen 18 auf. Die weitere Düse 18 ist beispielhaft in der Art einer Brause gebildet und neben der Tangentialdüse 13 in der Temperierstation 1 gehalten. In addition to the nozzle 4, which is designed as tangential nozzle 13, the tempering station 1 here has a further nozzle 18. The further nozzle 18 is exemplified in the manner of a shower and held next to the Tangentialdüse 13 in the tempering 1.
Fig. 2 zeigt eine schematische Darstellung einer erfindungsgemäßen Vorrichtung 14 zur Wärmebehandlung eines metallischen Bauteils 2. Die Vorrichtung 14 weist einen beheizbaren ersten Ofen 15, eine dem ersten Ofen 15 (direkt) nachgeordnete Temperierstation 1, einen der Temperierstation 1 (direkt) nachgeordneten, beheizbaren zweiten Ofen 16 und ein dem zweiten Ofen 16 (direkt) nachgeordnetes Presshärtewerkzeug 17 auf. Die Vorrichtung 14 stellt hier eine Warmformlinie für das (partielle) Presshärten dar. Das Presshärtewerkzeug 17 ist Teil einer Presse oder durch eine Presse gebildet. Es werden hier eine Temperierstation und eine Vorrichtung zur Wärmebehandlung eines metallischen Bauteils angegeben, die die mit Bezug auf den Stand der Technik geschilderten Probleme zumindest teilweise lösen. Insbesondere erlauben die Temperierstation und die Vorrichtung, einen Übergangsbereich zwischen unterschiedlich wärmebehandelten Teilbereichen des Bauteils möglichst zuverlässig und/oder exakt, insbesondere möglichst klein einzustellen. Darüber hinaus erlauben die Temperierstation und die Vorrichtung insbesondere, dass eine Berührung des Bauteils mit einer Trennwand zur (thermischen) Abgrenzung der unterschiedlich temperierten Teilbereiche des Bauteils nicht mehr erforderlich ist. Bezugszeichenliste FIG. 2 shows a schematic illustration of a device 14 according to the invention for heat treatment of a metallic component 2. The device 14 has a heatable first furnace 15, a temperature control station 1 (directly) downstream of the first furnace 15, a heatable (directly) downstream of the temperature control station 1 second oven 16 and a second oven 16 (directly) downstream press hardening tool 17. The device 14 here represents a hot forming line for (partial) press hardening. The press hardening tool 17 is part of a press or formed by a press. Here, a tempering station and a device for heat treatment of a metallic component are specified which at least partially solve the problems described with reference to the prior art. In particular, the tempering station and the device allow a transition region between differently heat-treated subregions of the component to be set as reliably and / or precisely as possible, in particular as small as possible. In addition, the tempering station and the device allow in particular that a contact of the component with a partition wall for (thermal) delimitation of the differently tempered portions of the component is no longer required. LIST OF REFERENCE NUMBERS
1 Temperierstation 1 temperature control station
2 Bauteil  2 component
3 Bearbeitungsebene  3 processing level
4 Düse  4 nozzle
5 Fluidstrom  5 fluid flow
6 erster Teilbereich  6 first subarea
7 zweiter Teilbereich  7 second subarea
8 Düsengeometrie  8 nozzle geometry
9 Düsenaustritt  9 nozzle exit
10 Umlenkbereich  10 deflection area
1 1 Trennwand  1 1 partition
12 Unterdruckgebiet  12 negative pressure area
13 Tangentialdüse  13 tangential nozzle
14 Vorrichtung  14 device
15 erster Ofen  15 first oven
16 zweiter Ofen  16 second oven
17 Presshärtewerkzeug  17 Press hardening tool
18 weitere Düse  18 more nozzles
19 Düsenkasten  19 nozzle box
20 Wärmequelle  20 heat source

Claims

Patentansprüche claims
Temperierstation (1) zur partiellen Wärmebehandlung eines metallischen Bauteils (2), mit einer in der Temperierstation (1) angeordneten Bearbeitungsebene (3), in der das Bauteil Temperature control station (1) for partial heat treatment of a metallic component (2), with a in the tempering (1) arranged machining plane (3), in which the component
(2) anordenbar ist, mindestens einer Düse (4), die hin zu der Bearbeitungsebene (2) is locatable, at least one nozzle (4), which is towards the working plane
(3) ausgerichtet und zum Austragen eines Fluidstroms (5) zum Kühlen mindestens eines ersten Teilbereichs (6) des Bauteils (2) vorgesehen und eingerichtet ist, wobei die mindestens eine Düse (4) eine Tangentialdüse (13) ist. (3) aligned and provided for discharging a fluid flow (5) for cooling at least a first portion (6) of the component (2) and is arranged, wherein the at least one nozzle (4) is a Tangentialdüse (13).
Temperierstation nach Anspruch 1, wobei eine Düsengeometrie (8) der mindestens einen Düse Temperature control station according to claim 1, wherein a nozzle geometry (8) of the at least one nozzle
(4) so gestaltet ist, dass zumindest eine in Richtung eines zweiten Teilbereichs (7) des Bauteils (2) strömende Komponente des Fluidstroms (4) is designed such that at least one in the direction of a second portion (7) of the component (2) flowing component of the fluid flow
(5) hin zu dem ersten Teilbereich (5) towards the first subarea
(6) umgelenkt wird. (6) is diverted.
Temperierstation nach Anspruch 1 oder 2, wobei die Düsengeometrie (8) der mindestens einen Düse (4) so gestaltet ist, dass zumindest eine Komponente des Fluidstroms (5) die Düse (4) zunächst in einer Richtung hin zu einem zweiten Teilbereich Temperature control station according to claim 1 or 2, wherein the nozzle geometry (8) of the at least one nozzle (4) is designed so that at least one component of the fluid flow (5) the nozzle (4) initially in a direction towards a second portion
(7) des Bauteils (2) durchströmt und sodann hin zu dem ersten Teilbereich (6) umgelenkt wird. (7) of the component (2) flows through and then is deflected towards the first portion (6).
Temperierstation nach einem der vorhergehenden Ansprüche, wobei die Düsengeometrie Temperature control station according to one of the preceding claims, wherein the nozzle geometry
(8) der mindestens einen Düse (4) so gestaltet ist, dass der Fluidstrom (5) die Düse (4) zunächst in einer Richtung hin zu einem zweiten Teilbereich (7) des Bauteils (2) durchströmt und sodann hin zu dem ersten Teilbereich (6) umgelenkt wird. (8) of the at least one nozzle (4) is designed so that the fluid stream (5) flows through the nozzle (4) first in a direction towards a second portion (7) of the component (2) and then towards the first portion (6) is diverted.
Temperierstation nach einem der vorhergehenden Ansprüche, wobei ein Düsenaustritt (9) der mindestens einen Düse (4) so gestaltet ist, dass an dem Düsenaustritt Temperature control station according to one of the preceding claims, wherein a nozzle outlet (9) of the at least one nozzle (4) is designed so that the nozzle exit
(9) ein Strömungsimpuls in Richtung eines zweiten Teilbereichs (7) des Bauteils (2) unterbunden wird. (9) a flow pulse in the direction of a second portion (7) of the component (2) is prevented.
Temperierstation nach einem der vorhergehenden Ansprüche, wobei die mindestens eine Düse (4) einen Umlenkbereich Temperature control station according to one of the preceding claims, wherein the at least one nozzle (4) has a deflection region
(10) hat, der sich hin zu und/oder zumindest teilweise unterhalb einer Trennwand (11) erstreckt, die den ersten Teilbereich (6) von einem zweiten Teilbereich (7) des Bauteils (2) abgrenzt. (10) which extends to and / or at least partially below a partition wall (11) which delimits the first partial area (6) from a second partial area (7) of the component (2).
Temperierstation nach einem der vorhergehenden Ansprüche, wobei die mindestens eine Düse (4) so gestaltet ist, dass der Fluidstrom (5) an einer hin zu der Bearbeitungsebene (3) weisenden Seite und/oder an einem hin zu einem zweiten Teilbereich (7) des Bauteils (2) weisenden Bereich der Düse (4) ein Unterdruckgebiet (12) erzeugt. Temperature control station according to one of the preceding claims, wherein the at least one nozzle (4) is designed such that the fluid flow (5) on a side facing the working plane (3) and / or on a towards a second portion (7) of Component (2) facing the nozzle (4) generates a negative pressure area (12).
Temperierstation nach einem der vorhergehenden Ansprüche, wobei ein Abstand zwischen der Bearbeitungsebene (3) und der mindestens einen Düse (4) derart einstellbar ist, dass die mindestens eine Düse (4) das Bauteil (2) nicht kontaktiert. Temperature control station according to one of the preceding claims, wherein a distance between the processing plane (3) and the at least one nozzle (4) is adjustable such that the at least one nozzle (4) does not contact the component (2).
Vorrichtung (14) zur Wärmebehandlung eines metallischen Bauteils (2), zumindest umfassend: Device (14) for heat treatment of a metallic component (2), comprising at least
einen beheizbaren ersten Ofen (15),  a heatable first oven (15),
eine dem ersten Ofen (15) nachgeordnete Temperierstation (1), die nach einem der vorhergehenden Ansprüche ausgebildet ist.  a tempering station (1) arranged downstream of the first furnace (15) and designed according to one of the preceding claims.
Vorrichtung nach Anspruch 9, weiterhin zumindest umfassend: The device of claim 9, further comprising at least
einen der Temperierstation (1) nachgeordneten, beheizbaren zweiten Ofen (16), und/oder ein der Temperierstation (1) und/oder dem zweiten Ofen (16) nachgeordnetes Presshärtewerkzeug (17). one of the tempering station (1) downstream, heated second oven (16), and / or one of the tempering station (1) and / or the second oven (16) downstream press hardening tool (17).
11. Verwendung mindestens einer Tangentialdüse (13) in einer Temperierstation (1), zum partiellen Wärmebehandeln eines metallischen11. Use of at least one tangential nozzle (13) in a tempering station (1), for partial heat treatment of a metallic
Bauteils (2). Component (2).
EP18726327.2A 2017-04-07 2018-03-28 Temperature control station for partially thermally treating a metal component Active EP3607098B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18726327T PL3607098T3 (en) 2017-04-07 2018-03-28 Temperature control station for partially thermally treating a metal component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017107549.6A DE102017107549A1 (en) 2017-04-07 2017-04-07 Temperature control station for the partial heat treatment of a metallic component
PCT/EP2018/057945 WO2018184947A1 (en) 2017-04-07 2018-03-28 Temperature control station for partially thermally treating a metal component

Publications (2)

Publication Number Publication Date
EP3607098A1 true EP3607098A1 (en) 2020-02-12
EP3607098B1 EP3607098B1 (en) 2021-03-17

Family

ID=62222576

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18726327.2A Active EP3607098B1 (en) 2017-04-07 2018-03-28 Temperature control station for partially thermally treating a metal component

Country Status (11)

Country Link
US (1) US11313003B2 (en)
EP (1) EP3607098B1 (en)
JP (1) JP7008723B2 (en)
KR (1) KR102487730B1 (en)
CN (1) CN110462068B (en)
DE (1) DE102017107549A1 (en)
ES (1) ES2871084T3 (en)
HU (1) HUE054324T2 (en)
PL (1) PL3607098T3 (en)
PT (1) PT3607098T (en)
WO (1) WO2018184947A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020103276A1 (en) 2020-02-10 2021-08-12 Benteler Automobiltechnik Gmbh Furnace for partial heating of metal components
DE102020121672A1 (en) * 2020-08-18 2022-02-24 Schwartz Gmbh Thermal treatment of components

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881907A (en) * 1974-01-30 1975-05-06 Ppg Industries Inc Method of tempering glass sheets
US4367597A (en) * 1979-12-13 1983-01-11 Nippon Steel Corporation Gas-liquid cooling apparatus
SE437675B (en) * 1981-05-14 1985-03-11 Asea Ab REFRIGERANT BODY COOLING DEVICE
US4834344A (en) * 1987-02-20 1989-05-30 Surface Combustion, Inc. Apparatus for inside-outside tube quenching
JP2807134B2 (en) * 1992-09-16 1998-10-08 川崎製鉄株式会社 Gas jet chamber sealing device
US5640872A (en) * 1994-07-20 1997-06-24 Alusuisse-Lonza Services Ltd. Process and device for cooling heated metal plates and strips
AT502239B1 (en) * 2005-08-01 2007-07-15 Ebner Ind Ofenbau Device for cooling metal strip, e.g. steel strip after heat treatment, comprises groups of nozzles arranged in parallel nozzle strips with flow channels between them for removing cooling gas deflected from the metal strip
DE102008039264A1 (en) * 2008-08-22 2010-03-04 Schuler Cartec Gmbh & Co. Kg Method for tempering with intermediate cooling
JP4825882B2 (en) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
KR101277864B1 (en) * 2011-03-31 2013-06-21 주식회사 포스코 Apparatus for heat treatment of hot forming blank and method for manufacturing hot formed parts
WO2013137308A1 (en) 2012-03-13 2013-09-19 株式会社アステア Method for strengthening steel plate member
DE102012021576A1 (en) * 2012-11-02 2013-05-16 Daimler Ag Deterring a workpiece, by supplying a partially heated workpiece with a cooling medium, and subjecting deterred area of workpiece to turbulence of gaseous cooling medium, where a cold gas flow of medium is created by eddy-current generator
DE102013101489B3 (en) * 2013-02-14 2014-06-05 Benteler Automobiltechnik Gmbh Heat treatment line and method for operating the heat treatment line
CA2900559C (en) * 2013-03-11 2018-01-02 Novelis Inc. Improving the flatness of a rolled strip
CN105695727B (en) * 2014-11-28 2018-01-30 宝山钢铁股份有限公司 A kind of board-shape control method of steel plate on-line solution processing
CN104668326B (en) 2015-03-05 2016-08-24 山东大王金泰集团有限公司 A kind of hot stamping method of high strength steel parts capability gradientization distribution
DE102015112293A1 (en) * 2015-07-28 2017-02-02 Hydro Aluminium Rolled Products Gmbh Method and apparatus for the adaption of temperature-adapting metal bands
KR20180001308A (en) * 2016-06-27 2018-01-04 주식회사 성우하이텍 Partial softening hot stamping method
DE102016121699A1 (en) * 2016-11-11 2018-05-17 Schwartz Gmbh Temperature control station for the partial heat treatment of a metallic component

Also Published As

Publication number Publication date
US11313003B2 (en) 2022-04-26
WO2018184947A1 (en) 2018-10-11
HUE054324T2 (en) 2021-08-30
JP2020516767A (en) 2020-06-11
PL3607098T3 (en) 2021-09-13
PT3607098T (en) 2021-05-19
DE102017107549A1 (en) 2018-10-11
JP7008723B2 (en) 2022-01-25
ES2871084T3 (en) 2021-10-28
CN110462068A (en) 2019-11-15
KR102487730B1 (en) 2023-01-11
US20200040415A1 (en) 2020-02-06
CN110462068B (en) 2021-06-08
KR20190137773A (en) 2019-12-11
EP3607098B1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
DE102011056444C5 (en) Method and device for partial hardening of sheet metal components
EP3420111B1 (en) Process for targeted heat treatment of individual component zones
EP3408420B1 (en) Method of heat treating a metallic component
EP3851546A1 (en) Heat treatment device
DE102017115755A1 (en) Method and device for heat treatment of a metallic component
WO2017129599A1 (en) Method and device for the heat treatment of a metal component
DE102016118252A1 (en) Method and device for heat treatment of a metallic component
EP3607098B1 (en) Temperature control station for partially thermally treating a metal component
EP3538677B1 (en) Temperature control station for partially thermally treating a metal component
EP3408416B1 (en) Heat treatment method and heat treatment device
WO2018109034A1 (en) Method for producing locally hardened steel sheet components
EP2336374A1 (en) Method and device for heating and partially cooling workpieces in a continuous furnace
DE102016201936A1 (en) Heat treatment process and heat treatment device
DE102016120605A1 (en) Method and device for heat treatment of a metallic component
DE102018109579A1 (en) Temperature control device for partial cooling of a component
DE202022100505U1 (en) heat treatment device
DE102016118253A1 (en) Process for heat treatment of a metallic component
DE102020111615A1 (en) Process for retrofitting a heat treatment system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018004377

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0008000000

Ipc: C21D0001673000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 8/00 20060101ALI20201127BHEP

Ipc: C21D 1/673 20060101AFI20201127BHEP

Ipc: C21D 1/667 20060101ALI20201127BHEP

Ipc: C21D 9/48 20060101ALI20201127BHEP

INTG Intention to grant announced

Effective date: 20201222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004377

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1372298

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3607098

Country of ref document: PT

Date of ref document: 20210519

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210512

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210618

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210317

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E054324

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2871084

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018004377

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210328

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210328

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

26N No opposition filed

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230529

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240321

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240322

Year of fee payment: 7

Ref country code: DE

Payment date: 20240320

Year of fee payment: 7

Ref country code: CZ

Payment date: 20240318

Year of fee payment: 7

Ref country code: GB

Payment date: 20240320

Year of fee payment: 7

Ref country code: PT

Payment date: 20240314

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240320

Year of fee payment: 7

Ref country code: PL

Payment date: 20240220

Year of fee payment: 7

Ref country code: IT

Payment date: 20240329

Year of fee payment: 7

Ref country code: FR

Payment date: 20240328

Year of fee payment: 7