EP3601993A1 - Unterwasserprobenentnahmevorrichtungen und verfahren dafür - Google Patents
Unterwasserprobenentnahmevorrichtungen und verfahren dafürInfo
- Publication number
- EP3601993A1 EP3601993A1 EP18775882.6A EP18775882A EP3601993A1 EP 3601993 A1 EP3601993 A1 EP 3601993A1 EP 18775882 A EP18775882 A EP 18775882A EP 3601993 A1 EP3601993 A1 EP 3601993A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sampling
- section
- tool
- support surface
- hollow portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005070 sampling Methods 0.000 title claims abstract description 243
- 238000000034 method Methods 0.000 title claims description 38
- 239000012530 fluid Substances 0.000 claims abstract description 33
- 238000004891 communication Methods 0.000 claims abstract description 27
- 238000004873 anchoring Methods 0.000 claims abstract description 21
- 230000007246 mechanism Effects 0.000 claims description 18
- 230000035515 penetration Effects 0.000 claims description 11
- 238000012360 testing method Methods 0.000 claims description 9
- 238000005086 pumping Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 description 8
- 239000002689 soil Substances 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/04—Devices for withdrawing samples in the solid state, e.g. by cutting
- G01N1/08—Devices for withdrawing samples in the solid state, e.g. by cutting involving an extracting tool, e.g. core bit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C11/00—Equipment for dwelling or working underwater; Means for searching for underwater objects
- B63C11/52—Tools specially adapted for working underwater, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/001—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/001—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
- B63G2008/002—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
- B63G2008/005—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N2001/028—Sampling from a surface, swabbing, vaporising
Definitions
- Example embodiments relate to underwater sampling devices, in particular, sampling devices for underwater vehicles, and methods thereof.
- Underwater sampling devices are used in many applications including but not limited to soil collection, biological sampling, etc. Some of these sampling devices are designed for use in underwater environments, for example, for use in underwater vehicles such as autonomous underwater vehicles (AUVs) and remotely operated underwater vehicles (ROVs).
- ALVs autonomous underwater vehicles
- ROVs remotely operated underwater vehicles
- FIG. 1 illustrates a perspective view of an underwater vehicle according to at least one example embodiment
- FIG. 2 illustrates a partial cut-out side view of the underwater vehicle of Fig. 1 according to at least one example embodiment
- FIG. 3 A illustrates a perspective view of a sampling device according to at least one example embodiment
- FIG. 3B illustrates another perspective view of the sampling device in Fig. 3 A;
- Fig. 3C illustrates a schematic top view of the support surface in Figs. 3A and 3B according to at least one example embodiment
- Fig. 3D illustrates a side view of the sampling device in Fig. 3 A according to at least one example embodiment
- FIG. 3E illustrates another side view of the sampling device in Fig. 3 A according to at least one example embodiment
- Fig. 3F illustrates a top view of the sampling device in Fig. 3 A according to at least one example embodiment
- Fig. 3G illustrates a clutch mechanism of the sampling device in Figs. 3A-3F according to at least one example embodiment
- FIG. 3H illustrates a clutch mechanism of the sampling device in Figs. 3 A-3F according to at least one example embodiment
- FIG. 4A illustrates deployment and anchoring of the sampling device of Figs. 3A- 3E according to at least one example embodiment
- Fig. 4B illustrates the anchored the sampling device of Fig. 4A according to at least one example embodiment
- Fig. 5 illustrates a method according to at least one example embodiment.
- Example embodiments are directed to underwater vehicles and sampling devices for underwater vehicles that enable efficient sample collection as well as reliable anchoring capability.
- Example embodiments include an AUV with an umbilical reel and anchor device (or cone penetrometer test (CPT) payload or sampling device).
- An umbilical cable of the umbilical reel is connected to the anchor device. In operation, the umbilical reel raises and lowers the anchor device through payload doors of the AUV.
- CPT cone penetrometer test
- Example embodiments may include deploying the anchor device to a resting surface, such as a seabed or other underwater floor.
- the anchor device is a suction anchor.
- pump(s) onboard the anchor device suck water from the anchor caisson (or anchor suction chamber), forcing the anchor device into the seafloor.
- valve(s) seal in the anchor caisson, forming a suction anchor.
- the AUV is now tethered to the anchor device.
- the AUV adjusts to be positively buoyant and can turn off thrusters to save power while at anchor.
- the valve(s) on the suction anchor assembly open and the pump(s) reverse flow to force water into the caisson and in turn, forcing the caisson out of the seafloor.
- the anchor device is winched back into the AUV by the umbilical reel.
- the AUV includes an emergency tether cutter that can release the umbilical cable and allow the AUV to release from the anchor device if desired (e.g., in an emergency).
- An example structure of the anchor device includes a water suction tube and suction chamber for anchoring and releasing the anchor device to and from the seafloor.
- the anchor device In addition to anchoring the AUV to the seafloor, example embodiments provide for the anchor device to have the ability to collect samples while anchored.
- the anchor device is used as a platform to conduct soil investigations, such as Cone Penetrometer Test (CPT) or core sampling through various tools.
- CPT Cone Penetrometer Test
- the anchor device provides an autonomously deployed base on the seafloor against which ground sampling tools can react.
- the CPT system is shown as an example. In this case, a coil tube system can be pushed into the seafloor, reacting against the base of the anchor device.
- Alternative tools could include but are not limited to, piston samplers and rotary coring samplers.
- the anchor device includes other elements such as a lift point to connect to the umbilical cable, a water pump and a corresponding suction tube to control anchoring operations.
- the anchor device includes a coil tubing assembly and a coil tubing winch to coil the coiled tube of the CPT system.
- the anchor device further includes a payload housing for storing seafloor samples, a sampling tool (e.g., CPT tool), and a drive assembly and one or few sets of a guide roller to move and/or guide the sampling tool.
- the anchor device includes one or more motors to drive the above described pump and sampling tool.
- additional pumps, suction tubes, motors and/or sampling tools may be provided on the anchor device based on design preferences.
- example embodiments provide for an AUV that includes an anchor device capable of anchoring the AUV using suction and collecting samples from the area to which the anchor device is anchored.
- an anchor device capable of anchoring the AUV using suction and collecting samples from the area to which the anchor device is anchored.
- example embodiments have been described in terms of an anchor device for an AUV, the anchor device may be employed to anchor any type of watercraft or waterborne device.
- the AUV and/or the anchor device may have an RS232 and Ethernet communication capability to a host for operation and status monitoring.
- the processor can execute various AUV protocols, which may be user selected prior to deployment or during deployment.
- the on board processing capability and communications interface can allow remote status monitoring while connected.
- the AUV can have multiple external environmental sensors with RS232 communications capability.
- Fig. 1 illustrates a perspective view of an underwater vehicle 100 according to at least one example embodiment.
- the underwater vehicle 100 includes a body 103.
- the body 103 includes a payload section 105 on a bottom portion thereof with doors that open to allow insertion/deployment of a payload.
- the body 103 includes one or more devices attached to the body 103 and that control the underwater vehicle 100.
- the one or more devices for controlling the underwater vehicle 100 may include one or more motors with associated propeller(s) as well as fixed and/or pivoting fins to control pitch, roll, and yaw of the underwater vehicle 100.
- the underwater vehicle 100 is an AUV that includes one or more onboard components to control autonomous operation, such as one or more processors (e.g., microprocessors), navigation equipment (e.g., sonar), etc.
- the underwater vehicle 100 is an ROV, controllable (wired or wirelessly) remotely by an operator.
- Fig. 2 illustrates a partial cut-out side view of the underwater vehicle 100 of Fig. 1 according to at least one example embodiment.
- Fig. 2 shows details related to a payload insertable/deployable from the payload section 105.
- the payload section 105 may include an umbilical reel 200 with an associated umbilical cable 205 that runs through a pulley 207 for connection to a payload for raising and lowering the payload to/from the payload section 105.
- the umbilical cable 205 may include one or more electrical and/or optical cables to allow the underwater vehicle 100 to communicate with the sampling device 300 according one or more protocols (e.g., RS232 protocol).
- Such communication may include but is not limited to data transfer and control of components on the sampling device 300.
- the umbilical reel 200 may be fixed to an inner (e.g., inner-bottom) surface of the payload section 105 or other suitable mounting surface within the body 103.
- the payload is a deployable sampling device 300 for collecting underwater samples (e.g., soil samples) and configured to be housed in the payload section 105.
- the sampling device 300 will be discussed in more detail below with reference to Figs. 3 A-3E.
- the body 103 of the underwater vehicle 100 may be about 237 inches long.
- a tubular section of the body 103 may be about 27.6 inches in diameter.
- a height of a first fin 106 on the body 103 may be about 19.7 inches.
- a height of a second fin 107 on the body 103 may be about 13.4 inches.
- example embodiments are not limited to the dimensions shown in Fig. 2 and may vary according to design preferences.
- Fig. 3A illustrates a perspective view of a sampling device 300 according to at least one example embodiment.
- Fig. 3B illustrates another perspective view of the sampling device in Fig. 3A.
- Fig. 3C illustrates a schematic top view of the support surface 310.
- Fig. 3D illustrates a side view of the sampling device in Fig. 3 A according to at least one example embodiment.
- Fig. 3E illustrates yet another side view of the sampling device in Fig. 3A according to at least one example embodiment.
- Figs. 3G and 3H illustrate different clutch mechanisms of the sampling device in in Figs. 3 A-3F according to at least one example embodiment.
- the sampling device 300 may be insertable/deployable from the payload section 105 of the body 103.
- the sampling device 300 may include a first section 305 that includes a support surface 310 for supporting one or more sampling components that collect samples (e.g., soil samples) from a landing surface. These components are discussed in more detail below.
- the sampling device 300 may include a second section 315 coupled to the first section 305.
- the first section 305 and the second section 315 may be different sections of a same unitary structure, such as a single frame or single housing (as shown), or formed as separate sections before being joined (e.g., by welding).
- the second section 315 is separated from the first section 305 by the support surface 310.
- the second section 315 includes a hollow portion 317 (see Fig. 3B).
- the sampling device 300 includes a pump 320 mounted to the support surface 310 (in any know manner) and in fluid communication with the hollow portion 317.
- the pump 320 is configured to pump fluid from the hollow portion 317 to an external environment (e.g., a surrounding water environment) to create a suction force to assist with anchoring the second section 315 to the landing surface.
- Figs. 4A and 4B illustrate the anchoring operation in more detail.
- the pump 320 pumps fluid from the external environment to the hollow portion 317 to assist with releasing the second section 317 from the landing surface.
- Figs. 3 A and 3B further illustrate a hollow tube 325 connected between the pump 320 and the hollow portion 317 to provide the fluid communication through an opening 323 in the support surface 310.
- One end of the hollow tube 325 may be fixed to the support surface 310 with a tube fitting 327 (e.g., a screw fitting).
- the other end of the hollow tube 325 may be connected to an inlet/outlet of the pump 320 in the same manner by tube fitting 329 (see Fig. 3F).
- the pump 320 may selectively provide access to the hollow tube 325.
- the pump 320 includes a valve to provide the selective access.
- the valve is open when the pump 320 is pumping fluid into and out of the hollow portion 317 and closed when the pump 320 is not in operation (e.g., while the sampling device 300 is anchored).
- the first section 305 includes a lift point 330 that attaches to a tether (e.g., the umbilical cable 205 in Fig. 2) for raising and lowering of the sampling device 300 and/or for communicating with the underwater vehicle 100.
- a tether e.g., the umbilical cable 205 in Fig. 2
- the support surface 310 supports one or more sampling components for collecting samples.
- the one or more sampling components may include a first sampling tool 335, a second sampling tool 340, a friction drive device 345, a first set of rollers 350, a second set of rollers 355, a winch device 360, a first pulley 370, a second pulley 375.
- the friction drive device 345, the sets of rollers 350/355, and the winch device 360 may be mounted to the support surface 310 in any known manner (e.g., with brackets, bolts, etc.).
- the pulleys 370/375 may be mounted to an upper frame portion of the first section 305 in any known manner.
- the first sampling tool 335 and/or the second sampling tool 340 may be at least one of a cone penetration test (CPT) tool and a core sampling tool for collecting soil samples from the landing surface.
- CPT cone penetration test
- the friction drive device (or assembly) 345 and the winch device (or assembly) 360 are devices that move the first and second sampling tools 335/340 along their respective sampling paths P1/P2.
- Each device 345/360 may include a motor (e.g., a DC motor) for enabling the movement.
- the friction drive device 345 may include a driving rod 347 that passes through and engages with at least one of the rollers (e.g., outer roller in set 350) to cause rotation of the that roller.
- the friction between the sampling tool 335, the roller having the driving rod, and the other roller is such that rotation of the roller by the driving rod 347 in a desired direction causes movement of the sampling tool 335 along the sampling path PI .
- the friction drive device 345 may include a clutch mechanism to select either the first sampling tool 335 or the second sampling tool 340 for penetration into the landing surface.
- a driving rod 347 of the friction drive device passes through one roller in each set of rollers (e.g., the outer roller in each set) 350/355.
- the driving rod 347 may be movable parallel to the support surface 310 and may include a key mechanism 349 on the driving rod 347 that engages with a corresponding key hole 357 in a respective outer roller of each set 350/355.
- the key mechanism 349 is controlled to slide into a key hole 357 of a selected outer roller to enable selection of one of the sampling tools 335/340 for movement along the sampling paths P1/P2.
- the driving rod 347 includes two key holes 351 (only one shown) that permanently sit in selective communication with respective keys 359 of the outer roller in each set of rollers 350/355.
- the keys 359 of each outer roller may be selectively movable in and out of respective key holes 351 (e.g., as a result of control signals from the underwater vehicle 100) to enable selection of one or both of the outer rollers of each set 350/355, thereby enabling movement of the sampling tools 335/340 along the sampling paths P1/P2.
- Example embodiments are not limited to the above described clutch mechanism designs as any suitable clutch mechanism could be used according to design preferences.
- the clutch mechanism may be implemented via spring actuated engagement.
- the clutch mechanism may be an axially-moving engagement mechanism on the driving rod 347.
- two friction drive devices 345 may be included, one friction drive device for driving each sampling tool 335/340 in the same manner as described above. In this case, the clutch mechanism may be omitted from both friction drive devices 345.
- the winch device 360 may include coil tubing 385 that is connected to one end of the sampling tool 340 to guide the sampling tool 340 along the sampling path P2 while the friction drive device 345 causes movement of the sampling tool 340 via the outer roller in the set 355. That is, unwinding of the coil tubing 385 by the winch device 360 in combination with downward force from the friction drive device 345 allows downward movement of the sampling tool 340 to penetrate the landing surface, and winding of the coil tubing 385 in combination with force from the friction drive device 345 by the winch device 360 allows the sampling tool 340 to retract from the landing surface.
- the length of coil tubing 385 sets a maximum depth at which the sampling tool 340 can penetrate the landing surface.
- the first and second sets of rollers 350/355 may be for guiding and/or moving a respective sampling tool 335/340 along a respective sampling path P1/P2.
- the rollers 350/355 may be mounted to the support surface 310 by respective brackets (not labeled).
- the pulleys 365 and 370 may be associated with the winch device 360 to receive the coil tubing 385.
- the support surface 310 includes a first opening 373 and a second opening 377 adjacent to and offset from the first opening 373.
- the openings 373 and 377 are aligned with one another so as to be aligned with a driving rod of the friction drive device 345.
- the sampling device 300 includes a first passageway 375 in communication with the first opening 377 and that extends from support surface 310 (e.g., a bottom of the support surface) into the second section 315.
- a second passageway 380 is in communication with the second opening 377 and that extends from the support surface 310 into the second section 315.
- the passageways 375 and 380 may be comprised of hollow tubes that are mounted to the support surface 310 in a same manner as the hollow tube 325 (e.g., with a screw tube fitting).
- the first sampling tool 335 is guidable along a first sampling path PI through the first passageway 375 to penetrate the landing surface.
- the second sampling tool 340 is guidable along a second sampling path P2 through the second passageway 380 to penetrate the landing surface.
- a height of the second section 315 may be about 8.1 inches, and a total height of the sampling device may be about 22.5 inches.
- a height of the first section 305 may be about 14.4 inches.
- a height from the bottom of the second section 315 to a top of the pump 320 is about 20.7 inches, while a height from the bottom of the second section 315 to a top of a frame of the sampling device 300 is about 19.5 inches.
- the sampling device may be substantially square with lengths and widths of about 19.0 inches each.
- sampling device 300 may include any number and/or type of sampling tools, pumps, and devices for moving the sampling tools according to design preferences.
- FIG. 4A illustrates deployment and anchoring of the sampling device of Figs. 3A- 3E according to at least one example embodiment.
- Fig. 4B illustrates the anchored the sampling device of Fig. 4 A according to at least one example embodiment.
- the sampling device 300 is deployed from the payload section 105 of the underwater vehicle 100 and lands on a landing surface 400 (e.g., a soft seabed).
- the pump 320 is controlled (e.g., by the underwater vehicle 100 via control signals from the umbilical cable 205) to pump fluid from the hollow portion 317 to the external environment to create a suction force to assist with anchoring the second section 315 to the landing surface 400.
- the suction force is such that the second section 315 sinks into the landing surface 400 to anchor the underwater vehicle 100.
- the sampling device 300 is then ready to collect samples with the sampling tools 375/380, if desired.
- FIGS. 4A and 4B show an example where the second section 315 sinks to a depth of about 7.9 inches.
- the pump 320 pumps fluid from the external environment to the hollow portion 317 to assist with releasing the second section 315 from the landing surface 400.
- the sampling tools 335/340 may be in a retracted position in the passageways 375/380 prior to landing on the landing surface 400. After anchoring to the landing surface 400, the sampling tools 335 and/or 340 may be extended to penetrate the landing surface 400.
- Fig. 4B shows the extended position of the sampling tools 335/340. Although Fig. 4B shows that the sampling tools 335/340 do not extend beyond a bottom surface of the second section 315, it should be understood that this may occur if desired.
- the sampling tools 335/340 are placed into their extended position before anchoring to the landing surface 400, for example, while descending toward the landing surface 400 from the underwater vehicle 100.
- Fig. 5 illustrates a method 500 according to at least one example embodiment. While a general order for the steps of the method 500 is shown in Fig. 5, the method 500 can include more or fewer steps or can arrange the order of the steps differently than those shown in Fig. 5. Generally, the method 500 starts at operation 505 and ends at operation 525.
- the method 500 can be executed as a set of computer-executable instructions executed by one or more processors (e.g., microprocessor s) of the underwater vehicle 100) and encoded or stored on a computer readable medium (e.g., a nonvolatile memory).
- processors e.g., microprocessor s
- a computer readable medium e.g., a nonvolatile memory
- the method 500 includes deploying a sampling device 300 from an underwater vehicle 100, for example, via the umbilical reel and cable 200/205.
- the sampling device 300 may include a first section 305 that includes a support surface 310 for supporting one or more sampling components that collect samples from a landing surface 400.
- the sampling device 300 may include a second section 315 coupled to the first section 305 and separated from the first section by the support surface 310.
- the second section includes a hollow portion 317.
- the sampling device 300 may include a pump in fluid communication with the hollow portion 317.
- the method 500 includes landing the sampling device 300 on the landing surface 400.
- the method 500 includes pumping (by the pump 320) fluid from the hollow portion 317 to an external environment to create a suction force to assist with anchoring the second section 315 to the landing surface 400.
- the method 500 includes collecting samples (e.g., soil samples) using the one or more sampling components (e.g., one or both of the sampling tools 335/340).
- samples e.g., soil samples
- sampling components e.g., one or both of the sampling tools 335/340.
- the method 500 includes pumping (by the pump 320) fluid from the external environment to the hollow portion 317 to assist with releasing the second section 315 from the landing surface 400.
- the method 500 includes returning the sampling device 300 to the underwater vehicle 100, for example, by reeling in the sampling device 300 with the umbilical reel and cable 200/205.
- example embodiments are directed to sampling devices for underwater vehicles that enable efficient sample collection as well as reliable anchoring capability for the underwater vehicle.
- Example embodiments are directed to a sampling device for underwater environments.
- the sampling device includes a first section that includes a support surface for supporting one or more sampling components that collect samples from a landing surface, and a second section coupled to the first section and separated from the first section by the support surface.
- the second section includes a hollow portion.
- the sampling device includes a pump in fluid communication with the hollow portion and configured to i) pump fluid from the hollow portion to an external environment to create a suction force to assist with anchoring the second section to the landing surface, and ii) pump fluid from the external environment to the hollow portion to assist with releasing the second section from the landing surface.
- the sampling device further includes a hollow tube connected between the pump and the hollow portion to provide the fluid communication.
- the pump includes a valve that selectively provides the pump access to the hollow tube.
- the first section includes a lift point that attaches to a tether for controlling raising and lowering of the sampling device.
- the one or more sampling components further comprises a first opening in the support surface, a first passageway in communication with the first opening and that extends from support surface into the second section, a first sampling tool that is guidable along a first sampling path through the first passageway to penetrate the landing surface.
- the first sampling tool a cone penetration test (CPT) tool or a core sampling tool.
- CPT cone penetration test
- the one or more sampling components further comprises a first device for moving the first sampling tool along the first sampling path.
- the first device is a friction drive device that includes a motor and a set of rollers for moving the first sampling tool along the first sampling path.
- the one or more sampling components further comprises a winch device including coil tubing connected to the first sampling tool to control a maximum depth of the first sampling tool along the first sampling path.
- the one or more sampling components further comprises a second opening in the support surface adjacent to the first opening, a second passageway in communication with the second opening and that extends from support surface into the second section, and a second sampling tool that is guidable along a second sampling path through the second passageway to penetrate the landing surface.
- the first sampling tool and the second sampling tool are at least one of a cone penetration test (CPT) tool and a core sampling tool.
- CPT cone penetration test
- the first device is a friction drive device that includes a motor and a clutch mechanism to select either the first sampling tool or the second sampling tool for penetration into the landing surface.
- the friction drive device includes a first set of rollers, and a second set of rollers offset from the first set of rollers, wherein the clutch mechanism allows the friction drive device to engage with a roller in the first set of rollers to move the first sampling tool along the first sampling path, and wherein the clutch mechanism allows the friction drive device to engage with a roller in the second set of rollers to move the second sampling tool along the second sampling path.
- the one or more sampling components further comprise a second device for guiding the second sampling tool along the second sampling path and for setting a maximum depth of the second sampling tool.
- the first device is a friction drive device and the second device is a winch device.
- Example embodiments include an underwater vehicle.
- the underwater vehicle includes a body including a payload section, and one or more devices attached to the body and that control the underwater vehicle.
- the underwater vehicle includes a deployable sampling device configured to be deployed from the payload section.
- the sampling device includes a first section that includes a support surface, and a second section coupled to the first section and separated from the first section by the support surface.
- the second section includes a hollow portion.
- the sampling device includes a pump in fluid communication with the hollow portion and configured to i) pump fluid from the hollow portion to an external environment to create a suction force to assist with anchoring the second section to a landing surface, and ii) pump fluid from the external environment to the hollow portion to assist with releasing the second section from the landing surface.
- the sampling device further comprises one or more sampling components that collect samples from the landing surface.
- the support surface supports the one or more sampling components.
- the one or more sampling components includes a first opening in the support surface, a first passageway in communication with the first opening and that extends from support surface into the second section, a first sampling tool that is guidable along a first sampling path through the first passageway to penetrate the landing surface, a second opening in the support surface adjacent to the first opening, a second passageway in communication with the second opening and that extends from support surface into the second section, and a second sampling tool that is guidable along a second sampling path through the second passageway to penetrate the landing surface.
- the one or more sampling components further comprises a first device for moving the first sampling tool along the first sampling path, and for moving the second sampling tool along the second sampling path.
- the one or more sampling components further comprises a second device for controlling a maximum depth of the second sampling tool along the second sampling path.
- the first device is a friction drive device and the second device is a winch device.
- the first sampling tool is configured for one of cone penetration testing (CPT) and core sampling
- the second sampling tool is configured for the other of CPT and core sampling
- a method for collecting underwater samples includes deploying a sampling device from an underwater vehicle.
- the sampling device includes a first section that includes a support surface for supporting one or more sampling components that collect samples from a landing surface, and a second section coupled to the first section and separated from the first section by the support surface.
- the second section includes a hollow portion.
- the sampling device includes a pump in fluid communication with the hollow portion.
- the method includes pumping fluid from the hollow portion to an external environment to create a suction force to assist with anchoring the second section to the landing surface, collecting samples using the one or more sampling components, pumping fluid from the external environment to the hollow portion to assist with releasing the second section from the landing surface, and returning the sampling device to the underwater vehicle.
- first the terms “first,” “second,” “third,” etc. are used for convenience of description and do not limit example embodiments.
- a particular element may be referred to a “first” element in some cases, and a “second” element in other cases without limiting example embodiments.
- the term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably.
- the term “automatic” and variations thereof, as used herein, refers to any process or operation, which is typically continuous or semi -continuous, done without material human input when the process or operation is performed. However, a process or operation can be automatic, even though performance of the process or operation uses material or immaterial human input, if the input is received before performance of the process or operation. Human input is deemed to be material if such input influences how the process or operation will be performed. Human input that consents to the performance of the process or operation is not deemed to be "material.”
- each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” “A, B, and/or C,” and "A, B, or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
- aspects of the present disclosure may take the form of an embodiment that is entirely hardware, an embodiment that is entirely software (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a "circuit,” “module,” or “system.” Any combination of one or more computer-readable medium(s) may be utilized.
- the computer-readable medium may be a computer-readable signal medium or a computer- readable storage medium.
- a computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer-readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
- a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
- a computer-readable signal medium may include a propagated data signal with computer-readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof.
- a computer-readable signal medium may be any computer-readable medium that is not a computer-readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
- Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including, but not limited to, wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Ocean & Marine Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Aviation & Aerospace Engineering (AREA)
- Sampling And Sample Adjustment (AREA)
- Earth Drilling (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762479501P | 2017-03-31 | 2017-03-31 | |
PCT/IB2018/000412 WO2018178768A1 (en) | 2017-03-31 | 2018-03-30 | Underwater sampling devices and methods thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3601993A1 true EP3601993A1 (de) | 2020-02-05 |
EP3601993A4 EP3601993A4 (de) | 2020-12-30 |
EP3601993B1 EP3601993B1 (de) | 2023-07-12 |
Family
ID=63674475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18775882.6A Active EP3601993B1 (de) | 2017-03-31 | 2018-03-30 | Unterwasserprobenentnahmevorrichtungen und verfahren dafür |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200103317A1 (de) |
EP (1) | EP3601993B1 (de) |
CA (1) | CA3058294C (de) |
WO (1) | WO2018178768A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112193389A (zh) * | 2020-10-13 | 2021-01-08 | 山东科技大学 | 一种仿水母泳动型海底超声波钻探取样机器人 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109374350B (zh) * | 2018-11-15 | 2021-05-11 | 江苏科技大学 | 一种小型多点自平衡式深海海水采集系统及其应用 |
WO2020252139A1 (en) * | 2019-06-12 | 2020-12-17 | Oceana Energy Company | Systems and methods for deploying hydroelectric energy systems |
DE102019212105A1 (de) * | 2019-08-13 | 2021-02-18 | Siemens Aktiengesellschaft | Betriebsverfahren für ein Minenräumsystem und Minenräumsystem zur Auslösung von Seeminen |
CN110745207B (zh) * | 2019-09-29 | 2020-09-18 | 南京欧泰物联网科技有限公司 | 一种水质检测取样装置及其取样方法 |
CN110683026A (zh) * | 2019-10-10 | 2020-01-14 | 哈尔滨工程大学 | 一种海流驱动的飞翼型拖鱼 |
USD964481S1 (en) * | 2020-08-20 | 2022-09-20 | Aqua-Leisure Recreation, Llc | Toy submarine |
CN111994240B (zh) * | 2020-09-10 | 2021-06-22 | 中国船舶科学研究中心 | 一种自动释放浮筏的剪切装置 |
CN112356983B (zh) * | 2020-11-13 | 2021-07-30 | 中国海洋大学 | 抛锚装置及水下航行器 |
CN112678130A (zh) * | 2020-12-21 | 2021-04-20 | 浙江海洋大学 | 一种海洋工程用水下深潜探测辅助设备 |
CN113155513B (zh) * | 2021-05-28 | 2022-11-22 | 芜湖职业技术学院 | 水下可控深度土壤采样器 |
GB2609225A (en) * | 2021-07-23 | 2023-02-01 | Equinor Energy As | Offshore surveying method |
CN113501113B (zh) * | 2021-08-13 | 2022-11-08 | 杭州华能工程安全科技股份有限公司 | 一种湍流环境下辅助水下检测的稳定装置 |
CN113728987B (zh) * | 2021-10-09 | 2022-06-21 | 中国船舶科学研究中心 | 一种自上浮深海生物取样装置 |
CN114537622A (zh) * | 2022-02-10 | 2022-05-27 | 北京工业大学 | 一种仿生水下采样装置 |
CN114750909B (zh) * | 2022-05-24 | 2023-05-12 | 鲁东大学 | 一种下潜式海洋污染物观测设备及其工作方法 |
CN114872869B (zh) * | 2022-06-22 | 2023-03-21 | 武昌理工学院 | 一种多功能可调的持续水下探测装置 |
CN116679022B (zh) * | 2023-06-06 | 2024-03-19 | 生态环境部土壤与农业农村生态环境监管技术中心 | 复杂土壤与地下水环境多层位探测系统 |
CN117250038B (zh) * | 2023-11-16 | 2024-02-20 | 自然资源部第一海洋研究所 | 一种基于潜水器的海底钻孔取样设备及方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6463801B1 (en) | 1998-12-02 | 2002-10-15 | Marsco, Inc. | Apparatus, method and system for measurement of sea-floor soil characteristics |
KR101277324B1 (ko) * | 2011-08-11 | 2013-06-20 | 한국해양과학기술원 | 복합식 시료 채취 장치 |
WO2014131085A1 (en) * | 2013-02-27 | 2014-09-04 | Thalassic Subsea Pty Ltd | Deployment apparatus |
AU2014326428B2 (en) * | 2013-09-26 | 2018-05-10 | Utec Geomarine Limited | Suction anchor |
KR101515536B1 (ko) * | 2013-11-13 | 2015-05-06 | 한국해양과학기술원 | 다중 시료채집기 |
-
2018
- 2018-03-30 CA CA3058294A patent/CA3058294C/en active Active
- 2018-03-30 EP EP18775882.6A patent/EP3601993B1/de active Active
- 2018-03-30 US US16/498,492 patent/US20200103317A1/en not_active Abandoned
- 2018-03-30 WO PCT/IB2018/000412 patent/WO2018178768A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112193389A (zh) * | 2020-10-13 | 2021-01-08 | 山东科技大学 | 一种仿水母泳动型海底超声波钻探取样机器人 |
CN112193389B (zh) * | 2020-10-13 | 2022-03-25 | 山东科技大学 | 一种仿水母泳动型海底超声波钻探取样机器人 |
Also Published As
Publication number | Publication date |
---|---|
WO2018178768A1 (en) | 2018-10-04 |
CA3058294A1 (en) | 2018-10-04 |
US20200103317A1 (en) | 2020-04-02 |
EP3601993B1 (de) | 2023-07-12 |
CA3058294C (en) | 2022-05-31 |
EP3601993A4 (de) | 2020-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3058294C (en) | Underwater sampling devices and methods thereof | |
KR102229276B1 (ko) | 수질검사를 위한 채수 장치 | |
CN111649984B (zh) | 一种深海沉积物取样设备及其取样方法 | |
JP2011516767A (ja) | ワイヤーライン式掘削システムおよび方法 | |
JP3803338B2 (ja) | 遠隔操作ワイヤラインコアサンプリング装置 | |
KR20140055571A (ko) | 수중 로봇의 작업지원 플랫폼 및 그 방법 | |
JPS62215794A (ja) | 係留ケ−ブル処理装置及び遠隔操作水中車輌 | |
KR101691967B1 (ko) | 코어 샘플링 장치 | |
US20150000906A1 (en) | Apparatus for sampling water in borehole, and method thereof | |
US7918287B2 (en) | Suction coring device and method | |
US20190283841A1 (en) | Marine salvage drill assemblies and systems | |
KR102426104B1 (ko) | 자동 착탈식 석션파일 설치장치 | |
EP2877839A1 (de) | Vorrichtung und verfahren für unterwasserprüfung | |
US20120305317A1 (en) | Systems and methods for limiting winch overrun | |
PL2322724T3 (pl) | Wiertnica podwodna | |
US3795114A (en) | Process and installation for the connection of a cable or flexible pipe to an underwater guide column | |
EP2629120A2 (de) | Steuervorrichtung zum Positionieren eines Instrumentenkabels, das mit Auftriebsmitteln zum Zurückerlangen der Steuervorrichtung bereitgestellt wird, und mit dem Instrument ausgestattetes Kabel aus einer Unterwasserposition | |
CN107120081B (zh) | 水下绳索打捞器收放速度控制装置 | |
US10793241B2 (en) | Method and system for launching and recovering underwater vehicles with an autonomous base | |
US4477205A (en) | Apparatus for connecting underwater flow line hubs | |
US3434551A (en) | Buoyant coring apparatus | |
EP3049579B1 (de) | Sauganker | |
KR101759909B1 (ko) | 원격조종 무인해저잠수정 진회수 시스템용 권양기의 레벨 와인드 | |
KR101787841B1 (ko) | 수상정용 수중음향탐지모듈 시스템 | |
KR101358337B1 (ko) | 파이프라인용 펌프 설치장치와 이를 구비한 선박 및 이를 이용한 펌프 설치방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191025 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: JACKSON, JAMES ERIC Inventor name: WOODROFFE, ADRIAN Inventor name: DOROUDGAR, SINA Inventor name: PRUNIAUNU, PAUL |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20201127 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B63C 11/52 20060101ALI20201123BHEP Ipc: G01N 1/02 20060101AFI20201123BHEP Ipc: B63G 8/00 20060101ALI20201123BHEP Ipc: G01N 1/08 20060101ALI20201123BHEP |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: JACKSON, JAMES ERIC Inventor name: WOODROFFE, ADRIAN Inventor name: DOROUDGAR, SINA Inventor name: PRUNIAUNU, PAUL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230207 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018053245 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230712 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1587652 Country of ref document: AT Kind code of ref document: T Effective date: 20230712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231113 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231012 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231112 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231013 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018053245 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240220 Year of fee payment: 7 Ref country code: GB Payment date: 20240220 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240220 Year of fee payment: 7 Ref country code: FR Payment date: 20240220 Year of fee payment: 7 |
|
26N | No opposition filed |
Effective date: 20240415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230712 |