EP3598243B1 - Timepiece mechanism with jumping member - Google Patents

Timepiece mechanism with jumping member Download PDF

Info

Publication number
EP3598243B1
EP3598243B1 EP18184530.6A EP18184530A EP3598243B1 EP 3598243 B1 EP3598243 B1 EP 3598243B1 EP 18184530 A EP18184530 A EP 18184530A EP 3598243 B1 EP3598243 B1 EP 3598243B1
Authority
EP
European Patent Office
Prior art keywords
actuating spring
timepiece mechanism
winding
hub
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18184530.6A
Other languages
German (de)
French (fr)
Other versions
EP3598243A1 (en
Inventor
Samuel Tanner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Priority to EP18184530.6A priority Critical patent/EP3598243B1/en
Publication of EP3598243A1 publication Critical patent/EP3598243A1/en
Application granted granted Critical
Publication of EP3598243B1 publication Critical patent/EP3598243B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/02Back-gearing arrangements between gear train and hands
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/24Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars
    • G04B19/243Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator
    • G04B19/24306Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator combination of different shapes, e.g. bands and discs, discs and drums
    • G04B19/2432Driving or releasing mechanisms wherein the date indicators are driven or released mechanically by a clockwork movement

Definitions

  • the present invention relates to a jumping organ watch mechanism, in particular for the instantaneous display of a temporal quantity such as the date.
  • Instantaneous display mechanisms comprising a snail cam against which a rocker rests under the action of a return spring applied against the rocker are known in watchmaking.
  • the return spring is a V-shaped, U-shaped or spiral leaf.
  • the lever slides from the lower part to the upper part of the cam, which gradually arms the return spring, then the lever drops from said upper part to said lower part, this sudden movement, considered instantaneous, being used to actuate an indicator such as a needle associated with a scale or a disk bearing indications and cooperating with a window.
  • Patent applications CH 702137 and EP 2241944 describe such mechanisms for a minute counter.
  • the present invention aims to remedy this drawback or at least to attenuate it and to this end proposes a watch mechanism comprising a motor member, a regulating member for regulating the motor member, a jumping member, an actuating spring, a or several gears between the driving member and the actuating spring and a winding and blocking device allowing continuous winding of the actuating spring by the driving member via the gear(s) and periodic disarming of the spring actuation, the actuation spring causing the jumping member to make a jump each time it is unwinded, characterized in that the actuation spring is a spring with non-linear behavior which produces, between a winding angle ⁇ a and a winding angle ⁇ b separated by at least 10°, an elastic return moment which does not vary by more than 10%, and in that the actuating spring is pre-wound with a value ⁇ arm included in the range [ ⁇ a , ⁇ b ], the clockwork mechanism was nt arranged so that, during its
  • the present invention also proposes a timepiece, such as a clock, a wristwatch or a pocket watch, comprising this timepiece mechanism.
  • the figure 1 is a block diagram of a timepiece mechanism 1 according to the invention, with a jumping member, for a timepiece such as a clock, a wristwatch or a pocket watch.
  • the watch mechanism 1 forms or is part of a watch movement. It comprises a drive member 2, a gear train 3 driven by the drive member 2, a winding and locking device 4 actuated by the gear train 3 and a flexible wheel 5 actuated by the winding and locking device 4.
  • the driving member 2 is typically in the form of one or more barrel springs housed in one or more respective barrels.
  • the rotation of the gear train 3 and of the barrel or barrels is regulated in a conventional manner by a regulating member 6, for example with escapement and balance-spring.
  • Motor member 2, gear train 3 and regulator member 6 are conventional and will therefore not be described in more detail.
  • the winding and blocking device 4 is shown in picture 2 . It comprises a winding wheel set 7, a blocking wheel set 8 and a moving frame 9.
  • a wheel 10 of the winding wheel set 7 meshes with the gear train 3 and is continuously driven by the latter.
  • a star wheel 11 of the winding mobile 7, coaxial with and integral in rotation with the wheel 10, is located in a first closed contour opening 12 of the mobile frame 9 and constitutes a rotary drive member cooperating with two drive elements 13 diametrically opposed formed in the wall of the opening 12.
  • a star 14 of the blocking mobile 8 is located in a second opening with a closed outline 15 of the mobile frame 9 and constitutes a rotary blocking member cooperating with two stop elements 16 diametrically opposite formed in the wall of the opening 15.
  • This star 14 is coaxial with and integral in rotation with a pinion 17 forming part of the mobile blocking device 8.
  • the mobile frame 9 is guided in translation along the double arrow F by a device flexible guide 18 with which it preferably forms a single piece.
  • the mobile frame 9 could however be guided in rotation.
  • the assembly 9, 11, 14 forms a blocking device of the type described in patent applications PCT/IB2018/052645 and PCT/IB2018/052646 of the applicant which are incorporated in the present application by reference.
  • the flexible wheel 5 is shown in figures 2 and 3 . It comprises a hub 19 which is coaxial and integral in rotation with the winding mobile 7, a rim 20 and elastic arms or blades 21 uniformly distributed around the hub 19 and connecting the hub 19 to the rim 20.
  • the rim 20 is thus suspended from the hub 19, and guided in rotation with respect to the hub 19, by the elastic arms 21.
  • the latter together form an actuating spring 22 capable of storing mechanical energy by stretching (by a rotation of the hub 19 with respect to to the serge 20 in one direction, namely the clockwise direction of the picture 2 or 3 ) and restore it by relaxing (by rotating the rim 20 relative to the hub 19 in the Same direction).
  • the flexible wheel 5 further comprises an external toothing 23 secured to the rim 20. This toothing 23 meshes with the pinion 17 of the blocking mobile 8.
  • the flexible wheel 5 is preferably in one piece. It is for example made of metal, alloy, silicon (typically coated with silicon oxide), plastic, mineral glass or metallic glass. It can be produced by machining or by the LIGA technique, in particular in the case where it is made of a metal or alloy, by deep reactive ion etching called DRIE, in particular in the case where it is made of silicon, by molding, in particular in the case where it is made of plastic or metallic glass, or by laser cutting, in particular in the case where it is made of mineral glass.
  • DRIE deep reactive ion etching
  • a display disc 24 is fixed, for example glued, to the rim 20.
  • the display disc 24 is a date display disc bearing two series of indications “1” to “31 » and the rim 20 and the display disc 24 perform together in a jumping manner, with one jump per day, one turn in two months.
  • the indications carried by the display disk 24 are successively visible through an aperture of a dial of the timepiece.
  • the display disc 24 could be one piece with the flexible wheel 5.
  • the operation of the clockwork mechanism 1 is as follows.
  • the winding mobile 7 and with it the hub 19 rotate continuously, according to a rhythm determined by the oscillations of the regulating member 6, in the clockwise direction of the picture 2 under the action of the motor member 2 exerted via the gear train 3. In doing so, they continuously arm the actuating spring 22. Most of the time, the blocking mobile 8, which is under tension due to the torque the actuating spring 22, is blocked by one of the stop elements 16 against which rests on one of the branches of star 14, which keeps rim 20 stationary and therefore the torque delivery end of actuating spring 22.
  • the rim 20 is released periodically at times which are determined by the meeting between the star 11 of the winding mobile 7 and each of the drive elements 13. As soon as a branch of the star 11 comes into contact with the one of the drive elements 13, it cooperates with the latter to move the mobile frame 9 in order to disengage the star wheel 14 of the locking mobile 8 from the stop element 16 against which it was resting. Under the action of the actuating spring 22, the rim 20 and the blocking mobile 8 begin to rotate abruptly until another branch of the star 14 comes to rest on the other element of stop 16. During this sudden movement, considered instantaneous with respect to the movement of the gear train 3 and the winding mobile 7, the indication visible through the aperture is replaced by the following one and the actuating spring 22 is partially disarmed.
  • the different gear ratios in the watch mechanism 1 and the number of branches of each of the stars 11 and 14 are chosen so that the actuating spring 22 accumulates between two successive unwindings (two successive jumps of the serge 20) the same quantity of energy than that released at each disarming.
  • the watch mechanism 1 as described above and illustrated in figure 1 and 2 is an example of implementation. Many variations are possible.
  • the clockwork mechanism 1 could be adapted to cause the display disk 24 to display a quantity other than the date, such as the month, the day of the week, the hour, the minute or the second.
  • the winding mobile 7 could be kinematically connected to the hub 19 in a way other than by being integral in rotation with the latter, for example by means of one or more gears.
  • the blocking mobile 8 could be kinematically connected to the rim 20 by more than one gear.
  • Another one modification could consist in making the driving member 2 mesh directly with the wheel 10.
  • the winding and blocking device 4 is advantageous in particular for protecting the watch mechanism 1 against shocks and for reducing friction, as explained in the patent applications PCT/IB2018/052645 and PCT/IB2018/052646 .
  • the jumping member of watch mechanism 1 could be constituted by hub 19.
  • Hub 19 would then be coaxial and integral in rotation with blocking wheel set 8 while that pinion 17 which meshes with toothing 23 carried by rim 20 would be coaxial and integral in rotation with winding mobile 7.
  • the number of branches of each of stars 11 and 14 would be adapted accordingly.
  • the needle can, for example, being a dead seconds hand.
  • the elastic arms 21 which constitute the actuating spring 22 are specially shaped to improve the constancy of the torque or elastic return moment exerted by this actuating spring 22, and therefore the constancy of the torque necessary to continuously arm this actuating spring 22, and thus improve the regularity of the oscillations of the regulating member 6.
  • the insulated flexible wheel 5 shown in picture 3 has, due to the shape of its elastic arms 21, a privileged direction of rotation of its rim 20 with respect to its hub 19, this direction being defined as that which allows, from its state of rest, the greatest displacement relative angle of its rim 20 with respect to its hub 19. This preferred direction of rotation is clockwise at the picture 3 .
  • the actuating spring 22 deforms to exert a restoring moment M( ⁇ ) depending on the position ⁇ of the rim 20 relative to the hub 19, tending to cause the rim 20 to pivot relative to the hub 19 in the opposite direction to the winding direction, that is to say in the opposite direction to the privileged direction of rotation, thus tending to make it return to its resting state.
  • the actuating spring 22 is designed, in particular by its shape, to exert, in the flexible wheel 5, an elastic return moment M( ⁇ ) that is substantially constant over a range of angular positions [ ⁇ a , ⁇ b ] of the serge 20 with respect to hub 19 by at least 10°, preferably by at least 15°, preferably by at least 20°, preferably by at least 25°.
  • “Substantially constant” moment is understood to mean a moment not varying by more than 10%, preferably 5%, more preferably 3%, typically 1.5%, it being understood that this percentage can be further reduced.
  • the actuating spring 22 is pre-armed with a value ⁇ arm included in the range [ ⁇ a , ⁇ b ] and the gear ratios and the numbers of branches of the stars 11 and 14 are chosen so that the winding angle ⁇ remains in this range during operation of said mechanism, so that the elastic return moment remains substantially constant.
  • Each unwinding of the actuating spring 22 brings the winding angle ⁇ back to the value ⁇ arm .
  • the elastic arms 21 can be shaped by topological optimization by applying the teaching of the publication "Design of adjustable constant-force forceps for robot-assisted surgical manipulation", Chao-Chieh Lan et al., 2011 IEEE International Conference on Robotics and Automation, Shanghai International Conference Center, May 9-13, 2011, China.
  • the topological optimization discussed in the aforementioned article uses parametric polynomial curves such as Bézier curves to determine the geometric shape of the elastic arms.
  • each of the elastic arms 21 of the actuating spring 22 is a Bézier curve whose control points have been optimized to take into account, in particular, the dimensions of the flexible wheel 5 to be designed as well as the constraint “( M max -M min )/((M max +M min )/2) ⁇ 0.05” sought.
  • the inequality “(M max -M min )/((M max +M min )/2) ⁇ 0.05” corresponds to a constancy of the elastic restoring moment of 5% over an angular range [ ⁇ a_5% , ⁇ b_5% ].
  • this flexible wheel 5 comprising three elastic arms 21 distributed uniformly around the hub 19.
  • This flexible wheel 5 corresponds to that shown in the figures.
  • the dimensions of this flexible wheel 5 are as follows: Gear head diameter: 26.12mm Outside diameter of the hub: 4mm Inner diameter of the serge: 20mm Height : 0.2mm Thickness of the elastic arms: 90 ⁇ m Curvilinear length of each arm: 9.82mm
  • control points Q 0 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 were used.
  • the coordinates of these control points are shown in Table 1 below.
  • ⁇ i> ⁇ u>Table 1 Coordinates of control points Q ⁇ sub>0 ⁇ /sub> to Q ⁇ sub>6 ⁇ /sub>. ⁇ /u> ⁇ /i> Variables x-coordinates [mm] y-coordinates [mm] Q 0 1.51325 1.30775 Q1 3.7465 3,238 Q2 5,625 -1.1825 Q3 6.875 0.907 Q4 7.5 2.06575 Q5 8.75 0 Q6 10 0
  • the Bézier curve was broken down into two segments, a first segment corresponding to a curve of Bézier of order 4 based on control points Q 0 to Q 3 and a second segment corresponding to a Bézier curve of order 4 based on control points Q 3 to Q 6 .
  • the graph of the figure 5 shows the geometry of the external diameter of the hub 19, of the internal diameter of the rim 20 and of one of the elastic arms 21 of the flexible wheel 5 that the applicant has designed, the geometry of said arm being defined by a curve passing through the set of point coordinates defined in Table 2 above. This graph is produced in an orthonormal frame.
  • the figure 6 represents the results of a simulation of the evolution of the elastic return moment of the flexible wheel 5 isolated thus produced as a function of the angular position ⁇ of its rim 20 with respect to its hub 19.
  • the simulation carried out considers the insulated flexible wheel 5 made of silicon coated with a layer of silicon oxide 3 ⁇ m thick, but any suitable material can be used.
  • materials such as Nivaflex ® 45/18 (alloy based on cobalt, nickel and chromium), CK101 (unalloyed structural steel) or other alloys, plastic, mineral glasses or metallic glasses, for example Vitreloy 1b, are also suitable and make it possible to obtain flexible wheels whose elastic return moment is substantially constant over the same angular ranges [ ⁇ a , ⁇ b ].
  • the angular operating range allowing the delivery of a substantially constant moment being a constant linked to the shape of the elastic arms 21, the operating angle ⁇ b must be less than the angle ⁇ lim corresponding to the limit before yielding or rupture of the actuating spring 22. This makes it possible to define the maximum thickness that it is possible to achieve on the arms.
  • Table 3 gives, by way of indication, the values ⁇ a_y% , ⁇ b_y% and ⁇ (range of angular positions at substantially constant moment) associated with the flexible wheel 5 produced by the applicant as a function of the percentage of constancy y considered as well as the associated torque values M min and M max .
  • the figure 7 shows different curves representative of a normalized moment of force M( ⁇ ) exerted by the flexible wheel 5 isolated as a function of the angular position ⁇ of its rim 20 with respect to its hub 19 (winding angle) for different section variations elastic arms 21.
  • the highest curve, denoted by A1 corresponds to elastic arms 21 of constant section and thickness of 30 ⁇ m.
  • the curves located below the curve A1 correspond to elastic arms 21 whose thickness decreases linearly from the hub 19 to the serge 20, the thickness at the point of junction with the hub 19 being 30 ⁇ m for each curve, the thickness at the point of junction with the serge 20 being 29 ⁇ m for the curve A2, 28 ⁇ m for the curve A3 and 27 ⁇ m for the curve A4.
  • An improvement in consistency is observed for curves A2, A3 and A4 compared to curve A1 over a range of angles of reinforcement of length greater than 15°.
  • the figure 8 shows two curves B1 and B2 representative of a normalized moment of force M( ⁇ ) exerted by the flexible wheel 5 isolated as a function of the angular position ⁇ of its rim 20 with respect to its hub 19 (winding angle) for different shapes of section of the elastic arms 21.
  • the highest curve, B1 corresponds to elastic arms 21 of constant section and thickness of 30 ⁇ m.
  • Curve B2 corresponds to elastic arms 21 whose thickness decreases linearly from the hub 19 to the middle of the arm then increases linearly from the middle of the arm to the serge 20, the thickness at the junction points with the hub 19 and with the serge 20 being 30 ⁇ m, the thickness in the middle of the arm being 29 ⁇ m.
  • the elastic arms 21 have a variable section
  • this typically varies in a strictly monotonous manner (it increases or decreases without interruption but not necessarily linearly) over at least one continuous portion of the elastic arm representing 10% , preferably 20%, preferably 30%, preferably 40%, of the (curvilinear) length of the elastic arm.
  • the variation of the section is also chosen to improve the constancy of the elastic restoring moment over the range [ ⁇ a , ⁇ b ] compared to elastic arms of the same shape as the arms 21 but of constant section.
  • the elastic arms 21 can in particular take a form as described in the article “Functional joint mechanisms with constant torque outputs”, Mechanism and machine theory 62 (2013) 166-181, Chia-Wen Hou et al.
  • the height, length, thickness and/or material of the elastic arms 21, or even the inclination of the elastic arms 21 relative to the hub 19 (in the plane of the flexible wheel 5), can also be modified to adjust the value of the substantially constant elastic restoring moment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Springs (AREA)

Description

La présente invention concerne un mécanisme horloger à organe sautant, en particulier pour l'affichage instantané d'une grandeur temporelle telle que le quantième.The present invention relates to a jumping organ watch mechanism, in particular for the instantaneous display of a temporal quantity such as the date.

On connaît dans l'horlogerie des mécanismes d'affichage instantané comprenant une came escargot contre laquelle s'appuie une bascule sous l'action d'un ressort de rappel appliqué contre la bascule. Le ressort de rappel est une lame en forme de V, de U ou de spirale. A chaque tour de rotation de la came, la bascule glisse de la partie basse vers la partie haute de la came, ce qui arme progressivement le ressort de rappel, puis la bascule chute de ladite partie haute à ladite partie basse, ce mouvement brusque, considéré comme instantané, étant utilisé pour actionner un indicateur tel qu'une aiguille associée à une graduation ou un disque portant des indications et coopérant avec un guichet. Les demandes de brevet CH 702137 et EP 2241944 , par exemple, décrivent de tels mécanismes pour un compteur de minutes.Instantaneous display mechanisms comprising a snail cam against which a rocker rests under the action of a return spring applied against the rocker are known in watchmaking. The return spring is a V-shaped, U-shaped or spiral leaf. At each revolution of the cam, the lever slides from the lower part to the upper part of the cam, which gradually arms the return spring, then the lever drops from said upper part to said lower part, this sudden movement, considered instantaneous, being used to actuate an indicator such as a needle associated with a scale or a disk bearing indications and cooperating with a window. Patent applications CH 702137 and EP 2241944 , for example, describe such mechanisms for a minute counter.

On connaît aussi d'autres mécanismes, par exemple ceux décrits dans les documents CH 524847 et EP 2799938 , dans lesquels un ressort spiral a une de ses extrémités qui est reliée cinématiquement à un organe moteur pour un armage continu du ressort spiral par l'organe moteur et son autre extrémité qui est libérée périodiquement par un dispositif de blocage pour un désarmage périodique du ressort spiral, chaque désarmage ayant pour effet d'actionner un organe indicateur sautant.Other mechanisms are also known, for example those described in the documents CH 524847 and EP 2799938 , in which a spiral spring has one of its ends which is kinematically connected to a drive member for continuous winding of the spiral spring by the drive member and its other end which is released periodically by a blocking device for periodic winding of the spring hairspring, each disarming having the effect of actuating a jumping indicator member.

Tous ces mécanismes ont pour inconvénient que le couple à produire pour armer le ressort varie en fonction du temps. Il faut en effet vaincre la force du ressort qui augmente linéairement avec son degré d'armage. Cette variation de couple affecte la régularité des oscillations de l'organe régulateur de la montre et donc la précision de la mesure.All these mechanisms have the drawback that the torque to be produced to wind the spring varies as a function of time. It is indeed necessary to overcome the force of the spring which increases linearly with its degree of winding. This variation in torque affects the regularity of the oscillations of the regulator member of the watch and therefore the precision of the measurement.

La présente invention vise à remédier à cet inconvénient ou au moins à l'atténuer et propose à cette fin un mécanisme horloger comprenant un organe moteur, un organe régulateur pour réguler l'organe moteur, un organe sautant, un ressort d'actionnement, un ou plusieurs engrenages entre l'organe moteur et le ressort d'actionnement et un dispositif d'armage et de blocage permettant un armage continu du ressort d'actionnement par l'organe moteur via le ou les engrenages et un désarmage périodique du ressort d'actionnement, le ressort d'actionnement faisant effectuer un saut à l'organe sautant à chacun de ses désarmages, caractérisé en ce que le ressort d'actionnement est un ressort à comportement non linéaire qui produit, entre un angle d'armage θa et un angle d'armage θb séparés d'au moins 10°, un moment de rappel élastique qui ne varie pas de plus de 10%, et en ce que le ressort d'actionnement est pré-armé d'une valeur θarm incluse dans la plage [θa, θb], le mécanisme horloger étant agencé pour que, pendant son fonctionnement, l'angle d'armage du ressort d'actionnement reste dans la plage [θa, θb].The present invention aims to remedy this drawback or at least to attenuate it and to this end proposes a watch mechanism comprising a motor member, a regulating member for regulating the motor member, a jumping member, an actuating spring, a or several gears between the driving member and the actuating spring and a winding and blocking device allowing continuous winding of the actuating spring by the driving member via the gear(s) and periodic disarming of the spring actuation, the actuation spring causing the jumping member to make a jump each time it is unwinded, characterized in that the actuation spring is a spring with non-linear behavior which produces, between a winding angle θ a and a winding angle θ b separated by at least 10°, an elastic return moment which does not vary by more than 10%, and in that the actuating spring is pre-wound with a value θ arm included in the range [θ a , θ b ], the clockwork mechanism was nt arranged so that, during its operation, the winding angle of the actuating spring remains in the range [θ a , θ b ].

La présente invention propose également une pièce d'horlogerie, telle qu'une pendulette, une montre-bracelet ou une montre de poche, comprenant ce mécanisme horloger.The present invention also proposes a timepiece, such as a clock, a wristwatch or a pocket watch, comprising this timepiece mechanism.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins annexés dans lesquels :

  • la figure 1 est un schéma-bloc d'un mécanisme horloger à organe sautant selon l'invention ;
  • la figure 2 une vue de dessus d'un dispositif d'armage et de blocage et d'une roue flexible du mécanisme horloger à organe sautant selon l'invention ;
  • la figure 3 est une vue de dessus de la roue flexible seule, comprenant un moyeu et une serge reliés par un ressort d'actionnement ;
  • la figure 4 est une représentation graphique schématique illustrant l'allure de la courbe d'évolution du moment de rappel élastique exercé par le ressort d'actionnement dans la roue flexible ;
  • la figure 5 représente les coordonnées de points définissant une forme particulière de bras élastique pour le ressort d'actionnement ;
  • la figure 6 est une représentation graphique du moment de rappel élastique exercé par le ressort d'actionnement dans la roue flexible comprenant des bras élastiques de forme telle que représentée à la figure 5 ;
  • la figure 7 est une représentation graphique d'un moment de rappel élastique normalisé exercé par le ressort d'actionnement dans la roue flexible illustrée à la figure 3 selon différentes variantes des bras élastiques du ressort d'actionnement, à savoir de tels bras à section constante (courbe A1) et de tels bras à section variable (courbes A2 à A4), la section variant selon un premier mode de variation ;
  • la figure 8 est une représentation graphique d'un moment de rappel élastique normalisé exercé par le ressort d'actionnement dans la roue flexible illustrée à la figure 3 selon deux variantes des bras élastiques du ressort d'actionnement, à savoir de tels bras à section constante (courbe B1) et de tels bras à section variable (courbe B2), la section variant selon un deuxième mode de variation ;
Other characteristics and advantages of the present invention will appear on reading the following detailed description given with reference to the appended drawings in which:
  • the figure 1 is a block diagram of a jumping organ clock mechanism according to the invention;
  • the figure 2 a top view of a winding and locking device and of a flexible wheel of the watch mechanism with a jumping member according to the invention;
  • the picture 3 is a top view of the flexible wheel alone, comprising a hub and a rim connected by an actuating spring;
  • the figure 4 is a schematic graphic representation illustrating the shape of the evolution curve of the elastic return moment exerted by the actuating spring in the flexible wheel;
  • the figure 5 represents the coordinates of points defining a particular form of elastic arm for the actuating spring;
  • the figure 6 is a graphic representation of the elastic return moment exerted by the actuating spring in the flexible wheel comprising elastic arms of a shape as shown in figure 5 ;
  • the figure 7 is a graphical representation of a normalized elastic restoring moment exerted by the actuating spring in the flexible wheel shown in picture 3 according to different variants of the elastic arms of the actuating spring, namely such arms with constant section (curve A1) and such arms with variable section (curves A2 to A4), the section varying according to a first mode of variation;
  • the figure 8 is a graphical representation of a normalized elastic restoring moment exerted by the actuating spring in the flexible wheel shown in picture 3 according to two variants of the elastic arms of the actuating spring, namely such arms with constant section (curve B1) and such arms with variable section (curve B2), the section varying according to a second mode of variation;

La figure 1 est un schéma-bloc d'un mécanisme horloger 1 selon l'invention, à organe sautant, pour une pièce d'horlogerie telle qu'une pendulette, une montre-bracelet ou une montre de poche. Le mécanisme horloger 1 forme ou fait partie d'un mouvement horloger. Il comprend un organe moteur 2, un rouage 3 entraîné par l'organe moteur 2, un dispositif d'armage et de blocage 4 actionné par le rouage 3 et une roue flexible 5 actionnée par le dispositif d'armage et de blocage 4.The figure 1 is a block diagram of a timepiece mechanism 1 according to the invention, with a jumping member, for a timepiece such as a clock, a wristwatch or a pocket watch. The watch mechanism 1 forms or is part of a watch movement. It comprises a drive member 2, a gear train 3 driven by the drive member 2, a winding and locking device 4 actuated by the gear train 3 and a flexible wheel 5 actuated by the winding and locking device 4.

L'organe moteur 2 est typiquement sous la forme d'un ou plusieurs ressorts de barillet logé(s) dans un ou plusieurs barillets respectifs. La rotation du rouage 3 et du ou des barillets est régulée de manière classique par un organe régulateur 6, par exemple à échappement et balancier-spiral. L'organe moteur 2, le rouage 3 et l'organe régulateur 6 sont classiques et ne seront donc pas décrits plus en détail.The driving member 2 is typically in the form of one or more barrel springs housed in one or more respective barrels. The rotation of the gear train 3 and of the barrel or barrels is regulated in a conventional manner by a regulating member 6, for example with escapement and balance-spring. Motor member 2, gear train 3 and regulator member 6 are conventional and will therefore not be described in more detail.

Le dispositif d'armage et de blocage 4 est représenté à la figure 2. Il comprend un mobile d'armage 7, un mobile de blocage 8 et un cadre mobile 9. Une roue 10 du mobile d'armage 7 engrène avec le rouage 3 et est entraînée en continu par ce dernier. Une étoile 11 du mobile d'armage 7, coaxiale et solidaire en rotation de la roue 10, est située dans une première ouverture à contour fermé 12 du cadre mobile 9 et constitue un organe rotatif d'entraînement coopérant avec deux éléments d'entraînement 13 diamétralement opposés formés dans la paroi de l'ouverture 12. Une étoile 14 du mobile de blocage 8 est située dans une deuxième ouverture à contour fermé 15 du cadre mobile 9 et constitue un organe rotatif de blocage coopérant avec deux éléments d'arrêt 16 diamétralement opposés formés dans la paroi de l'ouverture 15. Cette étoile 14 est coaxiale et solidaire en rotation d'un pignon 17 faisant partie du mobile de blocage 8. Le cadre mobile 9 est guidé en translation suivant la double flèche F par un dispositif de guidage flexible 18 avec lequel il forme de préférence une pièce monobloc. Le cadre mobile 9 pourrait toutefois être guidé en rotation. L'ensemble 9, 11, 14 forme un dispositif de blocage du type décrit dans les demandes de brevet PCT/IB2018/052645 et PCT/IB2018/052646 de la demanderesse qui sont incorporées dans la présente demande par renvoi.The winding and blocking device 4 is shown in picture 2 . It comprises a winding wheel set 7, a blocking wheel set 8 and a moving frame 9. A wheel 10 of the winding wheel set 7 meshes with the gear train 3 and is continuously driven by the latter. A star wheel 11 of the winding mobile 7, coaxial with and integral in rotation with the wheel 10, is located in a first closed contour opening 12 of the mobile frame 9 and constitutes a rotary drive member cooperating with two drive elements 13 diametrically opposed formed in the wall of the opening 12. A star 14 of the blocking mobile 8 is located in a second opening with a closed outline 15 of the mobile frame 9 and constitutes a rotary blocking member cooperating with two stop elements 16 diametrically opposite formed in the wall of the opening 15. This star 14 is coaxial with and integral in rotation with a pinion 17 forming part of the mobile blocking device 8. The mobile frame 9 is guided in translation along the double arrow F by a device flexible guide 18 with which it preferably forms a single piece. The mobile frame 9 could however be guided in rotation. The assembly 9, 11, 14 forms a blocking device of the type described in patent applications PCT/IB2018/052645 and PCT/IB2018/052646 of the applicant which are incorporated in the present application by reference.

La roue flexible 5 est représentée aux figures 2 et 3. Elle comprend un moyeu 19 coaxial et solidaire en rotation du mobile d'armage 7, une serge 20 et des bras ou lames élastiques 21 uniformément répartis autour du moyeu 19 et reliant le moyeu 19 à la serge 20. La serge 20 est ainsi suspendue au moyeu 19, et guidée en rotation par rapport au moyeu 19, par les bras élastiques 21. Ces derniers forment ensemble un ressort d'actionnement 22 capable d'emmagasiner de l'énergie mécanique en se tendant (par une rotation du moyeu 19 par rapport à la serge 20 dans un sens, à savoir le sens horaire de la figure 2 ou 3) et de la restituer en se détendant (par une rotation de la serge 20 par rapport au moyeu 19 dans le même sens). Les extrémités respectives des bras élastiques 21 jointes au moyeu 19 constituent ensemble une extrémité d'armage du ressort d'actionnement 22. Les extrémités respectives des bras élastiques 21 jointes à la serge 20 constituent ensemble une extrémité de délivrance de couple du ressort d'actionnement 22. La roue flexible 5 comprend en outre une denture extérieure 23 solidaire de la serge 20. Cette denture 23 engrène avec le pignon 17 du mobile de blocage 8.The flexible wheel 5 is shown in figures 2 and 3 . It comprises a hub 19 which is coaxial and integral in rotation with the winding mobile 7, a rim 20 and elastic arms or blades 21 uniformly distributed around the hub 19 and connecting the hub 19 to the rim 20. The rim 20 is thus suspended from the hub 19, and guided in rotation with respect to the hub 19, by the elastic arms 21. The latter together form an actuating spring 22 capable of storing mechanical energy by stretching (by a rotation of the hub 19 with respect to to the serge 20 in one direction, namely the clockwise direction of the picture 2 or 3 ) and restore it by relaxing (by rotating the rim 20 relative to the hub 19 in the Same direction). The respective ends of the elastic arms 21 joined to the hub 19 together constitute a winding end of the actuating spring 22. The respective ends of the elastic arms 21 joined to the rim 20 together constitute a torque delivery end of the actuating spring 22. The flexible wheel 5 further comprises an external toothing 23 secured to the rim 20. This toothing 23 meshes with the pinion 17 of the blocking mobile 8.

La roue flexible 5 est de préférence monobloc. Elle est par exemple en métal, alliage, silicium (typiquement revêtu d'oxyde de silicium), plastique, verre minéral ou verre métallique. Elle peut être réalisée par usinage ou par la technique LIGA, notamment dans le cas où elle est faite d'un métal ou alliage, par gravure ionique réactive profonde dite DRIE, notamment dans le cas où elle est faite en silicium, par moulage, notamment dans le cas où elle est faite en plastique ou verre métallique, ou par découpe laser, notamment dans le cas où elle est en verre minéral.The flexible wheel 5 is preferably in one piece. It is for example made of metal, alloy, silicon (typically coated with silicon oxide), plastic, mineral glass or metallic glass. It can be produced by machining or by the LIGA technique, in particular in the case where it is made of a metal or alloy, by deep reactive ion etching called DRIE, in particular in the case where it is made of silicon, by molding, in particular in the case where it is made of plastic or metallic glass, or by laser cutting, in particular in the case where it is made of mineral glass.

Un disque d'affichage 24 est fixé, par exemple collé, sur la serge 20. Dans l'exemple représenté, le disque d'affichage 24 est un disque d'affichage de quantième portant deux séries d'indications « 1 » à « 31 » et la serge 20 et le disque d'affichage 24 effectuent ensemble de manière sautante, avec un saut par jour, un tour en deux mois. Les indications portées par le disque d'affichage 24 sont successivement visibles à travers un guichet d'un cadran de la pièce d'horlogerie. Le disque d'affichage 24 pourrait être monobloc avec la roue flexible 5.A display disc 24 is fixed, for example glued, to the rim 20. In the example shown, the display disc 24 is a date display disc bearing two series of indications “1” to “31 » and the rim 20 and the display disc 24 perform together in a jumping manner, with one jump per day, one turn in two months. The indications carried by the display disk 24 are successively visible through an aperture of a dial of the timepiece. The display disc 24 could be one piece with the flexible wheel 5.

Le fonctionnement du mécanisme horloger 1 est le suivant.The operation of the clockwork mechanism 1 is as follows.

Le mobile d'armage 7 et avec lui le moyeu 19 tournent continûment, selon un rythme déterminé par les oscillations de l'organe régulateur 6, dans le sens horaire de la figure 2 sous l'action de l'organe moteur 2 exercée via le rouage 3. Ce faisant, ils arment continûment le ressort d'actionnement 22. La plupart du temps, le mobile de blocage 8, qui est sous tension de par le couple exercé par le ressort d'actionnement 22, est bloqué par l'un des éléments d'arrêt 16 contre lequel s'appuie une des branches de l'étoile 14, ce qui maintient immobile la serge 20 et donc l'extrémité de délivrance de couple du ressort d'actionnement 22.The winding mobile 7 and with it the hub 19 rotate continuously, according to a rhythm determined by the oscillations of the regulating member 6, in the clockwise direction of the picture 2 under the action of the motor member 2 exerted via the gear train 3. In doing so, they continuously arm the actuating spring 22. Most of the time, the blocking mobile 8, which is under tension due to the torque the actuating spring 22, is blocked by one of the stop elements 16 against which rests on one of the branches of star 14, which keeps rim 20 stationary and therefore the torque delivery end of actuating spring 22.

La serge 20 est libérée périodiquement à des instants qui sont déterminés par la rencontre entre l'étoile 11 du mobile d'armage 7 et chacun des éléments d'entraînement 13. Dès qu'une branche de l'étoile 11 entre en contact avec l'un des éléments d'entraînement 13, elle coopère avec celui-ci pour déplacer le cadre mobile 9 afin de désengager l'étoile 14 du mobile de blocage 8 de l'élément d'arrêt 16 contre lequel il s'appuyait. Sous l'action du ressort d'actionnement 22, la serge 20 et le mobile de blocage 8 se mettent à tourner brusquement jusqu'à ce qu'une autre branche de l'étoile 14 vienne s'appuyer sur l'autre élément d'arrêt 16. Pendant ce déplacement brusque, considéré comme instantané par rapport au mouvement du rouage 3 et du mobile d'armage 7, l'indication visible à travers le guichet est remplacée par la suivante et le ressort d'actionnement 22 se désarme partiellement.The rim 20 is released periodically at times which are determined by the meeting between the star 11 of the winding mobile 7 and each of the drive elements 13. As soon as a branch of the star 11 comes into contact with the one of the drive elements 13, it cooperates with the latter to move the mobile frame 9 in order to disengage the star wheel 14 of the locking mobile 8 from the stop element 16 against which it was resting. Under the action of the actuating spring 22, the rim 20 and the blocking mobile 8 begin to rotate abruptly until another branch of the star 14 comes to rest on the other element of stop 16. During this sudden movement, considered instantaneous with respect to the movement of the gear train 3 and the winding mobile 7, the indication visible through the aperture is replaced by the following one and the actuating spring 22 is partially disarmed.

Les différents rapports d'engrenages dans le mécanisme horloger 1 et le nombre de branches de chacune des étoiles 11 et 14 sont choisis pour que le ressort d'actionnement 22 accumule entre deux désarmages successifs (deux sauts successifs de la serge 20) la même quantité d'énergie que celle libérée à chaque désarmage.The different gear ratios in the watch mechanism 1 and the number of branches of each of the stars 11 and 14 are chosen so that the actuating spring 22 accumulates between two successive unwindings (two successive jumps of the serge 20) the same quantity of energy than that released at each disarming.

Le mécanisme horloger 1 tel que décrit ci-dessus et illustré aux figures 1 et 2 est un exemple de réalisation. De nombreuses variantes sont possibles.The watch mechanism 1 as described above and illustrated in figure 1 and 2 is an example of implementation. Many variations are possible.

Par exemple, le mécanisme horloger 1 pourrait être adapté pour faire afficher par le disque d'affichage 24 une autre grandeur que le quantième, telle que le mois, le jour de la semaine, l'heure, la minute ou la seconde.For example, the clockwork mechanism 1 could be adapted to cause the display disk 24 to display a quantity other than the date, such as the month, the day of the week, the hour, the minute or the second.

Le mobile d'armage 7 pourrait être relié cinématiquement au moyeu 19 d'une autre manière qu'en étant solidaire en rotation de celui-ci, par exemple par l'intermédiaire d'un ou plusieurs engrenages. Le mobile de blocage 8 pourrait être relié cinématiquement à la serge 20 par plus d'un engrenage. Une autre modification pourrait consister à faire engrener directement l'organe moteur 2 avec la roue 10.The winding mobile 7 could be kinematically connected to the hub 19 in a way other than by being integral in rotation with the latter, for example by means of one or more gears. The blocking mobile 8 could be kinematically connected to the rim 20 by more than one gear. Another one modification could consist in making the driving member 2 mesh directly with the wheel 10.

Le dispositif d'armage et de blocage 4 est avantageux notamment pour protéger le mécanisme horloger 1 contre les chocs et pour diminuer les frottements, comme expliqué dans les demandes de brevet PCT/IB2018/052645 et PCT/IB2018/052646 . Toutefois, il est possible de recourir à d'autres dispositifs d'armage et de blocage, tels que celui décrit dans la demande de brevet EP 2799938 ou même des dispositifs d'armage et de blocage ne permettant qu'un déplacement semi-instantané (en partie traînant, en partie sautant) du disque d'affichage.The winding and blocking device 4 is advantageous in particular for protecting the watch mechanism 1 against shocks and for reducing friction, as explained in the patent applications PCT/IB2018/052645 and PCT/IB2018/052646 . However, it is possible to use other winding and blocking devices, such as the one described in the application for patent EP 2799938 or even winding and blocking devices allowing only semi-instantaneous movement (partly dragging, partly jumping) of the display disc.

Au lieu d'être constitué par la serge 20 et le disque d'affichage 24, l'organe sautant du mécanisme horloger 1 pourrait être constitué par le moyeu 19. Le moyeu 19 serait alors coaxial et solidaire en rotation du mobile de blocage 8 tandis que le pignon 17 qui engrène avec la denture 23 que porte la serge 20 serait coaxial et solidaire en rotation du mobile d'armage 7. Le nombre de branches de chacune des étoiles 11 et 14 serait adapté en conséquence. Une telle variante, où le ressort d'actionnement 22 est armé par la serge 20 et désarmé par le moyeu 19, peut servir notamment à afficher une grandeur au moyen d'une aiguille solidaire en rotation du moyeu 19. L'aiguille peut, par exemple, être une aiguille de seconde morte.Instead of being constituted by rim 20 and display disc 24, the jumping member of watch mechanism 1 could be constituted by hub 19. Hub 19 would then be coaxial and integral in rotation with blocking wheel set 8 while that pinion 17 which meshes with toothing 23 carried by rim 20 would be coaxial and integral in rotation with winding mobile 7. The number of branches of each of stars 11 and 14 would be adapted accordingly. Such a variant, where the actuating spring 22 is armed by the rim 20 and disarmed by the hub 19, can be used in particular to display a magnitude by means of a needle integral in rotation with the hub 19. The needle can, for example, being a dead seconds hand.

Dans tous les cas, selon la présente invention, les bras élastiques 21 qui constituent le ressort d'actionnement 22 sont conformés spécialement pour améliorer la constance du couple ou moment de rappel élastique exercé par ce ressort d'actionnement 22, et donc la constance du couple nécessaire pour armer en continu ce ressort d'actionnement 22, et améliorer ainsi la régularité des oscillations de l'organe régulateur 6.In all cases, according to the present invention, the elastic arms 21 which constitute the actuating spring 22 are specially shaped to improve the constancy of the torque or elastic return moment exerted by this actuating spring 22, and therefore the constancy of the torque necessary to continuously arm this actuating spring 22, and thus improve the regularity of the oscillations of the regulating member 6.

Pour la compréhension de l'invention, le comportement de la roue flexible 5, considérée isolément, c'est-à-dire libre de toute interaction avec le mobile d'armage 7 et avec le mobile de blocage 8, est décrit ci-dessous. La figure 3 représente cette roue flexible 5 isolée.For the understanding of the invention, the behavior of the flexible wheel 5, considered in isolation, that is to say free of any interaction with the winding mobile 7 and with the locking mobile 8, is described below. . The picture 3 represents this isolated flexible wheel 5.

La roue flexible 5 isolée montrée à la figure 3 présente, en raison de la forme de ses bras élastiques 21, un sens de rotation privilégié de sa serge 20 par rapport à son moyeu 19, ce sens étant défini comme celui qui permet, à partir de son état de repos, le plus grand déplacement angulaire relatif de sa serge 20 par rapport à son moyeu 19. Ce sens de rotation privilégié est le sens horaire à la figure 3.The insulated flexible wheel 5 shown in picture 3 has, due to the shape of its elastic arms 21, a privileged direction of rotation of its rim 20 with respect to its hub 19, this direction being defined as that which allows, from its state of rest, the greatest displacement relative angle of its rim 20 with respect to its hub 19. This preferred direction of rotation is clockwise at the picture 3 .

La roue flexible 5 isolée peut être armée par rotation de sa serge 20 par rapport à son moyeu 19 d'un angle θ dans son sens de rotation privilégié, l'angle θ = 0° correspondant à la position de repos de la roue flexible 5 isolée, c'est-à-dire à la position dans laquelle le ressort d'actionnement 22 est au repos (n'exerce aucun moment de rappel élastique). Lors d'un tel armage, le ressort d'actionnement 22 se déforme pour exercer un moment de rappel M(θ) dépendant de la position θ de la serge 20 par rapport au moyeu 19, tendant à faire pivoter la serge 20 par rapport au moyeu 19 dans le sens opposé au sens d'armage, c'est-à-dire dans le sens opposé au sens de rotation privilégié, tendant ainsi à la faire revenir à son état de repos.The insulated flexible wheel 5 can be reinforced by rotation of its rim 20 relative to its hub 19 through an angle θ in its preferred direction of rotation, the angle θ=0° corresponding to the rest position of the flexible wheel 5 isolated, that is to say in the position in which the actuating spring 22 is at rest (exerts no elastic return moment). During such winding, the actuating spring 22 deforms to exert a restoring moment M(θ) depending on the position θ of the rim 20 relative to the hub 19, tending to cause the rim 20 to pivot relative to the hub 19 in the opposite direction to the winding direction, that is to say in the opposite direction to the privileged direction of rotation, thus tending to make it return to its resting state.

Lorsque la serge 20 est dans la position angulaire dans laquelle l'angle θ est égal à x°, on dit que la roue flexible 5 ou le ressort d'actionnement 22 est armé de x°.When the rim 20 is in the angular position in which the angle θ is equal to x°, it is said that the flexible wheel 5 or the actuating spring 22 is armed with x°.

Le ressort d'actionnement 22 est conçu, notamment de par sa forme, pour exercer, dans la roue flexible 5, un moment de rappel élastique M(θ) sensiblement constant sur une plage de positions angulaires [θa, θb] de la serge 20 par rapport au moyeu 19 d'au moins 10°, de préférence d'au moins 15°, de préférence d'au moins 20°, de préférence d'au moins 25°.The actuating spring 22 is designed, in particular by its shape, to exert, in the flexible wheel 5, an elastic return moment M(θ) that is substantially constant over a range of angular positions [θ a , θ b ] of the serge 20 with respect to hub 19 by at least 10°, preferably by at least 15°, preferably by at least 20°, preferably by at least 25°.

On entend par moment « sensiblement constant » un moment ne variant pas de plus de 10%, de préférence 5%, de préférence encore 3%, typiquement 1,5%, étant entendu que ce pourcentage peut être diminué davantage.“Substantially constant” moment is understood to mean a moment not varying by more than 10%, preferably 5%, more preferably 3%, typically 1.5%, it being understood that this percentage can be further reduced.

Plus précisément, soient respectivement Mmin et Mmax les valeurs des moments minimum et maximum exercés par le ressort d'actionnement 22 dans la roue flexible 5 isolée sur une plage donnée de positions angulaires de la serge 20 par rapport au moyeu 19, le moment exercé par le ressort d'actionnement 22 est sensiblement constant dès lors que l'inéquation « (Mmax - Mmin)/((Mmax + Mmin)/2) ≤ 0,1 » est vérifiée, plus précisément, dès lors que l'inéquation « (Mmax - Mmin)/((Mmax + Mmin)/2) ≤ y% », avec y=10, de préférence 5, de préférence encore 3, par exemple 1,5, est vérifiée.More specifically, let M min and M max respectively be the values of the minimum and maximum moments exerted by the actuating spring 22 in the flexible wheel 5 isolated over a given range of angular positions of the rim 20 relative to the hub 19, the moment exerted by the actuating spring 22 is substantially constant when the inequality “(M max - M min )/((M max + M min )/2) ≤ 0.1” is verified, more precisely, when the inequality "(M max - M min )/((M max + M min )/2) ≤ y%", with y=10, preferably 5, more preferably 3 , for example 1.5, holds.

La figure 4 illustre schématiquement l'allure de la courbe d'évolution du moment de rappel élastique M(θ) en fonction de la position angulaire θ relative de la serge 20 par rapport au moyeu 19. Comme cela est visible, cette courbe est non linéaire et le moment de rappel élastique M(θ) suit globalement une évolution en trois phases :

  • pour un angle θ compris entre 0° et une première valeur θa, le moment de rappel élastique augmente rapidement avec le déplacement angulaire θ ;
  • au-delà de cette première valeur θa, le ressort d'actionnement 22 est dans une phase stable. En effet, entre cette première valeur θa et une seconde valeur θb, le moment de rappel élastique est sensiblement constant par rapport au déplacement angulaire θ, la courbe M(θ) prenant la forme d'un plateau ;
  • au-delà de cette deuxième valeur θb le moment de rappel élastique augmente à nouveau jusqu'à atteindre une valeur limite Mlimite, pour un déplacement angulaire θ=θlimite. Cette valeur Mlimite dépend des propriétés du matériau dans lequel le ressort d'actionnement 22 est réalisé et est atteinte lorsque le ressort d'actionnement 22 subit la contrainte maximale qu'il peut supporter.
The figure 4 schematically illustrates the shape of the evolution curve of the elastic return moment M(θ) as a function of the relative angular position θ of the rim 20 with respect to the hub 19. As can be seen, this curve is non-linear and the elastic restoring moment M(θ) globally follows an evolution in three phases:
  • for an angle θ between 0° and a first value θ a , the elastic restoring moment increases rapidly with the angular displacement θ;
  • beyond this first value θ a , the actuating spring 22 is in a stable phase. Indeed, between this first value θ a and a second value θ b , the elastic restoring moment is substantially constant with respect to the angular displacement θ, the curve M(θ) taking the form of a plateau;
  • beyond this second value θ b the elastic restoring moment increases again until it reaches a limit value M limit , for an angular displacement θ=θ limit . This limit value M depends on the properties of the material in which the actuating spring 22 is made and is reached when the actuating spring 22 undergoes the maximum stress that it can withstand.

Il est possible de définir des valeurs limites d'angles θa_y% et θb_y% entre lesquelles le moment de rappel élastique est sensiblement constant, avec une constance de y%. Par exemple, si l'on veut obtenir une constance du moment de rappel élastique de 5%, on définit à l'aide de la courbe M(θ) les valeurs des angles θa_5% et θb_5% pour que l'inéquation : « (Mmax-Mmin) / ((Mmax+Mmin)/2) < 0,05 » soit vérifiée ; avec Mmax le moment de rappel élastique maximum sur l'intervalle d'angles [θa_5%, θb_5%] et Mmin le moment de rappel élastique minimum sur ce même intervalle.It is possible to define limit values of angles θ a_y% and θ b_y% between which the elastic restoring moment is substantially constant, with a constancy of y%. For example, if one wants to obtain a constancy of the elastic restoring moment of 5%, one defines using the curve M(θ) the values of the angles θ a_5% and θ b_5% so that the inequality: "(Mmax-Mmin) / ((M max +M min )/2) <0.05" is verified; with M max the maximum elastic restoring moment over the range of angles [θ a_5% , θ b_5% ] and M min the minimum elastic restoring moment over this same interval.

Dans le mécanisme horloger 1, le ressort d'actionnement 22 est pré-armé d'une valeur θarm incluse dans la plage [θa, θb] et les rapports d'engrenages et les nombres de branches des étoiles 11 et 14 sont choisis pour que l'angle d'armage θ reste dans cette plage pendant le fonctionnement dudit mécanisme, de sorte que le moment de rappel élastique reste sensiblement constant. Plus la valeur de pré-armage θarm choisie est proche de la valeur θa plus la plage de fonctionnement du ressort d'actionnement 22 pourra être grande. Chaque désarmage du ressort d'actionnement 22 ramène l'angle d'armage θ à la valeur θarm.In the watch mechanism 1, the actuating spring 22 is pre-armed with a value θ arm included in the range [θ a , θ b ] and the gear ratios and the numbers of branches of the stars 11 and 14 are chosen so that the winding angle θ remains in this range during operation of said mechanism, so that the elastic return moment remains substantially constant. The closer the pre-winding value θ arm chosen is to the value θ a, the greater the operating range of the actuating spring 22 may be. Each unwinding of the actuating spring 22 brings the winding angle θ back to the value θ arm .

Pour obtenir l'allure non linéaire de la courbe M(θ) représentée à la figure 4, les bras élastiques 21 peuvent être conformés par optimisation topologique en appliquant l'enseignement de la publication « Design of adjustable constant-force forceps for robot-assisted surgical manipulation », Chao-Chieh Lan et al., 2011 IEEE International Conférence on Robotics and Automation, Shanghai International Conférence Center, May 9-13, 2011, China. To obtain the nonlinear shape of the curve M(θ) shown in figure 4 , the elastic arms 21 can be shaped by topological optimization by applying the teaching of the publication "Design of adjustable constant-force forceps for robot-assisted surgical manipulation", Chao-Chieh Lan et al., 2011 IEEE International Conference on Robotics and Automation, Shanghai International Conference Center, May 9-13, 2011, China.

L'optimisation topologique dont il est question dans l'article précité utilise des courbes polynomiales paramétriques telles que les courbes de Bézier pour déterminer la forme géométrique des bras élastiques.The topological optimization discussed in the aforementioned article uses parametric polynomial curves such as Bézier curves to determine the geometric shape of the elastic arms.

Les courbes de Bézier se définissent, conjointement à une série de m=(n+1) points de contrôle (Q0, Q1, ... Qn), par un ensemble de points dont les coordonnées sont données par des sommes de polynômes de Bernstein pondérées par les coordonnées desdits points de contrôle.Bézier curves are defined, together with a series of m=(n+1) control points (Q 0 , Q 1 , ... Q n ), by a set of points whose coordinates are given by sums of Bernstein polynomials weighted by the coordinates of said control points.

La forme géométrique de chacun des bras élastiques 21 du ressort d'actionnement 22 est une courbe de Bézier dont les points de contrôle ont été optimisés pour prendre en compte, notamment, les dimensions de la roue flexible 5 à concevoir ainsi que la contrainte « (Mmax-Mmin)/((Mmax+Mmin)/2) ≤ 0,05 » recherchée. L'inéquation « (Mmax-Mmin)/((Mmax+Mmin)/2) ≤ 0,05 » correspond à une constance du moment de rappel élastique de 5% sur une plage angulaire [θa_5%, θb_5%].The geometric shape of each of the elastic arms 21 of the actuating spring 22 is a Bézier curve whose control points have been optimized to take into account, in particular, the dimensions of the flexible wheel 5 to be designed as well as the constraint “( M max -M min )/((M max +M min )/2) ≤ 0.05” sought. The inequality “(M max -M min )/((M max +M min )/2) ≤ 0.05” corresponds to a constancy of the elastic restoring moment of 5% over an angular range [θ a_5% , θ b_5% ].

Plus précisément, la forme géométrique de chacun des bras élastiques 21 est définie par l'ensemble des points i = 0 n B i n t . Q i , avec t 0 , 1 ,

Figure imgb0001
où les B i n
Figure imgb0002
sont les polynômes de Bernstein donnés par la fonction B i t = m 1 ! i ! m 1 i ! t i 1 t m i 1 avec t 0 , 1 ,
Figure imgb0003
et où les Qi sont les points de contrôle Q0 à Qn. Elle correspond à la représentation graphique dans un repère orthonormé de l'ensemble des points définis par les couples de coordonnées (x ; y) définis respectivement par les fonctions x(t) et y(t), t ∈ [0, 1], ci-dessous : x t = i = 0 m 1 Q ix B i t
Figure imgb0004
y t = i = 0 m 1 Q iy B i t
Figure imgb0005
dans lesquelles Qix et Qiy sont respectivement les coordonnées x et y des points de contrôle Qi.More specifically, the geometric shape of each of the elastic arms 21 is defined by the set of points I = 0 not B I not you . Q I , with you 0 , 1 ,
Figure imgb0001
where the B I not
Figure imgb0002
are the Bernstein polynomials given by the function B I you = m 1 ! I ! m 1 I ! you I 1 you m I 1 with you 0 , 1 ,
Figure imgb0003
and where the Q i are the control points Q 0 to Q n . It corresponds to the graphic representation in an orthonormal frame of reference of the set of points defined by the pairs of coordinates (x; y) defined respectively by the functions x(t) and y(t), t ∈ [0, 1], below : x you = I = 0 m 1 Q ix B I you
Figure imgb0004
there you = I = 0 m 1 Q there B I you
Figure imgb0005
in which Q ix and Q iy are respectively the x and y coordinates of the control points Q i .

Les formules indiquées ci-dessus donnent les coordonnées d'une courbe de Bézier d'ordre m, c'est-à-dire une courbe de Bézier basée sur m points de contrôle. Pour des raisons pratiques, une telle courbe de Bézier peut être décomposée en une succession de courbes de Bézier d'ordre inférieur à m, auquel cas la forme géométrique de chacun des bras élastiques est une succession de courbes de Bézier.The formulas given above give the coordinates of a Bézier curve of order m, that is, a Bézier curve based on m control points. For practical reasons, such a Bézier curve can be broken down into a succession of Bézier curves of order less than m, in which case the geometric shape of each of the elastic arms is a succession of Bézier curves.

En utilisant ce principe, la demanderesse a conçu une roue flexible 5 particulière comprenant trois bras élastiques 21 répartis uniformément autour du moyeu 19. Cette roue flexible 5 correspond à celle représentée dans les figures. Les dimensions de cette roue flexible 5 sont les suivantes : Diamètre de tête de la denture : 26,12 mm Diamètre extérieur du moyeu : 4 mm Diamètre intérieur de la serge : 20 mm Hauteur : 0,2 mm Epaisseur des bras élastiques : 90 µm Longueur curviligne de chaque bras : 9,82 mm Using this principle, the applicant has designed a particular flexible wheel 5 comprising three elastic arms 21 distributed uniformly around the hub 19. This flexible wheel 5 corresponds to that shown in the figures. The dimensions of this flexible wheel 5 are as follows: Gear head diameter: 26.12mm Outside diameter of the hub: 4mm Inner diameter of the serge: 20mm Height : 0.2mm Thickness of the elastic arms: 90µm Curvilinear length of each arm: 9.82mm

Dans le cadre de cette conception, sept points de contrôle Q0, Q1, Q2, Q3, Q4, Q5, Q6 ont été utilisés. Les coordonnées de ces points de contrôle sont indiquées dans le tableau 1 ci-dessous. Tableau 1 : Coordonnées des points de contrôle Q0 à Q6. Variables Coordonnées x [mm] Coordonnées y [mm] Q0 1,51325 1,30775 Q1 3,7465 3,238 Q2 5,625 -1,1825 Q3 6,875 0,907 Q4 7,5 2,06575 Q5 8,75 0 Q6 10 0 As part of this design, seven control points Q 0 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 were used. The coordinates of these control points are shown in Table 1 below. <i><u>Table 1: Coordinates of control points Q<sub>0</sub> to Q<sub>6</sub>.</u></i> Variables x-coordinates [mm] y-coordinates [mm] Q 0 1.51325 1.30775 Q1 3.7465 3,238 Q2 5,625 -1.1825 Q3 6.875 0.907 Q4 7.5 2.06575 Q5 8.75 0 Q6 10 0

Avec ces sept points de contrôle il aurait été possible de réaliser une courbe de Bézier d'ordre sept. Cependant, selon le principe indiqué ci-dessus, la courbe de Bézier a été décomposée en deux segments, un premier segment correspondant à une courbe de Bézier d'ordre 4 basée sur les points de contrôle Q0 à Q3 et un second segment correspondant à une courbe de Bézier d'ordre 4 basée sur les points de contrôle Q3 à Q6.With these seven control points it would have been possible to produce a Bézier curve of order seven. However, according to the principle indicated above, the Bézier curve was broken down into two segments, a first segment corresponding to a curve of Bézier of order 4 based on control points Q 0 to Q 3 and a second segment corresponding to a Bézier curve of order 4 based on control points Q 3 to Q 6 .

En utilisant les coordonnées des points de contrôle Q0 à Q6 ci-dessus dans les fonctions x(t) et y(t) précitées, la demanderesse a obtenu les coordonnées des points définissant la forme géométrique d'un bras élastique. Un certain nombre de ces couples de coordonnées sont donnés dans le tableau 2 ci-après. Tableau 2 : Coordonnées de points de passage du bras élastique optimisé x [mm] y [mm] 1,51325 1,30775 1,68007363 1,44081204 1,84553716 1,55126447 2,00961079 1,64031297 2,17226475 1,70916325 2,33346924 1,759021 2,49319447 1,79109191 2,65141065 1,80658168 2,808088 1,806696 2,96319672 1,79264057 3,11670703 1,76562109 3,26858914 1,72684325 3,41881325 1,67751275 3,56734958 1,61883528 3,71416834 1,55201653 3,85923975 1,47826221 4,002534 1,398778 4,14402132 1,31476961 4,28367191 1,22744272 4,42145598 1,13800304 4,55734375 1,04765625 4,69130543 0,95760806 4,82331122 0,86906416 4,95333134 0,78323024 5,081336 0,701312 5,20729541 0,62451514 5,33117978 0,55404534 5,45295932 0,49110832 5,57260425 0,43690975 5,69008477 0,39265534 5,80537109 0,35955078 5,91843343 0,33880177 6,029242 0,331614 6,137767 0,33919317 6,24397866 0,36274497 6,34784717 0,4034751 6,44934275 0,46258925 6,54843561 0,54129312 6,64509597 0,64079241 6,73929403 0,7622928 6,831 0,907 6,93563488 1,05729003 7,048549 1,16318025 7,16930663 1,22863834 7,297472 1,257632 7,43260938 1,25412891 7,574283 1,22209675 7,72205713 1,16550322 7,875496 1,088316 8,03416388 0,99450278 8,197625 0,88803125 8,36544363 0,77286909 8,537184 0,652984 8,71241038 0,53234366 8,890687 0,41491575 9,07157813 0,30466797 9,254648 0,205568 9,43946088 0,12158353 9,625581 0,05668225 9,81257263 0,01483184 10 0 By using the coordinates of the control points Q 0 to Q 6 above in the aforementioned functions x(t) and y(t), the applicant obtained the coordinates of the points defining the geometric shape of an elastic arm. A certain number of these pairs of coordinates are given in table 2 below. <i><u>Table 2: Coordinates of passage points of the optimized elastic arm</u></i> x [mm] y [mm] 1.51325 1.30775 1.68007363 1.44081204 1.84553716 1.55126447 2.00961079 1.64031297 2.17226475 1.70916325 2.33346924 1.759021 2.49319447 1.79109191 2.65141065 1.80658168 2.808088 1.806696 2.96319672 1.79264057 3.11670703 1.76562109 3.26858914 1.72684325 3.41881325 1.67751275 3.56734958 1.61883528 3.71416834 1.55201653 3.85923975 1.47826221 4.002534 1.398778 4.14402132 1.31476961 4.28367191 1.22744272 4.42145598 1.13800304 4.55734375 1.04765625 4.69130543 0.95760806 4.82331122 0.86906416 4.95333134 0.78323024 5.081336 0.701312 5.20729541 0.62451514 5.33117978 0.55404534 5.45295932 0.49110832 5.57260425 0.43690975 5.69008477 0.39265534 5.80537109 0.35955078 5.91843343 0.33880177 6.029242 0.331614 6.137767 0.33919317 6.24397866 0.36274497 6.34784717 0.4034751 6.44934275 0.46258925 6.54843561 0.54129312 6.64509597 0.64079241 6.73929403 0.7622928 6,831 0.907 6.93563488 1.05729003 7.048549 1.16318025 7.16930663 1.22863834 7.297472 1.257632 7.43260938 1.25412891 7.574283 1.22209675 7.72205713 1.16550322 7.875496 1.088316 8.03416388 0.99450278 8.197625 0.88803125 8.36544363 0.77286909 8.537184 0.652984 8.71241038 0.53234366 8.890687 0.41491575 9.07157813 0.30466797 9.254648 0.205568 9.43946088 0.12158353 9.625581 0.05668225 9.81257263 0.01483184 10 0

Le graphique de la figure 5 fait apparaître la géométrie du diamètre externe du moyeu 19, du diamètre interne de la serge 20 et d'un des bras élastiques 21 de la roue flexible 5 que la demanderesse a conçue, la géométrie dudit bras étant définie par une courbe passant par l'ensemble des coordonnées de points défini dans le tableau 2 ci-dessus. Ce graphique est réalisé dans un repère orthonormé.The graph of the figure 5 shows the geometry of the external diameter of the hub 19, of the internal diameter of the rim 20 and of one of the elastic arms 21 of the flexible wheel 5 that the applicant has designed, the geometry of said arm being defined by a curve passing through the set of point coordinates defined in Table 2 above. This graph is produced in an orthonormal frame.

La figure 6 représente les résultats d'une simulation de l'évolution du moment de rappel élastique de la roue flexible 5 isolée ainsi réalisée en fonction de la position angulaire θ de sa serge 20 par rapport à son moyeu 19.The figure 6 represents the results of a simulation of the evolution of the elastic return moment of the flexible wheel 5 isolated thus produced as a function of the angular position θ of its rim 20 with respect to its hub 19.

La simulation effectuée considère la roue flexible 5 isolée réalisée en silicium revêtu d'une couche d'oxyde de silicium de 3 µm d'épaisseur, mais tout matériau approprié peut être utilisé. Par exemple des matériaux tels que le Nivaflex® 45/18 (alliage à base de cobalt, nickel et chrome), le CK101 (acier de construction non-allié) ou autres alliages, le plastique, les verres minéraux ou les verres métalliques, par exemple le Vitreloy 1b, conviennent également et permettent l'obtention de roues flexibles dont le moment de rappel élastique est sensiblement constant sur les mêmes plages angulaires [θa, θb].The simulation carried out considers the insulated flexible wheel 5 made of silicon coated with a layer of silicon oxide 3 μm thick, but any suitable material can be used. For example materials such as Nivaflex ® 45/18 (alloy based on cobalt, nickel and chromium), CK101 (unalloyed structural steel) or other alloys, plastic, mineral glasses or metallic glasses, for example Vitreloy 1b, are also suitable and make it possible to obtain flexible wheels whose elastic return moment is substantially constant over the same angular ranges [θ a , θ b ].

La plage angulaire de fonctionnement permettant la délivrance d'un moment sensiblement constant étant une constante liée à la forme des bras élastiques 21, l'angle de fonctionnement θb doit être inférieur à l'angle θlim correspondant à la limite avant plastification ou rupture du ressort d'actionnement 22. Cela permet de définir l'épaisseur maximale qu'il est possible de réaliser sur les bras.The angular operating range allowing the delivery of a substantially constant moment being a constant linked to the shape of the elastic arms 21, the operating angle θ b must be less than the angle θ lim corresponding to the limit before yielding or rupture of the actuating spring 22. This makes it possible to define the maximum thickness that it is possible to achieve on the arms.

Il ressort de l'analyse des résultats présentés à la figure 6 qu'une constance de 2,5% du moment de rappel élastique est obtenue pour un déplacement angulaire de la serge 20 de la roue flexible 5 étudiée par rapport à son moyeu 19 compris entre θa_2,5%, soit 13°, et θb_2,5%, soit 31°, soit sur une plage de fonctionnement de 18°. La roue flexible 5 ainsi réalisée possède donc une plage de fonctionnement à moment constant (pour une constance de 2,5%) de 18°. Si l'on accepte une constance de 9,5% du moment de rappel élastique alors la roue flexible 5 ainsi réalisée possède une plage de fonctionnement à moment constant d'environ 23°, avec θa_9,5% ≈ 10,5° et θb_9,5% ≈ 33,5°.It emerges from the analysis of the results presented to the figure 6 that a constancy of 2.5% of the elastic restoring moment is obtained for an angular displacement of the rim 20 of the flexible wheel 5 studied with respect to its hub 19 comprised between θ a_2.5% , i.e. 13°, and θ b_2.5% , i.e. 31°, i.e. over an operating range of 18°. The flexible wheel 5 thus produced therefore has an operating range at constant moment (for a constant of 2.5%) of 18°. If we accept a constant of 9.5% of the elastic return moment then the flexible wheel 5 thus produced has an operating range at constant moment of approximately 23°, with θ a_9.5% ≈ 10.5° and θb_9.5% ≈ 33.5°.

Le tableau 3 ci-dessous donne, à titre indicatif, les valeurs θa_y%, θb_y% et Δθ (plage de positions angulaires à moment sensiblement constant) associées à la roue flexible 5 réalisée par la demanderesse en fonction du pourcentage de constance y considéré ainsi que les valeurs de moments de force Mmin et Mmax associées. Tableau 3 : θa_y% θb_y% Plage angulaire Δθ (°) Mmin Mmax Pourcentage de constance y (%) 13,5 30,5 17 1,510 1,534 1,6 13 31 18 1,502 1,539 2,5 12,5 31,5 19 1,492 1,543 3,5 12 32 20 1,480 1,548 4,6 10,5 33,5 23 1,432 1,568 9,5 Table 3 below gives, by way of indication, the values θ a_y% , θ b_y% and Δθ (range of angular positions at substantially constant moment) associated with the flexible wheel 5 produced by the applicant as a function of the percentage of constancy y considered as well as the associated torque values M min and M max . <i><u>Table 3:</u></i> θ a_y% θ b_y% Angle range Δθ (°) Mmin Mmax Percent constancy y (%) 13.5 30.5 17 1,510 1,534 1.6 13 31 18 1,502 1,539 2.5 12.5 31.5 19 1,492 1,543 3.5 12 32 20 1,480 1,548 4.6 10.5 33.5 23 1,432 1,568 9.5

En augmentant le nombre de points de contrôle lors de la conception des bras élastiques 21, on devrait pouvoir augmenter la précision de la forme de ces bras élastiques 21 et améliorer ainsi la constance du moment de rappel.By increasing the number of control points during the design of the elastic arms 21, it should be possible to increase the precision of the shape of these elastic arms 21 and thus improve the constancy of the restoring moment.

Il est aussi possible d'améliorer la constance du moment de rappel en concevant les bras élastiques 21 avec une section variable. La figure 7 montre différentes courbes représentatives d'un moment de force M(θ) normalisé exercé par la roue flexible 5 isolée en fonction de la position angulaire θ de sa serge 20 par rapport à son moyeu 19 (angle d'armage) pour différentes variations de section des bras élastiques 21. La courbe la plus haute, désignée par A1, correspond à des bras élastiques 21 de section constante et d'épaisseur 30 µm. Les courbes situées au-dessous de la courbe A1 correspondent à des bras élastiques 21 dont l'épaisseur diminue linéairement du moyeu 19 à la serge 20, l'épaisseur au point de jonction avec le moyeu 19 étant de 30 µm pour chaque courbe, l'épaisseur au point de jonction avec la serge 20 étant de 29 µm pour la courbe A2, de 28 µm pour la courbe A3 et de 27 µm pour la courbe A4. On constate une amélioration de la constance pour les courbes A2, A3 et A4 par rapport à la courbe A1 sur une plage d'angles d'armage de longueur supérieure à 15°.It is also possible to improve the constancy of the restoring moment by designing the elastic arms 21 with a variable section. The figure 7 shows different curves representative of a normalized moment of force M(θ) exerted by the flexible wheel 5 isolated as a function of the angular position θ of its rim 20 with respect to its hub 19 (winding angle) for different section variations elastic arms 21. The highest curve, denoted by A1, corresponds to elastic arms 21 of constant section and thickness of 30 μm. The curves located below the curve A1 correspond to elastic arms 21 whose thickness decreases linearly from the hub 19 to the serge 20, the thickness at the point of junction with the hub 19 being 30 μm for each curve, the the thickness at the point of junction with the serge 20 being 29 μm for the curve A2, 28 μm for the curve A3 and 27 μm for the curve A4. An improvement in consistency is observed for curves A2, A3 and A4 compared to curve A1 over a range of angles of reinforcement of length greater than 15°.

D'autres modes de variation de la section des bras élastiques 21 peuvent être envisagés. La figure 8 montre deux courbes B1 et B2 représentatives d'un moment de force M(θ) normalisé exercé par la roue flexible 5 isolée en fonction de la position angulaire θ de sa serge 20 par rapport à son moyeu 19 (angle d'armage) pour différentes formes de section des bras élastiques 21. La courbe la plus haute, B1, correspond à des bras élastiques 21 de section constante et d'épaisseur 30 µm. La courbe B2 correspond à des bras élastiques 21 dont l'épaisseur diminue linéairement du moyeu 19 au milieu du bras puis augmente linéairement du milieu du bras à la serge 20, l'épaisseur aux points de jonction avec le moyeu 19 et avec la serge 20 étant de 30 µm, l'épaisseur au milieu du bras étant de 29 µm. On constate une amélioration de la constance pour la courbe B2 par rapport à la courbe B1 sur une plage d'angles d'armage de longueur supérieure à 15°.Other modes of variation of the section of the elastic arms 21 can be envisaged. The figure 8 shows two curves B1 and B2 representative of a normalized moment of force M(θ) exerted by the flexible wheel 5 isolated as a function of the angular position θ of its rim 20 with respect to its hub 19 (winding angle) for different shapes of section of the elastic arms 21. The highest curve, B1, corresponds to elastic arms 21 of constant section and thickness of 30 μm. Curve B2 corresponds to elastic arms 21 whose thickness decreases linearly from the hub 19 to the middle of the arm then increases linearly from the middle of the arm to the serge 20, the thickness at the junction points with the hub 19 and with the serge 20 being 30 µm, the thickness in the middle of the arm being 29 µm. We notes an improvement in consistency for curve B2 compared to curve B1 over a range of angles of reinforcement longer than 15°.

De manière générale, dans les cas où les bras élastiques 21 ont une section variable, celle-ci varie typiquement de manière strictement monotone (elle augmente ou diminue sans interruption mais pas nécessairement linéairement) sur au moins une portion continue du bras élastique représentant 10%, de préférence 20%, de préférence 30%, de préférence 40%, de la longueur (curviligne) du bras élastique. La variation de la section est en outre choisie pour améliorer la constance du moment de rappel élastique sur la plage [θa, θb] par rapport à des bras élastiques de même forme que les bras 21 mais de section constante.In general, in cases where the elastic arms 21 have a variable section, this typically varies in a strictly monotonous manner (it increases or decreases without interruption but not necessarily linearly) over at least one continuous portion of the elastic arm representing 10% , preferably 20%, preferably 30%, preferably 40%, of the (curvilinear) length of the elastic arm. The variation of the section is also chosen to improve the constancy of the elastic restoring moment over the range [θ a , θ b ] compared to elastic arms of the same shape as the arms 21 but of constant section.

Il apparaîtra clairement à l'homme du métier que la présente invention n'est en aucun cas limitée au mode de réalisation présenté dans les figures.It will clearly appear to those skilled in the art that the present invention is in no way limited to the embodiment presented in the figures.

Il est par exemple très bien envisageable de réaliser une roue flexible 5 avec des bras élastiques 21 de formes différentes de celles représentées dans les figures et/ou dont le nombre de bras élastiques 21 est différent de celui représenté dans les figures. Les bras élastiques 21 peuvent notamment prendre une forme telle que décrite dans l'article « Functional joint mechanisms with constant torque outputs », Mechanism and machine theory 62 (2013) 166-181, Chia-Wen Hou et al. La hauteur, la longueur, l'épaisseur et/ou le matériau des bras élastiques 21, voire l'inclinaison des bras élastiques 21 par rapport au moyeu 19 (dans le plan de la roue flexible 5), peuvent également être modifiés pour ajuster la valeur du moment de rappel élastique sensiblement constant.It is for example very well conceivable to produce a flexible wheel 5 with elastic arms 21 of different shapes from those shown in the figures and/or whose number of elastic arms 21 is different from that shown in the figures. The elastic arms 21 can in particular take a form as described in the article “Functional joint mechanisms with constant torque outputs”, Mechanism and machine theory 62 (2013) 166-181, Chia-Wen Hou et al. The height, length, thickness and/or material of the elastic arms 21, or even the inclination of the elastic arms 21 relative to the hub 19 (in the plane of the flexible wheel 5), can also be modified to adjust the value of the substantially constant elastic restoring moment.

Claims (15)

  1. Timepiece mechanism (1) comprising a drive member (2), a regulator member (6) for regulating the drive member (2), a jumper member (20, 24), an actuating spring (22), one or more gears (3, 10) between the drive member (2) and the actuating spring (22) and a winding and blocking device (4) arranged to permit continuous winding of the actuating spring (22) by the drive member (2) via the gear or gears (3, 10) and periodic letting down of the actuating spring (22), the actuating spring (22) being arranged to cause the jumper member (20, 24) to jump each time it is let down, the actuating spring (22) comprising at least one elastic arm (21), characterised in that the or each elastic arm (21) is sinuous in shape, in that the actuating spring (22) is a spring acting in a non-linear manner, which produces, between a winding angle θa and a winding angle θb which are separated by at least 10°, an elastic return moment which does not vary by more than 10%, and in that the actuating spring (22) is pre-wound by a value θarm included in the range [θa, θb], the timepiece mechanism (1) being arranged so that, during operation thereof, the winding angle of the actuating spring (22) remains within the range [θa, θb].
  2. Timepiece mechanism (1) as claimed in claim 1, characterised in that the elastic return moment produced by the actuating spring (22) does not vary by more than 5%, preferably not more than 3%, preferably not more than 1.5 %, over the range [θa, θb].
  3. Timepiece mechanism (1) as claimed in claim 1 or 2, characterised in that the winding angles θa and θb are separated by at least 15°, preferably by at least 20°, preferably by at least 25°.
  4. Timepiece mechanism (1) as claimed in any one of claims 1 to 3, characterised in that the actuating spring (22) comprises a plurality of said elastic arms (21) angularly spaced in a regular manner.
  5. Timepiece mechanism (1) as claimed in any one of claims 1 to 4, characterised in that the geometric shape of the or of each elastic arm (21) is a Bezier curve or a succession of Bezier curves.
  6. Timepiece mechanism (1) as claimed in any one of claims 1 to 5, characterised in that the or each elastic arm (21) has a variable cross-section, the variation in which is selected to improve the constancy of said elastic return moment over the range [θa, θb] as compared with an elastic arm of the same shape but a constant cross-section.
  7. Timepiece mechanism (1) as claimed in any one of claims 1 to 6, characterised in that it comprises a flexible wheel (5) comprising a hub (19), a felloe (20) and the actuating spring (22) connecting the hub (19) to the felloe (20), and in that the jumper member comprises the felloe (20) or the hub (19).
  8. Timepiece mechanism (1) as claimed in claim 7, characterised in that the flexible wheel (5) is formed of one piece.
  9. Timepiece mechanism (1) as claimed in any one of claims 1 to 8, characterised in that the winding and blocking device (4) comprises a movable member (9), a rotary drive member (11) kinematically connected to the drive member (2) and to a winding end of the actuating spring (22) and arranged to displace the movable member (9), a rotary blocking member (14) kinematically connected to a torque-delivering end of the actuating spring (22) and to the jumper member (20, 24), the rotary blocking member (14) being blocked by the movable member (9) and released periodically by the displacements of the movable member (9) which are caused by the rotary drive member (11).
  10. Timepiece mechanism (1) as claimed in claim 9, characterised in that the movable member (9) can move in translation.
  11. Timepiece mechanism (1) as claimed in claim 9 or 10, characterised in that the movable member (9) comprises first and second openings with a closed contour (12, 15), the rotary drive member (11) and the rotary blocking member (14) cooperating respectively with the wall of said first and second openings.
  12. Timepiece mechanism (1) as claimed in any one of claims 9 to 11 when it depends on claim 7 or 8, characterised in that the jumper member (20, 24) comprises the felloe (20) and the hub (19) is fixed for conjoint rotation with the rotary drive member (11).
  13. Timepiece mechanism (1) as claimed in any one of claims 9 to 11 when it depends on claim 7 or 8, characterised in that the jumper member comprises the hub (19) which is fixed for conjoint rotation with the rotary blocking member (14).
  14. Timepiece mechanism (1) as claimed in any one of claims 1 to 13, characterised in that the jumper member (20, 24) comprises a display member (24).
  15. Timepiece comprising a timepiece mechanism (1) as claimed in any one of claims 1 a 14.
EP18184530.6A 2018-07-19 2018-07-19 Timepiece mechanism with jumping member Active EP3598243B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18184530.6A EP3598243B1 (en) 2018-07-19 2018-07-19 Timepiece mechanism with jumping member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18184530.6A EP3598243B1 (en) 2018-07-19 2018-07-19 Timepiece mechanism with jumping member

Publications (2)

Publication Number Publication Date
EP3598243A1 EP3598243A1 (en) 2020-01-22
EP3598243B1 true EP3598243B1 (en) 2022-10-19

Family

ID=63012934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18184530.6A Active EP3598243B1 (en) 2018-07-19 2018-07-19 Timepiece mechanism with jumping member

Country Status (1)

Country Link
EP (1) EP3598243B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4248277A1 (en) 2020-11-17 2023-09-27 Patek Philippe SA Genève Method for manufacturing a spring leaf of a timepiece member and said spring leaf
EP4248278A1 (en) 2020-11-17 2023-09-27 Patek Philippe SA Genève Timepiece member comprising at least one spring leaf

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH524847A (en) 1970-07-10 1972-02-29 Omega Brandt & Freres Sa Louis Calendar watch
CH702137B1 (en) 2007-02-05 2011-05-13 Patek Philippe Sa Geneve Device for driving and setting an instantaneous counter and timepiece including such a device.
CH700753B1 (en) 2009-04-15 2014-03-14 Patek Philippe Sa Geneve Mechanism of instantaneous counter and snail cam for such a mechanism.
EP2596406B1 (en) * 2010-07-19 2019-03-27 Nivarox-FAR S.A. Oscillating mechanism with elastic pivot and mobile for the transmission of energy
EP2952973B1 (en) 2013-04-30 2017-12-06 Audemars Piguet (Renaud et Papi) SA Instant jumping mechanism for timepieces

Also Published As

Publication number Publication date
EP3598243A1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
EP3182213B1 (en) Mechanism for adjusting an average speed in a clock movement and clock movement
EP4009115A1 (en) Hairspring for timepiece resonator mechanism provided with a means for adjusting rigidity
EP2927756A1 (en) Clock movement provided with a drive mechanism for an analogue indicator with periodic or intermittent movement
EP3580618B1 (en) Timepiece driving organ
EP3824354A1 (en) Clockwork mechanism having a cam
EP0587031B1 (en) Timepiece with driving means consisting of a piezoelectric motor
EP1593005B1 (en) Calendar mechanism for displaying the day of the week and the day of the month in a timepiece
EP3070537A1 (en) Time base comprising an escapement with direct pulse and constant force
EP3598243B1 (en) Timepiece mechanism with jumping member
CH712222A2 (en) Date indicator drive wheel, calendar mechanism, movement and timepiece.
EP3707565B1 (en) Device for guiding the rotation of a mobile component
CH713787A2 (en) Watchmaker device with positioning member
EP3598241B1 (en) Clock mechanism having a constant-force device
WO2020065574A2 (en) Display mechanism with a single aperture
EP3619579B1 (en) Clock device with positioning member
CH718113A2 (en) Hairspring for clock resonator mechanism provided with means for adjusting the rigidity.
EP3707563B1 (en) Timepiece drive member
CH711184B1 (en) Watch movement comprising a mechanism for rapid correction of the current time.
EP3907563B1 (en) Timepiece mechanism comprising a pivot member
CH719047A9 (en) Discontinuous clockwork drive mechanism.
EP4325301A1 (en) Timepiece mechanism comprising a rotary timepiece member and a device with a predetermined angular stiffness
CH714318A2 (en) Clockwork motor member delivering a substantially constant force.
CH713456A2 (en) Clock engine organ.
CH710895A2 (en) timebase with a direct impulse escapement and constant force.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200714

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211021

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220519

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018041894

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1525930

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221019

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1525930

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230119

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230120

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018041894

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

26N No opposition filed

Effective date: 20230720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230801

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602018041894

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719