EP3598241B1 - Clock mechanism having a constant-force device - Google Patents

Clock mechanism having a constant-force device Download PDF

Info

Publication number
EP3598241B1
EP3598241B1 EP18184528.0A EP18184528A EP3598241B1 EP 3598241 B1 EP3598241 B1 EP 3598241B1 EP 18184528 A EP18184528 A EP 18184528A EP 3598241 B1 EP3598241 B1 EP 3598241B1
Authority
EP
European Patent Office
Prior art keywords
intermediate spring
timepiece mechanism
elastic
winding
escapement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18184528.0A
Other languages
German (de)
French (fr)
Other versions
EP3598241A1 (en
Inventor
James Hide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Priority to EP18184528.0A priority Critical patent/EP3598241B1/en
Publication of EP3598241A1 publication Critical patent/EP3598241A1/en
Application granted granted Critical
Publication of EP3598241B1 publication Critical patent/EP3598241B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B11/00Click devices; Stop clicks; Clutches
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/02Back-gearing arrangements between gear train and hands

Definitions

  • the present invention relates to a timepiece mechanism, in particular for a wristwatch or pocket watch, in which the escapement is powered by a so-called constant-force device.
  • Examples of such devices are Gafner's remontoire or the constant-force device described in the document EP 2166419 . These devices make it possible to transmit to the escapement wheel a force which does not depend on the degree of winding of the driving member and thus to prevent the force received by the escapement and therefore by the oscillator from decreasing as the motor organ is disarmed.
  • the intermediate spring is in the form of sinuous elastic arms which connect a pinion to a toothed serge, the pinion assembly - elastic arms - serge constituting a one-piece flexible escape wheel.
  • a one-piece energy transmission wheel set comprising rectilinear elastic arms which can be used as an intermediate spring for a constant-force device.
  • the force delivered to the escapement is not in fact constant. It is the quantity of energy supplied to the escapement between two successive windings of the intermediate spring which is constant. The force decreases between two successive windings of the intermediate spring. The regularity of the oscillations of the oscillator is certainly much improved with such devices, but it remains disturbed.
  • the present invention aims to provide a watch mechanism with a constant-force device which mitigates this drawback.
  • a watch mechanism comprising a motor member, an oscillator, an escapement to maintain the oscillations of the oscillator, an intermediate spring to supply the escapement with mechanical energy, one or more gears between the motor member and the intermediate spring and a blocking device allowing periodic winding of the intermediate spring by the motor member via the gear or gears, characterized in that the intermediate spring is a spring with non-linear behavior which produces, between a winding angle ⁇ a and a winding angle ⁇ b separated by at least 10°, an elastic restoring moment which does not vary by more than 10%, and in that the intermediate spring is pre-wound by a value ⁇ arm included in the range [ ⁇ a , ⁇ b ], the timepiece mechanism being arranged so that, during its operation, the winding angle of the intermediate spring remains in the range [ ⁇ a , ⁇ b ].
  • the present invention also proposes a timepiece, such as a wristwatch or a pocket watch, comprising this timepiece mechanism.
  • the intermediate springs of known constant-force devices whether in the form of a spiral, sinuous elastic arms as described in CH 709914 or straight elastic arms as described in CH 704147 , all produce an elastic restoring moment which varies greatly, most often linearly, with the angle of lay. Unless you choose a very high winding frequency (very short duration between two windings), the variation in the elastic return moment will be significant and the effect will be perceptible at the level of the oscillator.
  • an intermediate spring is used whose curve of the elastic return moment as a function of the winding angle is non-linear and has a plateau, the range of winding angles corresponding to this plateau being or including the operating range of the intermediate spring in the watch mechanism.
  • the force delivered to the escapement is really substantially constant, unlike so-called constant-force devices of the state of the art.
  • the figures 1 and 2 illustrate a watch mechanism 1, forming or forming part of a watch movement, with a constant-force device according to the invention.
  • the watch mechanism 1 comprises a motor member 2, a mobile 3 driven by the motor member 2, an escapement 4 and an oscillator 5.
  • the motor member 2 is typically in the form of one or more barrel springs (a single mainspring in the example shown) housed in one or more respective barrels 2a (a single barrel in the example shown).
  • the escapement 4 is a lever escapement, more particularly a Swiss lever escapement, comprising a lever 6, an escapement wheel 7 cooperating with the lever 6 and an escapement pinion 8 coaxial and secured to the escape wheel 7, but it could be of another type.
  • Oscillator 5 can be a balance-spring, as shown, or another type of oscillator such as an oscillator without pivots with flexible guidance.
  • This constant force device 9 comprises a winding pinion 10, a second wheel 11 coaxial with the winding pinion 10 but free in rotation relative thereto and a connecting member 12 functionally interposed between the winding pinion 10 and the second wheel 11 with which it is coaxial.
  • the winding pinion 10 meshes with the wheel of the mobile 3, designated by 14, while the pinion of the mobile 3, designated by 15, meshes with the barrel 2a.
  • the second wheel 11 meshes with the escapement pinion 8.
  • the connecting member 12 shown alone in picture 3 , understand a hub 16 fixed in rotation to the winding pinion 10, a rim 17 fixed in rotation to the seconds wheel 11 and elastic arms or blades 18 uniformly distributed around the hub 16 and connecting the hub 16 to the rim 17.
  • the rim 17 is in the form of a closed circle but it could alternatively be interrupted and take the form of one or more circular arcs.
  • the set of elastic arms 18 guides the serge 17 in rotation relative to the hub 16 and constitutes a so-called intermediate spring 19 capable of storing mechanical energy by stretching (by a relative rotation of the serge 17 and the hub 16 in one direction) and restore it by relaxing (by relative rotation of the rim 17 and the hub 16 in the other direction).
  • the respective ends of the elastic arms 18 joined to the hub 16 together constitute a winding end of the intermediate spring 19.
  • the respective ends of the elastic arms 18 joined to the rim 17 together constitute a torque delivery end of the intermediate spring 19.
  • the connecting member 12 is typically one-piece. It is for example made of metal, alloy, silicon, plastic, mineral glass or metallic glass. It can be produced by machining or by the LIGA technique, in particular in the case where it is made of a metal or alloy, by deep reactive ion etching called DRIE, in particular in the case where it is made of silicon, by molding, in particular in the case where it is made of plastic or metallic glass, or by laser cutting, in particular in the case where it is made of mineral glass.
  • DRIE deep reactive ion etching
  • rim 17 of connecting member 12 is secured in rotation to seconds wheel 11 by pins 11a carried by seconds wheel 11 and engaged in openings 17a made in rim 17.
  • the openings 17a are oblong in order to compensate for any manufacturing defects, but they could have another shape, for example round.
  • the rim 17 and the second wheel 11 could be made integral in rotation by any other suitable means.
  • the connecting member 12 and the second wheel 11 could even constitute a single piece having the shape of the connecting member 12 with a toothing on the periphery of the serge 17.
  • the hub 16 of the connecting member 12 and the winding pinion 10 are fixed on the same axis by driving, gluing Or other.
  • the hub 16 and the winding pinion 10 could nevertheless be made integral in rotation in another way.
  • the constant force device 9 also comprises a blocking device 20 of the type described in the patent applications PCT/IB2018/052645 and PCT/IB2018/052646 of the applicant which are incorporated herein by reference.
  • This blocking device 20 comprises a rotary drive member 21, preferably in the form of a finger as shown, coaxial and integral in rotation with the escapement wheel 7 and the escapement pinion 8, a rotary lock 22, preferably consisting of a star as shown, coaxial and integral in rotation with the winding pinion 10 and the hub 16, and a movable frame 23 having two closed contour openings 24, 25 which respectively receive the rotary members of drive 21 and locking 22.
  • Two diametrically opposed drive elements 26 formed in the wall of the opening 24 cooperate with the rotary drive member 21.
  • Two stop elements 27 formed in the wall of the opening 25 cooperate with the rotary locking member 22.
  • the movable frame 23 is guided in translation along the double arrow F by a flexible guide device 28 with which it preferably forms a single piece.
  • the mobile frame 23 could however be guided in rotation.
  • the rotary drive member 21 could be kinematically connected to the escapement wheel 7 in a way other than being integral in rotation with the latter, for example by means of one or more gears.
  • the rotary blocking member 22 could be kinematically connected to the hub 16 and to the winding pinion 10 in a way other than by being integral in rotation with these, for example by means of a or more gears.
  • the operation of the clockwork mechanism 1 is as follows.
  • escapement wheel 7, escapement pinion 8, rotary drive member 21, seconds wheel 11 and rim 17 of connecting member 12 rotate jerkily to the rhythm of the alternations of the oscillator 5, the escapement wheel 7, the escapement pinion 8 and the rotary drive member 21 rotating together in the clockwise direction of the figure 1 .
  • the escapement 4 is powered only by energy coming from the intermediate spring 19 and therefore receives a force which does not depend on the degree of winding of the driving member 2.
  • the rotary blocking member 22 which is under tension by the torque exerted by the motor member 2 via the gear train formed by the barrel 2a, the mobile 3 and the winding pinion 10 , is blocked by one of the stop elements 27 against which bears one of its branches, which keeps the winding pinion 10 and therefore the hub 16 of the connecting member 12 stationary.
  • the intermediate spring 19 is periodically charged by the drive member 2 at times which are determined by the meeting between the rotary drive member 21 and each of the drive elements 26. As soon as the rotary drive member 21 comes into contact with one of the drive elements 26, it cooperates with the latter to move the mobile frame 23 in order to disengage the rotary blocking member 22 from the stop element 27 against which it was resting . The entire kinematic chain going from the motor member 2 to the hub 16 of the connecting member 12 is then released and begins to rotate abruptly until another branch of the rotary locking member 22 comes press the other stop element 27. During this sudden movement (considered as instantaneous with respect to the movement of the escapement wheel 7, of the escapement pinion 8 and of the rotary drive member 21), the intermediate spring 19 is armed. The intermediate spring 19 will be armed again, similarly, after the meeting between the rotary drive member 21 and the other drive element 26, then the cycle repeats.
  • the time interval separating two successive windings of the intermediate spring 19 (that is to say two successive jumps of the winding pinion 10 - hub 16 - rotary blocking member 22 assembly) is typically several seconds.
  • the different gear ratios in the watch mechanism 1 and the number of branches of the rotary drive member 21 and of the rotary blocking member 22 are chosen so that the intermediate spring 19 accumulates the same quantity of energy than that delivered to the escapement 4 between two successive windings.
  • the locking device 20 is advantageous in particular for protecting the watch mechanism 1 against shocks and for reducing friction, as explained in the patent applications PCT/IB2018/052645 and PCT/IB2018/052646 .
  • a more traditional anchor locking device such as that used in Gafner's remontoire or described in the patent application EP 2166419 .
  • the elastic arms 18 which constitute the intermediate spring 19 are specially shaped to improve the constancy of the torque or elastic return moment exerted by this intermediate spring 19 and thus improve the regularity of the oscillations of the oscillator 5.
  • the isolated connecting member 12 shown in picture 3 has, due to the shape of its elastic arms 18, a privileged direction of rotation of its rim 17 with respect to its hub 16, this direction being defined as that which allows, from its state of rest, the greatest displacement relative angular of its serge 17 by relative to its hub 16. This preferred direction of rotation is clockwise at the picture 3 .
  • the intermediate spring 19 deforms to exert a restoring moment M( ⁇ ) depending on the position ⁇ of the rim 17 relative to the hub 16, tending to cause the rim 17 to pivot relative to the hub 16 in the opposite direction to the winding direction, that is to say in the opposite direction to the privileged direction of rotation, thus tending to make it return to its state of rest.
  • the intermediate spring 19 is designed, in particular by its shape, to exert, in the connecting member 12, a substantially constant elastic return moment M( ⁇ ) over a range of angular positions [ ⁇ a , ⁇ b ] of the serge 17 with respect to hub 16 by at least 10°, preferably by at least 15°, preferably by at least 20°, preferably by at least 25°.
  • “Substantially constant” moment is understood to mean a moment not varying by more than 10%, preferably 5%, more preferably 3%, typically 1.5%, it being understood that this percentage can be further reduced.
  • the intermediate spring 19 is pre-armed with a value ⁇ arm included in the range [ ⁇ a , ⁇ b ] and the gear ratios and the number of branches of the rotary drive member 21 and of the rotary blocking member 22 are chosen so that the winding angle ⁇ remains in this range during the operation of said mechanism, so that the elastic return moment remains substantially constant.
  • the pre-winding of the intermediate spring 19 can be carried out during the assembly of the watch mechanism 1 by simple angular positioning of the second wheel 11 with respect to the winding pinion 10 connected by the connecting member 12 to the second wheel 11. The closer the pre-winding value ⁇ arm chosen is to the value ⁇ b the greater the operating range of the intermediate spring 19 may be.
  • Each winding of the intermediate spring 19 by the drive member 2 brings the winding angle ⁇ of the intermediate spring 19 to the value ⁇ arm .
  • the elastic arms 18 can be shaped by topological optimization by applying the teaching of the publication “Design of adjustable constant-force forceps for robot-assisted surgical manipulation”, Chao-Chieh Lan et al., 2011 IEEE International Conference on Robotics and Automation, Shanghai International Conference Center, May 9-13, 2011, China .
  • the topological optimization discussed in the aforementioned article uses parametric polynomial curves such as Bézier curves to determine the geometric shape of the elastic arms.
  • each of the elastic arms 18 of the intermediate spring 19 is a Bézier curve whose control points have been optimized to take into account, in particular, the dimensions of the connecting member 12 to be designed as well as the constraint "( M max -M min )/((M max +M min )/2) ⁇ 0.05” sought.
  • the inequality “(M max -M min )/((M max +M min )/2) ⁇ 0.05” corresponds to a constancy of the elastic restoring moment of 5% over an angular range [ ⁇ a_5% , ⁇ b_5% ].
  • this connecting member 12 comprising three elastic arms 18 distributed uniformly around the hub 16.
  • This connecting member 12 corresponds to that shown in the figures.
  • the dimensions of this connecting device are as follows: External diameter of the serge: 12mm Outside diameter of the hub: 2mm Inner diameter of the serge: 10mm Height: 0.12mm Thickness of the elastic arms: 80 ⁇ m Curvilinear length of each arm: 4.91mm
  • control points Q 0 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 were used.
  • the coordinates of these control points are shown in Table 1 below.
  • ⁇ i> ⁇ u>Table 1 Coordinates of control points Q ⁇ /u> ⁇ sub> ⁇ u>0 ⁇ /u> ⁇ /sub> ⁇ /i> ⁇ u>to ⁇ /u> ⁇ i> ⁇ u>Q ⁇ /u> ⁇ sub> ⁇ u> ⁇ u> ⁇ u>6 ⁇ /u> ⁇ /sub> ⁇ /i> ⁇ u>.
  • the Bézier curve was broken down into two segments, a first segment corresponding to a curve of Bézier of order 4 based on control points Q 0 to Q 3 and a second segment corresponding to a Bézier curve of order 4 based on control points Q 3 to Q 6 .
  • the graph of the figure 5 reveals the geometry of the outer diameter of the hub 16, of the inner diameter of the rim 17 and of one of the elastic arms 18 of the connecting member 12 that the applicant has designed, the geometry of said arm being defined by a curve passing through the set of point coordinates defined in table 2 above. This graph is produced in an orthonormal frame.
  • the figure 6 represents the results of a simulation of the evolution of the elastic return moment of the isolated connecting member 12 thus produced as a function of the angular position ⁇ of its rim 17 with respect to its hub 16.
  • the simulation carried out considers the insulated connecting member 12 made of metallic glass, more precisely of Vitreloy 1b, but any suitable material can be used.
  • materials such as silicon typically coated with oxide silicon, Nivaflex ® 45/18 (alloy based on cobalt, nickel and chromium), plastic or CK101 (unalloyed structural steel) are also suitable and allow the production of connecting elements whose moment of elastic return is substantially constant over the same angular ranges [ ⁇ a , ⁇ b ].
  • Table 3 gives, by way of indication, the values ⁇ a_y% , ⁇ b_y% and ⁇ (range of angular positions at substantially constant moment) associated with the connecting member 12 made by the applicant as a function of the percentage of constancy considered there as well as the associated torque values M min and M max .
  • Angle range ⁇ (°) Mmin Mmax Percent constancy y (%) 13.5 30.5 17 1,310 1,331 1.6 13 31 18 1,303 1,335 2.4 12.5 31.5 19 1,294 1,339 3.4 12 32 20 1,284 1,343 4.5 10.5 33.5 23 1,242 1,360 9.1
  • the figure 8 shows different curves representative of a normalized moment of force M( ⁇ ) exerted by the insulated connecting member 12 as a function of the angular position ⁇ of its rim 17 with respect to its hub 16 (winding angle) for different variations section of the elastic arms 18.
  • the highest curve, designated by A1 corresponds to elastic arms 18 of constant section and thickness of 30 ⁇ m.
  • curves located below curve A1 correspond to elastic arms 18 whose thickness decreases linearly from hub 16 to rim 17, the thickness at the junction point with hub 16 being 30 ⁇ m for each curve, the thickness at the point of junction with the serge 17 being 29 ⁇ m for the curve A2, 28 ⁇ m for the curve A3 and 27 ⁇ m for the curve A4.
  • An improvement in consistency is observed for curves A2, A3 and A4 compared to curve A1 over a range of angles of reinforcement of length greater than 15°.
  • the figure 9 shows two curves B1 and B2 representative of a normalized moment of force M( ⁇ ) exerted by the isolated connecting member 12 as a function of the angular position ⁇ of its rim 17 with respect to its hub 16 (winding angle) for different section shapes of the elastic arms 18.
  • the curve la higher, B1 corresponds to elastic arms 18 of constant section and thickness of 30 ⁇ m.
  • Curve B2 corresponds to elastic arms 18 whose thickness decreases linearly from the hub 16 to the middle of the arm then increases linearly from the middle of the arm to the rim 17, the thickness at the junction points with the hub 16 and with the rim 17 being 30 ⁇ m, the thickness in the middle of the arm being 29 ⁇ m.
  • An improvement in consistency is observed for curve B2 compared to curve B1 over a range of angles of reinforcement of length greater than 15°.
  • the elastic arms 18 have a variable section
  • this typically varies in a strictly monotonous manner (it increases or decreases without interruption but not necessarily linearly) over at least one continuous portion of the elastic arm representing 10% , preferably 20%, preferably 30%, preferably 40%, of the (curvilinear) length of the elastic arm.
  • the variation of the section is also chosen to improve the constancy of the elastic restoring moment over the range [ ⁇ a , ⁇ b ] compared to elastic arms of the same shape as the arms 18 but of constant section.
  • the shape of the curve C1 of the intermediate spring 19 according to the invention is very different from that of the other curves C2 to C6. None of the curves C2 to C6 presents a plateau where the moment of force is substantially constant.
  • the simulation was performed over its normal deformation range, before the elastic arms touched, plastically deformed or failed. As soon as the elastic arms touch, the elastic return moment suddenly increases in absolute value, which further distances the shape of the curves C2 to C6 from that of the curve C1 of the intermediate spring 19 according to the invention.
  • the elastic arms 18 can in particular take a form as shown in figure 7 , based on the teaching of the article “Functional joint mechanisms with constant torque outputs”, Mechanism and machine theory 62 (2013) 166-181, Chia-Wen Hou et al.
  • the height, length, thickness and/or material of the elastic arms 18, or even the inclination of the elastic arms 18 relative to the hub 16 (in the plane of the connecting member 12), can also be modified to adjust the value of the substantially constant elastic restoring moment.
  • the present invention can be applied to a constant-force escapement mechanism of the type described in the patent application CH 709914 , by replacing the flexible escape wheel of this mechanism by the connecting member 12 provided with a toothing to cooperate with the anchor 6.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Springs (AREA)

Description

La présente invention concerne un mécanisme horloger, notamment pour montre-bracelet ou montre de poche, dans lequel l'échappement est alimenté par un dispositif dit à force constante.The present invention relates to a timepiece mechanism, in particular for a wristwatch or pocket watch, in which the escapement is powered by a so-called constant-force device.

Les dispositifs à force constante, appelés également remontoirs d'égalité, comprennent généralement, entre l'organe moteur (ressort de barillet) de la montre et la roue d'échappement, un ressort intermédiaire en spirale qui est armé périodiquement par l'organe moteur et qui entraîne la roue d'échappement. Des exemples de tels dispositifs sont le remontoir d'égalité de Gafner ou le dispositif à force constante décrit dans le document EP 2166419 . Ces dispositifs permettent de transmettre à la roue d'échappement une force qui ne dépend pas du degré d'armage de l'organe moteur et d'éviter ainsi que la force reçue par l'échappement et donc par l'oscillateur diminue à mesure que l'organe moteur se désarme.Constant-force devices, also called remontoirs d'égalité, generally comprise, between the driving member (barrel spring) of the watch and the escapement wheel, an intermediate spiral spring which is periodically wound by the driving member and which drives the escape wheel. Examples of such devices are Gafner's remontoire or the constant-force device described in the document EP 2166419 . These devices make it possible to transmit to the escapement wheel a force which does not depend on the degree of winding of the driving member and thus to prevent the force received by the escapement and therefore by the oscillator from decreasing as the motor organ is disarmed.

D'autres types de ressort intermédiaire que des ressorts en spirale ont aussi été proposés. Dans la demande de brevet CH 709914 , le ressort intermédiaire est sous la forme de bras élastiques sinueux qui relient un pignon à une serge dentée, l'ensemble pignon - bras élastiques - serge constituant une roue d'échappement flexible monobloc. Dans la demande de brevet CH 704147 , il est proposé un mobile de transmission d'énergie monobloc comprenant des bras élastiques rectilignes pouvant servir de ressort intermédiaire pour un dispositif à force constante.Other types of intermediate spring than spiral springs have also been proposed. In the patent application CH 709914 , the intermediate spring is in the form of sinuous elastic arms which connect a pinion to a toothed serge, the pinion assembly - elastic arms - serge constituting a one-piece flexible escape wheel. In the patent application CH 704147 , there is proposed a one-piece energy transmission wheel set comprising rectilinear elastic arms which can be used as an intermediate spring for a constant-force device.

Dans tous ces dispositifs dits à force constante, la force délivrée à l'échappement n'est en fait pas constante. C'est la quantité d'énergie fournie à l'échappement entre deux armages successifs du ressort intermédiaire qui est constante. La force, elle, diminue entre deux armages successifs du ressort intermédiaire. La régularité des oscillations de l'oscillateur est certes bien améliorée avec de tels dispositifs, mais elle reste perturbée.In all these so-called constant-force devices, the force delivered to the escapement is not in fact constant. It is the quantity of energy supplied to the escapement between two successive windings of the intermediate spring which is constant. The force decreases between two successive windings of the intermediate spring. The regularity of the oscillations of the oscillator is certainly much improved with such devices, but it remains disturbed.

La présente invention vise à fournir un mécanisme horloger à dispositif à force constante qui atténue cet inconvénient.The present invention aims to provide a watch mechanism with a constant-force device which mitigates this drawback.

A cette fin, il est prévu un mécanisme horloger comprenant un organe moteur, un oscillateur, un échappement pour entretenir les oscillations de l'oscillateur, un ressort intermédiaire pour alimenter l'échappement en énergie mécanique, un ou plusieurs engrenages entre l'organe moteur et le ressort intermédiaire et un dispositif de blocage permettant un armage périodique du ressort intermédiaire par l'organe moteur via le ou les engrenages, caractérisé en ce que le ressort intermédiaire est un ressort à comportement non linéaire qui produit, entre un angle d'armage θa et un angle d'armage θb séparés d'au moins 10°, un moment de rappel élastique qui ne varie pas de plus de 10%, et en ce que le ressort intermédiaire est pré-armé d'une valeur θarm incluse dans la plage [θa, θb], le mécanisme horloger étant agencé pour que, pendant son fonctionnement, l'angle d'armage du ressort intermédiaire reste dans la plage [θa, θb].To this end, a watch mechanism is provided comprising a motor member, an oscillator, an escapement to maintain the oscillations of the oscillator, an intermediate spring to supply the escapement with mechanical energy, one or more gears between the motor member and the intermediate spring and a blocking device allowing periodic winding of the intermediate spring by the motor member via the gear or gears, characterized in that the intermediate spring is a spring with non-linear behavior which produces, between a winding angle θ a and a winding angle θ b separated by at least 10°, an elastic restoring moment which does not vary by more than 10%, and in that the intermediate spring is pre-wound by a value θ arm included in the range [θ a , θ b ], the timepiece mechanism being arranged so that, during its operation, the winding angle of the intermediate spring remains in the range [θ a , θ b ].

La présente invention propose également une pièce d'horlogerie, telle qu'une montre-bracelet ou une montre de poche, comprenant ce mécanisme horloger.The present invention also proposes a timepiece, such as a wristwatch or a pocket watch, comprising this timepiece mechanism.

Les ressorts intermédiaires des dispositifs à force constante connus, qu'ils soient sous la forme d'une spirale, de bras élastiques sinueux tels que décrits dans CH 709914 ou de bras élastiques rectilignes tels que décrits dans CH 704147 , produisent tous un moment de rappel élastique qui varie grandement, le plus souvent linéairement, en fonction de l'angle d'armage. A moins de choisir une très grande fréquence d'armage (très petite durée entre deux armages), la variation du moment de rappel élastique sera importante et l'effet sera perceptible au niveau de l'oscillateur. Dans la présente invention, on utilise un ressort intermédiaire dont la courbe du moment de rappel élastique en fonction de l'angle d'armage est non linéaire et présente un plateau, la plage d'angles d'armage correspondant à ce plateau étant ou incluant la plage de fonctionnement du ressort intermédiaire dans le mécanisme horloger. Ainsi, la force délivrée à l'échappement est réellement sensiblement constante, à la différence des dispositifs dits à force constante de l'état de la technique.The intermediate springs of known constant-force devices, whether in the form of a spiral, sinuous elastic arms as described in CH 709914 or straight elastic arms as described in CH 704147 , all produce an elastic restoring moment which varies greatly, most often linearly, with the angle of lay. Unless you choose a very high winding frequency (very short duration between two windings), the variation in the elastic return moment will be significant and the effect will be perceptible at the level of the oscillator. In the present invention, an intermediate spring is used whose curve of the elastic return moment as a function of the winding angle is non-linear and has a plateau, the range of winding angles corresponding to this plateau being or including the operating range of the intermediate spring in the watch mechanism. Thus, the force delivered to the escapement is really substantially constant, unlike so-called constant-force devices of the state of the art.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins annexés dans lesquels :

  • la figure 1 est une vue de dessus d'un mécanisme horloger à dispositif à force constante selon l'invention ;
  • la figure 2 est une vue en coupe d'une partie du mécanisme horloger, prise suivant la ligne brisée C-C de la figure 1 ;
  • la figure 3 est une vue de dessus d'un organe de liaison à ressort dit intermédiaire faisant partie du dispositif à force constante ;
  • la figure 4 est une représentation graphique schématique illustrant l'allure de la courbe d'évolution du moment de rappel élastique exercé par le ressort intermédiaire dans l'organe de liaison ;
  • la figure 5 représente les coordonnées de points définissant une forme particulière de bras élastique pour le ressort intermédiaire ;
  • la figure 6 est une représentation graphique du moment de rappel élastique exercé par le ressort intermédiaire dans l'organe de liaison comprenant des bras élastiques de forme telle que représentée à la figure 5 ;
  • la figure 7 est une vue de dessus d'un organe de liaison à ressort intermédiaire selon une variante de l'invention ;
  • la figure 8 est une représentation graphique d'un moment de rappel élastique normalisé exercé par le ressort intermédiaire dans l'organe de liaison illustré à la figure 3 selon différentes variantes des bras élastiques du ressort intermédiaire, à savoir de tels bras à section constante (courbe A1) et de tels bras à section variable (courbes A2 à A4), la section variant selon un premier mode de variation ;
  • la figure 9 est une représentation graphique d'un moment de rappel élastique normalisé exercé par le ressort intermédiaire dans l'organe de liaison illustré à la figure 3 selon deux variantes des bras élastiques du ressort intermédiaire, à savoir de tels bras à section constante (courbe B1) et de tels bras à section variable (courbe B2), la section variant selon un deuxième mode de variation ;
  • la figure 10 est une représentation graphique du moment de rappel élastique exercé par le ressort intermédiaire utilisé dans l'invention et des moments de rappel élastiques exercés par cinq ressorts intermédiaires utilisés dans l'état de la technique.
Other characteristics and advantages of the present invention will appear on reading the following detailed description given with reference to the appended drawings in which:
  • the figure 1 is a top view of a timepiece mechanism with a constant-force device according to the invention;
  • the figure 2 is a sectional view of part of the watch mechanism, taken along the broken line CC of the figure 1 ;
  • the picture 3 is a top view of a so-called intermediate spring connecting member forming part of the constant-force device;
  • the figure 4 is a schematic graphic representation illustrating the shape of the evolution curve of the elastic return moment exerted by the intermediate spring in the connecting member;
  • the figure 5 represents the coordinates of points defining a particular form of elastic arm for the intermediate spring;
  • the figure 6 is a graphical representation of the elastic return moment exerted by the intermediate spring in the connecting member comprising elastic arms of the shape shown in figure 5 ;
  • the figure 7 is a top view of an intermediate spring connecting member according to a variant of the invention;
  • the figure 8 is a graphic representation of a normalized elastic restoring moment exerted by the intermediate spring in the connecting member illustrated in picture 3 according to different variants of the elastic arms of the intermediate spring, namely such arms with constant section (curve A1) and such arms with variable section (curves A2 to A4), the section varying according to a first mode of variation;
  • the figure 9 is a graphic representation of a normalized elastic restoring moment exerted by the intermediate spring in the connecting member illustrated in picture 3 according to two variants of the elastic arms of the intermediate spring, namely such constant section arms (curve B1) and such variable section arm (curve B2), the section varying according to a second mode of variation;
  • the figure 10 is a graphic representation of the elastic restoring moment exerted by the intermediate spring used in the invention and of the elastic restoring moments exerted by five intermediate springs used in the state of the art.

Les figures 1 et 2 illustrent un mécanisme horloger 1, formant ou faisant partie d'un mouvement horloger, à dispositif à force constante selon l'invention. Le mécanisme horloger 1 comprend un organe moteur 2, un mobile 3 entraîné par l'organe moteur 2, un échappement 4 et un oscillateur 5. L'organe moteur 2 est typiquement sous la forme d'un ou plusieurs ressorts de barillet (un seul ressort de barillet dans l'exemple illustré) logé(s) dans un ou plusieurs barillets respectifs 2a (un seul barillet dans l'exemple illustré). Dans l'exemple illustré, l'échappement 4 est un échappement à ancre, plus particulièrement un échappement à ancre suisse, comprenant une ancre 6, une roue d'échappement 7 coopérant avec l'ancre 6 et un pignon d'échappement 8 coaxial et solidaire de la roue d'échappement 7, mais il pourrait être d'un autre type. L'oscillateur 5 peut être un balancier-spiral, comme représenté, ou un autre type d'oscillateur tel qu'un oscillateur sans pivots à guidage flexible.The figures 1 and 2 illustrate a watch mechanism 1, forming or forming part of a watch movement, with a constant-force device according to the invention. The watch mechanism 1 comprises a motor member 2, a mobile 3 driven by the motor member 2, an escapement 4 and an oscillator 5. The motor member 2 is typically in the form of one or more barrel springs (a single mainspring in the example shown) housed in one or more respective barrels 2a (a single barrel in the example shown). In the example illustrated, the escapement 4 is a lever escapement, more particularly a Swiss lever escapement, comprising a lever 6, an escapement wheel 7 cooperating with the lever 6 and an escapement pinion 8 coaxial and secured to the escape wheel 7, but it could be of another type. Oscillator 5 can be a balance-spring, as shown, or another type of oscillator such as an oscillator without pivots with flexible guidance.

Entre le mobile 3 et la roue d'échappement 7 est prévu un dispositif à force constante 9. Ce dispositif à force constante 9 comprend un pignon d'armage 10, une roue de seconde 11 coaxiale avec le pignon d'armage 10 mais libre en rotation par rapport à celui-ci et un organe de liaison 12 interposé fonctionnellement entre le pignon d'armage 10 et la roue de seconde 11 avec lesquels il est coaxial. Le pignon d'armage 10 engrène avec la roue du mobile 3, désignée par 14, tandis que le pignon du mobile 3, désigné par 15, engrène avec le barillet 2a. On pourrait néanmoins faire engrener directement le pignon d'armage 10 avec le barillet 2a en adaptant le rapport d'engrenage. La roue de seconde 11 engrène avec le pignon d'échappement 8. L'organe de liaison 12, représenté seul à la figure 3, comprend un moyeu 16 solidaire en rotation du pignon d'armage 10, une serge 17 solidaire en rotation de la roue de seconde 11 et des bras ou lames élastiques 18 uniformément répartis autour du moyeu 16 et reliant le moyeu 16 à la serge 17. Dans l'exemple illustré la serge 17 est en forme de cercle fermé mais elle pourrait en variante être interrompue et prendre la forme d'un ou plusieurs arcs de cercle. L'ensemble des bras élastiques 18 guide la serge 17 en rotation par rapport au moyeu 16 et constitue un ressort dit intermédiaire 19 capable d'emmagasiner de l'énergie mécanique en se tendant (par une rotation relative de la serge 17 et du moyeu 16 dans un sens) et de la restituer en se détendant (par une rotation relative de la serge 17 et du moyeu 16 dans l'autre sens). Les extrémités respectives des bras élastiques 18 jointes au moyeu 16 constituent ensemble une extrémité d'armage du ressort intermédiaire 19. Les extrémités respectives des bras élastiques 18 jointes à la serge 17 constituent ensemble une extrémité de délivrance de couple du ressort intermédiaire 19.Between the mobile 3 and the escapement wheel 7 is provided a constant force device 9. This constant force device 9 comprises a winding pinion 10, a second wheel 11 coaxial with the winding pinion 10 but free in rotation relative thereto and a connecting member 12 functionally interposed between the winding pinion 10 and the second wheel 11 with which it is coaxial. The winding pinion 10 meshes with the wheel of the mobile 3, designated by 14, while the pinion of the mobile 3, designated by 15, meshes with the barrel 2a. One could nevertheless make the winding pinion 10 mesh directly with the barrel 2a by adapting the gear ratio. The second wheel 11 meshes with the escapement pinion 8. The connecting member 12, shown alone in picture 3 , understand a hub 16 fixed in rotation to the winding pinion 10, a rim 17 fixed in rotation to the seconds wheel 11 and elastic arms or blades 18 uniformly distributed around the hub 16 and connecting the hub 16 to the rim 17. In the In the example shown the rim 17 is in the form of a closed circle but it could alternatively be interrupted and take the form of one or more circular arcs. The set of elastic arms 18 guides the serge 17 in rotation relative to the hub 16 and constitutes a so-called intermediate spring 19 capable of storing mechanical energy by stretching (by a relative rotation of the serge 17 and the hub 16 in one direction) and restore it by relaxing (by relative rotation of the rim 17 and the hub 16 in the other direction). The respective ends of the elastic arms 18 joined to the hub 16 together constitute a winding end of the intermediate spring 19. The respective ends of the elastic arms 18 joined to the rim 17 together constitute a torque delivery end of the intermediate spring 19.

L'organe de liaison 12 est typiquement monobloc. Il est par exemple en métal, alliage, silicium, plastique, verre minéral ou verre métallique. Il peut être réalisé par usinage ou par la technique LIGA, notamment dans le cas où il est fait d'un métal ou alliage, par gravure ionique réactive profonde dite DRIE, notamment dans le cas où il est fait en silicium, par moulage, notamment dans le cas où il est fait en plastique ou verre métallique, ou par découpe laser, notamment dans le cas où il est en verre minéral.The connecting member 12 is typically one-piece. It is for example made of metal, alloy, silicon, plastic, mineral glass or metallic glass. It can be produced by machining or by the LIGA technique, in particular in the case where it is made of a metal or alloy, by deep reactive ion etching called DRIE, in particular in the case where it is made of silicon, by molding, in particular in the case where it is made of plastic or metallic glass, or by laser cutting, in particular in the case where it is made of mineral glass.

Comme illustré aux figures 1 à 3, la serge 17 de l'organe de liaison 12 est rendue solidaire en rotation de la roue de seconde 11 par des goupilles 11a portées par la roue de seconde 11 et engagées dans des ouvertures 17a pratiquées dans la serge 17. Dans l'exemple représenté, les ouvertures 17a sont oblongues dans le but de compenser d'éventuels défauts de fabrication, mais elles pourraient avoir une autre forme, par exemple ronde. La serge 17 et la roue de seconde 11 pourraient être rendues solidaires en rotation par tout autre moyen convenable. L'organe de liaison 12 et la roue de seconde 11 pourraient même constituer une seule pièce ayant la forme de l'organe de liaison 12 avec une denture à la périphérie de la serge 17. Le moyeu 16 de l'organe de liaison 12 et le pignon d'armage 10 sont fixés sur le même axe par chassage, collage ou autre. Le moyeu 16 et le pignon d'armage 10 pourraient néanmoins être rendus solidaires en rotation d'une autre manière.As shown in figures 1 to 3 , rim 17 of connecting member 12 is secured in rotation to seconds wheel 11 by pins 11a carried by seconds wheel 11 and engaged in openings 17a made in rim 17. In the example shown , the openings 17a are oblong in order to compensate for any manufacturing defects, but they could have another shape, for example round. The rim 17 and the second wheel 11 could be made integral in rotation by any other suitable means. The connecting member 12 and the second wheel 11 could even constitute a single piece having the shape of the connecting member 12 with a toothing on the periphery of the serge 17. The hub 16 of the connecting member 12 and the winding pinion 10 are fixed on the same axis by driving, gluing Or other. The hub 16 and the winding pinion 10 could nevertheless be made integral in rotation in another way.

Le dispositif à force constante 9 comprend également un dispositif de blocage 20 du type décrit dans les demandes de brevet PCT/IB2018/052645 et PCT/IB2018/052646 de la demanderesse qui sont incorporées dans la présente demande par renvoi. Ce dispositif de blocage 20 comprend un organe rotatif d'entraînement 21, de préférence sous la forme d'un doigt comme représenté, coaxial et solidaire en rotation de la roue d'échappement 7 et du pignon d'échappement 8, un organe rotatif de blocage 22, constitué de préférence d'une étoile comme représenté, coaxial et solidaire en rotation du pignon d'armage 10 et du moyeu 16, et un cadre mobile 23 présentant deux ouvertures à contour fermé 24, 25 qui reçoivent respectivement les organes rotatifs d'entraînement 21 et de blocage 22. Deux éléments d'entraînement 26 diamétralement opposés formés dans la paroi de l'ouverture 24 coopèrent avec l'organe rotatif d'entraînement 21. Deux éléments d'arrêt 27 formés dans la paroi de l'ouverture 25 coopèrent avec l'organe rotatif de blocage 22. Le cadre mobile 23 est guidé en translation suivant la double flèche F par un dispositif de guidage flexible 28 avec lequel il forme de préférence une pièce monobloc. Le cadre mobile 23 pourrait toutefois être guidé en rotation. L'organe rotatif d'entraînement 21 pourrait être relié cinématiquement à la roue d'échappement 7 d'une autre manière qu'en étant solidaire en rotation de celle-ci, par exemple par l'intermédiaire d'un ou plusieurs engrenages. De même, l'organe rotatif de blocage 22 pourrait être relié cinématiquement au moyeu 16 et au pignon d'armage 10 d'une autre manière qu'en étant solidaire en rotation de ceux-ci, par exemple par l'intermédiaire d'un ou plusieurs engrenages.The constant force device 9 also comprises a blocking device 20 of the type described in the patent applications PCT/IB2018/052645 and PCT/IB2018/052646 of the applicant which are incorporated herein by reference. This blocking device 20 comprises a rotary drive member 21, preferably in the form of a finger as shown, coaxial and integral in rotation with the escapement wheel 7 and the escapement pinion 8, a rotary lock 22, preferably consisting of a star as shown, coaxial and integral in rotation with the winding pinion 10 and the hub 16, and a movable frame 23 having two closed contour openings 24, 25 which respectively receive the rotary members of drive 21 and locking 22. Two diametrically opposed drive elements 26 formed in the wall of the opening 24 cooperate with the rotary drive member 21. Two stop elements 27 formed in the wall of the opening 25 cooperate with the rotary locking member 22. The movable frame 23 is guided in translation along the double arrow F by a flexible guide device 28 with which it preferably forms a single piece. The mobile frame 23 could however be guided in rotation. The rotary drive member 21 could be kinematically connected to the escapement wheel 7 in a way other than being integral in rotation with the latter, for example by means of one or more gears. Similarly, the rotary blocking member 22 could be kinematically connected to the hub 16 and to the winding pinion 10 in a way other than by being integral in rotation with these, for example by means of a or more gears.

Le fonctionnement du mécanisme horloger 1 est le suivant.The operation of the clockwork mechanism 1 is as follows.

Le ressort intermédiaire 19, en se désarmant, entraîne via la serge 17 la roue de seconde 11 qui elle-même entraîne le pignon d'échappement 8 donc la roue d'échappement 7. Par l'action de l'oscillateur 5 et de l'ancre 6, la roue d'échappement 7, le pignon d'échappement 8, l'organe rotatif d'entraînement 21, la roue de seconde 11 et la serge 17 de l'organe de liaison 12 tournent de manière saccadée au rythme des alternances de l'oscillateur 5, la roue d'échappement 7, le pignon d'échappement 8 et l'organe rotatif d'entraînement 21 tournant ensemble dans le sens horaire de la figure 1. Ainsi, l'échappement 4 n'est alimenté que par de l'énergie provenant du ressort intermédiaire 19 et reçoit donc une force qui ne dépend pas du degré d'armage de l'organe moteur 2.The intermediate spring 19, disarming, drives via the rim 17 the second wheel 11 which itself drives the escapement pinion 8 and therefore the escapement wheel 7. By the action of the oscillator 5 and the lever 6, escapement wheel 7, escapement pinion 8, rotary drive member 21, seconds wheel 11 and rim 17 of connecting member 12 rotate jerkily to the rhythm of the alternations of the oscillator 5, the escapement wheel 7, the escapement pinion 8 and the rotary drive member 21 rotating together in the clockwise direction of the figure 1 . Thus, the escapement 4 is powered only by energy coming from the intermediate spring 19 and therefore receives a force which does not depend on the degree of winding of the driving member 2.

La plupart du temps, l'organe rotatif de blocage 22, qui est sous tension de par le couple exercé par l'organe moteur 2 via le train d'engrenages formé par le barillet 2a, le mobile 3 et le pignon d'armage 10, est bloqué par l'un des éléments d'arrêt 27 contre lequel s'appuie une de ses branches, ce qui maintient le pignon d'armage 10 et donc le moyeu 16 de l'organe de liaison 12 immobiles.Most of the time, the rotary blocking member 22, which is under tension by the torque exerted by the motor member 2 via the gear train formed by the barrel 2a, the mobile 3 and the winding pinion 10 , is blocked by one of the stop elements 27 against which bears one of its branches, which keeps the winding pinion 10 and therefore the hub 16 of the connecting member 12 stationary.

Le ressort intermédiaire 19 est armé périodiquement par l'organe moteur 2 à des instants qui sont déterminés par la rencontre entre l'organe rotatif d'entraînement 21 et chacun des éléments d'entraînement 26. Dès que l'organe rotatif d'entraînement 21 entre en contact avec l'un des éléments d'entraînement 26, il coopère avec celui-ci pour déplacer le cadre mobile 23 afin de désengager l'organe rotatif de blocage 22 de l'élément d'arrêt 27 contre lequel il s'appuyait. Toute la chaîne cinématique allant de l'organe moteur 2 au moyeu 16 de l'organe de liaison 12 est alors libérée et se met à tourner brusquement jusqu'à ce qu'une autre branche de l'organe rotatif de blocage 22 vienne s'appuyer sur l'autre élément d'arrêt 27. Pendant ce déplacement brusque (considéré comme instantané par rapport au mouvement de la roue d'échappement 7, du pignon d'échappement 8 et de l'organe rotatif d'entraînement 21), le ressort intermédiaire 19 est armé. Le ressort intermédiaire 19 sera de nouveau armé, de manière similaire, après la rencontre entre l'organe rotatif d'entraînement 21 et l'autre élément d'entraînement 26, puis le cycle se répète.The intermediate spring 19 is periodically charged by the drive member 2 at times which are determined by the meeting between the rotary drive member 21 and each of the drive elements 26. As soon as the rotary drive member 21 comes into contact with one of the drive elements 26, it cooperates with the latter to move the mobile frame 23 in order to disengage the rotary blocking member 22 from the stop element 27 against which it was resting . The entire kinematic chain going from the motor member 2 to the hub 16 of the connecting member 12 is then released and begins to rotate abruptly until another branch of the rotary locking member 22 comes press the other stop element 27. During this sudden movement (considered as instantaneous with respect to the movement of the escapement wheel 7, of the escapement pinion 8 and of the rotary drive member 21), the intermediate spring 19 is armed. The intermediate spring 19 will be armed again, similarly, after the meeting between the rotary drive member 21 and the other drive element 26, then the cycle repeats.

L'intervalle de temps séparant deux armages successifs du ressort intermédiaire 19 (c'est-à-dire deux sauts successifs de l'ensemble pignon d'armage 10 - moyeu 16 - organe rotatif de blocage 22) est typiquement de plusieurs secondes. Les différents rapports d'engrenages dans le mécanisme horloger 1 et le nombre de branches de l'organe rotatif d'entraînement 21 et de l'organe rotatif de blocage 22 sont choisis pour que le ressort intermédiaire 19 accumule à chaque armage la même quantité d'énergie que celle délivrée à l'échappement 4 entre deux armages successifs.The time interval separating two successive windings of the intermediate spring 19 (that is to say two successive jumps of the winding pinion 10 - hub 16 - rotary blocking member 22 assembly) is typically several seconds. The different gear ratios in the watch mechanism 1 and the number of branches of the rotary drive member 21 and of the rotary blocking member 22 are chosen so that the intermediate spring 19 accumulates the same quantity of energy than that delivered to the escapement 4 between two successive windings.

Le dispositif de blocage 20 est avantageux notamment pour protéger le mécanisme horloger 1 contre les chocs et pour diminuer les frottements, comme expliqué dans les demandes de brevet PCT/IB2018/052645 et PCT/IB2018/052646 . Toutefois, il est possible de recourir à un dispositif de blocage plus classique, à ancre, tel que celui utilisé dans le remontoir d'égalité de Gafner ou décrit dans la demande de brevet EP 2166419 .The locking device 20 is advantageous in particular for protecting the watch mechanism 1 against shocks and for reducing friction, as explained in the patent applications PCT/IB2018/052645 and PCT/IB2018/052646 . However, it is possible to use a more traditional anchor locking device, such as that used in Gafner's remontoire or described in the patent application EP 2166419 .

Dans la présente invention, les bras élastiques 18 qui constituent le ressort intermédiaire 19 sont conformés spécialement pour améliorer la constance du couple ou moment de rappel élastique exercé par ce ressort intermédiaire 19 et améliorer ainsi la régularité des oscillations de l'oscillateur 5.In the present invention, the elastic arms 18 which constitute the intermediate spring 19 are specially shaped to improve the constancy of the torque or elastic return moment exerted by this intermediate spring 19 and thus improve the regularity of the oscillations of the oscillator 5.

Pour la compréhension de l'invention, le comportement de l'organe de liaison 12, considéré isolément, c'est-à-dire libre de toute interaction avec le pignon d'armage 10 et avec la roue de seconde 11, est décrit ci-dessous. La figure 3 représente cet organe de liaison 12 isolé.For the understanding of the invention, the behavior of the connecting member 12, considered in isolation, that is to say free of any interaction with the winding pinion 10 and with the second wheel 11, is described below. -below. The picture 3 represents this connecting member 12 isolated.

L'organe de liaison 12 isolé montré à la figure 3 présente, en raison de la forme de ses bras élastiques 18, un sens de rotation privilégié de sa serge 17 par rapport à son moyeu 16, ce sens étant défini comme celui qui permet, à partir de son état de repos, le plus grand déplacement angulaire relatif de sa serge 17 par rapport à son moyeu 16. Ce sens de rotation privilégié est le sens horaire à la figure 3.The isolated connecting member 12 shown in picture 3 has, due to the shape of its elastic arms 18, a privileged direction of rotation of its rim 17 with respect to its hub 16, this direction being defined as that which allows, from its state of rest, the greatest displacement relative angular of its serge 17 by relative to its hub 16. This preferred direction of rotation is clockwise at the picture 3 .

L'organe de liaison 12 isolé peut être armé par rotation de sa serge 17 par rapport à son moyeu 16 d'un angle θ dans son sens de rotation privilégié, l'angle θ = 0° correspondant à la position de repos de l'organe de liaison 12 isolé, c'est-à-dire à la position dans laquelle le ressort intermédiaire 19 est au repos (n'exerce aucun moment de rappel élastique). Lors d'un tel armage, le ressort intermédiaire 19 se déforme pour exercer un moment de rappel M(θ) dépendant de la position θ de la serge 17 par rapport au moyeu 16, tendant à faire pivoter la serge 17 par rapport au moyeu 16 dans le sens opposé au sens d'armage, c'est-à-dire dans le sens opposé au sens de rotation privilégié, tendant ainsi à la faire revenir à son état de repos.The insulated connecting member 12 can be reinforced by rotation of its rim 17 with respect to its hub 16 through an angle θ in its preferred direction of rotation, the angle θ=0° corresponding to the rest position of the connecting member 12 isolated, that is to say in the position in which the intermediate spring 19 is at rest (exerts no elastic return moment). During such winding, the intermediate spring 19 deforms to exert a restoring moment M(θ) depending on the position θ of the rim 17 relative to the hub 16, tending to cause the rim 17 to pivot relative to the hub 16 in the opposite direction to the winding direction, that is to say in the opposite direction to the privileged direction of rotation, thus tending to make it return to its state of rest.

Lorsque la serge 17 est dans la position angulaire dans laquelle l'angle θ est égal à x°, on dit que l'organe de liaison 12 ou le ressort intermédiaire 19 est armé de x°.When the rim 17 is in the angular position in which the angle θ is equal to x°, it is said that the connecting member 12 or the intermediate spring 19 is reinforced with x°.

Le ressort intermédiaire 19 est conçu, notamment de par sa forme, pour exercer, dans l'organe de liaison 12, un moment de rappel élastique M(θ) sensiblement constant sur une plage de positions angulaires [θa, θb] de la serge 17 par rapport au moyeu 16 d'au moins 10°, de préférence d'au moins 15°, de préférence d'au moins 20°, de préférence d'au moins 25°.The intermediate spring 19 is designed, in particular by its shape, to exert, in the connecting member 12, a substantially constant elastic return moment M(θ) over a range of angular positions [θ a , θ b ] of the serge 17 with respect to hub 16 by at least 10°, preferably by at least 15°, preferably by at least 20°, preferably by at least 25°.

On entend par moment « sensiblement constant » un moment ne variant pas de plus de 10%, de préférence 5%, de préférence encore 3%, typiquement 1,5%, étant entendu que ce pourcentage peut être diminué davantage.“Substantially constant” moment is understood to mean a moment not varying by more than 10%, preferably 5%, more preferably 3%, typically 1.5%, it being understood that this percentage can be further reduced.

Plus précisément, soient respectivement Mmin et Mmax les valeurs des moments minimum et maximum exercés par le ressort intermédiaire 19 dans l'organe de liaison 12 isolé sur une plage donnée de positions angulaires de la serge 17 par rapport au moyeu 16, le moment exercé par le ressort intermédiaire 19 est sensiblement constant dès lors que l'inéquation « (Mmax - Mmin)/((Mmax + Mmin)/2) ≤ 0,1 » est vérifiée, plus précisément, dès lors que l'inéquation « (Mmax - Mmin)/((Mmax + Mmin)/2) ≤ y% », avec y = 10, de préférence 5, de préférence encore 3, par exemple 1,5, est vérifiée.More specifically, let M min and M max respectively be the values of the minimum and maximum moments exerted by the intermediate spring 19 in the connecting member 12 isolated over a given range of angular positions of the rim 17 with respect to the hub 16, the moment exerted by the intermediate spring 19 is substantially constant when the inequality "(Mmax - Mmin)/((Mmax + M min )/2) ≤ 0.1" is verified, more precisely, when the inequality "(Mmax - Mmin)/((Mmax + M min )/2) ≤ y%", with y = 10, preferably 5, more preferably 3, for example 1.5, is verified.

La figure 4 illustre schématiquement l'allure de la courbe d'évolution du moment de rappel élastique M(θ) en fonction de la position angulaire θ relative de la serge 17 par rapport au moyeu 16. Comme cela est visible, cette courbe est non linéaire et le moment de rappel élastique M(θ) suit globalement une évolution en trois phases :

  • pour un angle θ compris entre 0° et une première valeur θa, le moment de rappel élastique augmente rapidement avec le déplacement angulaire θ ;
  • au-delà de cette première valeur θa, le ressort intermédiaire 19 est dans une phase stable. En effet, entre cette première valeur θa et une seconde valeur θb, le moment de rappel élastique est sensiblement constant par rapport au déplacement angulaire θ, la courbe M(θ) prenant la forme d'un plateau ;
  • au-delà de cette deuxième valeur θb le moment de rappel élastique augmente à nouveau jusqu'à atteindre une valeur limite Mlimite, pour un déplacement angulaire θ=θlimite. Cette valeur Mlimite dépend des propriétés du matériau dans lequel le ressort intermédiaire 19 est réalisé et est atteinte lorsque le ressort intermédiaire 19 subit la contrainte maximale qu'il peut supporter.
The figure 4 schematically illustrates the shape of the evolution curve of the elastic return moment M(θ) as a function of the relative angular position θ of the rim 17 with respect to the hub 16. As can be seen, this curve is non-linear and the elastic restoring moment M(θ) globally follows an evolution in three phases:
  • for an angle θ between 0° and a first value θ a , the elastic restoring moment increases rapidly with the angular displacement θ;
  • beyond this first value θ a , the intermediate spring 19 is in a stable phase. Indeed, between this first value θ a and a second value θ b , the elastic restoring moment is substantially constant with respect to the angular displacement θ, the curve M(θ) taking the form of a plateau;
  • beyond this second value θ b the elastic restoring moment increases again until it reaches a limit value M limit , for an angular displacement θ=θ limit . This limit value M depends on the properties of the material in which the intermediate spring 19 is made and is reached when the intermediate spring 19 undergoes the maximum stress that it can withstand.

Il est possible de définir des valeurs limites d'angles θa_y% et θb_y% entre lesquelles le moment de rappel élastique est sensiblement constant, avec une constance de y%. Par exemple, si l'on veut obtenir une constance du moment de rappel élastique de 5%, on définit à l'aide de la courbe M(θ) les valeurs des angles θa_5% et θb_5% pour que l'inéquation : « (Mmax-Mmin) / ((Mmax+Mmin)/2) < 0,05 » soit vérifiée ; avec Mmax le moment de rappel élastique maximum sur l'intervalle d'angles [θa_5%, θb_5%] et Mmin le moment de rappel élastique minimum sur ce même intervalle.It is possible to define limit values of angles θ a_y% and θ b_y% between which the elastic restoring moment is substantially constant, with a constancy of y%. For example, if one wants to obtain a constancy of the elastic restoring moment of 5%, one defines using the curve M(θ) the values of the angles θ a_5% and θ b_5% so that the inequality: "(Mmax-Mmin) / ((M max +M min )/2) <0.05" is verified; with M max the maximum elastic restoring moment over the interval of angles [θ a_5% , θ b_5% ] and M min the minimum elastic restoring moment over this same interval.

Dans le mécanisme horloger 1, le ressort intermédiaire 19 est pré-armé d'une valeur θarm incluse dans la plage [θa, θb] et les rapports d'engrenages et le nombre de branches de l'organe rotatif d'entraînement 21 et de l'organe rotatif de blocage 22 sont choisis pour que l'angle d'armage θ reste dans cette plage pendant le fonctionnement dudit mécanisme, de sorte que le moment de rappel élastique reste sensiblement constant. Le pré-armage du ressort intermédiaire 19 peut être effectué pendant l'assemblage du mécanisme horloger 1 par simple positionnement angulaire de la roue de seconde 11 par rapport au pignon d'armage 10 relié par l'organe de liaison 12 à la roue de seconde 11. Plus la valeur de pré-armage θarm choisie est proche de la valeur θb plus la plage de fonctionnement du ressort intermédiaire 19 pourra être grande. Chaque armage du ressort intermédiaire 19 par l'organe moteur 2 ramène l'angle d'armage θ du ressort intermédiaire 19 à la valeur θarm.In the watch mechanism 1, the intermediate spring 19 is pre-armed with a value θ arm included in the range [θ a , θ b ] and the gear ratios and the number of branches of the rotary drive member 21 and of the rotary blocking member 22 are chosen so that the winding angle θ remains in this range during the operation of said mechanism, so that the elastic return moment remains substantially constant. The pre-winding of the intermediate spring 19 can be carried out during the assembly of the watch mechanism 1 by simple angular positioning of the second wheel 11 with respect to the winding pinion 10 connected by the connecting member 12 to the second wheel 11. The closer the pre-winding value θ arm chosen is to the value θ b the greater the operating range of the intermediate spring 19 may be. Each winding of the intermediate spring 19 by the drive member 2 brings the winding angle θ of the intermediate spring 19 to the value θ arm .

Pour obtenir l'allure non linéaire de la courbe M(θ) représentée à la figure 4, les bras élastiques 18 peuvent être conformés par optimisation topologique en appliquant l'enseignement de la publication « Design of adjustable constant-force forceps for robot-assisted surgical manipulation », Chao-Chieh Lan et al., 2011 IEEE International Conférence on Robotics and Automation, Shanghai International Conférence Center, May 9-13, 2011, China . To obtain the nonlinear shape of the curve M(θ) shown in figure 4 , the elastic arms 18 can be shaped by topological optimization by applying the teaching of the publication “Design of adjustable constant-force forceps for robot-assisted surgical manipulation”, Chao-Chieh Lan et al., 2011 IEEE International Conference on Robotics and Automation, Shanghai International Conference Center, May 9-13, 2011, China .

L'optimisation topologique dont il est question dans l'article précité utilise des courbes polynomiales paramétriques telles que les courbes de Bézier pour déterminer la forme géométrique des bras élastiques.The topological optimization discussed in the aforementioned article uses parametric polynomial curves such as Bézier curves to determine the geometric shape of the elastic arms.

Les courbes de Bézier se définissent, conjointement à une série de m=(n+1) points de contrôle (Qo, Q1, ... Qn), par un ensemble de points dont les coordonnées sont données par des sommes de polynômes de Bernstein pondérées par les coordonnées desdits points de contrôle.Bézier curves are defined, together with a series of m=(n+1) control points (Qo, Q 1 , ... Qn), by a set of points whose coordinates are given by sums of polynomials of Bernstein weighted by the coordinates of said control points.

La forme géométrique de chacun des bras élastiques 18 du ressort intermédiaire 19 est une courbe de Bézier dont les points de contrôle ont été optimisés pour prendre en compte, notamment, les dimensions de l'organe de liaison 12 à concevoir ainsi que la contrainte « (Mmax-Mmin)/((Mmax+Mmin)/2) ≤ 0,05 » recherchée. L'inéquation « (Mmax-Mmin)/((Mmax+Mmin)/2) ≤ 0,05 » correspond à une constance du moment de rappel élastique de 5% sur une plage angulaire [θa_5%, θb_5%].The geometric shape of each of the elastic arms 18 of the intermediate spring 19 is a Bézier curve whose control points have been optimized to take into account, in particular, the dimensions of the connecting member 12 to be designed as well as the constraint "( M max -M min )/((M max +M min )/2) ≤ 0.05” sought. The inequality “(M max -M min )/((M max +M min )/2) ≤ 0.05” corresponds to a constancy of the elastic restoring moment of 5% over an angular range [θ a_5% , θ b_5% ].

Plus précisément, la forme géométrique de chacun des bras élastiques est définie par l'ensemble des points i = 0 n B i n t . Q i , avec t 0 , 1 ,

Figure imgb0001
où les B i n
Figure imgb0002
sont les polynômes de Bernstein donnés par la fonction B i t = m 1 ! i ! m 1 i ! t i 1 t m i 1 avec t 0 , 1 ,
Figure imgb0003
et où les Qi sont les points de contrôle Q0 à Qn. Elle correspond à la représentation graphique dans un repère orthonormé de l'ensemble des points définis par les couples de coordonnées (x ; y) définis respectivement par les fonctions x(t) et y(t), t ∈ [0, 1], ci-dessous : x t = i = 0 m 1 Q ix B i t
Figure imgb0004
y t = i = 0 m 1 Q iy B i t
Figure imgb0005
dans lesquelles Qix et Qiy sont respectivement les coordonnées x et y des points de contrôle Qi.More precisely, the geometric shape of each of the elastic arms is defined by the set of points I = 0 not B I not you . Q I , with you 0 , 1 ,
Figure imgb0001
where the B I not
Figure imgb0002
are the Bernstein polynomials given by the function B I you = m 1 ! I ! m 1 I ! you I 1 you m I 1 with you 0 , 1 ,
Figure imgb0003
and where the Q i are the control points Q 0 to Q n . It corresponds to the graphic representation in an orthonormal frame of reference of the set of points defined by the pairs of coordinates (x; y) defined respectively by the functions x(t) and y(t), t ∈ [0, 1], below : x you = I = 0 m 1 Q ix B I you
Figure imgb0004
there you = I = 0 m 1 Q there B I you
Figure imgb0005
in which Q ix and Q iy are respectively the x and y coordinates of the control points Q i .

Les formules indiquées ci-dessus donnent les coordonnées d'une courbe de Bézier d'ordre m, c'est-à-dire une courbe de Bézier basée sur m points de contrôle. Pour des raisons pratiques, une telle courbe de Bézier peut être décomposée en une succession de courbes de Bézier d'ordre inférieur à m, auquel cas la forme géométrique de chacun des bras élastiques est une succession de courbes de Bézier.The formulas given above give the coordinates of a Bézier curve of order m, that is, a Bézier curve based on m control points. For practical reasons, such a Bézier curve can be broken down into a succession of Bézier curves of order less than m, in which case the geometric shape of each of the elastic arms is a succession of Bézier curves.

En utilisant ce principe, la demanderesse a conçu un organe de liaison 12 particulier comprenant trois bras élastiques 18 répartis uniformément autour du moyeu 16. Cet organe de liaison 12 correspond à celui représenté dans les figures. Les dimensions de cet organe de liaison sont les suivantes : Diamètre extérieur de la serge : 12 mm Diamètre extérieur du moyeu : 2 mm Diamètre intérieur de la serge : 10 mm Hauteur: 0,12 mm Epaisseur des bras élastiques : 80 µm Longueur curviligne de chaque bras : 4,91 mm Using this principle, the applicant has designed a particular connecting member 12 comprising three elastic arms 18 distributed uniformly around the hub 16. This connecting member 12 corresponds to that shown in the figures. The dimensions of this connecting device are as follows: External diameter of the serge: 12mm Outside diameter of the hub: 2mm Inner diameter of the serge: 10mm Height: 0.12mm Thickness of the elastic arms: 80µm Curvilinear length of each arm: 4.91mm

Dans le cadre de cette conception, sept points de contrôle Q0, Q1, Q2, Q3, Q4, Q5, Q6 ont été utilisés. Les coordonnées de ces points de contrôle sont indiquées dans le tableau 1 ci-dessous. Tableau 1 : Coordonnées des points de contrôle Q 0 à Q 6 . Variables Coordonnées x [mm] Coordonnées y [mm] Q0 0,756625 0,653875 Q1 1,87325 1,619 Q2 2,8125 -0,59125 Q3 3,4375 0,4535 Q4 3,75 1,032875 Q5 4,375 0 Q6 5 0 As part of this design, seven control points Q 0 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 were used. The coordinates of these control points are shown in Table 1 below. <i><u>Table 1: Coordinates of control points Q</u><sub><u>0</u></sub></i><u>to</u><i><u>Q</u><sub><u>6</u></sub></i><u>.</u> Variables x-coordinates [mm] y-coordinates [mm] Q 0 0.756625 0.653875 Q1 1.87325 1,619 Q2 2.8125 -0.59125 Q3 3.4375 0.4535 Q4 3.75 1.032875 Q5 4,375 0 Q6 5 0

Avec ces sept points de contrôle il aurait été possible de réaliser une courbe de Bézier d'ordre sept. Cependant, selon le principe indiqué ci-dessus, la courbe de Bézier a été décomposée en deux segments, un premier segment correspondant à une courbe de Bézier d'ordre 4 basée sur les points de contrôle Q0 à Q3 et un second segment correspondant à une courbe de Bézier d'ordre 4 basée sur les points de contrôle Q3 à Q6.With these seven control points it would have been possible to produce a Bézier curve of order seven. However, according to the principle indicated above, the Bézier curve was broken down into two segments, a first segment corresponding to a curve of Bézier of order 4 based on control points Q 0 to Q 3 and a second segment corresponding to a Bézier curve of order 4 based on control points Q 3 to Q 6 .

En utilisant les coordonnées des points de contrôle Q0 à Q6 ci-dessus dans les fonctions x(t) et y(t) précitées, la demanderesse a obtenu les coordonnées des points définissant la forme géométrique d'un bras élastique. Un certain nombre de ces couples de coordonnées sont donnés dans le tableau 2 ci-après. Tableau 2 : Coordonnées de points de passage du bras élastique optimisé x [mm] y [mm] 0,756625 0,653875 1,086132 0,854582 1,404044 0,903348 1,709407 0,838756 2,001267 0,699389 2,278672 0,523828 2,540668 0,350656 2,786302 0,218455 3,014621 0,165807 3,224671 0,231295 3,4155 0,4535 3,524275 0,58159 3,648736 0,628816 3,787142 0,611048 3,937748 0,544158 4,098813 0,444016 4,268592 0,326492 4,445344 0,207458 4,627324 0,102784 4,812791 0,028341 5 0 By using the coordinates of the control points Q 0 to Q 6 above in the aforementioned functions x(t) and y(t), the applicant has obtained the coordinates of the points defining the geometric shape of an elastic arm. A certain number of these pairs of coordinates are given in table 2 below. <i><u>Table 2: Coordinates of passage points of the optimized elastic arm</u></i> x [mm] y [mm] 0.756625 0.653875 1.086132 0.854582 1.404044 0.903348 1.709407 0.838756 2.001267 0.699389 2.278672 0.523828 2.540668 0.350656 2.786302 0.218455 3.014621 0.165807 3.224671 0.231295 3.4155 0.4535 3.524275 0.58159 3.648736 0.628816 3.787142 0.611048 3.937748 0.544158 4.098813 0.444016 4.268592 0.326492 4.445344 0.207458 4.627324 0.102784 4.812791 0.028341 5 0

Le graphique de la figure 5 fait apparaître la géométrie du diamètre externe du moyeu 16, du diamètre interne de la serge 17 et d'un des bras élastiques 18 de l'organe de liaison 12 que la demanderesse a conçu, la géométrie dudit bras étant définie par une courbe passant par l'ensemble des coordonnées de points défini dans le tableau 2 ci-dessus. Ce graphique est réalisé dans un repère orthonormé.The graph of the figure 5 reveals the geometry of the outer diameter of the hub 16, of the inner diameter of the rim 17 and of one of the elastic arms 18 of the connecting member 12 that the applicant has designed, the geometry of said arm being defined by a curve passing through the set of point coordinates defined in table 2 above. This graph is produced in an orthonormal frame.

La figure 6 représente les résultats d'une simulation de l'évolution du moment de rappel élastique de l'organe de liaison 12 isolé ainsi réalisé en fonction de la position angulaire θ de sa serge 17 par rapport à son moyeu 16.The figure 6 represents the results of a simulation of the evolution of the elastic return moment of the isolated connecting member 12 thus produced as a function of the angular position θ of its rim 17 with respect to its hub 16.

La simulation effectuée considère l'organe de liaison 12 isolé réalisé en verre métallique, plus précisément en Vitreloy 1b, mais tout matériau approprié peut être utilisé. Par exemple des matériaux tels que le silicium typiquement revêtu d'oxyde de silicium, le Nivaflex® 45/18 (alliage à base de cobalt, nickel et chrome), le plastique ou le CK101 (acier de construction non-allié) conviennent également et permettent l'obtention d'organes de liaison dont le moment de rappel élastique est sensiblement constant sur les mêmes plages angulaires [θa, θb].The simulation carried out considers the insulated connecting member 12 made of metallic glass, more precisely of Vitreloy 1b, but any suitable material can be used. For example materials such as silicon typically coated with oxide silicon, Nivaflex ® 45/18 (alloy based on cobalt, nickel and chromium), plastic or CK101 (unalloyed structural steel) are also suitable and allow the production of connecting elements whose moment of elastic return is substantially constant over the same angular ranges [θ a , θ b ].

La plage angulaire de fonctionnement permettant la délivrance d'un moment sensiblement constant étant une constante liée à la forme des bras élastiques 18, l'angle de fonctionnement θb doit être inférieur à l'angle θlim correspondant à la limite avant plastification ou rupture du ressort intermédiaire 19. Cela permet de définir l'épaisseur maximale qu'il est possible de réaliser sur les bras.The angular operating range allowing the delivery of a substantially constant moment being a constant linked to the shape of the elastic arms 18, the operating angle θ b must be less than the angle θ lim corresponding to the limit before yielding or rupture of the intermediate spring 19. This makes it possible to define the maximum thickness that it is possible to achieve on the arms.

Il ressort de l'analyse des résultats présentés à la figure 6 qu'une constance de 2,4% du moment de rappel élastique est obtenue pour un déplacement angulaire de la serge 17 de l'organe de liaison 12 étudié par rapport à son moyeu 16 compris entre θa_2,4%, soit 13°, et θb_2,4%, soit 31°, soit sur une plage de fonctionnement de 18°. L'organe de liaison 12 ainsi réalisé possède donc une plage de fonctionnement à moment constant (pour une constance de 2,4%) de 18°. Si l'on accepte une constance de 9,1% du moment de rappel élastique alors l'organe de liaison ainsi réalisé possède une plage de fonctionnement à moment constant d'environ 23°, avec θa_9,1% ≈ 10,5° et θb_9,1% ≈ 33,5°.It emerges from the analysis of the results presented to the figure 6 that a constant of 2.4% of the elastic return moment is obtained for an angular displacement of the rim 17 of the connecting member 12 studied with respect to its hub 16 comprised between θ a_2.4% , i.e. 13°, and θ b_2.4% , ie 31°, ie over an operating range of 18°. The connecting member 12 thus produced therefore has a constant moment operating range (for a constant of 2.4%) of 18°. If we accept a constant of 9.1% of the elastic return moment then the connecting member thus produced has an operating range at constant moment of approximately 23°, with θ a_9.1% ≈ 10.5° and θ b_9.1% ≈ 33.5°.

Le tableau 3 ci-dessous donne, à titre indicatif, les valeurs θa_y%, θb_y% et Δθ (plage de positions angulaires à moment sensiblement constant) associées à l'organe de liaison 12 réalisé par la demanderesse en fonction du pourcentage de constance y considéré ainsi que les valeurs de moments de force Mmin et Mmax associées. Tableau 3 : θa_y% θb_y% Plage angulaire Δθ (°) Mmin Mmax Pourcentage de constance y (%) 13,5 30,5 17 1,310 1,331 1,6 13 31 18 1,303 1,335 2,4 12,5 31,5 19 1,294 1,339 3,4 12 32 20 1,284 1,343 4,5 10,5 33,5 23 1,242 1,360 9,1 Table 3 below gives, by way of indication, the values θ a_y% , θ b_y% and Δθ (range of angular positions at substantially constant moment) associated with the connecting member 12 made by the applicant as a function of the percentage of constancy considered there as well as the associated torque values M min and M max . <i><u>Table 3:</u></i> θ a_y% θ b_y% Angle range Δθ (°) Mmin Mmax Percent constancy y (%) 13.5 30.5 17 1,310 1,331 1.6 13 31 18 1,303 1,335 2.4 12.5 31.5 19 1,294 1,339 3.4 12 32 20 1,284 1,343 4.5 10.5 33.5 23 1,242 1,360 9.1

En augmentant le nombre de points de contrôle lors de la conception des bras élastiques 18, on devrait pouvoir augmenter la précision de la forme de ces bras élastiques 18 et améliorer ainsi la constance du moment de rappel.By increasing the number of control points when designing the elastic arms 18, it should be possible to increase the precision of the shape of these elastic arms 18 and thus improve the constancy of the restoring moment.

Il est aussi possible d'améliorer la constance du moment de rappel en concevant les bras élastiques 18 avec une section variable. La figure 8 montre différentes courbes représentatives d'un moment de force M(θ) normalisé exercé par l'organe de liaison 12 isolé en fonction de la position angulaire θ de sa serge 17 par rapport à son moyeu 16 (angle d'armage) pour différentes variations de section des bras élastiques 18. La courbe la plus haute, désignée par A1, correspond à des bras élastiques 18 de section constante et d'épaisseur 30 µm. Les courbes situées au-dessous de la courbe A1 correspondent à des bras élastiques 18 dont l'épaisseur diminue linéairement du moyeu 16 à la serge 17, l'épaisseur au point de jonction avec le moyeu 16 étant de 30 µm pour chaque courbe, l'épaisseur au point de jonction avec la serge 17 étant de 29 µm pour la courbe A2, de 28 µm pour la courbe A3 et de 27 µm pour la courbe A4. On constate une amélioration de la constance pour les courbes A2, A3 et A4 par rapport à la courbe A1 sur une plage d'angles d'armage de longueur supérieure à 15°.It is also possible to improve the constancy of the restoring moment by designing the elastic arms 18 with a variable section. The figure 8 shows different curves representative of a normalized moment of force M(θ) exerted by the insulated connecting member 12 as a function of the angular position θ of its rim 17 with respect to its hub 16 (winding angle) for different variations section of the elastic arms 18. The highest curve, designated by A1, corresponds to elastic arms 18 of constant section and thickness of 30 μm. The curves located below curve A1 correspond to elastic arms 18 whose thickness decreases linearly from hub 16 to rim 17, the thickness at the junction point with hub 16 being 30 μm for each curve, the the thickness at the point of junction with the serge 17 being 29 μm for the curve A2, 28 μm for the curve A3 and 27 μm for the curve A4. An improvement in consistency is observed for curves A2, A3 and A4 compared to curve A1 over a range of angles of reinforcement of length greater than 15°.

D'autres modes de variation de la section des bras élastiques 18 peuvent être envisagés. La figure 9 montre deux courbes B1 et B2 représentatives d'un moment de force M(θ) normalisé exercé par l'organe de liaison 12 isolé en fonction de la position angulaire θ de sa serge 17 par rapport à son moyeu 16 (angle d'armage) pour différentes formes de section des bras élastiques 18. La courbe la plus haute, B1, correspond à des bras élastiques 18 de section constante et d'épaisseur 30 µm. La courbe B2 correspond à des bras élastiques 18 dont l'épaisseur diminue linéairement du moyeu 16 au milieu du bras puis augmente linéairement du milieu du bras à la serge 17, l'épaisseur aux points de jonction avec le moyeu 16 et avec la serge 17 étant de 30 µm, l'épaisseur au milieu du bras étant de 29 µm. On constate une amélioration de la constance pour la courbe B2 par rapport à la courbe B1 sur une plage d'angles d'armage de longueur supérieure à 15°.Other modes of variation of the section of the elastic arms 18 can be envisaged. The figure 9 shows two curves B1 and B2 representative of a normalized moment of force M(θ) exerted by the isolated connecting member 12 as a function of the angular position θ of its rim 17 with respect to its hub 16 (winding angle) for different section shapes of the elastic arms 18. The curve la higher, B1, corresponds to elastic arms 18 of constant section and thickness of 30 μm. Curve B2 corresponds to elastic arms 18 whose thickness decreases linearly from the hub 16 to the middle of the arm then increases linearly from the middle of the arm to the rim 17, the thickness at the junction points with the hub 16 and with the rim 17 being 30 µm, the thickness in the middle of the arm being 29 µm. An improvement in consistency is observed for curve B2 compared to curve B1 over a range of angles of reinforcement of length greater than 15°.

De manière générale, dans les cas où les bras élastiques 18 ont une section variable, celle-ci varie typiquement de manière strictement monotone (elle augmente ou diminue sans interruption mais pas nécessairement linéairement) sur au moins une portion continue du bras élastique représentant 10%, de préférence 20%, de préférence 30%, de préférence 40%, de la longueur (curviligne) du bras élastique. La variation de la section est en outre choisie pour améliorer la constance du moment de rappel élastique sur la plage [θa, θb] par rapport à des bras élastiques de même forme que les bras 18 mais de section constante.In general, in cases where the elastic arms 18 have a variable section, this typically varies in a strictly monotonous manner (it increases or decreases without interruption but not necessarily linearly) over at least one continuous portion of the elastic arm representing 10% , preferably 20%, preferably 30%, preferably 40%, of the (curvilinear) length of the elastic arm. The variation of the section is also chosen to improve the constancy of the elastic restoring moment over the range [θ a , θ b ] compared to elastic arms of the same shape as the arms 18 but of constant section.

Pour illustrer les différences entre le ressort intermédiaire 19 utilisé dans la présente invention et ceux de l'état de la technique, il est montré à la figure 10 six courbes C1 à C6 représentant la relation entre le moment de rappel élastique et l'angle d'armage pour six ressorts, à savoir :

  • C1 : le ressort intermédiaire 19 selon l'invention (conçu dans une taille réduite par rapport au ressort dont le comportement est représenté à la figure 6, afin de faciliter la comparaison avec l'état de la technique),
  • C2 : un ressort en spirale classique,
  • C3 : le ressort intermédiaire tel qu'utilisé dans le mécanisme selon la demande de brevet CH 709914 et constitué des bras flexibles désignés par le repère 11 à la figure 1 de ladite demande de brevet,
  • C4 : le ressort intermédiaire formé par les bras flexibles de l'organe de liaison illustré à la figure 1 de la demande de brevet CH 704147 ,
  • C5 : le ressort intermédiaire formé par les bras ou cols flexibles de l'organe de liaison illustré à la figure 2 de la demande de brevet CH 704147 ,
  • C6 : le ressort intermédiaire formé par les bras flexibles de l'organe de liaison illustré à la figure 3 de la demande de brevet CH 704147 .
To illustrate the differences between the intermediate spring 19 used in the present invention and those of the state of the art, it is shown at figure 10 six curves C1 to C6 representing the relationship between the elastic restoring moment and the winding angle for six springs, namely:
  • C1: the intermediate spring 19 according to the invention (designed in a reduced size compared to the spring whose behavior is shown in figure 6 , in order to facilitate comparison with the state of the art),
  • C2: a classic spiral spring,
  • C3: the intermediate spring as used in the mechanism according to the patent application CH 709914 and made up of flexible arms designated by the reference 11 at the figure 1 of said patent application,
  • C4: the intermediate spring formed by the flexible arms of the connecting device illustrated in figure 1 of the patent application CH 704147 ,
  • C5: the intermediate spring formed by the flexible arms or necks of the connecting member illustrated in figure 2 of the patent application CH 704147 ,
  • C6: the intermediate spring formed by the flexible arms of the connecting device illustrated in picture 3 of the patent application CH 704147 .

Comme on peut le voir, l'allure de la courbe C1 du ressort intermédiaire 19 selon l'invention est très différente de celle des autres courbes C2 à C6. Aucune des courbes C2 à C6 ne présente un plateau où le moment de force est sensiblement constant. Pour chacun de ces ressorts intermédiaires, la simulation a été effectuée sur sa plage de déformation normale, avant que les bras élastiques se touchent, se déforment plastiquement ou se rompent. Dès que les bras élastiques se touchent, le moment de rappel élastique augmente brusquement en valeur absolue, ce qui éloigne encore davantage l'allure des courbes C2 à C6 de celle de la courbe C1 du ressort intermédiaire 19 selon l'invention.As can be seen, the shape of the curve C1 of the intermediate spring 19 according to the invention is very different from that of the other curves C2 to C6. None of the curves C2 to C6 presents a plateau where the moment of force is substantially constant. For each of these intermediate springs, the simulation was performed over its normal deformation range, before the elastic arms touched, plastically deformed or failed. As soon as the elastic arms touch, the elastic return moment suddenly increases in absolute value, which further distances the shape of the curves C2 to C6 from that of the curve C1 of the intermediate spring 19 according to the invention.

Il apparaîtra clairement à l'homme du métier que la présente invention n'est en aucun cas limitée au mode de réalisation présenté dans les figures.It will clearly appear to those skilled in the art that the present invention is in no way limited to the embodiment presented in the figures.

Il est par exemple très bien envisageable de réaliser un organe de liaison 12 avec des bras élastiques 18 de formes différentes de celles représentées dans les figures et/ou dont le nombre de bras élastiques 18 est différent de celui représenté dans les figures. Les bras élastiques 18 peuvent notamment prendre une forme telle que représentée à la figure 7, basée sur l'enseignement de l'article « Functional joint mechanisms with constant torque outputs », Mechanism and machine theory 62 (2013) 166-181, Chia-Wen Hou et al. La hauteur, la longueur, l'épaisseur et/ou le matériau des bras élastiques 18, voire l'inclinaison des bras élastiques 18 par rapport au moyeu 16 (dans le plan de l'organe de liaison 12), peuvent également être modifiés pour ajuster la valeur du moment de rappel élastique sensiblement constant.It is for example very well conceivable to produce a connecting member 12 with elastic arms 18 of different shapes from those shown in the figures and/or the number of elastic arms 18 of which is different from that shown in the figures. The elastic arms 18 can in particular take a form as shown in figure 7 , based on the teaching of the article “Functional joint mechanisms with constant torque outputs”, Mechanism and machine theory 62 (2013) 166-181, Chia-Wen Hou et al. The height, length, thickness and/or material of the elastic arms 18, or even the inclination of the elastic arms 18 relative to the hub 16 (in the plane of the connecting member 12), can also be modified to adjust the value of the substantially constant elastic restoring moment.

On pourrait aussi modifier le mécanisme horloger 1 pour que le ressort intermédiaire 19 soit armé par l'intermédiaire de la serge 17 et délivre son couple par l'intermédiaire du moyeu 16.It would also be possible to modify the watch mechanism 1 so that the intermediate spring 19 is armed via the rim 17 and delivers its torque via the hub 16.

Par ailleurs, la présente invention peut être appliquée à un mécanisme d'échappement à force constante du type décrit dans la demande de brevet CH 709914 , en remplaçant la roue d'échappement flexible de ce mécanisme par l'organe de liaison 12 muni d'une denture pour coopérer avec l'ancre 6. Furthermore, the present invention can be applied to a constant-force escapement mechanism of the type described in the patent application CH 709914 , by replacing the flexible escape wheel of this mechanism by the connecting member 12 provided with a toothing to cooperate with the anchor 6.

Claims (13)

  1. Timepiece mechanism (1) comprising a drive member (2), an oscillator (5), an escapement (4) to maintain the oscillations of the oscillator (5), an intermediate spring (19) to supply the escapement (4) with mechanical energy, one or more gears (2a, 3, 10) between the drive member (2) and the intermediate spring (19) and a blocking device (20) permitting periodic winding of the intermediate spring (19) by the drive member (2) via the gear(s) (2a, 3, 10), the intermediate spring (19) comprising at least one elastic arm (18), the or each elastic arm (18) being of a sinuous shape, characterised in that the intermediate spring (19) is a spring which behaves in a non-linear manner and which produces, between a winding angle θa and a winding angle θb, which are separated by at least 10°, an elastic return moment which does not vary by more than 10%, and in that the intermediate spring (19) is pre-wound by a value θarm within the range [θa, θb], the timepiece mechanism (1) being arranged so that, during operation thereof, the winding angle of the intermediate spring (19) remains in the range [θa, θb].
  2. Timepiece mechanism (1) as claimed in claim 1, characterised in that the elastic return moment produced by the intermediate spring (19) does not vary by more than 5%, preferably does not vary by more than 3%, preferably does not vary by more than 1.5%, over the range [θa, θb].
  3. Timepiece mechanism (1) as claimed in claim 1 or 2, characterised in that the winding angles θa and θb are separated by at least 15°, preferably by at least 20°, preferably by at least 25°.
  4. Timepiece mechanism (1) as claimed in any one of claims 1 to 3, characterised in that the intermediate spring (19) comprises a plurality of said elastic arms (18) at a regular angular spacing.
  5. Timepiece mechanism (1) as claimed in any one of claims 1 to 4, characterised in that the geometric shape of the or each elastic arm (18) is a Bezier curve or a succession of Bezier curves.
  6. Timepiece mechanism (1) as claimed in any one of claims 1 to 5, characterised in that the or each elastic arm (18) has a variable cross-section, the variation in which is selected to improve the constancy of said elastic return moment in the range [θa, θb] with respect to an elastic arm of the same shape but a constant cross-section.
  7. Timepiece mechanism (1) as claimed in any one of claims 1 to 6, characterised in that the intermediate spring (19) forms part of a piece (12) further comprising a hub (16) and a felloe (17), the intermediate spring (19) connecting the hub (16) and the felloe (17).
  8. Timepiece mechanism (1) as claimed in claim 7, characterised in that said piece (12) is of one piece.
  9. Timepiece mechanism (1) as claimed in any one of claims 1 to 8, characterised in that the blocking device (20) comprises a mobile member (23), a rotary driving member (21) kinematically connected to an escapement wheel (7) and to a torque-delivery end of the intermediate spring (19) and arranged to displace the mobile member (23), a rotary blocking member (22) kinematically connected to a winding end of the intermediate spring (19) and to the drive member (2), the rotary blocking member (22) being blocked by the mobile member (23) and periodically unblocked by the displacements of the mobile member (23) which are caused by the rotary driving member (21).
  10. Timepiece mechanism (1) as claimed in claim 9, characterised in that the rotary driving member (21) is connected to the escapement wheel (7) for conjoint rotation therewith.
  11. Timepiece mechanism (1) as claimed in claim 9 or 10, characterised in that the mobile member (23) is mobile in translation.
  12. Timepiece mechanism (1) as claimed in any one of claims 9 to 11, characterised in that the mobile member (23) comprises first and second openings with a closed contour (24, 25), with the wall of which the rotary driving member (21) and the rotary blocking member (22) cooperate respectively.
  13. Timepiece comprising a timepiece mechanism (1) as claimed in any one of claims 1 to 12.
EP18184528.0A 2018-07-19 2018-07-19 Clock mechanism having a constant-force device Active EP3598241B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18184528.0A EP3598241B1 (en) 2018-07-19 2018-07-19 Clock mechanism having a constant-force device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18184528.0A EP3598241B1 (en) 2018-07-19 2018-07-19 Clock mechanism having a constant-force device

Publications (2)

Publication Number Publication Date
EP3598241A1 EP3598241A1 (en) 2020-01-22
EP3598241B1 true EP3598241B1 (en) 2022-11-09

Family

ID=63012932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18184528.0A Active EP3598241B1 (en) 2018-07-19 2018-07-19 Clock mechanism having a constant-force device

Country Status (1)

Country Link
EP (1) EP3598241B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4002016A1 (en) * 2020-11-20 2022-05-25 Montres Breguet S.A. Watch with mechanical movement with force control mechanism

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166419B1 (en) 2008-09-18 2013-06-26 Agenhor SA Clockwork comprising a constant-force device
CH704147B1 (en) 2010-11-18 2014-02-28 Nivarox Sa Mobile transmission piece energy variable geometry.
ES2661863T3 (en) * 2013-04-30 2018-04-04 Audemars Piguet (Renaud Et Papi) Sa Instant jump mechanism for watch piece
CH709914A2 (en) 2014-07-23 2016-01-29 Nivarox Sa Mechanism constant-force escapement.

Also Published As

Publication number Publication date
EP3598241A1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
EP2927756A1 (en) Clock movement provided with a drive mechanism for an analogue indicator with periodic or intermittent movement
EP4009115A1 (en) Hairspring for timepiece resonator mechanism provided with a means for adjusting rigidity
EP3580618B1 (en) Timepiece driving organ
EP3070537A1 (en) Time base comprising an escapement with direct pulse and constant force
EP3824354A1 (en) Clockwork mechanism having a cam
CH710108A2 (en) Mechanism constant force, motion and timepiece.
EP3598241B1 (en) Clock mechanism having a constant-force device
EP3598243B1 (en) Timepiece mechanism with jumping member
EP3707565B1 (en) Device for guiding the rotation of a mobile component
EP2798413B1 (en) Spring for clock movement
CH713787A2 (en) Watchmaker device with positioning member
EP3042250B1 (en) Timepiece mobile with clearance compensation
EP3619579B1 (en) Clock device with positioning member
EP3707563B1 (en) Timepiece drive member
CH708553B1 (en) Mobile watchmaker to catch up game.
CH718113A2 (en) Hairspring for clock resonator mechanism provided with means for adjusting the rigidity.
WO2013102600A2 (en) Spring for clock movement
WO2013104941A1 (en) Timepiece with automatic winding
EP3907563B1 (en) Timepiece mechanism comprising a pivot member
CH702996B1 (en) Gear.
EP4020098A1 (en) Spring for notching system and timepiece notching system
CH714318A2 (en) Clockwork motor member delivering a substantially constant force.
EP4020097A1 (en) Spring for notching system and timepiece notching system
CH710895A2 (en) timebase with a direct impulse escapement and constant force.
CH713456A2 (en) Clock engine organ.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200714

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211021

17Q First examination report despatched

Effective date: 20211108

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HIDE, JAMES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220531

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1530772

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018042776

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221109

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1530772

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230210

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018042776

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230801

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602018042776

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719