EP3597821B1 - Bespannung für eine maschine zur herstellung einer faserstoffbahn - Google Patents

Bespannung für eine maschine zur herstellung einer faserstoffbahn Download PDF

Info

Publication number
EP3597821B1
EP3597821B1 EP18183869.9A EP18183869A EP3597821B1 EP 3597821 B1 EP3597821 B1 EP 3597821B1 EP 18183869 A EP18183869 A EP 18183869A EP 3597821 B1 EP3597821 B1 EP 3597821B1
Authority
EP
European Patent Office
Prior art keywords
substrate
channels
layers
channel
filler particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18183869.9A
Other languages
English (en)
French (fr)
Other versions
EP3597821A1 (de
EP3597821C0 (de
Inventor
Michael Straub
Matthias Hoehsl
Uwe Köckritz Dr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Patent GmbH
Original Assignee
Voith Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent GmbH filed Critical Voith Patent GmbH
Priority to EP18183869.9A priority Critical patent/EP3597821B1/de
Priority to CN201980047685.6A priority patent/CN112513368B/zh
Priority to PCT/EP2019/064575 priority patent/WO2020015915A1/de
Priority to US17/261,242 priority patent/US11473244B2/en
Publication of EP3597821A1 publication Critical patent/EP3597821A1/de
Application granted granted Critical
Publication of EP3597821C0 publication Critical patent/EP3597821C0/de
Publication of EP3597821B1 publication Critical patent/EP3597821B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/0027Screen-cloths
    • D21F1/0063Perforated sheets
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/0027Screen-cloths
    • D21F1/0036Multi-layer screen-cloths
    • D21F1/0045Triple layer fabrics
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/002Tissue paper; Absorbent paper

Definitions

  • the present invention relates to a covering for a machine for producing a fibrous web, in particular a paper, cardboard or tissue web, comprising a substrate with a top, a bottom, two side edges and a usable area between the two side edges, the usable area having a plurality of Has through channels which connect the top with the bottom of the substrate.
  • the present invention further relates to a method for producing such a covering.
  • the fibrous web is regularly transported on one or more coverings that rotate endlessly in a machine.
  • a fibrous suspension from a headbox is first applied to a forming fabric, on which the actual fibrous web is formed by dewatering, which is then transported for further drying on a press felt through a press section and then on a drying fabric through a drying section of the paper machine, before the finished paper web can be rolled up at the end of the paper machine or directly processed or refined.
  • fabrics are still used in practice for these coverings today, ie structures in which warp and weft threads are woven together on a loom.
  • the term “substrate” is to be understood as meaning a flat structure generally made of plastic, which per se, ie without the through channels introduced, is essentially impermeable to liquid. Only through the introduction of the through channels does the substrate become fluid-permeable and thus acquires its important ability to drain water from the fibrous suspension or the fibrous web.
  • the substrate can essentially be a monolithic plastic film, for example produced by extrusion or casting, or alternatively a laminate which comprises several layers. These layers can, for example, be co-extruded or they can be produced completely separately from one another and only then connected to one another.
  • the longitudinal ends of the substrate are preferably joined together by welding to make the covering endless.
  • the covering can either consist essentially only of the perforated substrate or have additional layers, such as a fleece layer, for example for producing a press felt.
  • the useful area of the substrate refers to the area on which the fibrous web is actually formed and/or transported. The useful area can extend over the entire width of the substrate or only over a smaller area that is spaced from the side edges.
  • essentially funnel-shaped through-channels are arranged so closely next to one another in the substrate that immediately adjacent through-channels on the paper side of the substrate at least touch each other, preferably overlap each other.
  • the substrate is weakened by the narrow arrangement of the through channels, it has been found that the residual structural stability of the substrate is sufficient for the requirements in the forming section of a paper machine. If immediately adjacent through channels on the paper side of the substrate overlap sufficiently strongly, a topography can be formed on this paper side that essentially resembles the interior of an egg box.
  • the originally smooth surface on the paper side of the substrate has completely, or at least almost completely, disappeared, so that essentially only the touching edges that delimit the through channels are on the paper side , as more or less thin webs remain.
  • the peripheral edge forms a contour that does not lie in a plane.
  • a very large open area for the fiber suspension can be provided on the paper side of the substrate, so that extremely uniform drainage can take place, which counteracts the tendency of the covering to mark.
  • the fibers from the fibrous suspension are deposited across the through-channels on the peripheral edges of the same, while the water can flow away through the through-channels.
  • the machine side of the substrate opposite the paper side can still be largely present as a flat surface and thus provide a sufficient contact surface in order to transmit the driving forces from rollers of the paper machine to the substrate without significant slippage.
  • the fibrous suspension can be drained too quickly, at least faster than with the usual laser-drilled substrates in which the individual through channels are spaced apart from one another.
  • draining too quickly brings with it certain disadvantages. This is how to become For example, fillers contained in the fibrous suspension and which are intended to remain in the fibrous web are washed out excessively, which in turn is detrimental to the quality of the formation.
  • the forming fabric runs dry very quickly, which leads to an increased energy requirement for operating the paper machine and to increased wear on the clothing. For these reasons, a moderate to slow drainage performance of the covering is preferable.
  • the present covering should be easy to produce and have a moderate drainage rate. If the covering according to the invention is used as a forming fabric, a particularly good formation of the fibrous web forming on it should be able to be achieved.
  • the generic covering mentioned at the beginning is characterized in that the inner surface of at least one through-channel, preferably of the majority of all through-channels, more preferably of all through-channels in the useful area of the substrate, has an average roughness depth R z which is greater than 4 ⁇ m , preferably larger than 6 ⁇ m, more preferably larger than 8 ⁇ m.
  • R z average roughness depth
  • the average roughness depth R z is determined by measuring a defined measuring section on the inner surface of a through-channel in seven Individual measuring sections are divided, with the middle five measuring sections being the same size. The evaluation is only carried out over these five measuring sections, since the Gaussian filter to be used requires half a single measuring section before or after or a fold has a non-negligible inlet and outlet behavior. The difference between the maximum and minimum values is determined for each of these individual measuring sections of the profile. The average value is formed from the five individual roughness depths obtained.
  • the covering according to the invention is preferably a forming fabric, or is used as such.
  • the through channels can advantageously have a shape and be arranged in the substrate in such a way as at the beginning with regard to the subsequently published European patent application EP 18168641.1 described by the applicant.
  • the through channels can be essentially funnel-shaped. In the sense of the present application, this means that the through channels are starting from from the paper side of the substrate in the thickness direction of the substrate towards a central region which lies between the paper side and the machine side, or between the top and bottom of the substrate, or even up to the machine side, preferably continuously. Although this funnel-shaped taper already slows down the flow velocity in the through-channel, the taper cannot be made arbitrarily strong.
  • the inventive adjustment of the roughness of the inner surface of the through-channel is of essential importance in optimizing the flow velocity in the through-channel of the substrate.
  • the average roughness depth R z is less than 20 ⁇ m, preferably less than 15 ⁇ m. If the dewatering is too slow, the fibrous web, at least if the covering according to the invention is used as a forming fabric of a paper machine, is transferred to the press section and subsequent drying section with excessive residual moisture, which is disadvantageous with regard to the energy consumption of the paper machine.
  • the substrate is a laser-drilled substrate, with the through channels being introduced into the substrate by means of a laser. It is usually clear from the finished covering how the through channels were introduced into the substrate, for example by punching or by mechanical drilling or by laser drilling. During laser drilling, the substrate material melts and/or sublimates, with some of the evaporated material usually re-precipitating on the substrate as condensate. This leaves characteristic marks in the borehole and around the borehole. If the substrate of the covering according to the invention is a laminate which consists of more than one layer, the term “laser-drilled” substrate means that the finished laminate has been perforated with a laser.
  • passage channels can first be introduced into the individual layers of the laminate, whereby the passage channels of the individual layers can have different diameters, and only then these layers are connected to one another, are not practical, especially since it is not possible to separate the individual layers with the necessary precision so that through channels are reliably formed everywhere that connect the top with the bottom of the finished substrate.
  • such embodiments are explicitly not to be understood as “laser-drilled substrates” in the sense of the present invention, but rather the individual layer in such a laminate could be understood as a “laser-drilled substrate”.
  • the ratio between a minimum diameter of the through channels and a thickness of the substrate is between 1:3 and 1:10, preferably between 1:4 and 1:8, more preferably between 1:5 and 1 :7. If the thickness of the substrate is at least four times as large as the minimum diameter of the through-channel, the effect that the roughness of the inner surface of the through-channel has on the flow velocity in the form of a throttling only comes into effect effectively. However, if the substrate is thinner, the roughness does not lead to a reduction in flow velocity to the same extent. As an approximation, knowledge of pressure losses in perforated plates through which flow can be used can be used.
  • the minimum diameter of a through channel can be described as the minimum distance from one point on the inner surface to an opposite point on the inner surface of the through channel, measured in a plane parallel to the plane of the substrate.
  • the thickness of the substrate refers to the distance between the top and bottom of the substrate. If the top side of the substrate no longer has a smooth surface that lies in one plane after the through channels have been introduced into the substrate, then the highest one is To use the point of the top, i.e. the point that is the greatest distance from the bottom of the substrate, it being assumed that the bottom of the substrate still has an essentially smooth surface that lies in a plane.
  • the substrate preferably has a thickness between 500 ⁇ m and 1500 ⁇ m, more preferably between 600 ⁇ m and 1200 ⁇ m and even more preferably between 800 ⁇ m and 1000 ⁇ m.
  • the corresponding dimensions of the through channels are then based on these values.
  • Providing the inner surface of a through channel according to the present invention with an average roughness depth R z which is greater than 4 ⁇ m, preferably greater than 6 ⁇ m, more preferably greater than 8 ⁇ m is not trivial.
  • an average roughness depth R z which is greater than 4 ⁇ m, preferably greater than 6 ⁇ m, more preferably greater than 8 ⁇ m is not trivial.
  • internal surfaces are created that have a noticeably lower average roughness depth R z .
  • Two concrete ideas are therefore proposed below, with the help of which such a large average roughness depth R z can be reliably generated. These two ideas can be used alternatively or cumulatively.
  • the substrate in addition to a matrix material, also has filler particles, the material of the filler particles being able to be converted into the gas phase slower or faster than the matrix material when irradiated with laser light.
  • the inner surface of a laser-drilled through-channel with projections and/or recesses, which act as a kind of "turbulence generator" for the liquid flowing through the through-channel.
  • the turbulence thus introduced in the through-channel reduces the flow velocity.
  • the matrix material can also contain other substances and can therefore be designed, for example, as a composite material.
  • the filler particles have an average diameter between 20 ⁇ m and 150 ⁇ m, preferably between 50 ⁇ m and 100 ⁇ m, with the filler particles preferably being essentially spherical.
  • the substrate can be a laminate formed from several layers.
  • the substrate can be formed from several layers, preferably from 2 to 6 layers, more preferably from 3 to 5 layers.
  • the desired roughness can be achieved if a basic shape of the through channels at a boundary between two adjacent layers of the substrate has an offset in a direction that lies in the plane of the substrate.
  • the offset acts as a turbulence generator for the flow in the through-channel.
  • “Basic shape” means the shape of the through channels that they would have without the offset.
  • the basic shape can, for example, essentially correspond to the geometric shape of a truncated cone or, in extreme cases, that of a straight circular cylinder. Due to the offset at at least one boundary between two adjacent layers, preferably at all boundaries between two adjacent layers, this basic shape is disturbed by the corresponding offset. It is to the credit of the inventors that they have found a way in which such an offset can be reliably produced in laser-drilled substrates that are formed from a laminate comprising several layers, the corresponding manufacturing process being discussed in more detail below.
  • the average roughness R z can be as it usually occurs when laser drilling a substrate without any special precautions.
  • the average roughness depth R z of the inner surface of at least one through-channel, preferably of the majority of all through-channels, more preferably of all through-channels in the useful area of the substrate within the area of at least one layer can be smaller than 4 ⁇ m, preferably smaller than 3 ⁇ m, more preferably smaller than 2 ⁇ m or even be smaller than 1 ⁇ m.
  • the present invention relates to a method for producing a previously described covering, wherein at least one through-channel, preferably the majority of all through-channels, more preferably all through-channels in the useful area of the substrate is or are introduced into the substrate by means of a laser.
  • the substrate is formed by adding filler particles to a matrix material which forms the main component of the substrate, the material of the filler particles moving slower or faster when irradiated with laser light the gas phase can be transferred as the matrix material.
  • the substrate can have several layers, with the concentration of the filler particles being different between at least two of these layers. In this way it is possible to adjust the degree of reduction for the drainage of the through channels more finely. Furthermore, the outermost layer of the substrate on the top or paper side and/or the outermost layer of the substrate on the bottom or machine side can be free of filler particles in order not to cause any undesirable effects upon contact with the fibrous web or machine parts . In other words, only one or more middle layers can have a filler material.
  • the substrate is formed from several layers, with the individual layers being connected to one another by means of an auxiliary material, in particular an adhesive layer, with the substrate then being rolled up and unrolled again to introduce the through channels.
  • the adhesive can preferably be a solvent-containing polyester resin.
  • the projections and recesses thus created for the flow in the through-channel lead to an increase in the average roughness depth R z of the inner surface of the through-channel. They serve as turbulence generators for the flow and thus lead to the desired throttling of the flow.
  • the substrate is applied to an essentially flat surface in the area in which the through channels are introduced into the substrate using the laser, preferably by means of negative pressure.
  • a so-called vacuum table can be used for this.
  • the through-channel or through-channels are each introduced into the substrate by means of a single pulse of the laser. Although more than one pulse could also be used, tests have shown that when multiple pulses are used, the opening angle of the essentially frusto-conical through channels becomes very large, which can be disadvantageous with regard to the structural stability of the finished product.
  • Figures 1 and 2 show schematically a device 10' known from the prior art or a method for drilling through channels 30' into a substrate 20' using a laser.
  • the laser is controlled by a computer or controller. It sends a laser beam LB perpendicular to the top 22' of the substrate 20'.
  • passage channels 30' of different shapes can be created with the laser by melting and/or sublimating the material of the substrate 20', which extend in the thickness direction TD of the substrate 20' from the top 22' to the bottom 24'.
  • the substrate 20' consists of a plastic film, which per se, ie before perforation by the laser, is initially impermeable to liquids.
  • the through channel 30' has the shape of a straight circular cylinder.
  • the through-channel 30' has the shape of a truncated cone that tapers from the top 22' to the bottom 24' of the substrate 20'.
  • the through-channel 30' has an hourglass-shaped shape, i.e. a shape in which the diameter of the through-channel 30', starting from the top 22', initially increases to a central region MR of the substrate 20', which is between the top 22' and the bottom 24 'is arranged, tapers and then widens again starting from the central region MR to the underside 24' of the substrate.
  • Figure 2 shows how an endless substrate 20', stretched over two rollers R, is perforated by means of the laser with a large number of passage channels 30' arranged essentially in a checkerboard manner.
  • the laser moves continuously from a side edge 26' to the side edge 28' of the substrate 20' opposite in the width direction WD and back or vice versa in order to drill the through channels 30'.
  • the through channels 30' can be evenly distributed over the entire width, or the perforated, usable area of the substrate 20' is narrower, depending on the desired application.
  • the substrate 20' can already represent the finished covering, for example the finished forming fabric of a paper machine, or it can be further processed. For example, it can be provided with at least one layer of staple fibers in order to be used as a press felt in a paper machine. Or strips of the substrate 20' can be spiraled up in order to be able to achieve larger widths of the covering.
  • the respective inner surface 32' of the through-channel 30' is always essentially smooth, ie has an average roughness depth R z of well below 4 ⁇ m.
  • R z average roughness depth
  • the through channels are arranged so close to one another that they touch or even overlap on the top side 22 'of the substrate 20', a smooth wall can have a negative effect, as this results in too rapid drainage of the fibrous web that is transported on the covering will, takes place.
  • the reduction in the drainage speed is achieved according to the invention by specifically increasing the roughness of the inner surface 32 of the through-channel 30.
  • FIGS. 4a and 4b show a section of a substrate 20 with a single through channel 30 delimited by a dashed line according to a first exemplary embodiment of the present invention.
  • Figure 4a shows a top view of the top 22 of the substrate 20, whereas
  • Figure 4b a sectional view along the section plane IVb - IVb Figure 4a shows.
  • the substrate 20 is a laminate formed from four layers, where the individual layers can all have essentially the same thickness, ie the same dimension in the thickness direction TD.
  • the individual layers can be connected to one another using an adhesive.
  • the substrate essentially consists of a polymer base material.
  • filler particles 40, 42 are added to the two middle layers of the substrate 20, with one of the two middle layers exclusively containing filler particles 40 of a first type and the other of the two middle layers exclusively containing filler particles 42 of a second type different from the first can have.
  • both layers could also have the same type of filler particles 40, 42 or both types of filler particles 40, 42. It should be noted that these filler particles are only shown schematically in the figures and not to scale.
  • the filler particles 40 of the first type have the property that they change into the melting and/or vapor phase less quickly or not at all when irradiated with laser light. Therefore, these filler particles 40 remain as projections 44 on the inner surface 32 of the laser-drilled through-channel 30 and thus cause turbulence in the flow of the fluid, which flows through the through-channels 30 when the covering according to the invention is used as intended.
  • the filler particles 42 of the second type have the property that they transition into the melting and/or vapor phase significantly faster or more easily when irradiated with laser light. Therefore, when these filler particles 40 disappear, they leave behind recesses 46 on the inner surface 32 of the laser-drilled through-channel 30 and in this way also cause turbulence in the flow of the fluid, which flows through the through-channels 30 when the covering according to the invention is used as intended.
  • the roughness of the inner surface 32 of the through-channel 30 can be determined via the concentration density of filler particles 40, 42 in the matrix material of the substrate and thus adjust the throttling effect on the flow.
  • the average roughness depth R z of the inner surface 32 of the through channel 30 is increased according to the invention to over 4 ⁇ m, preferably over 6 ⁇ m, more preferably over 8 ⁇ m.
  • the two outermost layers of the substrate 20 are free of filler particles 40. 42. This is advantageous in order to prevent the filler particles from having an undesirable effect when they come into direct contact with the fibrous web or parts of the material to be dewatered Machine when the covering according to the invention is used as intended, but this is not absolutely necessary.
  • at least one of the two outermost layers can also specifically contain fillers, particularly when the fillers serve as a separating aid.
  • filler particles 40, 42 shown here have a substantially spherical basic shape. However, this is not absolutely necessary either.
  • FIGs 5a and 5b is a section of a substrate 20 with a through channel 30 shown according to a second embodiment.
  • the special features of this second embodiment can be used alternatively or cumulatively to the special features of the first embodiment.
  • the substrate 20 is formed as a multi-layer laminate, with four layers being present here, the extent of which is essentially the same size in the thickness direction TD.
  • the basic shape of the through channel 30, which here essentially corresponds to a truncated cone tapering from the top 22 to the bottom 24 of the substrate 20, has an offset at the respective boundaries between two immediately adjacent layers of the substrate . This offset leads to projections 44 and recesses 46 for the through-channel 30 Through-channel in the intended use of the covering according to the invention through which liquid flows. This introduces turbulence into the liquid, which reduces the flow velocity in the through-channel 30.
  • the projections 44 and the recesses 46 ensure that the average roughness R z of the inner surface 32 of the through channel is greater than 4 ⁇ m, preferably greater than 6 ⁇ m, more preferably greater than 8 ⁇ m. In the area between two adjacent layer boundaries, however, the average roughness R z is again significantly lower. If the average roughness depth R z is also to be increased in these areas, one can, for example, resort to the previously described features of the first exemplary embodiment. However, care must be taken to ensure that the flow velocity in the through-channel 30 is not throttled too much so that the fibrous web transported on the substrate when the covering according to the invention is used as intended can be adequately drained.
  • the projections 44 and the recesses 46 can be reliably and reproducibly produced in this embodiment by connecting or laminating the individual layers of the laminate to one another via an adhesive, preferably a solvent-containing polymer resin, then the laminate is rolled up, unrolled again for laser drilling and essentially stretched onto a flat plane in the area of the hole.
  • an adhesive preferably a solvent-containing polymer resin
  • This effect can be explained by internal stresses in the material, which are briefly released by the heat and force during laser drilling. This effect can be used specifically to increase the roughness in the through-channel 30 and thus to reduce the flow velocity through the through-channel 30.
  • the present invention comes into effect particularly advantageously when the covering is a forming fabric and when the individual through-channels 30 are placed so closely next to one another that they at least touch, preferably overlap, on the top side 22 or paper side, as described at the beginning.
  • the basic shape of the through channel 30 is always essentially frustoconical. However, this is not mandatory. In practice, the through channels 30 can also have a more or less different basic shape.

Description

  • Die vorliegende Erfindung betrifft eine Bespannung für eine Maschine zur Herstellung einer Faserstoffbahn, insbesondere einer Papier-, Karton- oder Tissuebahn, umfassend ein Substrat mit einer Oberseite, einer Unterseite, zwei Seitenrändern und einem Nutzbereich zwischen den zwei Seitenrändern, wobei der Nutzbereich eine Vielzahl von Durchgangskanälen aufweist, welche die Oberseite mit der Unterseite des Substrats verbinden. Ferner betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer solchen Bespannung.
  • Bei der industriellen Herstellung und/oder Veredelung von Faserstoffbahnen wird die Faserstoffbahn regelmäßig auf einer oder mehreren in einer Maschine endlos umlaufenden Bespannung(en) transportiert. Beispielsweise wird in einer Papiermaschine eine Faserstoffsuspension aus einem Stoffauflauf zunächst auf ein Formiersieb aufgebracht, auf dem sich durch Entwässerung die eigentliche Faserstoffbahn bildet, welche anschließend zur weiteren Trocknung auf einem Pressfilz durch eine Pressenpartie und danach auf einem Trockensieb durch eine Trockenpartie der Papiermaschine transportiert wird, ehe die fertige Papierbahn am Ende der Papiermaschine aufgerollt oder direkt weiterverarbeitet bzw. veredelt werden kann. Für diese Bespannungen werden heute nach wie vor in der Praxis, neben einigen wenigen Spiralsieben, überwiegend Gewebe verwendet, d.h. Gebilde, bei denen Kett- und Schussfäden auf einem Webstuhl miteinander verwoben sind. Da diese Herstellungsart relativ aufwändig ist, gibt es bereits seit geraumer Zeit die Idee, solche Bespannungen auf einem völlig anderen Weg herzustellen, nämlich indem ein Substrat perforiert wird. Auf dieser Idee basiert auch die vorliegende Erfindung. Eine solche Bespannung, bei der die Durchgangskanäle mittels eines Lasers in das Substrat eingebracht werden, wurde beispielsweise bereits in den 1980'er und 1990'er Jahren in den Druckschriften US 4,446,187 A bzw. US 5,837,102 A beschrieben. Auch die Druckschriften DE 10 2012 210 765 A1 und WO 2014/001217 A1 zeigen jeweils eine gattungsgemäße Bespannung.
  • Unter dem Begriff "Substrat" ist dabei gemäß der vorliegenden Erfindung ein in der Regel aus Kunststoff hergestelltes Flächengebilde zu verstehen, welches per se, d.h. ohne die eingebrachten Durchgangskanäle, zunächst einmal im Wesentlichen flüssigkeitsundurchlässig ist. Erst durch das Einbringen der Durchgangskanäle wird das Substrat fluidpermeable und erhält damit seine wichtige Fähigkeit, Wasser aus der Faserstoffsuspension bzw. der Faserstoffbahn abführen zu können. Das Substrat kann dabei im Wesentlichen eine monolithische, zum Beispiel durch Extrusion oder Gießen hergestellte, Kunststofffolie sein oder alternativ ein Laminat, welches mehrere Schichten umfasst. Diese Schichten können zum Beispiel koextrudiert werden oder sie können völlig separat voneinander hergestellt und erst anschließend miteinander verbunden werden. Die Längsenden des Substrats werden vorzugsweise durch Schweißen miteinander verbunden, um die Bespannung endlos zu machen. Die Bespannung kann dabei, je nach dem angedachten Verwendungszweck, entweder im Wesentlichen nur aus dem perforierten Substrat bestehen oder weitere Schichten, wie zum Beispiel eine Vliesschicht, etwa für Herstellung eines Pressfilzes, aufweisen. Der Nutzbereich des Substrats bezeichnet den Bereich, auf dem die Faserstoffbahn tatsächlich gebildet und/oder transportiert wird. Der Nutzbereich kann sich über die gesamte Breite des Substrats erstrecken oder aber auch nur über einen kleineren Bereich, der von den Seitenrändern beabstandet ist.
  • Insbesondere dann, wenn eine solche Bespannung als Formiersieb verwendet wird, ist es wichtig, dass die Bespannung bei der Blattbildung eine gute Formation ermöglicht. Eine gute Formation liegt in der Regel insbesondere dann vor, wenn es bei der sich bildenden Faserstoffbahn zu keinen Markierungen kommt. Ein über lange Zeit hinweg als Problem betrachtetes Phänomen von Laser-gebohrten Substraten ist jedoch gewesen, dass das zwischen den einzelnen Durchgangskanälen verbleibende Material des Substrats eine über die Papierseite des Substrats gleichmäßige Entwässerung der Faserstoffsuspension verhindert hat und somit ein gewisser Grad an Markierungen unvermeidlich gewesen ist. Erst durch die Lehre, die in der nachveröffentlichten europäischen Patentanmeldung EP 18168641.1 der Anmelderin beschrieben ist, konnte dieses Problem gelöst werden. Gemäß dieser Lehre werden im Wesentlichen trichterförmig ausgebildete Durchgangskanäle so eng nebeneinander im Substrat angeordnet, dass sich unmittelbar benachbarte Durchgangskanäle auf der Papierseite des Substrats zumindest berühren, vorzugsweise gegenseitig überschneiden. Obwohl das Substrat durch die enge Anordnung der Durchgangskanäle geschwächt wird, hat sich herausgestellt, dass die strukturelle Reststabilität des Substrats für die Anforderungen in der Formierpartie einer Papiermaschine ausreichend ist. Überschneiden sich auf der Papierseite des Substrats unmittelbar benachbarte Durchgangskanäle ausreichend stark, so kann auf dieser Papierseite eine Topographie gebildet werden, die im Wesentlichen dem Inneren einer Eierschachtel gleicht. Mit anderen Worten ist nach dem Einbringen der Durchgangskanäle, insbesondere mittels eines Lasers, auf der Papierseite des Substrats die ursprünglich glatte Oberfläche vollständig, oder zumindest fast vollständig, verschwunden, so dass auf der Papierseite im Wesentlichen nur die sich berührenden Ränder, die die Durchgangskanäle begrenzen, als mehr oder weniger dünne Stege verbleiben. Dabei bildet der Umfangsrand eine Kontur, die nicht in einer Ebene liegt. Auf diese Weise kann eine für die Faserstoffsuspension sehr große offene Fläche auf der Papierseite des Substrats bereitgestellt werden, so dass eine ausgesprochen gleichmäßige Entwässerung erfolgen kann, was der Markierungsneigung der Bespannung entgegengewirkt. Die Faser aus der Faserstoffsuspension legen sich dabei über die Durchgangskanäle hinweg auf den Umfangsrändern selbiger ab, während das Wasser durch die Durchgangskanäle abfließen kann. Die der Papierseite gegenüberliegende Maschinenseite des Substrats kann noch weitgehend als ebene Fläche vorhanden sein und somit eine ausreichende Kontaktfläche bereitstellen, um ohne nennenswerten Schlupf die Antriebskräfte von Walzen der Papiermaschine auf das Substrat zu übertragen.
  • Durch die sehr große offene Fläche auf der Papierseite des Substrats kann es jedoch zu einer zu schnellen Entwässerung der Faserstoffsuspension kommen, jedenfalls zu einer schnelleren Entwässerung als bei den üblichen Laser-gebohrten Substraten, bei denen die einzelnen Durchgangskanäle voneinander beabstandet sind. Eine zu schnelle Entwässerung bringt jedoch gewisse Nachteile mit sich. So werden zum Beispiel in der Faserstoffsuspension enthaltende Füllstoffe, die in der Faserstoffbahn verbleiben sollen, übermäßig stark ausgewaschen, was der Qualität der Formation wiederum abträglich ist. Ferner kann es passieren, dass das Formiersieb sehr schnell trocken läuft, was zu einem erhöhten Energiebedarf für das Betreiben der Papiermaschine und zu einem erhöhten Verschleiß bei der Bespannung führt. Aus diesen Gründen ist eine mäßige bis langsame Entwässerungsleistung der Bespannung zu bevorzugen.
  • Es ist somit Aufgabe der vorliegenden Erfindung, die zuvor genannten Nachteile zu beheben. Insbesondere soll die vorliegende Bespannung einfach herzustellen sein und eine gemäßigte Entwässerungsgeschwindigkeit aufweisen. Wird die erfindungsgemäße Bespannung als Formiersieb verwendet, so soll eine besonders gute Formation der sich auf ihr bildenden Faserstoffbahn erzielt werden können.
  • Gelöst wird diese Aufgabe durch die Merkmale des unabhängigen Anspruchs 1, betreffend eine erfindungsgemäße Bespannung, sowie durch die Merkmale des nebengeordneten Anspruchs 9 betreffend die Herstellung einer solchen Bespannung. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
  • Die eingangs genannte, gattungsgemäße Bespannung zeichnet sich gemäß der vorliegenden Erfindung dadurch aus, dass die Innenoberfläche von wenigstens einem Durchgangskanal, vorzugsweise von der Mehrheit aller Durchgangskanäle, weiter bevorzugt von allen Durchgangskanälen im Nutzbereich des Substrats eine gemittelte Rautiefe Rz aufweist, welche größer als 4µm, vorzugsweise größer als 6µm, weiter bevorzugt größer als 8 µm ist. Untersuchungen haben gezeigt, dass die Rauigkeit der Innenoberfläche der Durchgangskanäle einen merklichen Einfluss auf die Entwässerungsgeschwindigkeit der Faserstoffbahn hat. Dabei gilt prinzipiell: je größer die Rauigkeit ist, desto geringer ist die Entwässerungsgeschwindigkeit.
  • Wie dem Fachmann bekannt ist, wird die gemittelte Rautiefe Rz bestimmt, indem eine definierte Messstrecke auf der Innenoberfläche eines Durchgangskanals in sieben Einzelmessstrecken eingeteilt wird, wobei die mittleren fünf Messstrecken gleich groß sind. Die Auswertung erfolgt nur über diese fünf Messstrecken, da der anzuwendende Gauß-Filter eine halbe Einzelmessstrecke Vor- bzw. Nachlauf benötigt beziehungsweise eine Faltung ein nicht zu vernachlässigendes Ein- und Auslaufverhalten aufweist. Von jeder dieser Einzelmessstrecken des Profils wird die Differenz aus maximalem und minimalem Wert ermittelt. Aus den somit erhaltenen fünf Einzelrautiefen wird der Mittelwert gebildet.
  • Klassischerweise kann die Rauigkeitsmessung als taktile Messung von 2D-Profilschnitten erfolgen. Hierzu wird auf die Normen DIN EN ISO 4287 und 4288 verwiesen. Von der Anmelderin in Auftrag gegebene Untersuchungen haben gezeigt, dass sich die gemittelte Rautiefe Rz der Innenoberfläche eines Durchgangskanals von Laser-gebohrten Substraten einfacher durch 3D-Erfassung der zu untersuchenden Fläche mittels optischer Messtechnik bestimmen lässt. In diesem Zusammenhang wird auf die Norm DIN EN ISO 25178 verwiesen. Konkret wird vorgeschlagen, zur Ermittlung der gemittelte Rautiefe Rz zunächst das Substrat aufzuschneiden, wobei der Schnitt vorzugsweise die Mittelachse des Durchgangskanals, dessen Innenoberfläche untersucht werden soll, umfasst. Anschließend wird die Innenoberfläche mittels eines geeigneten optischen Geräts, wie zum Beispiel des Konfokalmikroskops DCM 3D der Firma Leica®, dreidimensional vermessen. Bei der Konfokalmikroskopie wird im Punkt-zu-Punkt-Verfahren eines jeweiligen Punktes der Innenoberfläche gemessen. Durch die so gewonnenen 3D-Koordinaten können dann 2D-Schnittflächen gelegt werden, woraus wiederum Höhenprofile und Rauigkeitswerte gewonnen werden können.
  • Vorzugsweise ist die erfindungsgemäße Bespannung ein Formiersieb, bzw. wird sie als ein solches verwendet. Ferner können die Durchgangskanäle vorteilhaft eine Form aufweisen und so in dem Substrat angeordnet sein, wie eingangs im Hinblick auf die nachveröffentlichte europäische Patentanmeldung EP 18168641.1 der Anmelderin beschrieben. Insbesondere können die Durchgangskanäle im Wesentlichen trichterförmig ausgebildet sein. Darunter ist im Sinne der vorliegenden Anmeldung zu verstehen, dass sich die Durchgangskanäle ausgehend von der Papierseite des Substrats in Dickenrichtung des Substrats hin zu einem Mittelbereich, der zwischen der Papierseite und der Maschinenseite, bzw. zwischen Ober- und Unterseite des Substrats liegt, oder sogar bis zur Maschinenseite, vorzugsweise kontinuierlich, verjüngt. Zwar wird durch diese trichterförmige Verjüngung bereits eine Verlangsamung der Strömungsgeschwindigkeit in dem Durchgangskanal erzielt, jedoch kann die Verjüngung nicht beliebig stark ausgebildet werden. Wird die Eingangsöffnung auf der Papierseite bzw. Oberseite des Substrats nämlich zu groß, so können Fasern aus der Faserstoffsuspension, die von dem Substrat zurückgehalten werden sollen, in den Durchgangskanal eingesogen werden. Wird die Austrittsöffnung des Durchgangskanals auf der Maschinenseite bzw. Unterseite des Substrats zu klein, so kann der Durchgangskanal durch ausgespülte Füllstoffe in der Faserstoffsuspension schnell verstopfen. Deshalb ist die erfindungsgemäße Einstellung der Rauigkeit der Innenoberfläche des Durchgangskanals von essentieller Bedeutung bei der Optimierung der Strömungsgeschwindigkeit im Durchgangskanal des Substrats.
  • Da auf der anderen Seite die Entwässerung der Faserstoffbahn jedoch auch nicht zu langsam erfolgen soll, wird vorgeschlagen, dass die gemittelte Rautiefe Rz kleiner als 20µm, vorzugsweise kleiner als 15µm ist. Bei einer zu langsamen Entwässerung wird die Faserstoffbahn, zumindest wenn die erfindungsgemäße Bespannung als Formiersieb einer Papiermaschine verwendet wird, mit zu hoher Restfeuchte an die Pressenpartie und anschließende Trockenpartie übergeben, was nachteilhaft im Hinblick auf den Energieverbrauch der Papiermaschine ist.
  • Erfindungsgemäß ist das Substrat ein Laser-gebohrtes Substrat, wobei die Durchgangskanäle mittels eines Lasers in das Substrat eingebracht sind. Der fertigen Bespannung ist es dabei in der Regel deutlich anzusehen, auf welche Weise die Durchgangskanäle in das Substrat eingebracht wurde, ob beispielsweise durch Stanzen oder durch mechanisches Bohren oder durch Laser-Bohren. Beim Laser-Bohren kommt es zum Schmelzen und/oder Sublimieren des Substratmaterials, wobei sich üblicher Weise ein Teil des verdampften Materials wieder als Kondensat am Substrat niederschlägt. Dies hinterlässt charakteristische Spuren in dem Bohrloch und um das Bohrloch herum. Ist das Substrat der erfindungsgemäßen Bespannung ein Laminat, welches aus mehr als einer Schicht besteht, so ist unter dem Merkmal "Laser-gebohrtes" Substrat zu verstehen, dass das fertige Laminat mit einem Laser perforiert worden ist. Ideen, wonach zunächst in die einzelnen Schichten des Laminats Durchgangskanäle eingebracht werden können, wobei die Durchgangskanäle der einzelnen Schichten unterschiedliche Durchmesser aufweisen können, und erst anschließend diese Schichten miteinander verbunden werden, sind nicht praktikabel, insbesondere, da es nicht möglich ist, die einzelnen Lagen mit der notwendigen Genauigkeit in Deckung zu bringen, damit sich überall zuverlässig Durchgangskanäle ausbilden, die die Oberseite mit der Unterseite des fertigen Substrats verbinden. Insofern sind solche Ausführungsformen explizit nicht als "Laser-gebohrtes Substrate" im Sinne der vorliegenden Erfindung zu verstehen, sondern allenfalls die einzelne Schicht bei einem solchen Laminats könnte als "Lasergebohrtes Substrat" verstanden werden.
  • Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass das Verhältnis zwischen einem minimalen Durchmesser der Durchgangskanäle und einer Dicke des Substrats zwischen 1:3 und 1:10 liegt, vorzugsweise zwischen 1:4 und 1:8, weiter bevorzugt zwischen 1:5 und 1:7. Wenn die Dicke des Substrats wenigstens viermal so groß wie der minimale Durchmesser des Durchgangskanals ist, so kommt der Effekt, welchen die Rauigkeit der Innenoberfläche des Durchgangskanals in Form einer Drosselung auf die Strömungsgeschwindigkeit ausübt, erst wirkungsvoll zum Tragen. Bei geringeren Dicken des Substrats führt die Rauigkeit hingegen nicht im gleichen Maße zu einer Reduzierung der Strömungsgeschwindigkeit. Als Näherung können hierzu die Kenntnisse über Druckverluste bei durchströmten Lochplatten herangezogen werden. Der minimale Durchmesser eines Durchgangskanals kann beschrieben werden als der minimale Abstand von einem Punkt der Innenoberfläche zu einem gegenüberliegenden Punkt der Innenoberfläche des Durchgangskanals, wobei in einer Ebene parallel zur Ebene des Substrats gemessen wird. Die Dicke des Substrats bezeichnet den Abstand zwischen Oberseite und Unterseite des Substrats. Weist die Oberseite des Substrats nach dem Einbringen der Durchgangskanäle in das Substrat keine glatte Fläche mehr auf, die in einer Ebene liegt, so ist der höchste Punkt der Oberseite heranzuziehen, also der Punkt, der den größten Abstand von der Unterseite des Substrats aufweist, wobei davon ausgegangen wird, dass die Unterseite des Substrates noch eine im Wesentliche glatte Fläche aufweist, die in einer Ebene liegt.
  • Das Substrat weist vorzugsweise eine Dicke zwischen 500µm und 1500µm auf, weiter bevorzugt zwischen 600µm und 1200µm und noch weiter bevorzugt zwischen 800µm und 1000µm. Die entsprechende Abmessung der Durchgangskanäle orientiert sich dann an diesen Werten.
  • Die Innenoberfläche eines Durchgangskanals gemäß der vorliegenden Erfindung mit einer gemittelten Rautiefe Rz zu versehen, welche größer als 4µm, vorzugsweise größer als 6µm, weiter bevorzugt größer als 8µm ist, ist nicht trivial. So entstehen zum Beispiel beim Laser-Bohren von Durchgangskanälen in ein Kunststoffsubstrat, welches zum Beispiel aus PP oder PET oder PA gebildet ist, ohne weitere Vorkehrungen Innenoberflächen, die eine merklich geringere gemittelte Rautiefe Rz aufweisen. Nachfolgend werden daher zwei konkrete Ideen vorgeschlagen, mit deren Hilfe eine so große gemittelte Rautiefe Rz zuverlässig erzeugt werden kann. Diese beiden Ideen können dabei alternativ oder auch kumulativ zur Anwendung gebracht werden.
  • Als erste Idee wird vorgeschlagen, dass das Substrat neben einem Matrixmaterial ferner Füllstoffpartikel aufweist, wobei das Material der Füllstoffpartikel bei Einstrahlung mit Laserlicht langsamer oder schneller in die Gasphase überführbar ist als das Matrixmaterial. Auf diese Weise ist es möglich, die Innenoberfläche eines Laser-gebohrten Durchgangskanals mit Vor- und/oder Rücksprüngen zu versehen, die für die durch den Durchgangskanal strömende Flüssigkeit als eine Art "Turbulenzgenerator" wirken. Durch die somit eingebrachten Turbulenzen im Durchgangskanal wird die Strömungsgeschwindigkeit reduziert. Das Matrixmaterial kann dabei neben den Füllstoffen noch weitere Stoffe enthalten und somit zum Beispiel als Composite-Material ausgebildet sein.
  • In Weiterbildung dieser ersten Idee wird vorgeschlagen, dass die Füllstoffpartikel einen mittleren Durchmesser zwischen 20µm und 150µm, vorzugsweise zwischen 50µm und 100µm aufweisen, wobei die Füllstoffpartikel vorzugsweise im Wesentlichen sphärisch ausgebildet sind.
  • Wie bereits zuvor beschrieben, kann das Substrat ein aus mehreren Schichten gebildetes Laminat sein. Insbesondere kann das Substrat aus mehreren Schichten gebildet sein, vorzugsweise aus 2 bis 6 Schichten, weiter bevorzugt aus 3 bis 5 Schichten. Durch die Verwendung mehrerer dünner Schichten anstelle einer einzigen dicken Schicht ist es möglich, höhere Zugfestigkeiten in das Substrat zu bringen, da einzelnen dünnere Schichten stärker (bi-)axial verstreckt werden können, als eine einzige dicke Schicht.
  • In diesem Fall kann gemäß der zweiten konkreten Idee die gewünschte Rauigkeit erzielt werden, wenn eine Grundform der Durchgangskanäle an einer Grenze zwischen zwei benachbarten Schichten des Substrats einen Versatz in einer Richtung aufweist, die in der Ebene des Substrats liegt. Dabei fungiert der Versatz als Turbulenzgenerator für die Strömung in dem Durchgangskanal. Mit "Grundform" ist dabei die Form der Durchgangskanäle zu verstehen, die diese ohne den Versatz aufweisen würden. Die Grundform kann zum Beispiel im Wesentlichen der geometrischen Form eines Kegelstumpfes entsprechen oder im Extremfall auch der eines geraden Kreiszylinders. Durch den Versatz an wenigstens einer Grenze zwischen zwei benachbarten Schichten, vorzugsweise an allen Grenzen zwischen jeweils zwei benachbarten Schichten, wird diese Grundform um den entsprechenden Versatz gestört. Es ist das Verdienst der Erfinder, einen Wege gefunden zu haben, wie sich ein solcher Versatz zuverlässig bei Laser-gebohrten Substraten, die aus einem mehrere Schichten umfassenden Laminat gebildet sind, erzeugen lässt, wobei auf das entsprechende Herstellverfahren weiter unten näher eingegangen wird.
  • In den Bereichen der Durchgangskanäle zwischen den Grenzen zu den benachbarten Schichten kann die gemittelte Rautiefe Rz so sein, wie sie sich gewöhnlich beim Laser-Bohren eines Substrats ohne besondere Vorkehrungen einstellt. Insbesondere kann die gemittelte Rautiefe Rz der Innenoberfläche von wenigstens einem Durchgangskanal, vorzugsweise von der Mehrheit aller Durchgangskanäle, weiter bevorzugt von allen Durchgangskanälen im Nutzbereich des Substrats innerhalb des Bereichs wenigstens einer Schicht kleiner als 4µm, vorzugsweise kleiner als 3µm, weiter bevorzugt kleiner als 2µm oder sogar kleiner als 1µm sein.
  • Nach einem weiteren Aspekt betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer zuvor beschriebenen Bespannung, wobei wenigstens ein Durchgangskanal, vorzugsweise die Mehrheit aller Durchgangskanäle, weiter bevorzugt alle Durchgangskanäle im Nutzbereich des Substrats mittels eines Lasers in das Substrat eingebracht wird bzw. werden.
  • Die im Hinblick auf die erfindungsgemäße Bespannung beschriebenen Vorteile der Erfindung treffen auch auf das erfindungsgemäße Fertigungsverfahren zu und vice versa.
  • Gemäß der zuvor beschriebenen ersten Idee wird vorgeschlagen, dass vor dem Schritt des Einbringens der Durchgangskanäle das Substrat gebildet wird, indem einem Matrixmaterial, welches den Hauptbestandteil des Substrats bildet, Füllstoffpartikel beigemengt werden, wobei das Material der Füllstoffpartikel bei Einstrahlung mit Laserlicht langsamer oder schneller in die Gasphase überführbar ist als das Matrixmaterial.
  • Dabei kann das Substrat mehrere Schichten aufweist, wobei die Konzentration der Füllstoffpartikel zwischen wenigstens zwei dieser Schichten unterschiedlich ist. Auf diese Weise ist es möglich, den Reduzierungsgrad für die Entwässerung der Durchgangskanäle feiner einzustellen. Ferner kann/können die äußerste Schicht des Substrats auf der Ober- bzw. Papierseite und/oder die äußerste Schicht des Substrats auf der Unter- bzw. Maschinenseite frei von Füllstoffpartikeln sein, um keine unerwünschten Effekte beim Kontakt mit der Faserstoffbahn bzw. Maschinenteilen zu bewirken. Mit anderen Worten kann nur eine oder mehrere mittlere Schicht(en) mit ein Füllstoffmaterial aufweisen.
  • Entsprechend der oben beschriebenen zweiten Ideen wird vorgeschlagen, dass das Substrat aus mehreren Schichten gebildet wird, wobei die einzelnen Schichten mittels eines Hilfsstoffs, insbesondere einer Klebstoffschicht, miteinander verbunden werden, wobei das Substrat anschließend aufgerollt wird und zum Einbringen der Durchgangskanäle wieder abgerollt wird. Bei dem Klebstoff kann es sich vorzugsweise um ein Lösungsmittel-haltiges Polyesterharz handeln. Die Erfinder haben mittels Versuchen herausgefunden, dass es möglich ist, auf diese Weise der Grundform der Durchgangskanäle an einer Grenze zwischen zwei benachbarten Schichten des Substrats auf einfache und reproduzierbare Weise einen Versatz in einer Richtung zu geben, die in der Ebene des Substrats liegt. Dies wird sich damit erklärt, dass beim Laminieren und anschließendem Aufrollen Eigenspannungen in den zwischen zwei benachbarten Schichten angeordneten Hilfsstoff, insbesondere Klebstoff, eingebracht werden, welche sich kurzzeitig durch das Abrollen und den Wärmeeintrag beim Laser-Bohren wieder abbauen. Die somit für die Strömung im dem Durchgangskanal entstehenden Vorsprünge und Rücksprünge führen zu einer Erhöhung der gemittelte Rautiefe Rz der Innenoberfläche des Durchgangskanals. Sie dienen als Turbulenzgeneratoren für die Strömung und führen damit zu der gewünschten Drosselung der selbigen.
  • In Versuchen hat es sich als vorteilhaft erwiesen, wenn das Substrat in dem Bereich, in welchem gerade mittels des Lasers die Durchgangskanäle in das Substrat eingebracht werden, auf eine im Wesentliche plane Fläche aufgebracht wird, vorzugsweise mittels Unterdruck. Beispielsweise kann hierfür ein so genannter Vakuumtisch Anwendung finden.
  • Ferner wird es bevorzugt, wenn der Durchgangskanal oder die Durchgangskanäle jeweils mittels eines einzigen Pulses des Lasers in das Substrat eingebracht wird bzw. werden. Zwar könnten auch mehr als ein Puls verwendet werden, jedoch haben Versuche gezeigt, dass bei Verwendung mehrerer Pulse der Öffnungswinkel der im Wesentlichen kegelstumpfförmigen Durchgangskanäle sehr groß wird, was unvorteilhaft im Hinblick auf die strukturelle Stabilität des fertigen Produkts sein kann.
  • Die Erfindung wird nachfolgend anhand von schematischen und nicht maßstabsgetreuen Zeichnungen weiter erläutert. Es zeigen:
  • Figur 1 und 2
    eine aus dem Stand der Technik bekannte Vorrichtung zum Perforieren eines Substrats mittels eines Lasers;
    Figuren 3a - 3c
    verschiedene aus dem Stand der Technik bekannte Bohrlochgeometrien;
    Figur 4a und 4b
    eine erste Ausführungsform eines Durchgangskanals in einer erfindungsgemäßen Bespannung;
    Figur 5a und 5b
    eine zweite Ausführungsform eines Durchgangskanals in einer erfindungsgemäßen Bespannung.
  • Figuren 1 und 2 zeigen schematisch eine aus dem Stand der Technik bekannte Vorrichtung 10` bzw. ein Verfahren zum Bohren von Durchgangskanälen 30' in ein Substrat 20' mittels eines Lasers. Der Laser wird dabei von einem Rechner oder Controller angesteuert. Er sendet einen Laserstrahl LB senkrecht auf die Oberseite 22' des Substrats 20`. Wie insbesondere in den Figuren 3a - 3c zu erkennen ist, können mit dem Laser Durchgangskanäle 30' unterschiedlicher Gestalt durch Aufschmelzen und/oder Sublimieren des Materials des Substrats 20' erzeugt werden, die sich in Dickenrichtung TD des Substrats 20` von der Oberseite 22' bis zu der Unterseite 24' erstrecken. Das Substrat 20` besteht aus einer Kunststofffolie, welche per se, d.h. vor der Perforation durch den Laser, zunächst einmal flüssigkeitsundurchlässig ist. In Figur 3a weist der Durchgangskanal 30' die Form eines geraden Kreiszylinders auf. In Figur 3b weist der Durchgangskanal 30' hingegen die Form eines sich von der Oberseite 22' zur Unterseite 24' des Substrats 20' hin verjüngenden Kegelstumpfes auf. In Figur 3c weist der Durchgangskanal 30' eine Sanduhr-förmige Gestalt auf, also eine Gestalt, bei der sich der Durchmesser des Durchgangskanals 30' ausgehend von der Oberseite 22' zunächst zu einem Mittenbereich MR des Substrats 20`, welcher zwischen der Oberseite 22' und der Unterseite 24' angeordnet ist, hin verjüngt und sich dann ausgehende von dem Mittenbereich MR zu der Unterseite 24' des Substrats wieder aufweitet.
  • Figur 2 zeigt, wie ein endloses Substrat 20` über zwei Walzen R gespannt mit einer Vielzahl von im Wesentlichen schachbrett-artig angeordneten Durchgangskanälen 30' mittels des Lasers perforiert wird. Der Laser bewegt sich dabei kontinuierlich von einem Seitenrand 26' zu dem in Breitenrichtung WD gegenüberliegenden Seitenrand 28` des Substrats 20' und zurück bzw. umgekehrt, um die Durchgangskanäle 30' zu bohren. Dabei können die Durchgangskanäle 30' über die gesamte Breite gleichmäßig verteilt sein, oder aber der perforierte, nutzbare Bereich des Substrats 20' ist schmaler, je nach gewünschtem Anwendungsfall. Das Substrat 20' kann bereits die fertige Bespannung, zum Beispiel das fertige Formiersieb einer Papiermaschine, darstellen, oder es kann noch weiter verarbeitet werden. Beispielsweise kann es noch mit wenigstens einer Schicht von Stapelfasern versehen werden, um als Pressfilz in einer Papiermaschine verwendet zu werden. Oder es können Bahnen des Substrats 20' aufspiralisiert werden, um größere Breiten der Bespannung erzielen zu können.
  • Die jeweilige Innenoberfläche 32' des Durchgangskanals 30' ist bei dieser Herstellungsweise und ohne, dass besondere Vorkehrungen getroffen werden, stets im Wesentlichen glatt, d.h. weist eine gemittelte Rautiefe Rz von deutlich unter 4µm auf. Insbesondere, wenn die Durchgangskanäle so dicht nebeneinander angeordnet sind, dass sie sich auf der Oberseite 22' des Substrats 20' berühren oder sogar überschneiden, kann sich eine glatte Wandung negativ auswirken, da hierdurch eine zu schnelle Entwässerung der Faserstoffbahn, die auf der Bespannung transportiert wird, erfolgt. Die Reduzierung der Entwässerungsgeschwindigkeit wird erfindungsgemäß dadurch gelöst, dass ganz gezielt die Rauigkeit der Innenoberfläche 32 des Durchgangskanals 30 vergrößert wird.
  • Die Figuren 4a und 4b zeigen einen mit einer gestrichelten Linie umgrenzten Ausschnitt eines Substrats 20 mit einem einzelnen Durchgangskanal 30 gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung. Figur 4a zeigt dabei eine Draufsicht auf die Oberseite 22 des Substrats 20, wohingegen Figur 4b eine Schnittansicht entlang der Schnittebene IVb - IVb aus Figur 4a zeigt. Das Substrat 20 ist in diesem Ausführungsbeispiel ein aus vier Schichten gebildetes Laminat, wobei die einzelnen Schichten alle im Wesentlichen dieselbe Dicke aufweisen können, d.h. dieselbe Abmessung in Dickenrichtung TD. Die einzelnen Schichten können dabei mit einem Klebstoff miteinander verbunden sein. Das Substrat besteht im Wesentlichen aus einem Polymer-Grundmaterial. Als Besonderheit sind bei dieser Ausführungsform jedoch den beiden mittleren Schichten des Substrats 20 Füllstoffpartikel 40, 42 beigemengt, wobei die eine der beiden mittleren Schichten ausschließlich Füllstoffpartikel 40 einer ersten Sorte und die andere der beiden mittleren Schichten ausschließlich Füllstoffpartikel 42 einer zweiten von der ersten unterschiedlichen Sorten aufweisen kann. Theoretisch könnte jedoch auch beide Schichten dieselbe Sorte von Füllstoffpartikeln 40, 42 oder beide Sorten von Füllstoffpartikeln 40, 42 aufweisen. Es sei darauf hingewiesen, dass diese Füllstoffpartikel in den Figuren nur schematisch und nicht maßstabsgetreu dargestellt sind.
  • Die Füllstoffpartikel 40 der ersten Sorte weisen gegenüber dem Matrixmaterial des Substrats 20 die Eigenschaft auf, dass sie bei Bestrahlung mit Laserlicht weniger schnell bzw. überhaupt nicht in die Schmelz- und/oder Dampfphase übergehen. Daher bleiben diese Füllstoffpartikel 40 als Vorsprünge 44 an der Innenoberfläche 32 des Laser-gebohrten Durchgangskanals 30 stehen und sorgen somit für Turbulenzen in der Strömung des Fluids, welches im bestimmungsgemäßen Gebrauch der erfindungsgemäßen Bespannung durch die Durchgangskanäle 30 fließt.
  • Die Füllstoffpartikel 42 der zweiten Sorte weisen gegenüber dem Matrixmaterial des Substrats 20 die Eigenschaft auf, dass sie bei Bestrahlung mit Laserlicht deutlich schneller bzw. leichter in die Schmelz- und/oder Dampfphase übergehen. Daher hinterlassen diese Füllstoffpartikel 40 beim Verschwinden Rücksprünge 46 an der Innenoberfläche 32 des Laser-gebohrten Durchgangskanals 30 und sorgen auf diese Weise ebenfalls für Turbulenzen in der Strömung des Fluids, welches im bestimmungsgemäßen Gebrauch der erfindungsgemäßen Bespannung durch die Durchgangskanäle 30 fließt.
  • Über die Konzentrationsdichte an Füllstoffpartikeln 40, 42 im Matrixmaterial des Substrats lässt sich die Rauigkeit der Innenoberfläche 32 des Durchgangskanals 30 und damit die Drosselwirkung auf die Strömung einstellen. Die gemittelte Rautiefe Rz der Innenoberfläche 32 des Durchgangskanals 30 wird dabei erfindungsgemäß auf über 4µm, vorzugsweise über 6µm, weiter bevorzugt über 8µm vergrößert. Die beiden äußersten Schichten des Substrats 20 sind in diesem Ausführungsbeispiel frei von Füllstoffpartikeln 40. 42. Dies ist zwar von Vorteil, um zu verhindern, dass die Füllstoffpartikel eine unerwünschte Wirkung entfalten, wenn sie in den direkten Kontakt mit der zu entwässernden Faserstoffbahn oder Teilen der Maschine beim bestimmungsgemäßen Gebrauch der erfindungsgemäßen Bespannung gelangen, jedoch ist dies nicht zwingend erforderlich. Umgekehrt kann zumindest eine der beiden äußersten Schichten jedoch auch gezielt Füllstoffe enthalten, nämlich insbesondere dann, wenn die Füllstoffe als Trennhilfe dienen.
  • Es sei angemerkt, dass die hier gezeigten Füllstoffpartikel 40, 42 eine im Wesentlichen sphärische Grundform aufweisen. Dies ist jedoch ebenfalls nicht zwingend erforderlich.
  • In den Figuren 5a und 5b ist ein Abschnitt eines Substrats 20 mit einem Durchgangskanal 30 gemäß einer zweiten Ausführungsform gezeigt. Dabei zeigt Figur 5a wieder eine Draufsicht auf die Oberseite 22 des Substrats 20 und Figur 5b eine Schnittansicht durch den Durchgangskanal 30 entlang der Schnittebene V - V in Figur 5a. Die besonderen Merkmale dieser zweiten Ausführungsform können alternativ oder kumulativ zu den besonderen Merkmalen der ersten Ausführungsform zum Einsatz kommen.
  • Auch in diesem Beispiel ist das Substrat 20 als ein mehrschichtiges Laminat gebildet, wobei hier vier Schichten vorhanden sind, deren Ersteckung in Dickenrichtung TD im Wesentlichen gleich groß ist. Das Besondere an dieser Ausführungsform ist, dass die Grundform des Durchgangskanals 30, welche hier im Wesentlichen einem sich von der Oberseite 22 zu der Unterseite 24 des Substrats 20 hin verjüngenden Kegelstumpf entspricht, an den jeweiligen Grenzen zwischen zwei unmittelbar benachbarten Schichten des Substrats einen Versatz aufweisen. Dieser Versatz führt in dem Durchgangskanal 30 zu Vorsprüngen 44 und Rücksprüngen 46 für die den Durchgangskanal im bestimmungsgemäßen Gebrauch der erfindungsgemäßen Bespannung durchströmende Flüssigkeit. Hierdurch werden in die Flüssigkeit Turbulenzen eingebracht, die die Strömungsgeschwindigkeit in dem Durchgangskanal 30 reduzieren. Die Vorsprünge 44 und die Rücksprünge 46 sorgen dafür dass die mittlere Rautiefe Rz der Innenoberfläche 32 des Durchgangskanals größer als 4µm, vorzugsweise größer als 6µm, weiter bevorzugt größer als 8µm wird. In den Bereich zwischen zwei benachbarten Schichtgrenzen ist die mittlere Rautiefe Rz hingegen wieder deutlich geringer. Sofern die mittlere Rautiefe Rz auch in diesen Bereichen vergrößert werden soll, kann man zum Beispiel auf die zuvor beschriebenen Merkmale des ersten Ausführungsbeispiels zurückgreifen. Allerdings ist darauf zu achten, dass die Strömungsgeschwindigkeit in dem Durchgangskanal 30 auch nicht zu stark gedrosselt wird, damit eine angemessene Entwässerung der im bestimmungsgemäßen Gebrauch der erfindungsgemäße Bespannung auf dem Substrat transportierten Faserstoffbahn erfolgen kann.
  • Wie die Erfinder herausgefunden haben, können die Vorsprünge 44 und die Rücksprünge 46 bei dieser Ausführungsform zuverlässig und reproduzierbar erzeugt werden, indem die einzelnen Schichten des Laminats über einen Kleber, vorzugsweise ein Lösungsmittel-haltiges Polymerharz, miteinander verbunden bzw. laminiert werden, anschließend das Laminat aufgerollt wird, zum Laser-Bohren wieder abgerollt und im Wesentlichen im Bereich der Bohrung auf eine flache Ebene gespannt wird. Diesen Effekt lässt sich mit Eigenspannungen im Material erklären, die durch die Wärme- und Krafteinwirkung beim Laserbohren kurzzeitig freigesetzt werden. Dieser Effekt lässt sich gezielt zu Nutze machen, um die Rauigkeit im Durchgangskanal 30 zu erhöhen und somit die Strömungsgeschwindigkeit durch den Durchgangskanal 30 zu reduzieren.
  • Besonders vorteilhaft kommt die vorliegende Erfindung zur Wirkung, wenn die Bespannung ein Formiersieb ist und wenn die einzelnen Durchgangskanäle 30 so eng nebeneinander platziert sind, dass sie sich an der Oberseite 22 bzw. Papierseite zumindest berühren, vorzugsweise überschneiden, wie eingangs beschrieben.
  • Bei den beiden hier gezeigten Ausführungsbeispielen der vorliegenden Erfindung ist die Grundform des Durchgangskanals 30 immer im Wesentlichen kegelstumpfförmig. Dies ist jedoch nicht zwingend. In der Praxis können die Durchgangskanäle 30 auch eine mehr oder weniger stark abweichende Grundform aufweisen.
  • Bezugszeichenliste:
  • 10`
    Vorrichtung
    20', 20
    Substrat
    22', 22
    Oberseite
    24', 24
    Unterseite
    26'
    Seitenrand
    28'
    Seitenrand
    30', 30
    Durchgangskanal
    32`, 32
    Innenoberfläche
    40
    Füllstoffpartikel erster Sorte
    42
    Füllstoffpartikel zweiter Sorte
    44
    Vorsprung
    46
    Rücksprung
    LB
    Laserstrahl
    MR
    Mittenbereich
    R
    Walze
    TD
    Dickenrichtung

Claims (10)

  1. Bespannung für eine Maschine zur Herstellung einer Faserstoffbahn, insbesondere einer Papier-, Karton- oder Tissuebahn, umfassend ein Substrat (20) mit einer Oberseite (22), einer Unterseite (24), zwei Seitenrändern und einem Nutzbereich zwischen den zwei Seitenrändern, wobei der Nutzbereich eine Vielzahl von Durchgangskanälen (30) aufweist, welche die Oberseite (22) mit der Unterseite (24) des Substrats (20) verbinden, wobei das Substrat (20) ein Laser-gebohrtes Substrat (20) ist, wobei die Durchgangskanäle (30) mittels eines Lasers in das Substrat (20) eingebracht sind,
    dadurch gekennzeichnet, dass die Innenoberfläche (32) von wenigstens einem Durchgangskanal (30), vorzugsweise von der Mehrheit aller Durchgangskanäle (30), weiter bevorzugt von allen Durchgangskanälen (30) im Nutzbereich des Substrats (20) eine gemittelte Rautiefe Rz aufweist, welche größer als 4µm, vorzugsweise größer als 6µm, weiter bevorzugt größer als 8µm ist.
  2. Bespannung nach Anspruch 1,
    dadurch gekennzeichnet, dass die gemittelte Rautiefe Rz kleiner als 20µm, vorzugsweise kleiner als 15µm ist.
  3. Bespannung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass das Verhältnis zwischen einem minimalen Durchmesser der Durchgangskanäle (30) und einer Dicke des Substrats (20) zwischen 1:3 und 1:10 liegt, vorzugsweise zwischen 1:4 und 1:8, weiter bevorzugt zwischen 1:5 und 1:7.
  4. Bespannung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass das Substrat (20) neben einem Matrixmaterial ferner Füllstoffpartikel (40, 42) aufweist, wobei das Material der Füllstoffpartikel (40, 42) bei Einstrahlung mit Laserlicht langsamer oder schneller in die Gasphase überführbar ist als das Matrixmaterial.
  5. Bespannung nach Anspruch 4,
    dadurch gekennzeichnet, dass die Füllstoffpartikel (40, 42) einen mittleren Durchmesser zwischen 20µm und 150µm, vorzugsweise zwischen 50µm und 100µm aufweisen, wobei die Füllstoffpartikel (40, 42) vorzugsweise im Wesentlichen sphärisch ausgebildet sind.
  6. Bespannung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass das Substrat (20) aus mehreren Schichten gebildet ist, vorzugsweise aus 2 bis 6 Schichten, weiter bevorzugt aus 3 bis 5 Schichten.
  7. Bespannung nach Anspruch 6,
    dadurch gekennzeichnet, dass eine Grundform der Durchgangskanäle (30) an einer Grenze zwischen zwei benachbarten Schichten des Substrats (20) einen Versatz in einer Richtung aufweist, die in der Ebene des Substrats (20) liegt.
  8. Bespannung nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, dass die gemittelte Rautiefe Rz der Innenoberfläche (32) von wenigstens einem Durchgangskanal (30), vorzugsweise von der Mehrheit aller Durchgangskanäle (30), weiter bevorzugt von allen Durchgangskanälen (30) im Nutzbereich des Substrats (20) innerhalb des Bereichs wenigstens einer Schicht kleiner als 4µm, vorzugsweise kleiner als 3µm, weiter bevorzugt kleiner als 2µm oder sogar kleiner als 1µm ist.
  9. Verfahren zur Herstellung einer Bespannung nach einem der vorhergehenden Ansprüche,
    wobei wenigstens ein Durchgangskanal (30), vorzugsweise die Mehrheit aller Durchgangskanäle (30), weiter bevorzugt alle Durchgangskanäle (30) im Nutzbereich des Substrats (20) mittels eines Lasers in das Substrat (20) eingebracht wird bzw. werden,
    dadurch gekennzeichnet, dass vor dem Schritt des Einbringens der Durchgangskanäle (30) das Substrat (20) gebildet wird, indem einem Matrixmaterial, welches den Hauptbestandteil des Substrats (20) bildet, Füllstoffpartikel (40, 42) beigemengt werden, wobei das Material der Füllstoffpartikel (40, 42) bei Einstrahlung mit Laserlicht langsamer oder schneller in die Gasphase überführbar ist als das Matrixmaterial,
    wobei vorzugsweise das Substrat (20) mehrere Schichten aufweist und die Konzentration der Füllstoffpartikel (40, 42) zwischen wenigstens zwei dieser Schichten unterschiedlich ist,
    und/oder dadurch gekennzeichnet, dass das Substrat (20) aus mehreren Schichten gebildet wird, wobei die einzelnen Schichten mittels eines Hilfsstoffs, insbesondere einer Klebstoffschicht, miteinander verbunden werden, wobei das Substrat (20) anschließend aufgerollt wird und zum Einbringen der Durchgangskanäle (30) wieder abgerollt wird,
    wobei vorzugsweise das Substrat (20) in dem Bereich, in welchem gerade mittels des Lasers die Durchgangskanäle (30) in das Substrat (20) eingebracht werden, auf eine im Wesentlichen plane Fläche aufgebracht wird, vorzugsweise mittels Unterdruck.
  10. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet, dass der Durchgangskanal (30) oder die Durchgangskanäle (30) jeweils mittels eines einzigen Pulses des Lasers in das Substrat (20) eingebracht wird bzw. werden.
EP18183869.9A 2018-07-17 2018-07-17 Bespannung für eine maschine zur herstellung einer faserstoffbahn Active EP3597821B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18183869.9A EP3597821B1 (de) 2018-07-17 2018-07-17 Bespannung für eine maschine zur herstellung einer faserstoffbahn
CN201980047685.6A CN112513368B (zh) 2018-07-17 2019-06-05 用于制造纤维料幅的机器的网毯
PCT/EP2019/064575 WO2020015915A1 (de) 2018-07-17 2019-06-05 Bespannung für eine maschine zur herstellung einer faserstoffbahn
US17/261,242 US11473244B2 (en) 2018-07-17 2019-06-05 Clothing for a machine for producing a fibrous material web

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18183869.9A EP3597821B1 (de) 2018-07-17 2018-07-17 Bespannung für eine maschine zur herstellung einer faserstoffbahn

Publications (3)

Publication Number Publication Date
EP3597821A1 EP3597821A1 (de) 2020-01-22
EP3597821C0 EP3597821C0 (de) 2024-01-03
EP3597821B1 true EP3597821B1 (de) 2024-01-03

Family

ID=62981054

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18183869.9A Active EP3597821B1 (de) 2018-07-17 2018-07-17 Bespannung für eine maschine zur herstellung einer faserstoffbahn

Country Status (4)

Country Link
US (1) US11473244B2 (de)
EP (1) EP3597821B1 (de)
CN (1) CN112513368B (de)
WO (1) WO2020015915A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113547607B (zh) * 2021-07-22 2023-02-24 河北工业大学 一种制备3d打印定向钢纤维增强水泥基复合材料的装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE429769B (sv) 1980-04-01 1983-09-26 Nordiskafilt Ab Arkaggregat och sett att tillverka detsamma
US5837102A (en) 1997-04-24 1998-11-17 Voith Sulzer Paper Technology North America, Inc. Perforated and embossed sheet forming fabric
DE102007024847A1 (de) * 2007-05-29 2008-12-04 Voith Patent Gmbh Papiermaschinenbespannung
KR101550647B1 (ko) * 2008-09-11 2015-09-07 알바니 인터내셔널 코포레이션 화장지, 타월 및 부직포의 제조를 위한 투과성 벨트
KR101655745B1 (ko) * 2009-01-28 2016-09-08 알바니 인터내셔널 코포레이션 부직포의 제조를 위한 산업용 직물 및 그 제조방법
DE202010016701U1 (de) * 2010-12-16 2011-04-14 Voith Patent Gmbh Sieb
DE102012210765A1 (de) * 2012-06-25 2014-01-02 Voith Patent Gmbh Verfahren zur Einbringung von Bohrlöchern mit Hilfe von Laserstrahlen in ein flächig ausgebildetes Substrat, insbesondere eine bandförmige Folie
DE102012210768A1 (de) * 2012-06-25 2014-01-02 Voith Patent Gmbh Verfahren zur Einbringung von Durchgangsbohrungen mit Hilfe von Laserstrahlen in ein flächig ausgebildetes Substrat, insbesondere eine bandförmige Folie
WO2015185278A1 (de) * 2014-06-02 2015-12-10 Voith Patent Gmbh Verfahren zur herstellung einer papiermaschinenbespannung
EP3348708B1 (de) 2018-04-23 2020-06-10 Voith Patent GmbH Papiermaschinenbespannung und verfahren zu deren herstellung

Also Published As

Publication number Publication date
EP3597821A1 (de) 2020-01-22
EP3597821C0 (de) 2024-01-03
CN112513368A (zh) 2021-03-16
US11473244B2 (en) 2022-10-18
WO2020015915A1 (de) 2020-01-23
US20210269976A1 (en) 2021-09-02
CN112513368B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
WO2012028601A1 (de) Gelochte folienbespannung
DE10084722B3 (de) Verfahren und Vorrichtung zur Ausbildung einer Papierbahn
EP2686480B1 (de) Laminiertes endlosband
DE102007020325B3 (de) Verfahren zur Herstellung eines Siebes für die Behandlung von zur Papiererzeugung geeigneten Faserstoffsuspensionen
DE2716583A1 (de) Verfahren und vorrichtung zum loesen der bahn vom formungssieb in einer papiermaschine und zum leiten der bahn in den pressenteil der papiermaschine
WO2014001217A1 (de) Verfahren zur einbringung von durchgangsbohrungen mit hilfe von unterschiedlichen laserstrahlen in ein flächig ausgebildetes substrat, insbesondere eine bandförmige folie; bespannung für eine papiermaschine mit unterschiedlichen löchern
DE102011002498B4 (de) Rissfester Rand für perforierte Folienbespannung
EP3597821B1 (de) Bespannung für eine maschine zur herstellung einer faserstoffbahn
EP2633116A1 (de) Verstreckte endlosbespannung
EP2345761A2 (de) Verfahren und Vorrichtung zur Bearbeitung einer Faserstoffbahn oder einer Suspensionsschicht
WO2015185278A1 (de) Verfahren zur herstellung einer papiermaschinenbespannung
DE60110611T2 (de) Papiermaschinenbespannung mit muster
DE112008002205T5 (de) Verfahren und Vorrichtung zum Beschichten einer Bahn eines Fasermaterials mit wenigstens zwei Schichten einer Beschichtung
EP3775368A1 (de) Bespannung für eine maschine zur herstellung einer faserstoffbahn und verfahren zur herstellung einer solchen bespannung
DE102005023390A1 (de) Papiermaschinenbespannung
DE102011079517A1 (de) Gefügte Endlosbespannung
DE69839081T2 (de) Papiermaschine, papiermaschinenbespannung für , und verfahren zur herstellung von bemustertem weichen papier
EP1013822A2 (de) Papiermaschinensieb für die Nasspartie einer Papiermaschine
EP3411525B1 (de) Verfahren und vorrichtung zum herstellen eines sicherheitspapiers mit zwei fenstersicherheitselementen
EP3475481B1 (de) Bespannung für eine maschine zur herstellung einer faserbahn und verfahren zur herstellung einer derartigen bespannung
DE69914295T2 (de) Vorrichtung und verfahren zur erzeugung von stoffturbulenz im blattbildner einer langsiebpapiermaschine
DE102020105480A1 (de) Naht für eine perforierte Kunststofffolie
EP2935692B1 (de) Entwässerungssieb für die papierherstellung
DE102010049490A1 (de) Verstreckte Endlosbespannung
EP3908694B1 (de) Kantenschutz für eine papiermaschinenbespannung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200722

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231020

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018013893

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240116

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240125