EP3592843A1 - Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse - Google Patents

Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse

Info

Publication number
EP3592843A1
EP3592843A1 EP18713321.0A EP18713321A EP3592843A1 EP 3592843 A1 EP3592843 A1 EP 3592843A1 EP 18713321 A EP18713321 A EP 18713321A EP 3592843 A1 EP3592843 A1 EP 3592843A1
Authority
EP
European Patent Office
Prior art keywords
cells
μιη
smooth muscle
microfiber
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18713321.0A
Other languages
German (de)
English (en)
Inventor
Laetitia ANDRIQUE
Gaëlle RECHER
Kevin ALESSANDRI
Maxime FEYEUX
Pierre Nassoy
Andréas BIKFALVI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Institut National de la Sante et de la Recherche Medicale INSERM
Institut d'Optique Theorique et Appliquee
Universite de Bordeaux
Original Assignee
Centre National de la Recherche Scientifique CNRS
Institut National de la Sante et de la Recherche Medicale INSERM
Institut d'Optique Theorique et Appliquee
Universite de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Institut National de la Sante et de la Recherche Medicale INSERM, Institut d'Optique Theorique et Appliquee, Universite de Bordeaux filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3592843A1 publication Critical patent/EP3592843A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • C12N5/0691Vascular smooth muscle cells; 3D culture thereof, e.g. models of blood vessels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0661Smooth muscle cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/74Alginate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2537/00Supports and/or coatings for cell culture characterised by physical or chemical treatment
    • C12N2537/10Cross-linking

Definitions

  • the invention relates to an artificial hollow cell microfiber having a structure, histology and mechanical properties similar to those of vessels of the animal vascular system.
  • the invention also relates to a manufacturing method for obtaining such a hollow cellular microfiber.
  • the invention finds applications particularly in the field of tissue engineering and tissue grafts, to allow the vascularization of tissues, and in the pharmacological field, for the study in particular of candidate molecules having activity related to vascularization.
  • tissue engineering has been developed, with the aim of artificially recreating blood or lymphatic vessels, in particular to allow tissue vascularization in vitro.
  • one method is to mold a cell-loaded hydrogel around agarose-based tubes.
  • the agarose tubes are subsequently removed to create microtube networks (Bertassoni et al., Lab Chip 2014 Jul 7; 14 (13): 2202-2211).
  • Another technique is to flow a collagen gel onto a gelatin or polydimethylsiloxane (PDMS) tube, which is removed once the gelled collagen matrix (Backer et al., Lab Chip. 2013 Aug 21; 13 (16): 3246 -3252 and Jimenez-Torres et al., Mol Mol Methods 2016, 1458: 59-69).
  • PDMS polydimethylsiloxane
  • microfibers containing endothelial cells wrapped in a hydrogel layer have been obtained by coextrusion (Onoe et al., Nature Materials 31 March 2013). However, these microfibers do not have mechanical properties comparable to those of the blood or lymphatic vessels.
  • the inventors have discovered that it is possible to manufacture hollow cell microfibers reproducing histologically and mechanically vessels of the mammalian vascular system, such as blood vessels. . More specifically, the inventors have developed a method of encapsulation of endothelial cells and smooth muscle cells in an alginate envelope, inside which the cells organize themselves in homocentric layers around the skin. 'a light.
  • the method according to the invention makes it possible to obtain tubes of lengths and diameters that can be modulated according to the needs. In particular, it is possible to produce tubes of a few centimeters and up to more than 1 meter.
  • the outer diameter of the tubes according to the invention may vary from 70 ⁇ to more than 5 mm, so as to mimic any type of blood and lymphatic vessels, from the veins to the arteries.
  • the light extends throughout the length of the tube, making said tubes perfusable. The vessels thus obtained can be easily individualized and manipulated.
  • the subject of the invention is therefore an artificial hollow cellular microfiber comprising, successively, organized around a light
  • At least one layer of smooth muscle cells at least one layer of smooth muscle cells; an extracellular matrix layer; and optionally
  • the cellular microfiber is a blood vessel or lymphatic vessel.
  • the invention also relates to a process for preparing such a hollow cellular microfiber, according to which a hydrogel solution and a solution of cells comprising endothelial cells and smooth muscle cells in an extracellular matrix are coextruded concentric in a crosslinking solution capable of crosslinking at least one polymer of the hydrogel solution.
  • FIG. 1 Cross-sectional representation of a hollow cellular microfiber according to an exemplary embodiment of the invention, comprising successively, from the outside towards the inside, an alginate outer layer (1), an extracellular matrix layer ( 2), a layer of smooth muscle cells (3), a layer of endothelial cells (4) and a central lumen (5);
  • FIG. 2 Schematic representation of a concentric coextrusion system that can be used to produce the cellular microfibers according to the invention, wherein a first pump comprises an alginate solution (ALG), a second pump comprising an intermediate solution comprising sorbitol (SI), and the third pump comprising a solution of cells (C), these three solutions being brought to a coextrusion tip and the tip (6) being immersed in a crosslinking bath (7) to form the cellular microfiber hollow (8);
  • ALG alginate solution
  • SI intermediate solution comprising sorbitol
  • C solution of cells
  • Figure 3 Microscope views of the tubular structure of a cellular microfiber obtained according to the method of the invention.
  • the cells are round and disposed within the entire alginate tube;
  • the cells are anchored on the internal edges of the alginate tube, via the extracellular matrix, to form a lumen inside the tube;
  • Figure 4 Study of the impact of the co-extrusion rates of an alginate solution (a), a solution of sorbitol (s) and a solution of cells (c) on the thickness of the outer layer of alginate in the hollow cell microfibers obtained;
  • FIG. 5 Study of the external (EXT) and internal (INT) diameters of various hollow cellular microfibers obtained according to the method of the invention, as a function of the diameter of the coextrusion outlet tip (abscissa axis: 300 ⁇ , 350 ⁇ , 450 ⁇ );
  • Figure 6 View of an empty alginate tube 900 ⁇ diameter, obtained by extrusion with an outlet nozzle diameter 900 ⁇ ;
  • Figure 7 Study of the contraction of hollow cellular microfibers according to the invention in the presence of Endotheline 1 (ET1);
  • Figure 8 Study of the increase in intracellular calcium concentration (l // uo ) in endothelial cells of the human umbilical cord vein (HUVEC) and in the smooth muscle cells (SMC) of hollow cellular microspheres over time , under the effect of endothelin 1.
  • the invention relates to artificial hollow cell microfibers, the histology and mechanical and physiological properties of which mimic those of vessels of the animal vascular system, and in particular of the mammalian vascular system.
  • microfibers based on smooth muscle cells and endothelial cells, whose organization in concentric layers around a light renders said microfibers perfusable.
  • perfusable is meant in the context of the invention that it is possible to inject a fluid into said microfiber, within which it can circulate.
  • the hollow cellular microfibers according to the invention are also impervious in that the fluid injected into said microfibers does not escape or only very slightly through the thickness of the microfibres.
  • the tightness of a microfiber according to the invention depends mainly on the degree of confluence of the cells in said microfiber. The degree of confluence can in particular be adapted by varying the number of cells injected during the formation of the microfiber.
  • the microfibers according to the invention can be manipulated because they are individualized.
  • the cellular microfiber is a hollow tubular structure, containing substantially homocentric layers, in that they are organized successively around the same point.
  • the central lumen 5 of the microfiber is bordered by the endothelial cell layer 4, which is surrounded by the smooth muscle cell layer 3, itself surrounded by an extracellular matrix layer 2 and optionally an outer layer of hydrogel 1 (figure 1).
  • a cross section of the cellular microfiber according to the invention thus comprises successive substantially concentric layers.
  • the light is generated, at the time of tube formation, by the smooth and endothelial muscle cells that self-assemble and orient spontaneously with respect to the extracellular matrix.
  • the light contains a liquid and more particularly the culture medium.
  • the hollow cellular microfiber comprises an outer layer of hydrogel.
  • the "outer layer of hydrogel” designates a three-dimensional structure formed from a matrix of polymer chains swollen with a liquid, and preferably water.
  • the polymer or polymers of the outer layer of hydrogel are crosslinkable polymers when subjected to a stimulus, such as a temperature, a pH, ions, etc.
  • the hydrogel used is biocompatible, in that it is not toxic to the cells.
  • the hydrogel layer must allow the diffusion of oxygen and nutrients to feed the cells contained in the microfiber and allow their survival.
  • the polymers of the hydrogel layer may be of natural or synthetic origin.
  • the outer layer of hydrogel contains one or more polymers among sulfonate-based polymers, such as sodium polystyrene sulfonate, acrylate-based polymers, such as sodium polyacrylate, polyethylene glycol diacrylate, the gelatin methacrylate compound, polysaccharides, and especially polysaccharides of bacterial origin, such as gellan gum, or of plant origin, such as pectin or alginate.
  • the outer hydrogel layer comprises at least one of alginate.
  • the outer layer of hydrogel comprises only alginate.
  • alginate is understood to mean linear polysaccharides formed from ⁇ -D-mannuronate (M) and ⁇ -L-guluronate (G), salts and derivatives thereof.
  • the alginate is a sodium alginate, composed of more than 80% of G and less than 20% of M, with an average molecular mass of 100 to 400 kDa (for example: PRONOVA ® SLG100) and a total concentration of between 0.5% and 5% by weight (weight / volume).
  • the outer layer of hydrogel can strengthen the rigidity of the cellular microfiber and thus facilitate its handling.
  • the hydrogel layer comprises polymers capable of limiting cell adhesion ("cell-repellent”), in order to facilitate, if necessary, the separation of said hydrogel layer from the cellular microfiber or its degradation without affecting the structure of the cellular microfiber.
  • cell-repellent polymers capable of limiting cell adhesion
  • the cellular microfiber is devoid of an outer hydrogel layer and directly comprises, as the outermost layer, an extracellular matrix layer.
  • the extracellular matrix layer forms a gel on the inner face of the hydrogel layer, that is to say the face directed towards the light of the microcompartment.
  • the extracellular matrix layer comprises a mixture of proteins and extracellular compounds required for cell culture.
  • the extracellular matrix comprises structural proteins, such as laminins containing the subunits ⁇ 1, ⁇ 4 or ⁇ 5, the subunits ⁇ or ⁇ 2, and the subunits ⁇ or ⁇ 3, vitronectin, laminins, collagen, as well as growth factors, such as TGF-beta and / or EGF.
  • the extracellular matrix layer consists of or contains Matrigel ®, the Geltrex ®, collagen, including type 1 collagen to 19, modified or not, gelatin, fibrin, hyaluronic acid, chitosan, or a mixture of at least two of these components.
  • the cellular microfiber comprises smooth muscle cells, organized in one or more layers around and possibly at least partly in the extracellular matrix layer.
  • the smooth muscle cells can be chosen in particular from vascular smooth muscle cells, smooth muscle cells, smooth muscle cells of the digestive tract, bronchial smooth muscle cells, smooth muscle cells of the kidneys, smooth muscle cells of the bladder, dermal smooth muscle cells, smooth muscle cells of the uterus and smooth muscle cells of the eyeball, mammalian and especially human.
  • the smooth muscle cells are selected from smooth muscle cells of lymphatic or vascular origin, such as smooth muscle cells of umbilical artery, smooth muscle cells of coronary artery, smooth muscle cells of pulmonary artery, etc. .
  • the smooth muscle cells are coronary artery smooth muscle cells, such as smooth muscle cells of the human coronary artery.
  • smooth muscle cells are obtained from pluripotent induced stem cells, which have been forced to differentiate into smooth muscle cells.
  • the thickness of the smooth muscle cell layer (s) may vary depending on the destination of the cellular microfiber. "Thickness” means the dimension in a cross section of the microfiber extending radially from the center of said cross section. Smooth muscle cells allow the contraction of the microfiber. It is therefore possible to adapt the contractile force of the cellular microfiber, depending on whether it is intended to be used as a blood vessel or lymphatic vessel, but also according to the nature of said reproduced vessel (artery, vena cava, vein). , venule, etc.). The person skilled in the art knows what is the expected contractile force as a function of the vessel to be reproduced, and thus knows how to adapt the thickness of the layer (s) of the smooth muscle layers, as well as the nature of the smooth muscle cells.
  • the layer or layers of smooth muscle cells contains at least 95% by volume, preferably at least 96%, 97%, 98%, 99% of smooth muscle cells and matrix produced by said cells.
  • the layer or layers of smooth muscle cells may optionally include endothelial cells.
  • the volume percentage of endothelial cells in the smooth muscle cell layer is less than 5%, preferably less than 4%, 3%, 2%, 1%.
  • the hollow cellular microfiber comprises a layer of endothelial cells, bordering and delimiting the central lumen.
  • the endothelial cells may be chosen from umbilical cord vein endothelial cells (UVEC), skin microvessel endothelial cells (DMEC), dermal blood endothelial cells (DBEC), dermal endothelial cells (DLEC), endothelial cells of heart microvessels (CMEC), endothelial cells of lung microvessels (PMEC) and endothelial cells of uterine microvessels (UtMEC), mammalian and especially human.
  • UVEC umbilical cord vein endothelial cells
  • DMEC skin microvessel endothelial cells
  • DBEC dermal blood endothelial cells
  • DLEC dermal endothelial cells
  • CMEC endothelial cells of heart microvessels
  • PMEC endothelial cells of lung microvessels
  • UtMEC endo
  • the endothelial cells are endothelial cells of the umbilical cord vein (UVEC), including endothelial cells of the human umbilical cord vein (HUVEC).
  • UVEC umbilical cord vein
  • HAVEC human umbilical cord vein
  • endothelial cells are obtained from pluripotent induced stem cells, which have been forced to differentiate into endothelial cells.
  • the cellular microfiber comprises a single layer of endothelial cells.
  • the endothelial cell layer or layers contain at least 95% by volume, preferably at least 96%, 97%, 98%, 99% endothelial cells and matrix produced by said cells.
  • the layer or layers of endothelial cells can possibly include smooth muscle cells.
  • the volume percentage of smooth muscle cells in the endothelial cell layer is less than 5%, preferably less than 4%, 3%, 2%, 1%.
  • the cells used to produce the cellular microfiber according to the invention are human cells.
  • the ratio of average endothelial cells / smooth muscle cells, in cm 2 , in a hollow cellular microfiber of the invention is between 3/1 and 2/1.
  • the internal diameter of the cellular microfiber is between 50 ⁇ and 500 ⁇ , preferably between 50 ⁇ and 200 ⁇ , more preferably between 50 ⁇ and 150 ⁇ , still more preferably between 50 ⁇ and 100 ⁇ , +/- 10 ⁇ .
  • internal diameter is meant the diameter of the light of the microfiber.
  • the internal diameter of the cellular microfiber is 100 ⁇ .
  • the internal diameter is 70 ⁇ .
  • the outer diameter of the cellular microfiber may also vary.
  • outer diameter is meant the largest diameter of the microfiber.
  • the outer diameter is advantageously between 250 ⁇ and 5 mm.
  • the outer diameter is advantageously between 70 ⁇ and 5 mm, preferably between 70 ⁇ and 500 ⁇ , more preferably between 70 ⁇ and 200 ⁇ , even more preferably between 70 ⁇ and 150 ⁇ . , +/- 10 ⁇ .
  • the outer diameter of the microfiber, in the presence of the outer layer of hydrogel is 300 ⁇ .
  • the outer diameter of the microfiber, in the absence of the outer layer of hydrogel is 150 ⁇ .
  • the cellular microfiber according to the invention comprises an outer layer of hydrogel of 100 to 150 ⁇ in thickness, a thickness of cells (endothelial cells and smooth muscle cells) of 150 to 200 ⁇ and a light from 100 to 150 ⁇ in diameter.
  • the cellular microfiber according to the invention has a length, or greater dimension, of at least 50 cm, preferably at least 60 cm, 70 cm, 80 cm, 90 cm, 100 cm, 110 cm, or more.
  • the invention also relates to a process for preparing a hollow cellular microfiber according to the invention. More particularly, the invention proposes to encapsulate endothelial cells and smooth muscle cells in an outer hydrogel shell within which said cells will rearrange to form substantially concentric layers and provide a central lumen. The encapsulation is done by means of a concentric coextrusion process, in which the hydrogel solution is coextruded with the cell solution directly in a crosslinking bath, or crosslinking solution, comprising a crosslinking agent for crosslinking the hydrogel and thus form the outer shell around the cells.
  • any extrusion process for concentrically coextruding hydrogel and cells can be used.
  • the method according to the invention is implemented by means of an extrusion device with double or triple concentric envelopes as described in patent FR2986165.
  • crosslinking solution means a solution comprising at least one crosslinking agent adapted to crosslink a hydrogel comprising at least one hydrophilic polymer, such as alginate, when it is applied. contact with it.
  • the crosslinking solution may for example be a solution comprising at least one divalent cation.
  • the crosslinking solution may also be a solution comprising another known crosslinking agent of the alginate or of the hydrophilic polymer to be crosslinked, or a solvent, for example water or an alcohol, adapted to allow crosslinking by irradiation or by any other means. other technique known in the art.
  • the crosslinking solution is a solution comprising at least one divalent cation.
  • the divalent cation is a cation which makes it possible to crosslink alginate in solution, it may be, for example, a divalent cation chosen from the group. comprising Ca 2+ , Mg 2+ , Ba 2+ and 5r 2+ , or a mixture of at least two of these divalent cations.
  • the divalent cation, for example Ca 2+ may be combined with a counter-ion to form, for example, solutions of the CaC or CaCOs type, which are well known to those skilled in the art.
  • the crosslinking solution may also be a solution comprising CaCO3 coupled to Glucono delta-lactone (GDL) forming a CaCOs-GDL solution.
  • the crosslinking solution can also be a mixture of CaCOs-CaSC GDL.
  • the crosslinking solution is a solution comprising calcium, in particular in the Ca 2+ form,
  • the divalent cation concentration in the crosslinking solution is between 10 and 1000 mM.
  • the crosslinking solution may comprise other constituents, which are well known to those skilled in the art, than those described above, in order to improve the crosslinking of the hydrogel sheath under the conditions, in particular time and / or temperature, special.
  • the endothelial cells have previously been cultured in a culture medium comprising vascular endothelial growth factors (VEGF) so as to promote the formation of endothelium and angiogenesis.
  • VEGF vascular endothelial growth factors
  • the endothelial cells were previously cultured in EGM-2 ® medium.
  • the smooth muscle cells have been previously cultured in a culture medium comprising growth factors adapted to the culture of smooth muscle cells, such as transforming growth factor ⁇ , EGF factor, bFGF factor, etc.
  • growth factors adapted to the culture of smooth muscle cells such as transforming growth factor ⁇ , EGF factor, bFGF factor, etc.
  • smooth muscle cells have been previously cultured in medium SmGM2 ® from Lonza or in a culture medium specifically adapted to the smooth muscle cells marketed by Promoceli society (eg the middle HCASMC ®, HAoSMC ® , etc.),
  • the cell solution used for coextrusion comprises endothelial cells and smooth muscle cells suspended in extracellular matrix.
  • the cell solution comprises between 20 and 30% by volume of cells and between 70 and 80% by volume of extracellular matrix.
  • the volume ratio of endothelial cells / smooth muscle cells in the cell solution is advantageously between 3/1 and 2/1.
  • the coextrusion is carried out so that the hydrogel solution surrounds the cell solution.
  • coextrusion also involves an intermediate solution, including sorbitol.
  • the coextrusion is carried out so that the intermediate solution is disposed between the hydrogel solution and the cell solution (FIG. 2A).
  • the extrusion rate of the alginate solution is between 1 and 10 ml / h, preferably between 2 and 5 ml / h, even more preferably equal to 3 ml / h, and preferred way equal to 2 ml / h, +/- 0.5 ml / h.
  • the extrusion rate of the intermediate solution is between 0.1 and 5 ml / h, preferably between 0.5 and 1 ml / h, more preferably equal to 0.5 ml. / h, +/- 0.05 ml / h.
  • the extrusion rate of the cell solution is between 0.1 and 5 ml / h, preferably between 0.5 and 1 ml / h, more preferably still equal to 0.5. ml / h, +/- 0.05 ml / h.
  • the coextrusion speed of the different solutions can be easily modulated by those skilled in the art, so as to adapt the internal diameter of the microfiber and the thickness of the hydrogel layer.
  • the extrusion rate of the hydrogel solution is greater than the extrusion rate of the cell solution and optionally of the intermediate solution.
  • the extrusion rate of the hydrogel solution is at least two, three, or four times greater than the extrusion rate of the cell solution.
  • the extrusion rates of the cell solution and the intermediate solution are identical.
  • the extrusion rate of the hydrogel solution is 2 ml / h, +/- 0.05 ml / h, and the extrusion speed of the cell solution as the intermediate solution is 0.5 ml / h, +/- 0.05 ml / h.
  • the extrusion rate of the hydrogel solution is 9 ml / h, +/- 0.05 ml / h, and the extrusion rate of the cell solution as the intermediate solution is 3 ml / h, +/- 0.05 ml / h.
  • the extrusion rate of the hydrogel solution is 3 ml / h, +/- 0.05 ml / h
  • the extrusion speed of the cell solution is 2 ml / h
  • the extrusion rate of the intermediate solution is 1 ml / h, +/- 0.05 ml / h.
  • the extrusion rate of the hydrogel solution is 2 ml / h, +/- 0.05 ml / h, and the coextrusion rate of the cell solution as the intermediate solution is 0.5 ml / h, +/- 0.05 ml / h.
  • the extrusion rate of the hydrogel solution is 2 ml / h
  • the coextrusion rate of the cell solution as the intermediate solution is In another particular embodiment of the process according to the invention, the extrusion rate of the hydrogel solution is 2 ml / h, +/- 0.05 ml / h
  • the extrusion rate of the cell solution is 0.5 ml / h, +/- 0.05 ml / h
  • the extrusion rate of the intermediate solution is 1.5 ml / h, +/- - 0.05 ml / h.
  • the extrusion rate of the hydrogel solution is 2 ml / h, +/- 0.05 ml / h
  • the extrusion speed of the cell solution is 1.5 ml / h
  • the extrusion rate of the intermediate solution is 0.5 ml / h, +/- 0.05 ml / h.
  • the reticuiation solution, the intermediate solution and the cell solution are loaded into three concentric compartments of a coextrusion device. so that the crosslinking solution (ALG), forming the first stream, surrounds the intermediate solution (SI) which forms the second stream, which itself surrounds the cell solution (C) which forms the third stream.
  • the first flow is the rigid outer shell of hydrogel.
  • the second stream constitutes the intermediate envelope and the third flows the inner envelope containing the cells.
  • the method according to the invention makes it possible to encapsulate smooth muscle cells and endothelial cells in an external hydrogel sheath.
  • the inventors have observed that after only a few hours, the cells contained in this hydrogel sheath reorganize themselves, so that the endothelial cells delimit a longitudinal internal lumen extending over the entire length of the cellular microfiber, and that the smooth muscle cells are oriented outwards with respect to the light.
  • the presence of extracellular matrix during coextrusion seems necessary for the cells to become anchored to the matrix and thus spread, divide and proliferate.
  • the matrix also makes it possible to reduce the risks of apoptosis of the cells inside the cellular microfiber, and promotes the phenomenon of cellular reorganization within the hydrogel sheath.
  • the cellular microfiber obtained by coextrusion is maintained in a suitable culture medium for at least 10 h, preferably at least 20 h, even more preferably at least 24 h before being used.
  • This latency advantageously allows the cells to reorganize in the hydrogel sheath so as to form the concentric layers around a light, as described above.
  • the hollow cellular microfiber obtained by coextrusion that is to say a microfiber comprising a hydrogel sheath, or to proceed with hydrolysis of said sheath in order to recover a microfiber free of hydrogel.
  • the hollow cell microfibers that are the subject of the present invention can be used for many applications, in particular for medical or pharmacological purposes.
  • the cellular microfibers according to the invention can in particular be used for identification and / or validation tests of candidate molecules having an action on all or part of the vascular system, and in particular on the blood or lymphatic vessels.
  • such microfibers can be used to test the anti-angiogenic, anti-thrombotic, blood pressure regulating, blood gas transporting, etc., properties of candidate molecules.
  • the hollow cell microfibers according to the invention can also be used in tissue engineering, in order to vascularize samples of synthetic biological tissues and thus increase their viability.
  • tissue engineering in order to vascularize samples of synthetic biological tissues and thus increase their viability.
  • vascularized tissue samples can be used for example by the pharmaceutical and cosmetics industries, in order to carry out in vitro tests, in particular as an alternative to animal testing.
  • hollow cell microfibers according to the invention can be used in regenerative medicine, in order to allow the vascularization of synthetic organs, such as skin, cornea, liver tissue, etc. obtained by 3D printing or other, before grafting them into a subject.
  • Human umbilical cord endothelial cells (HUVEC) cultured in culture medium comprising passage VEGF 3 (p3), 4 (p4) or 5 (p5), supplied cryopreserved in -80 liquid nitrogen ° C under the reference c-12205 by the company PromoCell ® .
  • Human coronary artery smooth muscle cells in passage 2 (p2), supplied in the cryopreserved state in liquid nitrogen at -80 ° C. under the reference CC-2583 by the company Lonza.
  • Endothelial cell freezing medium Cryo-SFM from PromoCell (ref C-29912).
  • Smooth muscle cell culture medium SmGm2-bullet ® kit from the company Lonza (ref CC-3182) (medium at + 4 ° C and supplements at -20 ° C).
  • Medium for detaching smooth muscle cells Detach KIT ® from PromoCell Company (ref C-41210).
  • Freezing medium for smooth muscle cells Cryo-SFM from PromoCell (ref C-29912). Solutions:
  • Hydrogel Solution 2.5% Alginate w / v (LF200FTS) in 0.5mM SDS
  • Extracellular matrix Matrigel ® classic (without phenol red and with growth factors) Treatment of HUVEC endothelial cells: Amplification
  • HUVEC cells at stage p3 are thawed and amplified according to the usual protocols up to stage p5, p6 or p7, the coextrusion being carried out with cells between stages p5 and p7.
  • SMC cells at stage p2 are thawed and then cultured according to the usual protocols up to stage p5, p6 or p7, the coextrusion being carried out with cells between stages p5 and p7.
  • Coextrusion system
  • Coextrusion of the three solutions in a solution of Ca 2+ as described above made it possible to obtain tubes, or cellular hollow microfibers, of approximately 1 meter in length and with an external diameter of 300 ⁇ .
  • the cells After 24 hours (FIG. 3B), the cells reorganized and self-assembled inside the alginate tube so as to create a central lumen with a diameter of approximately 150 ⁇ .
  • the tube then comprises successively, and organized concentrically around the light, a layer of HUVEC cells, an SMC cell layer, a Matrigel ® layer and a crosslinked alginate layer.
  • Example 1 The hollow cell microfibers obtained in Example 1 were characterized by means of specific markers by immunofluorescence and confocal microscopy. The reorganization of the cells within the alginate envelope was followed by videomicroscopy.
  • the cellular microfibers, or tubes, were fixed at different times (J1 / J5), with 4% paraformaldehyde diluted in DMEM without phenol red (PAN), overnight at 4 ° C.
  • the cells of the tubes were then permeabilized (30 min in 1% triton in DMEM without phenol red, at room temperature with stirring). Non-specific sites of cells were saturated for one hour at 4 ° C in BSA1% / SVF2% solution (bovine serum albumin and fetal calf serum).
  • the cellular microfibers were then placed in the presence of specific primary antibodies, each directed against a protein of interest: - CD31: endothelial cell membrane specific marker
  • aSMA alpha smooth muscle actin
  • VE-Cadherin a specific marker for endothelial cell junctions and the formation of an impermeable endothelium
  • KI67 Specific marker of cell proliferation
  • aCaspase3 Specific marker of apoptosis.
  • the primary antibody was diluted to l / 100th in DMEM without phenol red + 1% BSA / 2% FCS overnight under stirring at 4 ° C. After 2x15 min of washing in DMEM without phenol red, the tubes were incubated with a secondary antibody (which will specifically recognize the primary antibody) coupled to a fluorochrome, diluted to 1/1000 in DMEM without red phenol + 1% BSA. / 2% FCS for 1h at room temperature. After 2x15 min washes in DMEM without red phenol, the tubes were analyzed by confocal microscopy to visualize the fluorescence. Results:
  • SMC specific aSMA marker, alpha Smooth Muscle Actin
  • HUVEC specific CD31 marker
  • microfibers The perfusability of the microfibers was also evaluated by connecting them to an injection system comprising fluorescent solutions.
  • An infusion system for hollow cellular microfibers has been developed using Pasteur glass pipettes drawn under the flame to a diameter corresponding to the internal diameter of the cellular microfibers, ie 150 ⁇ .
  • the drawn pipettes were connected to a syringe containing the culture medium (EGM2 ® Promocell), itself connected to a syringe pump to allow the liquid infusion to a physiological speed 50 ⁇ / ⁇ .
  • the infusion rate may vary depending on the internal diameter of the microfiber cell.
  • the cellular microfibers are cut into pieces a few centimeters long and are placed in culture medium in petri dish 3cm, under a binocular loupe. They are then connected to the tip of the Pasteur pipettes stretched.
  • the complete system (microfibre cell / culture medium, stretched pipette, syringe) is then re-cultured (37 ° C incubator, 5% C0 2) and allows the continuously ® EGM2 medium perfusion in the vascular tubes.
  • - Positive control cell-free alginate tube + FITC-Dextran 20kDa: Dextran molecules, of low molecular weight, easily diffuse through the pores of alginate; - Microfiber alginate / HUVEC / SMC according to the invention + FITC Dextran 20kDa: Dextran molecules, low molecular weight, do not diffuse or very little through the cell layers, which make the microfiber waterproof;
  • HUVEC / SMC microfibre according to the invention (after hydrolysis of the outer layer of alginate) + FITC Dextran 20kDa: the diffusion rate of the Dextran molecules through the cell layers is close to that observed for the microfiber according to US Pat. the invention further comprising the outer layer of alginate.
  • Three hollow cell microfibers were fabricated according to the protocol described in Example 1, varying the extrusion rates of the sorbitol solution and the cell solution for a constant alginate extrusion rate.
  • the extrusion rates for the three hollow cell microfibers are summarized in the table below.
  • the purpose of this experiment is to verify the reproducibility of the dimensions of the hollow cell microfibers with identical parameters, the impact of the flow rates on the thickness of the external wall of alginate.
  • Hollow cellular microfibers were manufactured, according to the protocol described in Example 1, by modifying the outlet tip of the solutions of the concentric coextrusion system (see tip / coextrusion tip 6, FIG. obtain an outlet tip diameter 300 ⁇ , 350 ⁇ , 450 ⁇ and 900 ⁇ . With the 900 ⁇ tip, the alginate solution was extruded alone, to produce empty alginate tubes (without cell suspension).
  • the outer diameter and the internal diameter that is to say the light of the microfibres, were measured after synthesis of said microfibers.
  • results shown in the table below and in FIG. 5 confirm that it is possible to modify the dimensions of the microfibers and to modify the diameter of the coextrusion spike of the coextrusion system.
  • obtaining a hollow alginate tube with a diameter of 900 ⁇ and an outlet tip of 900 ⁇ confirms that the process according to the invention makes it possible to obtain hollow cell microfibers that are perfectly of diameter. perfectly controlled.
  • Hollow cellular microfibers with an internal diameter of approximately 400 ⁇ were produced according to Example 1.
  • the microfibers are incubated for 45 min in the presence of a calcium-sensitive fluorescent probe, Fluo-4 AM (Thermo Fisher Scientific, F23917, 50 ⁇ g dissolved in 4 ⁇ l of Pluronic acid-at 20% in DMSO-, then diluted in 800 ⁇ l of EGM2, final concentration: 50 ⁇ l), at 37 ° C.
  • the AM group acetoxymethyl allows the molecule to cross the plasma membrane, it is cleaved by intracellular esterases which traps the probe in the cytoplasmic compartment.
  • the variations of the fluorescence signal intensity provide information on the qualitative variations (non-ratiometric probe) of free calcium accessible at the binding site of the molecule. This information is an indirect measure of activation of signaling pathways involving extracellular calcium entry, and / or release of endoplasmic reticulum calcium stocks.
  • the microfibers After rinsing in EGM2 culture medium, the microfibers are imaged epifluorescence with a stereo-microscope.
  • a vasoconstrictor specific for the blood vessels, endothelin 1 (ET1, 0.1 ⁇ ) is applied in the vicinity of the tube, in the culture medium.
  • the fluorescence signal is collected before, during and after the application of the vasoconstrictor.
  • the collected data make it possible to measure: 1 / the contraction of the microfibers (measurement of the external diameter), 2 / the fluorescence signal intensity variations of the Fluo-4 AM, (the intracellular calcium is the second messenger involved in the cascade of signaling triggering the contraction of muscle fibers and thus the decrease of the internal diameter of the vesseloid).
  • Endotheline 1 causes the contraction of the microfibers, and a significant decrease in the internal diameter of about 5% ( Figure 7).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Vascular Medicine (AREA)
  • Rheumatology (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention concerne une microfibre cellulaire creuse comprenant successivement, organisées autour d'une lumière au moins une couche de cellules endothéliales, au moins une couche de cellules musculaires lisses, une couche de matrice extracellulaire, et optionnellement une couche externe en hydrogel. L'invention concerne également un procédé de fabrication d'une telle microfibre cellulaire creuse.

Description

Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse
L'invention a trait à une microfibre cellulaire creuse artificielle présentant une structure, une histologie et des propriétés mécaniques proches de celles de vaisseaux du système vasculaire animal. L'invention a également trait à un procédé de fabrication permettant d'obtenir une telle microfibre cellulaire creuse. L'invention trouve des applications notamment dans le domaine de l'ingénierie tissulaire et des greffes de tissus, pour permettre la vascularisation de tissus, et dans le domaine pharmacologique, pour l'étude notamment de molécules candidates ayant une activité liée à la vascularisation. Depuis plusieurs années, l'ingénierie tissulaire vasculaire s'est développée, avec pour but de recréer artificiellement des vaisseaux sanguins ou lymphatiques, pour permettre notamment la vascularisation de tissus in vitro. Ainsi, une méthode consiste à mouler un hydrogel chargé en cellules autour de tubes à base d'agarose. Les tubes d'agarose sont par la suite retirés, pour créer des réseaux de microtubes (Bertassoni et al., Lab Chip. 2014 Jul 7 ; 14(13) :2202-2211). Une autre technique consiste à couler un gel de collagène sur un tube en gélatine ou polydimethylsiloxane (PDMS), qui est retiré une fois la matrice de collagène gélifiée (Backer et al., Lab Chip. 2013 Aug 21 ; 13(16) : 3246-3252 et Jimenez-Torres et al., Methods Mol Biol. 2016 ; 1458 :59-69). Dans tous les cas, la structure obtenue est un bloc d'agarose, collagène ou autre, dans lequel les pseudos-vaisseaux sont formés. Il n'est donc pas possible de les en extraire, pour les greffer et revasculariser des tissus. L'utilisation de ces vaisseaux est ainsi limitée à l'étude in vitro des propriétés anti-angiogéniques, anti-thrombotiques, etc., de molécules d'intérêt. En outre, ces solutions ne permettent pas de tenir compte de la structure et de l'histologie des vaisseaux naturels, ni des contraintes auxquelles ils sont normalement soumis. Une autre approche consiste à former un tube en enroulant sur elle-même une couche de fibroblastes, avant de dévitaliser lesdits fibroblastes. Des cellules musculaires lisses et des cellules endothéliales sont alors cultivées dans le tube, pour reproduire des microfibres cellulaires mimant des vaisseaux sanguins. Le procédé de fabrication de telles microfibres est cependant complexe, nécessitant de multiples manipulations et un temps de développement de plusieurs mois (Peck et al., Materials Today 14(5) :218-224 May 2011).
Récemment, des microfibres contenant des cellules endothéliales enveloppées dans une couche d'hydrogel ont été obtenues par co-extrusion (Onoe et al., Nature Materials 31 March 2013). Ces microfibres ne présentent cependant pas des propriétés mécaniques comparables à celles des vaisseaux sanguins ou lymphatiques.
Il existe donc toujours un besoin en des microfibres cellulaires creuses artificielles, qui puissent être individualisées et manipulables et qui présentent une histologie et des propriétés mécaniques proches de celles de vaisseaux sanguins ou lymphatiques naturels.
Résumé de l'invention
En travaillant sur des nouvelles voies de formation de vaisseaux sanguins et lymphatiques, les inventeurs ont découvert qu'il est possible de fabriquer des microfibres cellulaires creuses reproduisant du point de vue histologique et mécanique des vaisseaux du système vasculaire de mammifères, tel que des vaisseaux sanguins. Plus précisément, les inventeurs ont mis au point un procédé d'encapsulation de cellules endothéliales et de cellules musculaires lisses dans une enveloppe d'alginate, à l'intérieur de laquelle les cellules s'organisent d'elles-mêmes en couches homocentriques autour d'une lumière. Le procédé selon l'invention permet d'obtenir des tubes de longueurs et de diamètres modulables en fonction des besoins. Notamment, il est possible de réaliser des tubes de quelques centimètres et jusqu'à plus de 1 mètre. De même, le diamètre externe des tubes selon l'invention peut varier de 70 μιη à plus de 5 mm, de manière à mimer tout type de vaisseaux sanguins et lymphatiques, depuis les veines jusqu'aux artères. En outre, la lumière s'étend dans toute la longueur du tube, rendant lesdits tubes perfusables. Les vaisseaux ainsi obtenus peuvent être aisément individualisés et manipulés.
L'invention a donc pour objet une microfibre cellulaire creuse artificielle comprenant successivement, organisées autour d'une lumière
- au moins une couche de cellules endothéliales ;
- au moins une couche de cellules musculaires lisses ; - une couche de matrice extracellulaire ; et optionnellement
- une couche externe en hydrogel.
Dans un mode de réalisation particulier de l'invention, la microfibre cellulaire est un vaisseau sanguin ou un vaisseau lymphatique. L'invention a également pour objet un procédé de préparation d'une telle microfibre cellulaire creuse, selon lequel une solution d'hydrogel et une solution de cellules comprenant des cellules endothéliales et des cellules musculaires lisses dans une matrice extracellulaire sont co-extrudées de manière concentrique dans une solution de réticulation apte à réticuler au moins un polymère de la solution d'hydrogel.
Brève description des figures
Figure 1 : Représentation en coupe transversale d'une microfibre cellulaire creuse selon un exemple de réalisation de l'invention, comprenant successivement, depuis l'extérieur vers l'intérieur, une couche externe en alginate (1), une couche de matrice extracellulaire (2), une couche de cellules musculaires lisses (3), une couche de cellules endothéliales (4) et une lumière centrale (5) ;
Figure 2 : Représentation schématique d'un système de coextrusion concentrique pouvant être utilisé pour réaliser les microfibres cellulaires selon l'invention, dans lequel une première pompe comprend une solution d'alginate (ALG), une seconde pompe comprenant une solution intermédiaire comprenant du sorbitol (SI), et la troisième pompe comprenant une solution de cellules (C), ces trois solutions étant amenées jusqu'à une pointe de coextrusion et la pointe (6) étant immergée dans un bain de réticulation (7) pour former la microfibre cellulaire creuse (8) ;
Figure 3 : Vues au microscope de la structure tubulaire d'une microfibre cellulaire obtenue selon le procédé de l'invention. Juste après la formation du tube (Figure 3A), les cellules sont rondes et disposées à l'intérieur de l'ensemble du tube d'alginate ; Après 1 jour de culture 3D (Figure 3B), les cellules viennent s'ancrer sur les bords internes du tube d'alginate, via la matrice extracellulaire, pour former une lumière à l'intérieur du tube ;
Figure 4 : Etude de l'impact des vitesses de co-extrusion d'une solution d'alginate (a), d'une solution de sorbitol (s) et d'une solution de cellules (c) sur l'épaisseur de la couche externe d'alginate dans les microfibres cellulaires creuses obtenues ;
Figure 5 : Etude des diamètres externe (EXT) et interne (INT) de différentes microfibres cellulaires creuses obtenues selon le procédé de l'invention, en fonction du diamètre de l'embout de sortie de co-extrusion (axe des abscisses : 300μιη, 350μιη, 450μιη) ;
Figure 6 : Vue d'un tube d'alginate vide de diamètre 900μιη, obtenu par extrusion avec un embout de sortie de diamètre 900μιη ; Figure 7 : Etude de la contraction des microfibres cellulaires creuses selon l'invention en présence d'Endotheline 1 (ET1) ;
Figure 8 : Etude de l'augmentation de la concentration intracellulaire en calcium (l//uo) dans les cellules endothéliales de la veine de cordon ombilical humain (HUVEC) et dans les cellules musculaires lisses (SMC) des microfibres cellulaires creuses dans le temps, sous l'effet de l'endothéline 1.
Description détaillée
Microfibre cellulaire creuse
L'invention a pour objet des microfibres cellulaires creuses artificielles, dont l'histologie et les propriétés mécaniques et physiologiques miment celles de vaisseaux du système vasculaire animal, et notamment du système vasculaire des mammifères.
Les inventeurs ont réussi à produire in vitro des microfibres à base de cellules musculaires lisses et de cellules endothéliales, dont l'organisation en couches concentriques autour d'une lumière rend lesdites microfibres perfusables. Par « perfusable », on entend dans le contexte de l'invention qu'il est possible d'injecter un fluide dans ladite microfibre, à l'intérieur de laquelle il peut circuler. Avantageusement, les microfibres cellulaires creuses selon l'invention sont également étanches, en ce sens que le fluide injecté dans lesdites microfibres ne s'échappe pas ou que très faiblement à travers l'épaisseur des microfibres. L'étanchéité d'une microfibre selon l'invention dépend principalement du taux de confluence des cellules dans ladite microfibre. Le taux de confluence peut notamment être adapté en jouant sur le nombre de cellules injectées lors de la formation de la microfibre. En outre, les microfibres selon l'invention sont manipulables, car individualisées.
Selon l'invention, la microfibre cellulaire est une structure tubulaire creuse, contenant des couches sensiblement homocentriques, en ce sens qu'elles sont organisées successivement autour d'un même point. Ainsi, la lumière centrale 5 de la microfibre est bordée par la couche de cellules endothéliales 4, qui est entourée par la couche de cellules musculaire lisse 3, elle- même entourée par une couche de matrice extracellulaire 2 et éventuellement une couche externe en hydrogel 1 (figure 1). Une section transversale de la microfibre cellulaire selon l'invention comprend ainsi des couches successives sensiblement concentriques. La lumière est générée, au moment de la formation du tube, par les cellules musculaires lisses et endothéliales qui s'auto-assemblent et s'orientent spontanément par rapport à la couche de matrice extracellulaire. Avantageusement, la lumière contient un liquide et plus particulièrement du milieu de culture.
Dans un mode de réalisation particulier de l'invention, la microfibre cellulaire creuse comprend une couche externe d'hydrogel. Dans le contexte de l'invention, la « couche externe d'hydrogel » désigne une structure tridimensionnelle formée à partir d'une matrice de chaînes de polymères gonflée par un liquide, et préférentiellement de l'eau. Avantageusement, le ou les polymères de la couche externe d'hydrogel sont des polymères réticulables lorsque soumis à un stimulus, tel qu'une température, un pH, des ions, etc. Avantageusement, l'hydrogel utilisé est biocompatible, en ce sens qu'il n'est pas toxique pour les cellules. En outre, la couche d'hydrogel doit permettre la diffusion d'oxygène et de nutriments pour alimenter les cellules contenues dans la microfibre et permettre leur survie. Les polymères de la couche d'hydrogel peuvent être d'origine naturelle ou synthétique. Par exemple, la couche externe d'hydrogel contient un ou plusieurs polymères parmi les polymères à base de sulfonate, tel que le polystyrène sulfonate de sodium, les polymères à base d'acrylate, tel que le polyacrylate de sodium, le polyéthylène glycol diacrylate, le composé gélatine méthacrylate, les polysaccharides, et notamment les polysaccharides d'origine bactérienne, telle que la gomme gellane, ou d'origine végétale, telles que la pectine ou l'alginate. Dans un mode de réalisation, la couche externe d'hydrogel comprend au moins de l'alginate. Préférentiellement, la couche externe d'hydrogel ne comprend que de l'alginate. Dans le contexte de l'invention, on entend par « alginate » des polysaccharides linéaires formés à partir de β-D-mannuronate (M) et cc-L-guluronate (G), des sels et dérivés de ceux-ci. Avantageusement, l'alginate est un alginate de sodium, composé à plus de 80% de G et moins de 20% de M, avec une masse moléculaire moyenne de 100 à 400 kDa (par exemple : PRONOVA® SLG100) et une à concentration totale comprise entre 0.5% et 5% en masse volumique (poids/volume).
La couche externe d'hydrogel peut permettre de renforcer la rigidité de la microfibre cellulaire et ainsi de faciliter sa manipulation.
Avantageusement, la couche d'hydrogel comprend des polymères aptes à limiter l'adhésion cellulaire (« cell-repellent »), afin de faciliter le cas échéant la séparation de ladite couche d'hydrogel de la microfibre cellulaire ou sa dégradation sans affecter la structure de la microfibre cellulaire.
Dans un mode de réalisation de l'invention, la microfibre cellulaire est dépourvue de couche externe d'hydrogel et comprend directement, en tant que couche la plus externe, une couche de matrice extracellulaire. Préférentiellement, la couche de matrice extracellulaire forme un gel sur la face interne de la couche en hydrogel, c'est-à-dire la face dirigée vers la lumière du microcompartiment. La couche de matrice extracellulaire comprend un mélange de protéines et de composés extracellulaires nécessaires à la culture cellulaire. Préférentiellement, la matrice extracellulaire comprend des protéines structurelles, telles que des laminines contenant les sous-unités al, a4 ou a5, les sous-unités βΐ ou β2, et les sous-unités γΐ ou γ3, de la vitronectine, des laminines, du collagène, ainsi que des facteurs de croissance, tels que du TGF-béta et/ou de l'EGF. Dans un mode de réalisation, la couche de matrice extracellulaire consiste en, ou contient du Matrigel®, de la Geltrex®, du collagène, et notamment du collagène de type 1 à 19, modifié ou non, de la gélatine, de la fibrine, de l'acide hyaluronique, du chitosan, ou un mélange d'au moins deux de ces composants.
Selon l'invention, la microfibre cellulaire comprend des cellules musculaires lisses, organisées en une ou plusieurs couches autour et éventuellement au moins en partie dans la couche de matrice extracellulaire. Les cellules musculaires lisses peuvent être notamment choisies parmi les cellules musculaires lisses vasculaires, les cellules musculaires lisses lymphatiques, les cellules musculaires lisses du tube digestif, les cellules musculaires lisses de bronches, les cellules musculaires lisses de reins, les cellules musculaires lisses de vessie, les cellules musculaires lisses de derme, les cellules musculaires lisses d'utérus et les cellules musculaires lisses de globe oculaire, de mammifère et notamment humaines. Préférentiellement, les cellules musculaires lisses sont choisies parmi les cellules musculaires lisses d'origine lymphatique ou vasculaire, telles que les cellules musculaires lisses d'artère ombilicale, les cellules musculaires lisses d'artère coronaire, les cellules musculaires lisses d'artère pulmonaire, etc.
Dans un mode de réalisation particulier, les cellules musculaires lisses sont des cellules musculaires lisses d'artère coronaire, telles que des cellules musculaires lisses d'artère coronaire humaine.
Dans un mode de réalisation particulier, les cellules musculaires lisses sont obtenues à partir de cellules souches induites pluripotentes, qui ont été forcées à se différencier en cellules musculaires lisses. Selon l'invention, l'épaisseur de la ou des couches de cellules musculaires lisses peut varier en fonction de la destination de la microfibre cellulaire. Par « épaisseur », on entend la dimension dans une section transversale de la microfibre s' étendant radialement par rapport au centre de ladite section transversale. Les cellules musculaires lisses permettent la contraction de la microfibre. Il est donc possible d'adapter la force contractile de la microfibre cellulaire, selon qu'elle est destinée à être utilisée en tant que vaisseau sanguin ou vaisseau lymphatique, mais également en fonction de la nature dudit vaisseau reproduit (artère, veine cave, veine, veinule, etc.). L'homme du métier sait quelle est la force contractile attendue en fonction du vaisseau à reproduire et sait ainsi adapter l'épaisseur de la ou des couches de celles musculaires lisses, de même que la nature des cellules musculaires lisses.
Avantageusement, la ou les couches de cellules musculaires lisses contient au moins 95% en volume, préférentiellement au moins 96%, 97%, 98%, 99% de cellules musculaires lisses et de matrice produite par lesdites cellules. La ou les couches de cellules musculaires lisses peuvent éventuellement comprendre des cellules endothéliales. Avantageusement, le pourcentage en volume de cellules endothéliales dans la couche de cellules musculaires lisses est inférieur à 5%, préférentiellement inférieur à 4%, 3%, 2%, 1%.
Selon l'invention, la microfibre cellulaire creuse comprend une couche de cellules endothéliales, bordant et délimitant la lumière centrale. Les cellules endothéliales peuvent notamment être choisies parmi les cellules endothéliales de la veine de cordon ombilical (UVEC), les cellules endothéliales de microvaisseaux de peau (DMEC), les cellules endothéliales du sang de derme (DBEC), les cellules endothéliales lymphatiques de derme (DLEC), les cellules endothéliales de microvaisseaux de cœur (CMEC), les cellules endothéliales de microvaisseaux de poumon (PMEC) et les cellules endothéliales de microvaisseaux d'utérus (UtMEC), de mammifères et notamment humaines.
Dans un mode de réalisation particulier, les cellules endothéliales sont des cellules endothéliales de la veine de cordon ombilical (UVEC), et notamment des cellules endothéliales de la veine de cordon ombilical humain (HUVEC).
Dans un mode de réalisation particulier, les cellules endothéliales sont obtenues à partir de cellules souches induites pluripotentes, qui ont été forcées à se différencier en cellules endothéliales.
Avantageusement, la microfibre cellulaire comprend une unique couche de cellules endothéliales.
Avantageusement, la ou les couches de cellules endothéliales contient au moins 95% en volume, préférentiellement au moins 96%, 97%, 98%, 99% de cellules endothéliales et de matrice produite par lesdites cellules. La ou les couches de cellules endothéliales peuvent éventuellement comprendre des cellules musculaires lisses. Avantageusement, le pourcentage en volume de cellules musculaires lisses dans la couche de cellules endothéliales est inférieur à 5%, préférentiellement inférieur à 4%, 3%, 2%, 1%.
Selon l'invention, il est possible, notamment en fonction de l'utilisation qui sera faite de la microfibre cellulaire creuse, d'utiliser des cellules animales de toute origine, telles que des cellules de souris, des cellules de singe, des cellules humaines, etc. Avantageusement, les cellules utilisées pour réaliser la microfibre cellulaire selon l'invention sont des cellules humaines.
Dans un mode de réalisation particulier, le ratio moyen cellules endothéliales / cellules musculaires lisses, en cm2, dans une microfibre cellulaire creuse de l'invention est compris entre 3/1 et 2/1
Avantageusement, le diamètre interne de la microfibre cellulaire est compris entre 50 μιη et 500 μιη, préférentiellement entre 50 μιη et 200 μιη, plus préférentiellement entre 50 μιη et 150 μιη, encore plus préférentiellement entre 50 μιη et 100 μιη, +/- 10 μιη. Par « diamètre interne », on entend le diamètre de la lumière de la microfibre. Dans un mode de réalisation particulier, le diamètre interne de la microfibre cellulaire est de 100 μιη. Dans un autre mode de réalisation, le diamètre interne est de 70 μιη.
Le diamètre externe de la microfibre cellulaire peut également varier. Par « diamètre externe », on entend le plus grand diamètre de la microfibre. En présence d'une couche externe d'hydrogel, le diamètre externe est avantageusement compris entre 250 μιη et 5 mm. En l'absence de couche externe d'hydrogel, le diamètre externe est avantageusement compris entre 70 μιη et 5 mm, préférentiellement entre 70 μιη et 500 μιη, plus préférentiellement entre 70 μιη et 200 μιη, encore plus préférentiellement entre 70 μιη et 150 μιη, +/- 10 μιη. Dans un mode de réalisation particulier, le diamètre externe de la microfibre, en présence de la couche externe d'hydrogel, est de 300 μιη. Dans un mode de réalisation particulier, le diamètre externe de la microfibre, en l'absence de la couche externe d'hydrogel, est de 150 μιη.
Dans un mode de réalisation particulier, la microfibre cellulaire selon l'invention comprend une couche externe d'hydrogel de 100 à 150 μιη d'épaisseur, une épaisseur de cellules (cellules endothéliale et cellules musculaires lisses) de 150 à 200 μιη et une lumière de 100 à 150 μιη de diamètre. Avantageusement, la microfibre cellulaire selon l'invention a une longueur, ou plus grande dimension, d'au moins 50 cm, préférentiellement au moins 60 cm, 70 cm, 80 cm, 90 cm, 100 cm, 110 cm, ou plus.
Procédé de préparation d'une microfibre cellulaire creuse L'invention a également pour objet un procédé de préparation permettant d'obtenir une microfibre cellulaire creuse selon l'invention. Plus particulièrement, l'invention propose d'encapsuler des cellules endothéliales et des cellules musculaires lisses dans une enveloppe externe d'hydrogel à l'intérieure de laquelle lesdites cellules vont se réorganiser pour former des couches sensiblement concentriques et ménager une lumière centrale. L'encapsulation se fait au moyen d'un procédé de coextrusion concentrique, lors duquel la solution d'hydrogel est coextrudée avec la solution de cellules directement dans un bain de réticulation, ou solution de réticulation, comprenant un agent de réticulation permettant de réticuler l'hydrogel et ainsi de former l'enveloppe externe autour des cellules.
Tout procédé d'extrusion permettant de coextruder de manière concentrique de l'hydrogel et des cellules peut être utilisé. Notamment, il est possible de réaliser les microfibres cellulaires selon l'invention en adaptant la méthode et le dispositif microfluidique décrits dans Alessandri et al., (PNAS, September 10, 2013 vol. 110 no.37 14843-14848 ; Lab on a Chip, 2016, vol. 16, no. 9, p. 1593-1604) ou dans Onoe et al., (Nat Material 2013, 12(6):584-90), de manière à ce que l'ensemble des solutions soit coextrudé dans un bain de réticulation, plutôt qu'au-dessus d'un tel bain. Par exemple, le procédé selon l'invention est mis en œuvre au moyen d'un dispositif d'extrusion à double ou triple enveloppes concentriques tel que décrit dans le brevet FR2986165.
Dans le contexte de l'invention, on entend par «solution de réticulation», une solution comprenant au moins un agent réticulant adapté pour réticuler un hydrogel comprenant au moins un polymère hydrophile, tel que de l'alginate, lorsqu'elle est mise en contact avec celui- ci. La solution de réticulation peut être par exemple une solution comprenant au moins un cation divalent. La solution de réticulation peut également être une solution comprenant un autre agent réticulant connu de l'alginate ou du polymère hydrophile à réticuler, ou un solvant, par exemple de l'eau ou un alcool, adapté pour permettre une réticulation par irradiation ou par toute autre technique connue dans l'art.
Avantageusement, la solution de réticulation est une solution comprenant au moins un cation divalent. Préférentiellement, le cation divalent est un cation permettant de réticuler de l'alginate en solution, il peut s'agir par exemple d'un cation divalent choisi dans le groupe comprenant Ca2+, Mg2+, Ba2+ et 5r2+, ou d'un mélange d'au moins deux de ces cations divalents. Le cation divalent, par exemple le Ca2+, peut être associé à un contre-ion pour former par exemple des solutions de type CaC ou CaCOs, bien connues de l'homme du métier, La solution de réticulation peut également être une solution comprenant du CaCÛ3 couplé à du Glucono delta-lactone (GDL) formant une solution de CaCOs-GDL, La solution de réticulation peut également être un mélange de CaCOs-CaSC GDL.
Dans un mode de mise en œuvre particulier du procédé selon l'invention, la solution de réticulation est une solution comprenant du calcium, notamment sous la forme Ca2+,
L'homme du métier est à même d'ajuster la nature du cation divalent et/ou du contre-ion, ainsi que sa concentration aux autres paramètres du procédé de la présente invention, notamment à la nature du polymère utilisé et à la vitesse et/ ou au degré de réticulation désiré(e). Par exemple, la concentration de cation divalent dans la solution de réticulation est comprise entre 10 et 1000 m M .
La solution de réticulation peut comprendre d'autres constituants, bien connus de l'homme du métier, que ceux décrit ci-dessus, afin d'améliorer la réticulation de la gaine d'hydrogel dans les conditions, notamment temps et/ou température, particulières.
Avantageusement, les cellules endotheliales ont été préalablement cultivées dans un milieu de culture comprenant des facteurs de croissances de l'endothélium vasculaire (VEGF) de manière à favoriser la formation d'endothélium et l'angiogenèse. Dans un exemple de réalisation, les cellules endothéliales ont été préalablement cultivées dans du milieu EGM-2®.
Avantageusement, les cellules musculaires lisses ont été préalablement cultivées dans un milieu de culture comprenant des facteurs de croissance adaptés à la culture des cellules musculaires lisses, tel que le facteur de croissance transformant βΐ, le facteur EGF, le facteur bFGF, etc. Dans un exemple de réalisation, les cellules musculaires lisses ont été préalablement cultivées dans du milieu SmGM2® de la société Lonza ou dans un milieu de culture spécifiquement adapté aux cellules musculaires lisses commercialisé par la société Promoceli (par exemple le milieu HCASMC®, HAoSMC®, etc.),
La solution de cellules utilisée pour la coextrusion comprend des cellules endothéliales et des cellules musculaires lisses en suspension dans de la matrice extracellulaire. Dans un mode de réalisation particulier, la solution de cellules comprend entre 20 et 30% en volume de cellules et entre 70 et 80% en volume de matrice extracellulaire. Le ratio en volume de cellules endothéliales / cellules musculaires lisses dans la solution de cellules est avantageusement compris entre 3/1 et 2/1.
Selon le procédé de l'invention, la coextrusion est réalisée de manière à ce que la solution d'hydrogel entoure la solution de cellules.
Dans un mode de réalisation particulier, la coextrusion implique également une solution intermédiaire, comprenant du sorbitol. Dans ce cas, la coextrusion est réalisée de manière à ce que la solution intermédiaire soit disposée entre la solution d'hydrogel et la solution de cellules (figure 2A).
Dans un mode de mise en œuvre particulier, la vitesse d'extrusion de la solution d'alginate est comprise entre 1 et 10 ml/h, préférentiellement entre 2 et 5 ml/h, encore plus préférentiellement égale à 3 ml/h et de manière préférée égale à 2 ml/h, +/- 0,5 ml/h.
Dans un mode de mise en œuvre particulier, la vitesse d'extrusion de la solution intermédiaire est comprise entre 0,1 et 5 ml/h, préférentiellement entre 0,5 et 1 ml/h, encore plus préférentiellement égale à 0,5 ml/h, +/- 0,05 ml/h.
Dans un mode de mise en œuvre particulier, la vitesse d'extrusion de la solution de cellules est comprise entre 0,1 et 5 ml/h, préférentiellement entre 0,5 et 1 ml/h, encore plus préférentiellement égale à 0,5 ml/h, +/- 0,05 ml/h.
La vitesse de coextrusion des différentes solutions peut être facilement modulée par l'homme du métier, de manière à adapter le diamètre interne de la microfibre et l'épaisseur de la couche d'hydrogel.
Dans tous les cas, la vitesse d'extrusion de la solution d'hydrogel est supérieure à la vitesse d'extrusion de la solution de cellules et éventuellement de la solution intermédiaire. Notamment, la vitesse d'extrusion de la solution d'hydrogel est au moins deux fois, trois fois ou quatre fois supérieure à la vitesse d'extrusion de la solution de cellules.
Préférentiellement, les vitesses d'extrusion de la solution de cellules et de la solution intermédiaire sont identiques.
Dans un mode de mise en œuvre particulier du procédé selon l'invention, la vitesse d'extrusion de la solution d'hydrogel est de 2 ml/h, +/- 0,05 ml/h, et la vitesse d'extrusion de la solution de cellules comme de la solution intermédiaire est de 0,5 ml/h, +/- 0,05 ml/h. Dans un autre mode de mise en œuvre particulier du procédé selon l'invention, la vitesse d'extrusion de la solution d'hydrogel est de 9 ml/h, +/- 0,05 ml/h, et la vitesse d'extrusion de la solution de cellules comme de la solution intermédiaire est de 3 ml/h, +/- 0,05 ml/h.
Dans un autre mode de mise en œuvre particulier du procédé selon l'invention, la vitesse d'extrusion de la solution d'hydrogel est de 3 ml/h, +/- 0,05 ml/h, la vitesse d'extrusion de la solution de cellules est de 2 ml/h, +/- 0,05 ml/h, et la vitesse d'extrusion de la solution intermédiaire est de 1 ml/h, +/- 0,05 ml/h.
Dans un autre mode de mise en œuvre particulier du procédé selon l'invention, la vitesse d'extrusion de la solution d'hydrogel est de 2 ml/h, +/- 0,05 ml/h, et la vitesse de coextrusion de la solution de cellules comme de la solution intermédiaire est de 0,5 ml/h, +/- 0,05 ml/h.
Dans un autre mode de mise en œuvre particulier du procédé selon l'invention, la vitesse d'extrusion de la solution d'hydrogel est de 2 ml/h, et la vitesse de coextrusion de la solution de cellules comme de la solution intermédiaire est de 1 ml/h, Dans un autre mode de mise en œuvre particulier du procédé selon l'invention, la vitesse d'extrusion de la solution d'hydrogel est de 2 ml/h, +/- 0,05 ml/h, la vitesse d'extrusion de la solution de cellules est de 0,5 ml/h, +/- 0,05 ml/h, et la vitesse d'extrusion de la solution intermédiaire est de 1,5 ml/h, +/- 0,05 ml/h.
Dans un autre mode de mise en œuvre particulier du procédé selon l'invention, la vitesse d'extrusion de la solution d'hydrogel est de 2 ml/h, +/- 0,05 ml/h, la vitesse d'extrusion de la solution de cellules est de 1,5 ml/h, +/- 0,05 ml/h, et la vitesse d'extrusion de la solution intermédiaire est de 0,5 ml/h, +/- 0,05 ml/h.
Dans un mode de mise en œuvre particulier du procédé selon l'invention, tel qu'illustré aux figures 2A et 2B, la solution de reticuiation, la solution intermédiaire et la solution de cellules sont chargées dans trois compartiments concentriques d'un dispositif de coextrusion, de manière à ce que la solution de réticulation (ALG), formant le premier flux, entoure la solution intermédiaire (SI) qui forme le second flux, qui elle-même entoure la solution de cellules (C) qui forme le troisième flux. La pointe 6 du dispositif d'extrusion, par laquelle sortent les trois flux, débouche dans la solution de réticulation 7, de sorte qu'au sortir de la pointe 6 un tube 8 se forme. Le premier flux constitue l'enveloppe externe rigide en hydrogel. Le second flux constitue l'enveloppe intermédiaire et le troisième flux l'enveloppe interne contenant les cellules. Le procédé selon l'invention permet d'encapsuler des cellules musculaires lisses et des cellules endothéliales dans une gaine externe en hydrogel. De manière surprenante, les inventeurs ont observé qu'après seulement quelques heures, les cellules contenues dans cette gaine d'hydrogel se réorganisent d'elles-mêmes, de telle manière que les cellules endothéliales délimitent une lumière interne longitudinale s'étendant sur toute la longueur de la microfibre cellulaire, et que les cellules musculaires lisses s'orientent vers l'extérieur par rapport à la lumière. La présence de matrice extracellulaire lors de la coextrusion semble nécessaire pour que les cellules puissent s'ancrer à la matrice et ainsi s'étaler, se diviser et proliférer. La matrice permet également de diminuer les risques d'apoptose des cellules à l'intérieur de la microfibre cellulaire, et favorise le phénomène de réorganisation cellulaire au sein de la gaine d'hydrogel.
Avantageusement, la microfibre cellulaire obtenue par coextrusion est maintenue dans un milieu de culture adaptée pendant au moins lOh, préférentiellement au moins 20h, encore plus préférentiellement au moins 24h avant d'être utilisée. Ce temps de latence permet avantageusement aux cellules de se réorganiser dans la gaine d'hydrogel de manière à former les couches concentriques autour d'une lumière, telles que décrites ci-dessus.
Selon l'invention, il est possible d'utiliser directement la microfibre cellulaire creuse obtenue par coextrusion, c'est-à-dire une microfibre comprenant une gaine d'hydrogel, ou de procéder à une hydrolyse de ladite gaine afin de récupérer une microfibre exempte d'hydrogel. Applications
Les microfibres cellulaires creuses objets de la présente invention peuvent être utilisées pour de nombreuses applications, notamment à visées médicales ou pharmacologiques.
Les microfibres cellulaires selon l'invention peuvent notamment être utilisées pour des tests d'identification et/ou de validation de molécules candidates ayant une action sur tout ou partie du système vasculaire, et notamment sur les vaisseaux sanguins ou lymphatiques. Par exemple, de telles microfibres peuvent être utilisées pour tester les propriétés anti- angiogéniques, anti-thrombotiques, régulatrices de la tension artérielle, de transport de gaz dans le sang, etc., de molécules candidates.
Les microfibres cellulaires creuses selon l'invention peuvent également être utilisées en ingénierie tissulaire, afin de vasculariser des échantillons de tissus biologiques de synthèse et augmenter ainsi leur viabilité. De tels échantillons de tissus vascularisés peuvent être utilisés par exemple par les industries pharmaceutiques et cosmétiques, afin de réaliser des tests in vitro, notamment en alternative aux tests sur animaux.
De même, les microfibres cellulaires creuses selon l'invention peuvent être utilisées en médecine régénératrice, afin de permettre la vascularisation d'organes de synthèses, tels que des tissus de peau, de cornée, de foie, etc. obtenus par impression 3D ou autre, avant de les greffer dans un sujet.
EXEMPLES
Exemple 1 : Protocole d'obtention d'une microfibre cellulaire creuse Matériel & méthode Cellules :
Cellules endothéliales de cordon ombilical humain (HUVEC) cultivées dans un milieu de culture comprenant du VEGF en passage 3 (p3), 4 (p4) ou 5 (p5), fournies à l'état cryopréservé dans de l'azote liquide à -80°C sous la référence c-12205 par la société PromoCell®. Cellules musculaires lisses d'artère coronaire humaine, en passage 2 (p2), fournies à l'état cryopréservé dans de l'azote liquide à -80°C sous la référence CC-2583 par la société Lonza.
Milieux :
Milieu de culture des cellules endothéliales : Promocell EGM2® kit (ref C-22111) (milieu à +4°C et compléments à -20°C). Milieux pour détacher les cellules endothéliales : Detach KIT® [Hepes BSS (30 mM HEPES) + Trypsin / EDTA Solution (0.04 % / 0.03 %) + Trypsin Neutralizing Solution (TNS)] de la société PromoCell (ref C-41210).
Milieu de congélation des cellules endothéliales : Cryo-SFM de la société PromoCell (ref C- 29912). Milieu de culture des cellules musculaires lisses : SmGm2-bullet® kit de la société Lonza (ref CC-3182) (milieu à +4°C et compléments à -20°C). Milieu pour détacher les cellules musculaires lisses : Detach KIT® de la société PromoCell (ref C-41210).
Milieu de congélation des cellules musculaires lisses : Cryo-SFM de la société PromoCell (ref C-29912). Solutions :
Solution de réticulation : CaCI2 lOOmM
Solution intermédiaire : Sorbitol 300mM
Solution d'hydrogel : alginate 2,5% w/v (LF200FTS) dans 0,5mM SDS
Matrice extracellulaire : Matrigel® classique (sans rouge phénol et avec facteurs de croissance) Traitement des cellules endothéliales HUVEC : Amplification
Des cellules HUVEC au stade p3 sont décongelées et amplifiées selon les protocoles usuels jusqu'au stade p5, p6 ou p7, la coextrusion étant réalisée avec des cellules entre les stades p5 et p7. Traitement des cellules musculaires lisses (SMC) : Amplification
Les cellules SMC au stade p2 sont décongelées, puis cultivées selon les protocoles usuels jusqu'au stade p5, p6 ou p7, la coextrusion étant réalisée avec des cellules entre les stades p5 et p7. Système de coextrusion
- 3 seringues hamilton 12ml contenant respectivement de l'alginate 2,5% et les deux autres du sorbitol 300 mM stériles
-tuyau strandard Teflon de diamètre 13
- pompe à seringues neMESYS® (de la société Cetoni) et logiciel associé - puce d'injection imprimée en 3D (voir publication Alessandri K et al., 2016) Procédé d'extrusion
- Reprendre 30 μΙ de cellules (½ SMC et ½ HUVEC) dans 60μΙ de Matrigel®
- procéder à la coextrusion des trois solutions selon la méthode décrite dans Alessandri et al., 2016 (Figure 2A) avec comme vitesses d'extrusion 2ml/heure pour alginate et 0,5ml/h pour la solution de sorbitol et la solution de cellules, en maintenant la pointe du dispositif d'extrusion immergée dans la solution de réticulation (figure 2B).
Résultats
La coextrusion des trois solutions dans une solution de Ca2+ telle que décrite ci-dessus a permis d'obtenir des tubes, ou microfibres cellulaires creuses, d'environ 1 mètre de longueur et de diamètre externe 300 μιη. Après 24h (figure 3B), les cellules se sont réorganisées et autoassemblées à l'intérieur du tube d'alginate de manière à créer une lumière centrale de diamètre environ 150 μιη. Le tube comprend alors successivement, et organisées de manière concentrique autour de la lumière, une couche de cellules HUVEC, une couche de cellules SMC, une couche de Matrigel® et une couche d'alginate réticulée.
Exemple 2 : Caractérisation des microfibres cellulaires creuses
Les microfibres cellulaires creuses obtenues à l'exemple 1 ont été caractérisées aux moyens de marqueurs spécifiques par immunofluorescence et microscopie confocale. La réorganisation des cellules à l'intérieur de l'enveloppe d'alginate a été suivie par vidéomicroscopie.
Matériel & méthode
Immunomarquaqe :
Les microfibres cellulaires, ou tubes, ont été fixées à des temps différents (J1/J5), avec 4% paraformaldéhyde dilué dans du DMEM sans rouge phénol (PAN), toute la nuit à 4°C.
Les cellules des tubes ont alors été perméabilisées (30 min en triton 1% dans du DMEM sans rouge phénol, à température ambiante sous agitation). Les sites non spécifiques des cellules ont été saturés pendant une heure à 4°C dans une solution de BSA1%/SVF2% (bovine sérum albumine et sérum de veau fœtal).
Les microfibres cellulaires ont ensuite été mises en présence d'anticorps primaires spécifiques, dirigés chacun contre une protéine d'intérêt : - CD31 : marqueur spécifique des membranes des cellules endothéliales
aSMA (alpha smooth muscle actine) : marqueur spécifique du cytosquelette des SMC
VE-Cadhérine : marqueur spécifique des jonctions cellulaires endothéliales et de la formation d'un endothélium imperméable
- tubuline : marqueur spécifique ducytosquelette
KI67 : marqueur spécifique de la prolifération cellulaire
aCaspase3 : marqueur spécifique de l'apoptose.
L'anticorps primaire a été dilué au l/100ème dans du DMEM sans rouge phénol + 1%BSA/2%SVF toute la nuit sous agitation à 4°C. Après 2x15min de lavage en DMEM sans rouge phénol, les tubes ont été incubés avec un anticorps secondaire (qui va reconnaître spécifiquement l'anticorps primaire) couplé à un fluorochrome, dilué au l/1000ème dans du DMEM sans rouge phénol + 1%BSA/2%SVF pendant lh à température ambiante. Après 2x15min de lavages en DMEM sans rouge phénol, les tubes ont été analysés en microscopie confocal pour visualiser la fluorescence. Résultats :
- Jl : un jour après formation du tube, les cellules sont organisées de la manière suivante : SMC (marqueur aSMA spécifique, alpha Smooth Muscle Actine) côté Matrigel® et HUVEC (marqueur CD31 spécifique) côté lumière. Les deux types cellulaires prolifèrent (marqueur KI67 positif) et ne présentent que très peu de mort cellulaire (peu de marquage caspase 3 spécifique).
- J5 : 5 jours après formation du tube, les jonctions cellulaires deviennent serrées : le contour cellulaire des HUVEC est beaucoup plus visible avec des cellules de plus en plus rapprochées. Ce phénomène correspond à l'« endothélialisation », c'est-à-dire la formation d'un endothélium dont la fonction est de devenir étanche. De plus, à J5, les cellules arrêtent de proliférer (perte du signal KI67) mais ne meurent pas pour autant (pas d'augmentation du signal caspase 3), ce qui indique que les cellules entrent en quiescence, comme c'est le cas dans un endothélium vasculaire humain normal. Exemple 3 : Evaluation de la capacité de perfusion des microfibres cellulaires creuses
La perfusabilité des microfibres a par ailleurs été évaluée en les reliant à un système d'injection comprenant des solutions fluorescentes.
Un système de perfusion des microfibres cellulaires creuses a été mis au point en utilisant des pipettes Pasteur en verre étirées sous la flamme jusqu'à avoir un diamètre correspondant au diamètre interne des microfibres cellulaires, soit 150μιη. Les pipettes étirées ont été connectées à une seringue contenant du milieu de culture (EGM2® Promocell), elle-même branchée à un pousse-seringue pour permettre la perfusion de liquide à une vitesse physiologique de 50μί/ιτπη. La vitesse de perfusion peut varier en fonction du diamètre interne de la microfibre cellulaire.
Les microfibres cellulaires sont coupées en morceaux de quelques centimètres de long et sont placées dans du milieu de culture en boite de pétri 3cm, sous une loupe binoculaire. Elles sont alors raccordées à la pointe des pipettes Pasteur étirées.
Le système complet (microfibre cellulaire /milieu de culture, pipette étirée, seringue) est ensuite remis en culture (incubateur 37°C, 5% de C02) et permet la perfusion de milieu EGM2® en permanence dans les tubes vasculaires.
Un système de perfusion identique a été utilisé pour vérifier l'étanchéité des microfibres cellulaires. 200 μί de traceur fluorescent ont été injectés à l'intérieur des microfibres cellulaires selon l'invention (HUVEC + SMC), de même qu'à l'intérieur de microfibres cellulaires ne comprenant que des cellules endothéliales et à l'intérieur d'un tube d'alginate (Fluorescein isothiocyanate FITC-dextran de 500kDa ou 20 kDa Sigma-AIdrich) à une vitesse physiologique de 50μΙ/ιηίη.
La vitesse de diffusion de chaque traceur fluorescent à travers l'alginate a été filmée et quantifiée. Résultats
- Contrôle négatif (tube d'alginate sans cellule + FITC-Dextran 500kDa) : les molécules de Dextran, de haut poids moléculaire, ne passe pas à travers les pores de l'alginate ;
- Contrôle positif (tube d'alginate sans cellule + FITC-Dextran 20kDa) : les molécules de Dextran, de faible poids moléculaire, diffuse facilement à travers les pores de l'alginate ; - Microfibre alginate / HUVEC/SMC selon l'invention + FITC Dextran 20kDa : les molécules de Dextran, de faible poids moléculaire, ne diffusent pas ou très peu à travers les couches de cellules, qui rendent la microfibre étanche ;
- Microfibre HUVEC/SMC selon l'invention (après hydrolyse de la couche externe d'alginate) + FITC Dextran 20kDa : la vitesse de diffusion des molécules de Dextran à travers les couches de cellules est proche de celle observée pour la microfibre selon l'invention comprenant encore la couche externe d'alginate.
Ainsi, même en l'absence de la couche externe d'alginate, la structure, la perfusabilité et l'étanchéité de la microfibre cellulaire creuse selon l'invention du tube sont maintenues.
Exemple 4 : Modification contrôlée de l'épaisseur de la couche externe d'alfiinate
Trois microfibres cellulaires creuses ont été fabriquées, selon le protocole décrit à l'exemple 1, en faisant varier les vitesses d'extrusion de la solution de sorbitol et de la solution de cellules pour une vitesse d'extrusion de l'alginate constante. Les vitesses d'extrusion pour les trois microfibres cellulaires creuses sont résumées dans le tableau ci-dessous.
Vitesses d'extrusion des différentes solutions
Le but de cette expérimentation est de vérifier 1/ la reproductibilité des dimensions des microfibres cellulaires creuses à paramètres identiques, 2/ l'impact des vitesses de flux sur l'épaisseur de la paroi externe d'alginate.
Résultats
Lorsque les deux flux intérieurs (solution de sorbitol et solution de cellules) sont extrudés à la même vitesse, la couche externe d'alginate des microfibres obtenues est plus épaisse (figure 4). Même en gardant un ratio (vitesse du flux d'alginate) / [(vitesse du flux de sorbitol) + (vitesse du flux de suspension cellulaire)] constant, l'asymétrie cinétique des flux de sorbitol et de la suspension cellulaire conduit à la production d'une couche externe d'alginate plus fine, avec un effet plus marqué lorsque la vitesse du flux de sorbitol est la plus faible.
Ces expérimentations confirment que les diamètres externes et internes des microfibres cellulaires creuses peuvent être modulés par le système de co-extrusion. Plus particulièrement, les résultats montrent qu'il est possible de faire varier légèrement, mais de manière significative, l'épaisseur de la couche externe d'alginate en faisant varier la vitesse des flux des solutions co-extrudées.
Exemple 5 : Modification contrôlée du diamètre des microfibres cellulaires creuses
Des microfibres cellulaires creuses ont été fabriquées, selon le protocole décrit à l'exemple 1, en modifiant l'embout de sortie des solutions du système de coextrustion concentrique (voir l'embout/pointe de co-extrusion 6, figure 2), pour obtenir un embout de sortie de diamètre 300μιη, 350μιη, 450μιη et 900μιη. Avec l'embout à 900μιη, la solution d'alginate a été extrudée seule, pour produire des tubes d'alginate vides (sans suspension cellulaire).
Le diamètre externe et le diamètre interne, c'est-à-dire la lumière des microfibres, ont été mesurés après synthèse desdites microfibres.
Résultats
Les résultats exposés dans le tableau ci-dessous et dans la figure 5 confirment qu'il est possible de modifier les dimensions des microfibres et modifiant le diamètre de la pointe de co- extrusion du système de co-extrusion. En outre, l'obtention d'un tube d'alginate creux d'un diamètre de 900μιη avec un embout de sortie de 900μιη (Figure 6) confirme que le procédé selon l'invention permet d'obtenir des microfibres cellulaires creuses parfaitement de diamètre parfaitement contrôlé.
Diamètres externe et interne des microfibres en fonction du diamètre de l'embout de sortie
Diamètre 300μηι 350μιη 450μηι
d'embout
Diamètre externe 264,68 μιη ± 10,9 μηη 360,37 ± 10,8 μιη 448,53 μιη ± 12,33 μηη
Diamètre interne 158,17 ± 6,32 μιη 203,11 ± 16,53 μιη 321,62 ± 21,47 μιη Exemple 6 : Mesure de la contractilité des microfibres cellulaires creuses et des flux calciques
Matériel & méthode
Des microfibres cellulaires creuses de diamètre interne d'environ 400 μιη ont été produites conformément à l'exemple 1.
Après 24 h de culture, les microfibres sont incubées pendant 45 min en présence d'une sonde fluorescente sensible au calcium, le Fluo-4 AM (ThermoFisher scientific, F23917, 50 μg dissous dans 4 μΙ_ d'acide Pluronique -à 20 % dans le DMSO-, puis dilué dans 800 μΙ_ d'EGM2, concentration finale : 50 μΜ), à 37°C. Le groupement AM (acétoxyméthyl) permet à la molécule de traverser la membrane plasmique, il est clivé par les estérases intracellulaires ce qui emprisonne la sonde dans le compartiment cytoplasmique. Les variations de l'intensité de signal de fluorescence renseignent sur les variations qualitatives (sonde non-ratiométrique) de calcium libre accessible au site de liaison de la molécule. Cette information est une mesure indirecte de l'activation de voies de signalisation mettant en œuvre une entrée de calcium extracellulaire, et/ou une libération des stocks calciques du réticulum endoplasmique.
Après rinçage en milieu de culture EGM2, les microfibres sont imagées en épifluorescence avec un stéréoéomicroscope. Un vasoconstricteur spécifique des vaisseaux sanguins, l'endothéline 1 (ET1, 0,1 μΜ), est appliqué au voisinage du tube, dans le milieu de culture. Le signal de fluorescence est collecté avant, pendant et après l'application du vasoconstricuteur. Les données collectées permettent de mesurer : 1/ la contraction des microfibres (mesure du diamètre externe), 2/ les variations d'intensité du signal de fluorescence du Fluo-4 AM, (le calcium intracellulaire est le second messager impliqué dans la cascade de signalisation déclenchant la contraction des fibres musculaires et donc la diminution du diamètre interne du vesseloïde). Résultats
La présence d'Endotheline 1 entraine la contraction des microfibres, et une diminution significative du diamètre interne, d'environ 5% (figure 7).
Les mesures des variations de concentrations calciques, type cellulaire par type cellulaire (cellules endothéliales de la veine de cordon ombilical humain (HUVEC) et cellules musculaires lisses (SMC)), indiquent que sous l'effet de l'endothéline 1, on observe une augmentation quasi-instantanée du calcium intracellulaire, suivie de plusieurs oscillations (figure 8). Ce mécanisme classiquement observé dans des vaisseaux sanguins matures, est responsable du déclenchement et de la propagation du signal permettant la contraction : ET1— > ÎCa2+— > contraction
Ces résultats confirment que les cellules qui composent les microfibres cellulaires creuses selon l'invention se comportent de manière identique aux cellules des vaisseaux sanguins matures.

Claims

REVENDICATIONS
1. Microfibre cellulaire creuse artificielle comprenant successivement, organisées autour d'une lumière - au moins une couche de cellules endothéliales ;
- au moins une couche de cellules musculaires lisses ;
- une couche de matrice extracellulaire ; et optionnellement
- une couche externe en hydrogel.
2. Microfibre cellulaire creuse artificielle selon la revendication 1, dans laquelle la couche externe en hydrogel comprend de l'alginate.
3. Microfibre cellulaire creuse artificielle selon la revendication 1 ou 2, dans laquelle le ratio en cm2 cellules endothéliales / cellules musculaires lisses dans la microfibre cellulaire creuse est compris entre 3/1 et 2/1.
4. Microfibre cellulaire creuse artificielle selon l'une des revendications précédentes, dans laquelle les cellules endothéliales sont choisies parmi les cellules endothéliales de la veine de cordon ombilical (UVEC), les cellules endothéliales de microvaisseaux de peau (DMEC), les cellules endothéliales du sang de derme (DBEC), les cellules endothéliales lymphatiques de derme (DLEC), les cellules endothéliales de mirovaisseaux de cœur (CMEC), les cellules endothéliales de microvaisseaux de poumon (PMEC), les cellules endothéliales de microvaisseaux d'utérus (UtMEC) de mammifère.
5. Microfibre cellulaire creuse artificielle selon l'une des revendications précédentes, dans laquelle les cellules musculaires lisses sont choisies parmi les cellules musculaires lisses vasculaires, les cellules musculaires lisses lymphatiques, les cellules musculaires lisses du tube digestif, les cellules musculaires lisses de bronches, les cellules musculaires lisses de reins, les cellules musculaires lisses de vessie, les cellules musculaires lisses de derme, les cellules musculaires lisses d'utérus, les cellules musculaires lisses de globe oculaire de mammifère.
6. Microfibre cellulaire creuse artificielle selon l'une des revendications précédentes, dans laquelle les cellules endothéliales et/ou les cellules musculaires lisses ont été obtenues à partir de cellules souches induites à la pluripotence (IPS)
7. Microfibre cellulaire creuse artificielle selon l'une des revendications précédentes, dans laquelle le diamètre interne est compris entre 50 μιη et 500 μιη, préférentiellement entre 50 μιη et 200 μιη, plus préférentiellement entre 50 μιη et 150 μιη, encore plus préférentiellement entre 50 μιη et 70 μιη, +/- 10 μιη.
8. Microfibre cellulaire creuse artificielle selon l'une des revendications précédentes, dans laquelle le diamètre externe, en présence de la couche externe d'hydrogel, est compris entre 250 μιη et 5 mm, et le diamètre externe en l'absence de la couche d'hydrogel est compris entre 70 μιη et 5 mm, préférentiellement entre 70 μιη et 500 μιη, plus préférentiellement entre 70 μιη et 200 μιη, encore plus préférentiellement entre 70 μιη et 150 μιη, +/- 10 μιη.
9. Microfibre cellulaire creuse artificielle selon l'une des revendications 1 à 8, ladite microfibre cellulaire étant un vaisseau sanguin.
10. Microfibre cellulaire creuse artificielle selon l'une des revendications 1 à 8, ladite microfibre cellulaire étant un vaisseau lymphatique.
11. Procédé de préparation d'une microfibre cellulaire creuse selon l'une des revendications
I à 10, selon lequel une solution d'hydrogel et une solution de cellules comprenant des cellules endothéliales et des cellules musculaires lisses dans une matrice extracellulaire sont co-extrudées concentriquement dans une solution de réticulation apte à réticuler l'hydrogel.
12. Procédé de préparation d'une microfibre cellulaire creuse selon la revendication 11, selon lequel la solution de cellules comprend entre 20 et 30% en volume de cellules et entre 70 et 80% en volume de matrice extracellulaire.
13. Procédé de préparation d'une microfibre cellulaire creuse selon la revendication 11 ou 12, selon lequel le ratio en volume de cellules endothéliales / cellules musculaires lisses dans la solution de cellules est compris entre 3/1 et 2/1.
14. Procédé de préparation d'une microfibre cellulaire creuse selon l'une des revendications
II à 13, selon lequel la vitesse d'extrusion de la solution de cellules est comprise entre 0,1 et 5 ml/h, préférentiellement entre 0,5 et 1 ml/h, encore plus préférentiellement égale à 0,5 ml/h, +/- 0,05 ml/h, et/ou la vitesse d'extrusion de la solution d'alginate est comprise entre 1 et 10 ml/h, préférentiellement entre 2 et 5 ml/h, encore plus préférentiellement égale à 3 ml/h, +/- 0,5 ml/h.
15. Procédé de préparation d'une microfibre cellulaire creuse selon l'une des revendications 11 à 14, selon lequel une solution intermédiaire, comprenant du sorbitol, est co-extrudée entre la solution d'alginate et la solution de cellules, la vitesse d'extrusion de la solution intermédiaire étant préférentiellement comprise entre 0,1 et 5 ml/h, préférentiellement entre 0,5 et 1 ml/h, encore plus préférentiellement égale à 0,5 ml/h, +/- 0,05 ml/h.
16. Procédé de préparation d'une microfibre cellulaire creuse selon l'une des revendications 11 à 15, comprenant l'étape supplémentaire consistant à hydrolyser la couche externe en alginate après formation du vaisseau.
EP18713321.0A 2017-03-09 2018-03-08 Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse Withdrawn EP3592843A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1751941A FR3063736B1 (fr) 2017-03-09 2017-03-09 Microfibre cellulaire creuse et procede de fabrication d'une telle microfibre cellulaire creuse
PCT/FR2018/050541 WO2018162857A1 (fr) 2017-03-09 2018-03-08 Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse

Publications (1)

Publication Number Publication Date
EP3592843A1 true EP3592843A1 (fr) 2020-01-15

Family

ID=59153031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18713321.0A Withdrawn EP3592843A1 (fr) 2017-03-09 2018-03-08 Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse

Country Status (4)

Country Link
US (1) US20200002681A1 (fr)
EP (1) EP3592843A1 (fr)
FR (1) FR3063736B1 (fr)
WO (1) WO2018162857A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4107318A1 (fr) 2020-02-19 2022-12-28 Association for the Advancement of Tissue Engineering and Cell Based Technologies & Therapies (A4TEC) - Associacão Fibres d'hydrogel à compartiments multiples, leur préparation et leurs utilisations
WO2022038240A2 (fr) 2020-08-21 2022-02-24 Merck Patent Gmbh Structure de type tissu consommable générée avec des cellules musculaires cultivées sur des fibres creuses comestibles
FR3124193B3 (fr) * 2021-06-16 2023-09-22 Treefrog Therapeutics Microcompartiments cellulaires de grande taille comprenant plusieurs cystes
EP4355854A1 (fr) * 2021-06-16 2024-04-24 Treefrog Therapeutics Microcompartiments cellulaires de grande taille comprenant plusieurs cystes
CN113318273B (zh) * 2021-06-25 2022-11-25 温州医科大学慈溪生物医药研究院 Ecm梯度微纤维管及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986165B1 (fr) 2012-01-31 2015-07-24 Capsum Procede de preparation de capsules rigidifiees
PL2782995T3 (pl) * 2012-03-16 2017-05-31 Novahep Ab Biomodyfikowane alogeniczne naczynie krwionośne
WO2015066526A1 (fr) * 2013-10-31 2015-05-07 The Johns Hopkins University Microfibres polymères électro-étirées pour le développement du système microvasculaire
JP6710000B2 (ja) * 2014-05-20 2020-06-17 国立大学法人 東京大学 マイクロファイバ

Also Published As

Publication number Publication date
WO2018162857A1 (fr) 2018-09-13
FR3063736A1 (fr) 2018-09-14
FR3063736B1 (fr) 2021-06-25
US20200002681A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
EP3592843A1 (fr) Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse
Lovett et al. Silk fibroin microtubes for blood vessel engineering
Wang et al. Bottom‐up Nanoencapsulation from Single Cells to Tunable and Scalable Cellular Spheroids for Hair Follicle Regeneration
Hu et al. Cell immobilization in gelatin–hydroxyphenylpropionic acid hydrogel fibers
Chen et al. Genipin cross-linked alginate-chitosan microcapsules: membrane characterization and optimization of cross-linking reaction
Hillberg et al. Improving alginate‐poly‐L‐ornithine‐alginate capsule biocompatibility through genipin crosslinking
Fink et al. Bacterial cellulose modified with xyloglucan bearing the adhesion peptide RGD promotes endothelial cell adhesion and metabolism—a promising modification for vascular grafts
Yin et al. Coaxial electrospinning multicomponent functional controlled-release vascular graft: Optimization of graft properties
CN111065731B (zh) 血管类器官、产生和使用所述类器官的方法
JP2011514453A (ja) 同軸層流におけるポリマー繊維の流体力学的な紡糸方法
FR3047901A1 (fr) Biomateriaux composites a liberation controlee de principe actif
US20210386786A1 (en) Compositions comprising cell-delivered vesicles and uses thereof
FR2917425A1 (fr) Procede de proliferation de cellules sur des multicouches de polyelectrolytes et son application, notamment a la preparation de biomateriaux cellularises
US20150250827A1 (en) Bio-mimetic ultrathin hydrogel coatings for pancreatic islet transplantation
Gao et al. Preparation and properties of a chitosan-based carrier of corneal endothelial cells
US20110033927A1 (en) Methods of generating small-diameter tissue engineered blood vessels
EP3607056A1 (fr) Microcompartiment de cellules hématopoïétiques malignes et procédé de préparation d'un tel microcompartiment
Woods et al. Fabrication of blood‐derived elastogenic vascular grafts using electrospun fibrinogen and polycaprolactone composite scaffolds for paediatric applications
Li et al. Evaluation of 1‐mm‐diameter endothelialized dense collagen tubes in vascular microsurgery
Mazumder et al. Self-cross-linking polyelectrolyte complexes for therapeutic cell encapsulation
Wu et al. Mechanical stimuli enhance simultaneous differentiation into oesophageal cell lineages in a double‐layered tubular scaffold
Vaithilingam et al. In Vitro and In Vivo Biocompatibility Evaluation of Polyallylamine and Macromolecular Heparin Conjugates Modified Alginate Microbeads
WO2016059339A1 (fr) Procédé de fabrication de structures tridimensionnelles par moulage pour l'ingénierie tissulaire
Iglesias-Echevarria et al. Vascular grafts with tailored stiffness and a ligand environment via multiarmed polymer sheath for expeditious regeneration
EP3752594B1 (fr) Reseau tridimensionnel biocompatible et son utilisation en tant que support de cellules

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191001

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210420

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230103