EP3589487A1 - Stahlflachhalbzeug, verfahren zur herstellung einer komponente und verwendung - Google Patents

Stahlflachhalbzeug, verfahren zur herstellung einer komponente und verwendung

Info

Publication number
EP3589487A1
EP3589487A1 EP18708075.9A EP18708075A EP3589487A1 EP 3589487 A1 EP3589487 A1 EP 3589487A1 EP 18708075 A EP18708075 A EP 18708075A EP 3589487 A1 EP3589487 A1 EP 3589487A1
Authority
EP
European Patent Office
Prior art keywords
semi
layer
finished
weight
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18708075.9A
Other languages
English (en)
French (fr)
Inventor
Cristina Matthey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3589487A1 publication Critical patent/EP3589487A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/92Making other particular articles other parts for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/06Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable
    • B60N2/07Slide construction
    • B60N2/0722Constructive details
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Definitions

  • the invention relates to a semi-finished steel flat product comprising a first layer and at least one second layer bonded over its entire surface and cohesively to the first layer. Furthermore, the invention relates to a method for producing a component from the flat steel semi-finished product and a corresponding use.
  • Lightweight construction is an essential element in reducing vehicle weight. This can be achieved, inter alia, by the use of materials with increased strength. As the strength increases, its bending capacity tends to decrease. In order to ensure the occupant protection required for crash-relevant components despite increased strength to realize lightweight construction, it must be ensured that the materials used can convert the energy introduced by a crash by deformation. This requires a high degree of formability, especially in the crash-relevant components of a vehicle structure or seat structure.
  • component-specific conventional materials can be replaced by lighter materials with comparable properties.
  • more and more hybrid materials or composites are finding their way into the automotive industry, which are composed of two or more different materials, each material having certain properties, which are combined in the composite substantially opposing properties to improved properties in the composite material in comparison to the to achieve single, monolithic materials.
  • Composites, in particular dere from different steel alloys are known in the art, for example, from the German patent application DE 10 2008 022 709 AI.
  • steel alloys with a martensitic structure which are suitable with high (tensile) strengths (R m ), in particular for the production of cold-formed, crash-relevant components (components), have advantageous properties.
  • the applicant distributes such steel alloys under the trade name "MS- W® " as martensite phase steels, which can be made thinner in the material thickness while maintaining the same properties compared to conventional steel alloys, whereby the reduction of the material thickness has a positive influence on the weight of the component (component). Therefore, such steel alloys are ideal for the automotive industry.
  • martensite phase steels steel alloys with a substantially martensitic structure (martensite phase steels) are only conditionally coatable, in particular with a corrosion protection coating, owing to their chemical and physical properties. Since with increasing strength the deformability decreases, which is particularly at the expense of the bending angle, microcracks / cracks in the surface or in the near-surface region of the steel material can occur during forming depending on the geometry or complexity to be produced, leading in the worst case early to a component failure can.
  • the object of the present invention is to provide a semifinished steel semi-finished product with substantially improved properties, which is easy to coat and in particular has no or a lower tendency to crack during forming and in particular a higher bending angle, and to provide a method for producing a component and a corresponding use.
  • This object is achieved by a semi-finished steel flat product having the features of patent claim 1.
  • the inventor has found that by providing at least one second layer of a soft steel alloy, which at least on one side over the entire surface and cohesively with the first layer of a steel alloy with a martensitic microstructure, which a tensile strength> 1200 MPa and / or a hardness> 370 HV10 , in particular a tensile strength> 1300 MPa and / or a hardness> 400 HV10, preferably a tensile strength> 1400 MPa and / or a hardness> 435 HV10, more preferably a tensile strength> 1500 MPa and / or a hardness> 465 HV10, particularly preferably one Tensile strength> 1600 MPa and / or a hardness> 490 HV10, it can be ensured that at least one side no direct or direct contact with the first layer is possible, so that the second layer of a soft steel alloy acts as a kind of functional layer ,
  • the soft steel alloy has a tensile strength> 1200
  • the second layer or the soft steel alloy has properties that are particularly positive in terms of coating and / or deformation ability.
  • the semifinished steel semi-finished product according to the invention can thus be integrated into existing standard processes, such as roll profiling, etc., without having to make any changes in the process chain.
  • the coating tendency and / or the ability to deform is decisively determined by the properties on the surface of the semi-finished steel flat product which according to the invention are provided by the second layer as a functional layer.
  • the semi-finished steel flat product can be designed as a strip, plate or sheet-metal semi-finished product or can be made available to the further process steps.
  • the semi-finished steel flat product according to the invention has at least two layers of different steel alloys.
  • the first layer of the semifinished steel semi-finished product consists, in addition to Fe and unavoidable impurities in terms of production, of C: 0.15-0.6%, Si: 0.05-0.9%, Mn: 0.3-2.0 %, Al: 0.01 - 2.0%, Cr + Mo: to 1.5%, Nb + Ti: to 0.2%, B: to 0.02%, V: to 0.25%, Cu : to 0.2%, Ni: to 0.3%, Sn: to 0.05%, Ca: to 0.01%, As: to 0.02%, N: to 0.01%, P: to 0.06%, S: to 0.03%.
  • C is a strength-increasing alloying element and contributes to the increase in strength to increase the strength, so that a content of at least 0.15 wt .-%, preferably at least 0.2 wt .-% is present in order to achieve or set the desired strength , With higher strength and the brittleness increases, so that the content to a maximum of 0.6 wt .-%, in particular at most 0.55 wt .-%, preferably at most 0.5 wt .-%, more preferably at most 0.45 wt .-%, particularly preferably not more than 0.4 wt .-% is limited so as not to adversely affect the material properties and to ensure sufficient weldability.
  • Si is an alloying element that contributes to solid solution hardening and, depending on the content, has a positive effect on an increase in strength, so that a content of at least 0.05% by weight is present.
  • the alloying element is limited to not more than 0.9% by weight, in particular not more than 0.7% by weight, preferably not more than 0.5% by weight, in order to ensure adequate rolling properties.
  • Mn is an alloying element which contributes to hardenability and has a positive effect on the tensile strength, in particular for setting S to MnS, so that a content of at least 0.3% by weight is present.
  • the alloying element is limited to a maximum of 2.0% by weight, in particular a maximum of 1.7% by weight, preferably a maximum of 1.5% by weight, in order to ensure sufficient weldability.
  • Al contributes as an alloying element for deoxidation, wherein a content of at least 0.01 wt .-%, in particular 0.015 wt .-% is present.
  • the alloying element is limited to not more than 2.0% by weight, in particular not more than 1.0% by weight, preferably not more than 0.5% by weight, more preferably not more than 0.1% by weight, in particular to precipitates in the material substantially in the form of non-metallic oxide inclusions and / or to avoid which properties can influence.
  • the content is adjusted between 0.02 and 0.06 wt .-%.
  • Cr can also contribute to the setting of the strength, in particular to the hardenability, as a specific alloying element, with a content in particular of at least 0.05% by weight.
  • the alloying element is limited to a maximum of 1.5% by weight, in particular a maximum of 1.2% by weight, preferably a maximum of 1.0% by weight, in order to ensure sufficient weldability.
  • B can contribute to hardenability as an alloying element, in particular when N is hardened and is present at a level of in particular of at least 0.001% by weight.
  • the alloying element is limited to a maximum of 0.02% by weight, in particular to a maximum of 0.015% by weight, since higher contents have an adverse effect on the material properties and would result in a reduction of the hardness and / or strength in the material.
  • Ti and Nb may be alloyed as alloying elements singly or in combination for grain refining and / or N-setting, especially when Ti is present at a level of at least 0.005 wt%.
  • the content of Ti should be at least 3.42 * N.
  • the alloying elements are limited in combination to a maximum of 0.2 wt .-%, in particular a maximum of 0.15 wt .-%, preferably at most 0.1 wt .-%, since higher contents are disadvantageous to the material properties, in particular negative on the Toughness of the material.
  • Mo, V, Cu, Ni, Sn, Ca, As, N, P, or S are alloying elements which, individually or in combination, unless they are specifically added to set specific properties, can be counted as impurities.
  • the contents are limited to a maximum of 0.3% by weight Mo, to a maximum of 0.25% by weight V, to a maximum of 0.2% by weight Cu, to a maximum of 0.3% by weight Ni, to a maximum 0.05 wt .-% Sn, to a maximum of 0.01 wt .-% Ca, to a maximum of 0.02 wt .-% As, to a maximum of 0.01 wt .-% N, to a maximum of 0.06 wt.
  • the second layer for forming the at least one-sided functional layer on the first layer preferably consists of a microalloyed steel alloy or dual-phase steel alloy, which can be easily and conventionally coated and / or formed without effort.
  • the second layer of the semifinished steel semi-finished product consists not only of Fe and, due to its production, unavoidable impurities in% by weight of C: to 0.2%, Si: 0.01 to 0.6%, Mn: 0.1 to 2.5%, Al : 0.01 - 2.0%, Cr + Mo: to 1.4%, Nb + Ti: to 0.25%, B: to 0.02%, V: to 0.05%, Cu: to 0 , 2%, Ni: to 0.2%, Sn: to 0.05%, Ca: to 0.01%, Co: to 0.02%, N: to 0.01%, P: to 0.1 %, S: to 0.06%.
  • C as alloying element is at most 0.2% by weight, in particular at most 0.15% by weight, preferably at most 0.11% by weight, particularly preferably at most 0.09% by weight. %, where C is at least 0.001% by weight.
  • Si is an alloying element that contributes to solid solution hardening and positively affects an increase in strength, so that a content of at least 0.01 wt% is present.
  • the alloying element is limited to a maximum of 0.6% by weight, in particular a maximum of 0.5% by weight, preferably a maximum of 0.4% by weight, in order to ensure sufficient rollability and / or surface quality.
  • Mn is an alloying element which contributes to hardenability and has a positive effect on the tensile strength, in particular for setting S to MnS, so that a content of at least 0.1% by weight is present.
  • the alloying element is limited to a maximum of 2.5% by weight, in particular a maximum of 2.0% by weight, preferably a maximum of 1.5% by weight, in order to ensure sufficient weldability.
  • Al contributes as an alloying element for deoxidation, wherein a content of at least 0.01 wt .-%, in particular 0.015 wt .-% is present.
  • Al is alloyed in high levels in order to effect a widening of the two-phase region, the alloying element being maximally 2.0 wt. 8 wt .-%, preferably not more than 1.6 wt .-%, is limited to substantially reduce and / or avoid precipitates in the material, especially in the form of non-metallic oxidic inclusions, which can adversely affect the material properties.
  • the Al content is limited to a maximum of 1.0% by weight, in particular a maximum of 0.5% by weight, preferably a maximum of 0.2% by weight, especially in the case of microalloyed steel alloys, in order essentially to avoid the abovementioned disadvantages.
  • Cr may also contribute to adjusting the strength as alloying element, with a content in particular of at least 0.1% by weight and at most 1.4% by weight, in particular not more than 1.2% by weight, preferably maximum 1.0 wt .-%, more preferably at most 0.8 wt .-% limited in order to ensure a substantially complete coatability of the surface can.
  • the alloying element can contribute to hardenability as an alloying element, in particular when N is set and is present at a level in particular of at least 0.0002% by weight.
  • the alloying element is limited to a maximum of 0.02 wt .-%, in particular to a maximum of 0.015 wt .-%, preferably to a maximum of 0.01 wt .-%, more preferably limited to 0.005 wt .-%, since higher contents are disadvantageous to the Material properties and would result in a reduction in hardness and / or strength in the material.
  • Ti and Nb may be alloyed as alloying elements individually or in combination for grain refining and / or N-setting, with contents in particular of at least 0.001% by weight of Ti and / or of at least 0.001% by weight of Nb.
  • the content of Ti should be at least 3.42 * N.
  • the alloying elements in combination are limited to a maximum of 0.25% by weight, in particular not more than 0.2% by weight, preferably not more than 0.15% by weight, since higher contents have a disadvantageous effect on the material properties, in particular adversely on the Toughness of the material.
  • Mo, V, Cu, Ni, Sn, Ca, Co, N, P, or S are alloying elements that can be counted as impurities, singly or in combination, unless deliberately alloyed to set specific properties.
  • the contents are limited to a maximum of 0.2 wt.% Mo, to a maximum of 0.05 wt.% V, to a maximum of 0.2 wt.% Cu, to a maximum of 0.2 wt.% Ni, to a maximum of 0.05 wt .-% Sn, to a maximum of 0.01 wt .-% Ca, to a maximum of 0.02 wt .-% Co, to a maximum of 0.01 wt .-% N, to a maximum of 0.1 wt .-% P, on at most 0.06% by weight of S.
  • the semi-finished steel flat product only a first layer with a second layer connected on one side is provided in the simplest embodiment.
  • the free surface of the second layer is preferably coated with a zinc-based corrosion protection coating, wherein, in particular alternatively or additionally, the free surface of the first layer is preferably coated with a zinc-based corrosion protection coating.
  • the semifinished product comprises two second layers, which are arranged on both sides of the first layer and connected to the latter over the entire surface and by material engagement, so that a sandwich material can be provided which, depending on the application, can have a symmetrical or asymmetrical structure. Both free surfaces of the second layers may be coated with a corrosion protection coating, preferably zinc based.
  • the semi-finished steel flat product is particularly preferably provided with an electrolytic zinc coating on one or both sides.
  • the carrying out of an electrolytic coating has the advantage that the properties, in particular of the first layer, are not adversely affected, in particular by thermal influences, as occur, for example, when a hot dip coating is carried out.
  • the second layer of the soft steel alloy has a material thickness of between 2% and 30%, in particular between 5% and 20%, preferably between 7.5% and 12%, based on the total material thickness of the semi-finished steel flat product.
  • the soft steel alloy intended as a functional layer should be dimensioned in the material thickness in such a way that the positive properties of the first layer are essentially not adversely affected, with the material thickness of the second layer (per side) being a maximum of 30%, in particular a maximum of 20%.
  • the semi-finished steel flat product has a total material thickness between 0.5 and 6.0 mm, in particular between 0.8 and 4.0 mm, and preferably between 1.2 and 3.0 mm.
  • the semifinished steel semi-finished product is produced by means of plating, in particular roll cladding or by casting.
  • the semifinished steel semi-finished product according to the invention is preferably produced by means of hot-roll cladding, as disclosed, for example, in German Patent DE 10 2005 006 606 B3. Reference is made to this patent, the contents of which are hereby incorporated by reference.
  • the semi-finished steel sheet of the present invention may be produced by casting, with a possibility for its production being disclosed in Japanese Patent Laid-Open Publication JP-A-03 133 630.
  • Metallic composite fabrication is generally known in the art.
  • the invention relates to a method for producing a component for the vehicle, railway, shipbuilding or aerospace industry, wherein a semi-finished steel flat product according to the invention is cold-formed.
  • a semi-finished steel flat product according to the invention is cold-formed. Since the second layer of the semi-finished steel sheet according to the invention is particularly well deformable, for example, consists of a microalloyed or dual-phase steel alloy, so that optimum deformation properties are present and the semi-finished steel blank according to the invention are formed substantially crack-free and with a higher bending angle compared to a conventional martensite phase steel of the same composition can.
  • the cold forming of the semi-finished steel flat product according to the invention can be carried out, for example, in a discontinuous process by means of a folding or a UO molding, preferably in conventional forming tools.
  • the shaping of, for example, strip-shaped flat steel semi-finished products can be carried out inexpensively by roll profiling on preferably conventional profiling systems.
  • UO-forming or roll profiling can open or closed profiles with be made according to the requirement of different cross-sectional geometry.
  • the profiles produced can have a longitudinally constant or a longitudinally variable cross section.
  • the invention relates to a use of a manufactured profile of the semi-finished steel flat product according to the invention.
  • the profile can be used as a crash profile in a vehicle, in particular as a profile in a battery housing of a vehicle or the profile seat rail of a vehicle seat can be used.
  • the battery case includes at least a bottom, four walls, and a lid that are assembled to accommodate battery modules.
  • the walls are formed from profiles produced from the semi-finished steel flat product according to the invention.
  • the battery case is detachably connected, for example, in the bottom region of a vehicle with the body and may not or only slightly deform in a crash.
  • flat steel halves according to the invention are particularly well suited for this application, in particular if they are provided with an electrolytic zinc coating to increase the corrosion protection by the application in the wet area of the vehicle.
  • electrolytic zinc coating to increase the corrosion protection by the application in the wet area of the vehicle.
  • profiles produced from the semifinished steel semi-finished product according to the invention can also be used as longitudinal or transverse beams in the vehicle, for example as profiles, in particular as a crash profile in the bumper, sills, side impact beams or in areas in which no to small deformations / intrusions in the event of a crash are required, such as For example, in battery housings, seat structures, body, chassis, roof frame etc.
  • FIG. 1 shows a schematic section through a semifinished steel flat product according to the invention. Description of the preferred embodiment
  • the single FIGURE shows a schematic sectional illustration through a semi-finished steel flat product (1) according to the invention.
  • the semifinished steel semi-finished product (1) according to the invention comprises a first layer (1.1) of a steel alloy with a martensitic structure (martensite phase steel) which has a tensile strength> 1200 MPa and / or a hardness> 370 HV10, in particular a tensile strength> 1300 MPa and / or a hardness > 400 HV10, preferably a tensile strength> 1400 MPa and / or a hardness> 435 HV10, more preferably a tensile strength> 1500 MPa and / or a hardness> 465 HV10, particularly preferably a tensile strength> 1600 MPa and / or a hardness> 490 HV10 and two second layers (1.2, 1.2 ') of a soft steel alloy having a tensile strength ⁇ 600 MPa and / or a hardness ⁇
  • the first layer (1.1) consists, in addition to Fe and unavoidable impurities in terms of production, of C: 0.15-0.6%, Si: 0.05-0.9%, Mn: 0.3-2.0 %, Al: 0.01 - 2.0%, Cr + Mo: to 1.5%, Nb + Ti: to 0.2%, B: to 0.02%, V: to 0.25%, Cu : to 0.2%, Ni: to 0.3%, Sn: to 0.05%, Ca: to 0.01%, As: to 0.02%, N: to 0.01%, P: to 0.06%, S: to 0.03%.
  • the second layers (1.2, 1.2 ') consist not only of Fe and, in terms of production, unavoidable impurities in% by weight of C: to 0.2%, Si: 0.01 to 0.6%, Mn: 0.1 to 2.5 %, Al: 0.01 - 2.0%, Cr + Mo: to 1.4%, Nb + Ti: to 0.25%, B: to 0.02%, V: to 0.05%, Cu : to 0.2%, Ni: to 0.2%, Sn: to 0.05%, Ca: to 0.01%, Co: to 0.02%, N: to 0.01%, P: to 0.1%, S: to 0.06%, wherein they are preferably formed of a microalloyed steel alloy.
  • the material thickness of the second layer (1.2, 1.2 ') is in particular per side so dimensioned that the positive properties of the first layer (1.1) are not adversely affected substantially, the material thickness of the second layer (per side) at least 2% and at most 30%, preferably at least 7.5% and at most 12% based on the total material thickness of the semi-finished steel sheet (1), wherein the semi-finished steel sheet (1) may have, for example, a total material thickness between 0.5 and 6 mm.
  • the second layers (1.2, 1.2 ') are suitable for coating compared to the first layer (1.1) of the semifinished steel semi-finished product, they have a zinc-based corrosion protection coating on their free surfaces, preferably in each case an electrolytic zinc coating (1.3, 1.3').
  • the coating (1.3 ') is shown by dashed lines, since it is not present, for example, in the simplest embodiment of the semi-finished steel flat product (1), as already described above, in the absence of the second layer (1.2').
  • the invention is not limited to the embodiment shown in the drawing and to the statements in the general description, but rather the semi-finished steel flat product according to the invention can also be formed from a tailored product, for example a tailored blank and / or tailored roiled blank.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Seats For Vehicles (AREA)
  • Laminated Bodies (AREA)
  • Battery Mounting, Suspending (AREA)
  • Heat Treatment Of Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Die Erfindung betrifft ein Stahlflachhalbzeug (1) umfassend eine erste Lage (1.1) aus einer martensitischen Stahllegierung, welche eine Zugfestigkeit > 1200 MPa und/oder eine Härte > 370 HV10 aufweist, und mindestens eine mit der ersten Lage (1.1) vollflächig und stoffschlüssig verbundenen zweiten Lage (1.2, 1.2') aus einer weichen Stahllegierung, welche eine Zugfestigkeit < 600 MPa und/oder eine Härte < 190 HV10 aufweist. Ferner betrifft die Erfindung ein Verfahren zur Herstellung einer Komponente aus dem Stahlflachhalbzeug sowie eine entsprechende Verwendung.

Description

Stahlflachhalbzeug, Verfahren zur Herstellung einer Komponente und
Verwendung
Technisches Gebiet
Die Erfindung betrifft ein Stahlflachhalbzeug umfassend eine erste Lage und mindestens eine mit der ersten Lage vollflächig und stoffschlüssig verbundene zweite Lage. Ferner betrifft die Erfindung ein Verfahren zur Herstellung einer Komponente aus dem Stahl- flachhalbzeug sowie eine entsprechende Verwendung.
Technischer Hintergrund
In der Automobilindustrie wird nach neuen Lösungen zur Reduzierung des Fahrzeuggewichts und damit einhergehend zur Reduzierung des Kraftstoffverbrauchs gesucht. Leichtbau ist dabei ein wesentlicher Baustein, um das Fahrzeuggewicht senken zu können. Dies kann unter anderem durch den Einsatz von Werkstoffen mit gesteigerter Festigkeit erzielt werden. Mit dem Anstieg der Festigkeit nimmt in der Regel dessen Biegevermögen ab. Um trotz gesteigerter Festigkeit zur Realisierung von Leichtbau auch den bei crashrelevanten Bauteilen erforderlichen Insassenschutz sicherzustellen, ist zu gewährleisten, dass die eingesetzten Werkstoffe die durch einen Crash eingeleitete Energie durch Deformation umwandeln können. Dies bedingt ein hohes Maß an Umformvermögen insbesondere in den crashrelevanten Bauteilen einer Fahrzeugstruktur oder Sitzstruktur. Eine Möglichkeit, Gewicht einzusparen, ist beispielsweise die Karosserie, Rahmen, Sitzstruktur und/oder Fahrwerk eines Fahrzeugs, insbesondere bei Elektro- und/oder Hybridfahrzeugen beispielsweise auch das Batteriegehäuse zur Aufnahme von Batteriemodulen für den elektrischen Antrieb, noch leichter, durch leichte und innovative Werkstoffe im Vergleich zu den konventionell eingesetzten Werkstoffen zu gestalten bzw. zu bauen. So können beispielsweise bauteilspezifisch konventionelle Werkstoffe durch leichtere Werkstoffe mit vergleichbaren Eigenschaften ersetzt werden. Beispielsweise finden immer mehr Hybridwerkstoffe oder Werkstoffverbunde Einzug in der Automobilindustrie, die aus zwei oder mehreren unterschiedlichen Materialien zusammengesetzt sind, wobei jedes einzelne Material bestimmte Eigenschaften aufweist, die im Verbund im Wesentlichen zu gegensätzlichen Eigenschaften vereint werden, um verbesserte Eigenschaften im Werkstoffverbund im Vergleich zu den einzelnen, monolithischen Materialien zu erzielen. Werkstoffverbunde, insbeson- dere aus unterschiedlichen Stahllegierungen sind im Stand der Technik bekannt, beispielsweise aus der deutschen Offenlegungsschrift DE 10 2008 022 709 AI.
Vorteilhafte Eigenschaften haben insbesondere Stahllegierungen mit einem martensi- tischen Gefüge, welche mit hohen (Zug-) Festigkeiten (Rm) insbesondere für die Herstellung von kalt umgeformten, crashrelevanten Komponenten (Bauteilen) geeignet sind. Derartige Stahllegierungen vertreibt die Anmelderin als Martensitphasenstähle unter der Handelsbezeichnung„MS-W®", welche bei gleichbleibenden Eigenschaften im Vergleich zu konventionellen Stahllegierungen in der Materialdicke dünner ausgelegt werden können, wobei durch die Reduzierung der Materialdicke positiv Einfluss auf das Gewicht der Komponente (Bauteils) respektive Gesamtgewicht des Fahrzeugs genommen werden kann. Derartige Stahllegierungen eignen sich daher hervorragend für die Automobilindustrie.
Das Potenzial in Sachen Festigkeitssteigerung bei Martensitphasenstählen ist noch lange nicht erschöpft, so dass durch entsprechende Legierungskonzepte bzw. alternativ oder zusätzlich durch Optimierung der Herstellungsroute Möglichkeiten bestehen, Zugfestigkeiten in Martensitphasenstählen von bis zu 2000 MPa und höher zu erreichen bzw. einstellen zu können. Stahllegierungen mit einem im Wesentlichen martensitischen Gefüge (Martensitphasenstähle) sind aufgrund ihrer chemischen und physikalischen Eigenschaften jedoch nur bedingt, insbesondere mit einem Korrosionsschutzüberzug beschichtbar. Da mit steigender Festigkeit die Verformungsfähigkeit abnimmt, was insbesondere zu Lasten des Biegewinkels geht, können beim Umformen abhängig von der herzustellenden Geometrie respektive Komplexität Mikrorisse/Risse in der Oberfläche bzw. im oberflächennahen Bereich des Stahlwerkstoffes entstehen, die im schlechtesten Fall frühzeitig zu einem Bauteilversagen führen können.
Zusammenfassung der Erfindung
Aufgabe der vorliegenden Erfindung ist es, ein Stahlflachhalbzeug mit im Wesentlichen verbesserten Eigenschaften bereitzustellen, welches einfach beschichtbar ist und insbesondere keine bzw. eine geringere Rissneigung beim Umformen und insbesondere einen höheren Biegewinkel aufweist, sowie ein Verfahren zur Herstellung einer Komponente und eine entsprechende Verwendung anzugeben. Gelöst wird diese Aufgabe durch ein Stahlflachhalbzeug mit den Merkmalen des Patentanspruchs 1.
Die Erfinderin hat festgestellt, dass durch das Vorsehen mindestens einer zweiten Lage aus einer weichen Stahllegierung, welche zumindest einseitig vollflächig und stoffschlüssig mit der ersten Lage aus einer Stahllegierung mit einem martensitischen Gefüge, welche eine Zugfestigkeit > 1200 MPa und/oder eine Härte > 370 HV10, insbesondere eine Zugfestigkeit > 1300 MPa und/oder eine Härte > 400 HV10, vorzugsweise eine Zugfestigkeit > 1400 MPa und/oder eine Härte > 435 HV10, weiter bevorzugt eine Zugfestigkeit > 1500 MPa und/oder eine Härte > 465 HV10, besonders bevorzugt eine Zugfestigkeit > 1600 MPa und/oder eine Härte > 490 HV10 aufweist, verbunden ist, sichergestellt werden kann, dass zumindest einseitig kein direkter respektive unmittelbarer Kontakt mit der ersten Lage möglich ist, so dass die zweite Lage aus einer weichen Stahllegierung als eine Art Funktionsschicht fungiert. Im Sinne der Erfindung weist die weiche Stahllegierung eine Zugfestigkeit < 600 MPa und/oder eine Härte < 190 HV10, insbesondere eine Zugfestigkeit < 550 MPa und/oder eine Härte < 175 HV10, vorzugsweise eine Zugfestigkeit < 450 MPa und/oder eine Härte < 140 HV10, besonders bevorzugt eine Zugfestigkeit < 380 MPa und/oder eine Härte < 120 HV10 auf. Die zweite Lage respektive die weiche Stahllegierung weist Eigenschaften auf, die sich besonders positiv hinsichtlich einer Beschichtung und/oder Verformungsfähigkeit auszeichnet. Das erfindungsgemäße Stahlflachhalbzeug kann somit in bestehende Standard-Prozesse wie zum Beispiel Rollprofilieren, etc. integriert werden, ohne Änderungen in der Prozesskette vornehmen zu müssen. Die Beschichtungsneigung und/oder Verformungsfähigkeit wird maßgeblich durch die Eigenschaften an der Oberfläche des Stahlflachhalbzeugs bestimmt, die erfindungsgemäß durch die zweite Lage als Funktionsschicht bereitgestellt werden.
Das Stahlflachhalbzeug kann als band-, platten- oder blechförmiges Halbzeug ausgeführt sein bzw. den weiteren Prozessschritten bereitgestellt werden. Das Stahlflachhalbzeug weist erfindungsgemäß mindestens zwei Lagen aus unterschiedlichen Stahllegierungen auf. Erfindungsgemäß besteht die erste Lage des Stahlflachhalbzeugs neben Fe und herstellungsbedingt unvermeidbaren Verunreinigungen in Gew.-% aus C: 0,15 - 0,6 %, Si: 0,05 - 0,9 %, Mn: 0,3 - 2,0 %, AI: 0,01 - 2,0 %, Cr+Mo: bis 1,5 %, Nb+Ti: bis 0,2 %, B: bis 0,02 %, V: bis 0,25 %, Cu: bis 0,2%, Ni: bis 0,3 %, Sn: bis 0,05 %, Ca: bis 0,01 %, As: bis 0,02 %, N: bis 0,01 %, P: bis 0,06 %, S: bis 0,03 %.
C ist ein festigkeitssteigerndes Legierungselement und trägt mit zunehmendem Gehalt zur Festigkeitssteigerung bei, so dass ein Gehalt von mindestens 0,15 Gew.-%, vorzugsweise von mindestens 0,2 Gew.-% vorhanden ist, um die gewünschte Festigkeit zu erreichen bzw. einzustellen. Mit höherer Festigkeit nimmt auch die Sprödigkeit zu, so dass der Gehalt auf maximal 0,6 Gew.-%, insbesondere maximal 0,55 Gew.-%, vorzugsweise maximal 0,5 Gew.-%, weiter bevorzugt maximal 0,45 Gew.-%, besonders bevorzugt maximal 0,4 Gew.-% beschränkt ist, um die Werkstoffeigenschaften nicht negativ zu beeinflussen und eine ausreichende Schweißbarkeit sicherzustellen.
Si ist ein Legierungselement, das zur Mischkristallhärtung beiträgt und wirkt sich je nach Gehalt positiv in einer Festigkeitssteigerung aus, so dass ein Gehalt von mindestens 0,05 Gew.-% vorhanden ist. Das Legierungselement ist auf maximal 0,9 Gew.-%, insbesondere maximal 0,7 Gew.-%, vorzugsweise maximal 0,5 Gew.-% beschränkt, um eine ausreichende Walzbarkeit sicherzustellen.
Mn ist ein Legierungselement, das zur Härtbarkeit beiträgt und sich positiv auf die Zugfestigkeit auswirkt, insbesondere zum Abbinden von S zu MnS, so dass ein Gehalt von mindestens 0,3 Gew.-% vorhanden ist. Das Legierungselement ist auf maximal 2,0 Gew.-%, insbesondere maximal 1,7 Gew.-%, vorzugsweise maximal 1,5 Gew.-% beschränkt, um eine ausreichende Schweißbarkeit sicherzustellen.
AI trägt als Legierungselement zur Desoxidation bei, wobei ein Gehalt mit mindestens 0,01 Gew.-%, insbesondere mit 0,015 Gew.-% vorhanden ist. Das Legierungselement ist auf maximal 2,0 Gew.-%, insbesondere maximal 1,0 Gew.-%, vorzugsweise maximal 0,5 Gew.-%, besonders bevorzugt maximal 0,1 Gew.-% beschränkt, um Ausscheidungen im Werkstoff insbesondere in Form von nichtmetallischen oxidischen Einschlüssen im Wesentlichen zu reduzieren und/oder zu vermeiden, welche negativ die Werkstoff- eigenschaften beeinflussen können. Beispielsweise ist der Gehalt zwischen 0,02 und 0,06 Gew.-% eingestellt.
Cr kann als Legierungselement je nach Gehalt auch zur Einstellung der Festigkeit, insbesondere positiv zur Härtbarkeit beitragen, mit einem Gehalt insbesondere von mindestens 0,05 Gew.-%. Das Legierungselement ist auf maximal 1,5 Gew.-%, insbesondere maximal 1,2 Gew.-%, vorzugsweise maximal 1,0 Gew.-% beschränkt, um eine ausreichende Schweißbarkeit sicherzustellen.
B kann als Legierungselement zur Härtbarkeit beitragen, insbesondere wenn N abgebunden wird und mit einem Gehalt insbesondere von mindestens 0,001 Gew.-% vorhanden ist. Das Legierungselement ist auf maximal 0,02 Gew.-%, insbesondere auf maximal 0,015 Gew.-% beschränkt, da höhere Gehalte sich nachteilig auf die Werkstoffeigenschaften auswirken und eine Reduzierung der Härte und/oder Festigkeit im Werkstoff zur Folge hätte.
Ti und Nb können als Legierungselemente einzeln oder in Kombination zur Kornfeinung und/oder N-Abbindung zulegiert werden, insbesondere wenn Ti mit einem Gehalt von mindestens 0,005 Gew.-% vorhanden ist. Zur vollständigen Abbindung von N wäre der Gehalt an Ti mit mindestens 3,42*N vorzusehen. Die Legierungselemente sind in Kombination auf maximal 0,2 Gew.-%, insbesondere maximal 0,15 Gew.-%, vorzugsweise maximal 0,1 Gew.-% beschränkt, da höhere Gehalte sich nachteilig auf die Werkstoffeigenschaften, insbesondere sich negativ auf die Zähigkeit des Werkstoffs auswirken.
Mo, V, Cu, Ni, Sn, Ca, As, N, P oder S sind Legierungselemente, die einzeln oder in Kombination, wenn sie nicht gezielt zur Einstellung spezieller Eigenschaften zulegiert werden, zu den Verunreinigungen gezählt werden können. Die Gehalte sind beschränkt auf maximal 0,3 Gew.-% Mo, auf maximal 0,25 Gew.-% V, auf maximal 0,2 Gew.-% Cu, auf maximal 0,3 Gew.-% Ni, auf maximal 0,05 Gew.-% Sn, auf maximal 0,01 Gew.-% Ca, auf maximal 0,02 Gew.-% As, auf maximal 0,01 Gew.-% N, auf maximal 0,06 Gew.-% P, auf maximal 0,03 Gew.-% S. Die zweite Lage zur Bildung der zumindest einseitigen Funktionsschicht auf der ersten Lage besteht vorzugsweise aus einer mikrolegierten Stahllegierung oder dualphasen Stahllegierung, die ohne Aufwand einfach und konventionell beschichtet und/oder umgeformt werden kann. Erfindungsgemäß besteht die zweite Lage des Stahlflachhalbzeugs neben Fe und herstellungsbedingt unvermeidbaren Verunreinigungen in Gew.-% aus C: bis 0,2 %, Si: 0,01 - 0,6 %, Mn: 0,1 - 2,5 %, AI: 0,01 - 2,0 %, Cr+Mo: bis 1,4 %, Nb+Ti: bis 0,25 %, B: bis 0,02 %, V: bis 0,05 %, Cu: bis 0,2%, Ni: bis 0,2 %, Sn: bis 0,05 %, Ca: bis 0,01 %, Co: bis 0,02 %, N: bis 0,01 %, P: bis 0,1 %, S: bis 0,06 %.
Zur Erhöhung der Verformbarkeit und/oder Beschichtbarkeit ist C als Legierungselement auf maximal 0,2 Gew.-%, insbesondere maximal 0,15 Gew.-%, vorzugsweise maximal 0,11 Gew.-%, besonders bevorzugt maximal 0,09 Gew.-% beschränkt, wobei C mit mindestens 0,001 Gew.-% vorliegt.
Si ist ein Legierungselement, das zur Mischkristallhärtung beiträgt und wirkt sich positiv in einer Festigkeitssteigerung aus, so dass ein Gehalt von mindestens 0,01 Gew.-% vorhanden ist. Das Legierungselement ist auf maximal 0,6 Gew.-%, insbesondere maximal 0,5 Gew.-%, vorzugsweise maximal 0,4 Gew.-% beschränkt, um eine ausreichende Walzbarkeit und/oder Oberflächenqualität sicherzustellen.
Mn ist ein Legierungselement, das zur Härtbarkeit beiträgt und sich positiv auf die Zugfestigkeit auswirkt, insbesondere zum Abbinden von S zu MnS, so dass ein Gehalt von mindestens 0,1 Gew.-% vorhanden ist. Das Legierungselement ist auf maximal 2,5 Gew.-%, insbesondere maximal 2,0 Gew.-%, vorzugsweise maximal 1,5 Gew.-% beschränkt, um eine ausreichende Schweißbarkeit sicherzustellen.
AI trägt als Legierungselement zur Desoxidation bei, wobei ein Gehalt mit mindestens 0,01 Gew.-%, insbesondere mit 0,015 Gew.-% vorhanden ist. Insbesondere bei Dualphasen-Stahllegierungen, welche im Zweiphasengebiet (Austenit/Ferrit) insbesondere warmgewalzt werden, wird AI in hohen Gehalten zulegiert, um eine Aufweitung des Zweiphasengebiets zu bewirken, wobei das Legierungselement auf maximal 2,0 Gew.-%, insbesondere maximal 1,8 Gew.-%, vorzugsweise maximal 1,6 Gew.-%, beschränkt ist, um Ausscheidungen im Werkstoff insbesondere in Form von nichtmetallischen oxidischen Einschlüssen im Wesentlichen zu reduzieren und/oder zu vermeiden, welche negativ die Werkstoffeigenschaften beeinflussen können. Der Al-Gehalt ist insbesondere bei mikrolegierten Stahllegierungen auf maximal 1,0 Gew.-%, insbesondere maximal 0,5 Gew.-%, vorzugsweise maximal 0,2 Gew.-% beschränkt, um die vorgenannten Nachteile im Wesentlichen zu vermeiden.
Cr kann als Legierungselement je nach Gehalt auch zur Einstellung der Festigkeit beitragen, mit einem Gehalt insbesondere von mindestens 0,1 Gew.-% und auf maximal 1,4 Gew.-%, insbesondere maximal 1,2 Gew.-%, vorzugsweise maximal 1,0 Gew.-%, weiter bevorzugt maximal 0,8 Gew.-% beschränkt, um eine im Wesentlichen vollständige Beschichtbarkeit der Oberfläche gewährleisten zu können.
B kann als Legierungselement zur Härtbarkeit beitragen, insbesondere wenn N abgebunden wird und mit einem Gehalt insbesondere von mindestens 0,0002 Gew.-% vorhanden ist. Das Legierungselement ist auf maximal 0,02 Gew.-%, insbesondere auf maximal 0,015 Gew.-%, vorzugsweise auf maximal 0,01 Gew.-%, weiter bevorzugt auf 0,005 Gew.-% beschränkt, da höhere Gehalte sich nachteilig auf die Werkstoffeigenschaften auswirken und eine Reduzierung der Härte und/oder Festigkeit im Werkstoff zur Folge hätte.
Ti und Nb können als Legierungselemente einzeln oder in Kombination zur Kornfeinung und/oder N-Abbindung zulegiert werden, mit Gehalten insbesondere von mindestens 0,001 Gew.-% Ti und/oder von mindestens 0,001 Gew.-% Nb. Zur vollständigen Ab- bindung von N wäre der Gehalt an Ti mit mindestens 3,42*N vorzusehen. Die Legierungselemente sind in Kombination auf maximal 0,25 Gew.-%, insbesondere maximal 0,2 Gew.-%, vorzugsweise maximal 0,15 Gew.-% beschränkt, da höhere Gehalte sich nachteilig auf die Werkstoffeigenschaften, insbesondere sich negativ auf die Zähigkeit des Werkstoffs auswirken.
Mo, V, Cu, Ni, Sn, Ca, Co, N, P oder S sind Legierungselemente, die einzeln oder in Kombination, wenn sie nicht gezielt zur Einstellung spezieller Eigenschaften zulegiert werden, zu den Verunreinigungen gezählt werden können. Die Gehalte sind beschränkt auf maximal 0,2 Gew.-% Mo, auf maximal 0,05 Gew.-% V, auf maximal 0,2 Gew.-% Cu, auf maximal 0,2 Gew.-% Ni, auf maximal 0,05 Gew.-% Sn, auf maximal 0,01 Gew.-% Ca, auf maximal 0,02 Gew.-% Co, auf maximal 0,01 Gew.-% N, auf maximal 0,1 Gew.-% P, auf maximal 0,06 Gew.-% S.
Gemäß einer Ausgestaltung des Stahlflachhalbzeugs ist in der einfachsten Ausführung nur eine erste Lage mit einer einseitig verbunden zweiten Lage vorgesehen. Die freie Oberfläche der zweiten Lage ist vorzugsweise mit einem Korrosionsschutzüberzug auf Zinkbasis beschichtet, wobei insbesondere alternativ oder zusätzlich die freie Oberfläche der ersten Lage vorzugsweise mit einem Korrosionsschutzüberzug auf Zinkbasis beschichtet ist. Vorzugsweise umfasst das Halbzeug zwei zweite Lagen, die auf beiden Seiten der ersten Lage angeordnet und mit dieser vollflächig und stoffschlüssig verbunden sind, so dass ein Sandwichmaterial bereitgestellt werden kann, welches je nach Anwendung einen symmetrischen oder asymmetrischen Aufbau aufweisen kann. Beide freien Oberflächen der zweiten Lagen können mit einem Korrosionsschutzüberzug, vorzugsweise auf Zinkbasis beschichtet sein. Besonders bevorzugt ist das Stahlflachhalbzeug, je nach Ausführung ein oder beidseitig mit einem elektrolytischen Zinküberzug versehen. Das Durchführen einer elektrolytischen Beschichtung hat den Vorteil, dass die Eigenschaften insbesondere der ersten Lage nicht negativ insbesondere durch thermische Einflüsse, wie sie beispielsweise bei der Durchführung einer Schmelztauchbeschichtung auftreten, verändert werden.
Gemäß einer weiteren Ausgestaltung des Stahlflachhalbzeugs weist die zweite Lage aus der weichen Stahllegierung eine Materialdicke zwischen 2 % und 30 %, insbesondere zwischen 5 % und 20 %, vorzugsweise zwischen 7,5 % und 12 % bezogen auf die Gesamtmaterialdicke des Stahlflachhalbzeugs auf. Die als Funktionsschicht vorgesehene weiche Stahllegierung sollte in der Materialdicke derart bemessen sein, das zum einen die positiven Eigenschaften der ersten Lage im Wesentlichen nicht negativ beeinflusst werden, wobei die Materialdicke der zweiten Lage (pro Seite) auf maximal 30 %, insbesondere auf maximal 20 %, vorzugsweise auf maximal 12 % bezogen auf die Gesamtmaterialdicke des Halbzeugs beschränkt ist, und zum anderen zu gewährleisten, dass die erste Lage einen gewissen Abstand zur Oberfläche des Stahlflachhalbzeugs aufweist, sodass eine Beschichtung und/oder eine Umformung ohne Nachteile durch- führbar ist, wobei die Materialdicke der zweiten Lage (pro Seite) mindestens 2 %, insbesondere mindestens 5 %, vorzugsweise mindestens 7,5 % bezogen auf die Gesamtmaterialdicke des Halbzeugs beträgt. Das Stahlflachhalbzeug weist eine Gesamtmaterialdicke zwischen 0,5 und 6,0 mm, insbesondere zwischen 0,8 und 4,0 mm und vorzugsweise zwischen 1,2 und 3,0 mm auf.
Gemäß einer weiteren Ausgestaltung des Stahlflachhalbzeugs ist das Stahlflachhalbzeug mittels Plattieren, insbesondere Walzplattieren oder mittels Gießen hergestellt. Bevorzugt ist das erfindungsgemäße Stahlflachhalbzeug mittels Warmwalzplattieren, wie es beispielsweise in der deutschen Patentschrift DE 10 2005 006 606 B3 offenbart ist, hergestellt. Es wird Bezug auf diese Patentschrift genommen, deren Inhalt hiermit in diese Anmeldung aufgenommen wird. Alternativ kann das erfindungsgemäße Stahlflachhalbzeug mittels Gießen hergestellt werden, wobei eine Möglichkeit zu seiner Herstellung in der japanischen Offenlegungsschrift JP-A 03 133 630 offenbart ist. Die metallische Verbundherstellung ist im Allgemeinen Stand der Technik.
Gemäß einem zweiten Aspekt betrifft die Erfindung ein Verfahren zur Herstellung einer Komponente für den Fahrzeug-, Eisenbahn-, Schiffbau oder Luft- und Raumfahrt, wobei ein erfindungsgemäßes Stahlflachhalbzeug kalt geformt wird. Da die zweite Lage des erfindungsgemäßen Stahlflachhalbzeugs besonders gut verformbar ist, beispielsweise aus einer mikrolegierten oder Dualphasen-Stahllegierung besteht, so dass optimale Verformungseigenschaften vorliegen und das erfindungsgemäße Stahlflachhalbzeug im Wesentlichen rissfrei und mit einem höheren Biegewinkel im Vergleich zu einem konventionellen Martensitphasenstahl der gleichen Zusammensetzung geformt werden kann.
Das Kaltformen des erfindungsgemäßen Stahlflachhalbzeugs, welches blech- oder plattenförmig bereitgestellt werden kann, kann beispielsweise in einem diskontinuierlichen Prozess durch ein Abkanten oder ein U-O-Formen vorzugsweise in konventionellen Umformwerkzeugen erfolgen. Alternativ und bevorzugt kann das Formen beispielsweise von bandförmigem Stahlflachhalbzeug durch ein Rollprofilieren auf vorzugsweise konventionellen Profilieranlagen kostengünstig erfolgen. Durch das Abkanten, U-O-Formen oder Rollprofilieren können offene oder geschlossene Profile mit je nach Anforderung unterschiedlicher Querschnittsgeometrie hergestellt werden. Die hergestellten Profile können einen längskonstanten oder einen längsveränderlichen Querschnitt aufweisen.
Gemäß einem dritten Aspekt betrifft die Erfindung eine Verwendung eines hergestellten Profils aus dem erfindungsgemäßen Stahlflachhalbzeug. Das Profil kann als Crashprofil in einem Fahrzeug verwendet werden, insbesondere als Profil in einem Batteriegehäuse eines Fahrzeugs oder das Profil kann Sitzschiene eines Fahrzeugsitzes verwendet werden. Das Batteriegehäuse umfasst mindestens einen Boden, vier Wände und einen Deckel, die zusammengebaut sind und zur Aufnahme von Batteriemodulen dient. Insbesondere die Wände sind aus Profilen gebildet, hergestellt aus dem erfindungsgemäßen Stahlflachhalbzeug. Das Batteriegehäuse ist beispielsweise im Bodenbereich eines Fahrzeugs mit der Karosserie lösbar verbunden und darf in einem Crashfall nicht oder nur geringfügig deformieren. Erfindungsgemäße Stahlflachhalb-zeuge sind aufgrund ihrer hohen Zugfestigkeit und/oder Härte für diese Anwendung besonders gut geeignet, insbesondere wenn sie mit einem elektrolytischen Zinküberzug zur Erhöhung des Korrosionsschutzes durch die Anwendung im Nassbereich des Fahrzeugs versehen sind. Hierbei handelt es sich vorzugsweise um Hybrid- oder um rein elektrisch betriebene Fahrzeuge, sei es Personenkraftwagen, Nutzfahrzeuge oder Busse.
Die hergestellten Profile aus dem erfindungsgemäßen Stahlflachhalbzeug können auch als Längs- oder Querträger im Fahrzeug verwendet werden, beispielsweise als Profile, insbesondere als Crashprofil im Stoßfänger, Schweller, Seitenaufprallträger oder in Bereichen, in denen keine bis geringe Deformationen/Intrusionen im Crashfall gefordert werden, wie beispielsweise in Batteriegehäusen, Sitzstrukturen, Karosserie, Fahrwerk, Dachrahmen etc.
Kurze Beschreibung der Zeichnung
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels darstellenden Zeichnung näher erläutert. Es zeigt:
Figur 1) ein schematischer Schnitt durch ein erfindungsgemäßes Stahlflachhalbzeug. Beschreibung der bevorzugten Ausführungsform
In der einzigen Figur ist eine schematische Schnittdarstellung durch ein erfindungsgemäßes Stahlflachhalbzeug (1) gezeigt. Das erfindungsgemäße Stahlflachhalbzeug (1) umfasst eine erste Lage (1.1) aus einer Stahllegierung mit einem martensitischen Gefüge (Martensitphasenstahl), welche eine Zugfestigkeit > 1200 MPa und/oder eine Härte > 370 HV10, insbesondere eine Zugfestigkeit > 1300 MPa und/oder eine Härte > 400 HV10, vorzugsweise eine Zugfestigkeit > 1400 MPa und/oder eine Härte > 435 HV10, weiter bevorzugt eine Zugfestigkeit > 1500 MPa und/oder eine Härte > 465 HV10, besonders bevorzugt eine Zugfestigkeit > 1600 MPa und/oder eine Härte > 490 HV10 aufweist, und zwei zweite Lagen (1.2, 1.2') aus einer weichen Stahllegierung, welche eine Zugfestigkeit < 600 MPa und/oder eine Härte < 190 HV10, insbesondere eine Zugfestigkeit < 550 MPa und/oder eine Härte < 175 HV10, vorzugsweise eine Zugfestigkeit
< 450 MPa und/oder eine Härte < 140 HV10, besonders bevorzugt eine Zugfestigkeit
< 380 MPa und/oder eine Härte < 120 HV10 aufweisen, welche beidseitig vollflächig und stoffschlüssig mit der ersten Lage (1.1) verbunden sind. Je nach Anwendung und in der einfachsten Ausführung kann auch nur eine zweite Lage (1.2) mit der ersten Lage (1.1) vollflächig und stoffschlüssig verbunden vorliegen, daher ist die zweite Lage (1.2') strichliniert dargestellt.
Die erste Lage (1.1) besteht neben Fe und herstellungsbedingt unvermeidbaren Verunreinigungen in Gew.-% aus C: 0,15 - 0,6 %, Si: 0,05 - 0,9 %, Mn: 0,3 - 2,0 %, AI: 0,01 - 2,0 %, Cr+Mo: bis 1,5 %, Nb+Ti: bis 0,2 %, B: bis 0,02 %, V: bis 0,25 %, Cu: bis 0,2%, Ni: bis 0,3 %, Sn: bis 0,05 %, Ca: bis 0,01 %, As: bis 0,02 %, N: bis 0,01 %, P: bis 0,06 %, S: bis 0,03 %. Die zweiten Lagen (1.2, 1.2') bestehen neben Fe und herstellungsbedingt unvermeidbaren Verunreinigungen in Gew.-% aus C: bis 0,2 %, Si: 0,01 - 0,6 %, Mn: 0,1 - 2,5 %, AI: 0,01 - 2,0 %, Cr+Mo: bis 1,4 %, Nb+Ti: bis 0,25 %, B: bis 0,02 %, V: bis 0,05 %, Cu: bis 0,2%, Ni: bis 0,2 %, Sn: bis 0,05 %, Ca: bis 0,01 %, Co: bis 0,02 %, N: bis 0,01 %, P: bis 0,1 %, S: bis 0,06 %, wobei sie vorzugsweise aus einer mikrolegierten Stahllegierung gebildet sind.
Die Materialdicke der zweiten Lage (1.2, 1.2') ist insbesondere pro Seite derart bemessen sein, dass die positiven Eigenschaften der ersten Lage (1.1) im Wesentlichen nicht negativ beeinflusst werden, wobei die Materialdicke der zweiten Lage (pro Seite) mindestens 2 % und maximal 30 %, vorzugsweise mindestens 7,5 % und maximal 12 % bezogen auf die Gesamtmaterialdicke des Stahlflachhalbzeugs (1) beträgt, wobei das Stahlflachhalbzeug (1) beispielsweise eine Gesamtmaterialdicke zwischen 0,5 und 6 mm aufweisen kann. Da die zweiten Lagen (1.2, 1.2') im Vergleich zur ersten Lage (1.1) des Stahlflachhalbzeugs beschichtungsgeeignet sind, weisen sie an ihren freien Oberflächen einen Korrosionsschutzüberzug auf Zinkbasis, vorzugsweise jeweils einen elektrolytischen Zinküberzug (1.3, 1.3') auf. Der Überzug (1.3') ist strichliniert dargestellt, da er beispielsweise in der einfachsten Ausführung des Stahlflachhalbzeugs (1), wie bereits weiter oben beschrieben, bei fehlender zweiter Lage (1.2') ebenfalls nicht vorhanden ist.
Die Erfindung ist nicht auf das in der Zeichnung dargestellte Ausführungsbeispiel sowie auf die Ausführungen in der allgemeinen Beschreibung beschränkt, vielmehr kann das erfindungsgemäße Stahlflachhalbzeug auch aus einem Tailored Product, beispielsweise einem Tailored Blank und/oder Tailored Roiled Blank gebildet sein.

Claims

Ansprüche
1. Stahlflachhalbzeug (1) umfassend eine erste Lage (1.1) aus einer martensitischen Stahllegierung, welche eine Zugfestigkeit > 1200 MPa und/oder eine Härte > 370 HV10 aufweist, und mindestens eine mit der ersten Lage (1.1) vollflächig und stoffschlüssig verbundenen zweiten Lage (1.2, 1.2') aus einer weichen Stahllegierung, welche eine Zugfestigkeit < 600 MPa und/oder eine Härte < 190 HV10 aufweist, wobei die erste Lage (1.1) neben Fe und herstellungsbedingt unvermeidbaren Verunreinigungen in Gew.-% aus C: 0,15 - 0,6 %, Si: 0,05 - 0,9 %, Mn: 0,3 - 2,0 %, AI: 0,01 - 2,0 %, Cr+Mo: bis 1,5 %, Nb+Ti: bis 0,2 %, B: bis 0,02 %, V: bis 0,25 %, Cu: bis 0,2%, Ni: bis 0,3 %, Sn: bis 0,05 %, Ca: bis 0,01 %, As: bis 0,02 %, N: bis 0,01 %, P: bis 0,06 %, S: bis 0,03 % besteht, und die zweite Lage (1.2, 1.2') neben Fe und herstellungsbedingt unvermeidbaren Verunreinigungen in Gew.-% aus C: bis 0,2 %, Si: 0,01 - 0,6 %, Mn: 0,1 - 2,5 %, AI: 0,01 - 2,0 %, Cr+Mo: bis 1,4 %, Nb+Ti: bis 0,25 %, B: bis 0,02 %, V: bis 0,05 %, Cu: bis 0,2%, Ni: bis 0,2 %, Sn: bis 0,05 %, Ca: bis 0,01 %, Co: bis 0,02 %, N: bis 0,01 %, P: bis 0,1 %, S: bis 0,06 % besteht.
2. Stahlflachhalbzeug nach Anspruch 1, dadurch gekennzeichnet, dass das Stahlflachhalbzeug (1) zwei zweite Lagen (1.2, 1.2'), die auf beiden Seiten der ersten Lage (1.1) angeordnet und mit dieser vollflächig und stoffschlüssig verbunden sind, umfasst.
3. Stahlflachhalbzeug nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die zweite Lage (1.2, 1.2') eine Materialdicke zwischen 2 % und 30 %, insbesondere zwischen 5 % und 20 % bezogen auf die Gesamtmaterialdicke des Stahlflachhalbzeugs aufweist.
4. Stahlflachhalbzeug nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Stahlflachhalbzeug (1) einen elektrolytisch aufgebrachten Zinküberzug (1.3, 1.3') aufweist.
5. Stahlflachhalbzeug nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Stahlflachhalbzeug (1) mittels Plattieren oder mittels Gießen hergestellt ist.
6. Verfahren zur Herstellung einer Komponente für den Fahrzeug-, Eisenbahn-, Schiffbau oder Luft- und Raumfahrt, wobei ein Stahlflachhalbzeug nach einem der vorgenannten Ansprüche kalt geformt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass ein Kaltformen durch ein Abkanten, ein U-O-Formen oder ein Rollprofilieren zur Herstellung eines Profils erfolgt.
8. Verwendung eines nach Anspruch 7 hergestellten Profils als Crashprofil, insbesondere als Profil in einem Batteriegehäuse eines Fahrzeugs.
9. Verwendung eines nach Anspruch 7 hergestellten Profils als Sitzschiene eines Fahrzeugsitzes.
EP18708075.9A 2017-03-03 2018-02-22 Stahlflachhalbzeug, verfahren zur herstellung einer komponente und verwendung Withdrawn EP3589487A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017203507.2A DE102017203507A1 (de) 2017-03-03 2017-03-03 Stahlflachhalbzeug, Verfahren zur Herstellung einer Komponente und Verwendung
PCT/EP2018/054372 WO2018158130A1 (de) 2017-03-03 2018-02-22 Stahlflachhalbzeug, verfahren zur herstellung einer komponente und verwendung

Publications (1)

Publication Number Publication Date
EP3589487A1 true EP3589487A1 (de) 2020-01-08

Family

ID=61526789

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18708075.9A Withdrawn EP3589487A1 (de) 2017-03-03 2018-02-22 Stahlflachhalbzeug, verfahren zur herstellung einer komponente und verwendung

Country Status (8)

Country Link
US (1) US20200017941A1 (de)
EP (1) EP3589487A1 (de)
JP (1) JP2020514547A (de)
KR (1) KR20190126094A (de)
CN (1) CN110392631A (de)
DE (1) DE102017203507A1 (de)
MX (1) MX2019010315A (de)
WO (1) WO2018158130A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU101045B1 (en) 2018-12-11 2020-06-11 Qventis GmbH Method for the manufacture and use of a bionic hydrogel composition for medical applications
DE102018132171A1 (de) * 2018-12-13 2020-06-18 Thyssenkrupp Steel Europe Ag Batteriegehäuse und Verwendung
DE102019116363A1 (de) 2019-06-17 2020-12-17 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Panzerungsbauteils für Kraftfahrzeuge
DE102019211064A1 (de) * 2019-07-25 2021-01-28 Thyssenkrupp Steel Europe Ag Mehrlagenverbundrohre und Mehrlagenverbundprofile aus Zwei- oder Mehrlagenverbundcoils
CN111607732A (zh) * 2020-05-22 2020-09-01 广东合一纳米材料科技有限公司 一种新型纳米中碳结构钢及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2123447T3 (pl) 2008-05-07 2019-05-31 Thyssenkrupp Steel Europe Ag Tworzywo kompozytowe z efektem ochrony balistycznej
DE102008022709A1 (de) 2008-05-07 2009-11-19 Thyssenkrupp Steel Ag Verwendung eines metallischen Verbundwerkstoffs in einer Fahrzeugstruktur
DE102014114365A1 (de) * 2014-10-02 2016-04-07 Thyssenkrupp Steel Europe Ag Mehrschichtiges Stahlflachprodukt und daraus hergestelltes Bauteil
DE102015114989B3 (de) * 2015-09-07 2016-09-29 Thyssenkrupp Ag Verfahren zum Herstellen einer Bauteilstruktur mit verbesserten Fügeeigenschaften und Bauteilstruktur

Also Published As

Publication number Publication date
CN110392631A (zh) 2019-10-29
DE102017203507A1 (de) 2018-09-06
JP2020514547A (ja) 2020-05-21
MX2019010315A (es) 2019-10-21
KR20190126094A (ko) 2019-11-08
WO2018158130A1 (de) 2018-09-07
US20200017941A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
EP2271541B1 (de) Verwendung eines metallischen verbundwerkstoffs in einer fahrzeugstruktur
EP3589487A1 (de) Stahlflachhalbzeug, verfahren zur herstellung einer komponente und verwendung
EP3200950B1 (de) Mehrschichtiges stahlflachprodukt und daraus hergestelltes bauteil
EP2123447B1 (de) Verbundwerkstoff mit ballistischer Schutzwirkung
DE102015112327A1 (de) Karosserie- oder Fahrwerkbauteil eines Kraftfahrzeuges mit verbesserter Crashperformance sowie Verfahren zu dessen Herstellung
DE102014008718B3 (de) Maßgeschneidertes Halbzeug und Kraftfahrzeugbauteil
DE102015203644A1 (de) Pressgehärtetes Blechformteil mit unterschiedlichen Blechdicken und Festigkeiten
DE102015114989B3 (de) Verfahren zum Herstellen einer Bauteilstruktur mit verbesserten Fügeeigenschaften und Bauteilstruktur
DE102008044523A1 (de) Warmumformprofile
DE102007022453A1 (de) Mehrschichtiges Verbundteil
WO2016074666A1 (de) Karosserie- oder fahrwerkbauteil eines kraftfahrzeugs mit korrosionsschutz sowie verfahren zu dessen herstellung
EP3625045B1 (de) Warmumformmaterial, bauteil und verwendung
DE102009007309A1 (de) Profilteil als Karosseriekomponente eines Kraftfahrzeuges
EP3625044B1 (de) Warmumformmaterial, bauteil und verwendung
DE102011118491A1 (de) Verfahren zur Herstellung von Bauteilen durch Warmumformung von Platinen
DE102004044925B3 (de) Bodenstruktur für die Karosserie eines Kraftfahrzeugs
DE102007015963A1 (de) Verfahren zum Herstellen von aus Stahlblechen bestehenden Flachprodukten, aus Stahlblechen zusammengesetztes Stahlflachprodukt und Strukturbauteil
EP3352927A1 (de) Halbzeug und verfahren zur herstellung einer fahrzeugkomponente, verwendung eines halbzeugs und fahrzeugkomponente
EP3625048A1 (de) Warmumformmaterial, bauteil und verwendung
DE102015221635A1 (de) Pressgehärtetes Blechformteil mit unterschiedlichen Blechdicken und Festigkeiten
WO2018137973A1 (de) Fahrzeugrahmen und verwendung
WO2019068341A1 (de) Warmumformverbundmaterial, dessen herstellung, bauteil und dessen verwendung
DE102017201697A1 (de) Halbzeug, Verwendung und Verfahren zur Herstellung einer stoffschlüssigen Verbindung
DE102021201334A1 (de) Verfahren zur Herstellung eines pressgehärteten Blechformteils sowie damit hergestelltes pressgehärtetes Blechformteil mit bereichsweise unterschiedlichen Eigenschaften

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20190717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20210111