EP3579262B1 - Ferromagnetic part for an electromagnetic contactor, its manufacturing process and its use - Google Patents

Ferromagnetic part for an electromagnetic contactor, its manufacturing process and its use Download PDF

Info

Publication number
EP3579262B1
EP3579262B1 EP19178911.4A EP19178911A EP3579262B1 EP 3579262 B1 EP3579262 B1 EP 3579262B1 EP 19178911 A EP19178911 A EP 19178911A EP 3579262 B1 EP3579262 B1 EP 3579262B1
Authority
EP
European Patent Office
Prior art keywords
ferromagnetic
nickel
nickel layer
ferromagnetic part
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19178911.4A
Other languages
German (de)
French (fr)
Other versions
EP3579262A1 (en
Inventor
Vincent GEFFROY
Olivier Theron
Julien HENRI-ROUSSEAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP3579262A1 publication Critical patent/EP3579262A1/en
Application granted granted Critical
Publication of EP3579262B1 publication Critical patent/EP3579262B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/163Details concerning air-gaps, e.g. anti-remanence, damping, anti-corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H49/00Apparatus or processes specially adapted to the manufacture of relays or parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • C23C18/1694Sequential heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/44Magnetic coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/64Driving arrangements between movable part of magnetic circuit and contact
    • H01H50/641Driving arrangements between movable part of magnetic circuit and contact intermediate part performing a rectilinear movement

Definitions

  • the present invention relates to a method of manufacturing a ferromagnetic part for an electromagnetic contactor, a method of manufacturing an electromagnetic contactor, a ferromagnetic part, an electromagnetic contactor, and a use of a ferromagnetic part.
  • the present invention relates to the field of electrotechnical devices, in particular for low voltage, and to ferromagnetic elements intended to equip such devices.
  • FR 2 746 541 A1 describes an example of a known electromagnetic contactor device, comprising an electromagnet provided with a coil with supply terminals, with a fixed part forming a fixed part of the magnetic circuit and with a movable part forming a movable part of the magnetic circuit.
  • the moving part is mechanically connected to a contact holder of the device.
  • the supply of the coil drives the displacement of the contact holder by displacement of the movable part relative to the fixed part under the effect of the electromagnetic field thus generated. This movement consists of moving the moving part closer to and apart from the fixed part.
  • JP 3 099945 B2 relates to an electromagnetic relay comprising a permanent magnet and a soft iron frame, covered with a nickel coating layer.
  • US 2017/040132 A1 describes a relay whose armature is coated with a layer which may be made of nickel.
  • FR 1 319 342 A describes an air gap filled with a body of copper, brass, chromium or nickel, arranged by an electrolytic or chemical process.
  • an aim of the invention is to provide a new method of manufacturing a ferromagnetic part exhibiting both particularly high mechanical endurance against shocks, good ferromagnetic properties and good corrosion resistance, while integrating a non-magnetic air gap.
  • the surface layer of nickel confers impact resistance on the ferromagnetic part.
  • the ferromagnetic part is used in an electromagnetic contactor, its deterioration is slower than the means used in the prior art. In particular, the drift in the switch-off time of the contactor is much lower, and above all, less random.
  • the surface nickel layer is non-magnetic, relative to the soft ferromagnetic metal, so that this layer can advantageously be used as an integrated non-magnetic air gap.
  • the residual nickel layer also imparts corrosion resistance to the ferromagnetic part, since the ferromagnetic metal is likely to be sensitive to it.
  • the chemical nickel plating is compatible with this magnetic annealing, which can therefore be carried out after the chemical nickel plating. Therefore, the magnetic properties of the ferromagnetic part can be made particularly good for application to an electromagnetic contactor.
  • the surface nickel layer has a very high hardness, for example between 750 and 900 HV.
  • the diffused nickel layer has an intermediate hardness, for example about 220 to 260 HV.
  • the soft ferromagnetic metal exhibiting a generally lower hardness, for example less than 150 HV.
  • a hardness gradient is therefore obtained, suitable for improving the strength of the ferromagnetic part and for reducing the rate of wear of the surface nickel layer.
  • the presence of the diffused nickel layer prevents wear of the ferromagnetic parts, by improving the resistance of the surface nickel layer on the soft ferromagnetic metal core.
  • the surface nickel layer measures between 3 and 50 ⁇ m in thickness, preferably between 3 and 20 ⁇ m in thickness.
  • the layer of Diffused nickel is between 3 and 40 ⁇ m thick, preferably between 10 and 30 ⁇ m thick.
  • the invention also relates to the use of a ferromagnetic part in accordance with the above in an electromagnetic contactor in accordance with the above, the ferromagnetic part being used as part of the movable ferromagnetic part or of the fixed ferromagnetic part of the electromagnetic actuator.
  • an electromagnetic contactor 2 is shown, making it possible to selectively interrupt the flow of current in a power circuit, for example between a power source and an electric load.
  • the contactor 2 is shown in an open configuration, in which it blocks the flow of current.
  • the contactor 2 is shown in a closed configuration, in which it allows current to flow.
  • This contactor 2 is preferably provided for a so-called "low voltage" power circuit, that is to say having a voltage of for example between 1V and 600V, preferably between 100V and 400V.
  • a so-called "low voltage” power circuit that is to say having a voltage of for example between 1V and 600V, preferably between 100V and 400V.
  • it can be a domestic network, that is to say a network supplying a dwelling, at a voltage of 110V or 230V in single phase.
  • this may for example concern an industrial 380V three-phase network.
  • the contactor 2 comprises one or more pairs of power contacts, each pair comprising a movable contact 12 and a fixed contact 14.
  • the contacts 12 and 14 are power contacts, because they are configured to block or be crossed by the current of the. aforementioned power circuit, depending on the open or closed configuration of the contactor 2.
  • the number of pairs of contacts 12 and 14 is for example chosen as a function of the number of phases of the power circuit, each pair being associated with one phase. In the present example, two pairs of contacts 12 and 14 are provided, being a single-phase power circuit.
  • each pair of power contacts 12 and 14 therefore changes between a closed configuration, when the contact 12 is in the closed position, and an open configuration, when the contact 12 is in. open position.
  • the contactor 2 comprises an electromagnetic actuator 4 configured to actuate the contact carrier 10 between its two open and closed configurations, and therefore by extension, to simultaneously actuate each pair of contacts 12 and 14 between their open and closed position.
  • the electromagnetic actuator 4 comprises two coils 18, a fixed ferromagnetic part 6 and a movable ferromagnetic part 8.
  • the part 8 is movable along the axis X10, between a position remote from the fixed part 6, shown in figure 1 and a position of contact with the fixed part 6, shown in figure 2 .
  • the travel in translation of part 8 relative to part 6 is represented by the distance C at the figure 1 , measured parallel to the X10 axis.
  • the parts 6 and 8 are spaced apart by the distance C.
  • the parts 6 and 8 are in contact with each other and are therefore closer to each other.
  • the contact carrier 10, and therefore each contact 12 simultaneously, is moved, preferably in translation along the axis X10, by means of the movable part 8 of the electromagnetic actuator 4.
  • the pairs of contacts 12 and 14 are in the open configuration.
  • the pairs of contacts 12 and 14 are in the closed configuration.
  • the contact holder 10 and the movable part 8 of the actuator 4 are linked in translation along the axis X10.
  • part 8 of the actuator is assembled on contact carrier 10 so as to make it integral with contact carrier 10.
  • the remote position of part 8 causes the pairs of contacts 12 and 14 to be placed in closed configuration, and that the contact position of part 8 causes the pairs to be placed in the open configuration. contacts 12 and 14.
  • the fixed part 6 comprises a ferromagnetic frame having a U-shaped architecture.
  • the frame comprises a base 20 and two cores 21 which extend, from the base 20, parallel to the axis X10.
  • the frame of the fixed part 6 also comprises two separate ferromagnetic parts 22.
  • the parts 22 are mounted respectively at the free ends of the cores 21, opposite the base 20.
  • the two parts 22 are each of flat shape in the same plane orthogonal to the axis X10.
  • the fixed part 6 could be formed by a single ferromagnetic part in one piece, rather than by assembling the various ferromagnetic parts 20, 21 and 22 mentioned above.
  • the movable part 8 comprises a ferromagnetic part 30, visible on the figures 1 and 2 , and represented alone on the figure 3 .
  • the part 30 is preferably a flat part, which extends in a plane orthogonal to the axis X10.
  • the mobile part also comprises a second ferromagnetic part 31, which also forms a flat part resting flat against the part 30.
  • the mobile part 8 forms a single ferromagnetic part in one piece.
  • the fixed part 6 and the moving part 8 are qualified as “ferromagnetic”, that is to say that they are made of materials, and form structures, which makes them susceptible to magnetization under the effect of the field. magnetic generated by the coils 18 so as to form a magnetic circuit, conducting the magnetic flux produced by the coils 18.
  • the ferromagnetic parts 20, 21, 22, 30 and 31 form a closed magnetic circuit, in the form of a buckle, when part 8 is in contact with part 6.
  • Each coil 18 is wound around one of the cores 21.
  • the coils 18 When supplied with electric current, the coils 18 generate a magnetic field which induces magnetization of the fixed part 6 and of the moving part 8.
  • the parts 6 and 8 are thus mutually attracted to each other.
  • the part 6 passes into the position of contact with the part 8.
  • the parts 6 and 8 become demagnetized, so that the parts 6 and 8 are no longer attracted. towards each other. Part 6 thus returns to a position remote from part 8, under the effect of return means described below.
  • the parts 22 are arranged opposite the part 30, parallel to the axis X10.
  • the parts 22 extend in the same plane which is parallel to the plane of the part 30, these planes being orthogonal to the axis X10.
  • Each part 22 comprises a respective contact face 41 and the part 30 comprises a contact face 42.
  • the part 30 In the remote position, the part 30 is away from the parts 22, the contact face 42 being separated by the distance C of the faces. 41.
  • the part 30 rests flat against the parts 22, the face 42 resting flat against the faces 41.
  • the electromagnetic actuator 4 comprises means for returning the movable part 8 to the remote position, which extend for example between the fixed part 6 and the movable part 8.
  • these return means are formed by two helical compression springs 24 interposed parallel to the axis X10 between the part 31 and the cores 21.
  • the springs 24 are not shown in figure 2 .
  • each spring 24 is introduced into a respective orifice 33 passing through part 30 and into a respective orifice 25 passing through one of the parts. 22.
  • Each pair of through-holes 25 and 33 associated with one of the springs 24 is respectively coaxial with an axis parallel to the axis X10.
  • the orifices 25 extend respectively from the faces 41 to the core 21.
  • the orifices 33 extend from the face 42 to the part 31.
  • the contactor 2 comprises a housing 16 at least partially enclosing the contacts 12 and 14, and completely enclosing the actuator 4.
  • the faces 41 and 42 are in a non-magnetic material which constitutes an air gap integrated into the parts 22 and 30.
  • the air gap material is integral with the parts 22 and 30, respectively.
  • Air gap denotes a part of the magnetic circuit in which the induction flux does not circulate in a ferromagnetic material.
  • the air gap is a cut in the magnetic circuit formed by parts 6 and 8, which is kept in the contact position of part 8 of contactor 2. In the remote position, an air gap is therefore formed at that time by the air separating the faces 41 and 42, and by the layer of non-magnetic material forming the faces 41 and 42.
  • This wedge of non-magnetic material is for example made of bronze or of polymer-based plastic, which are non-magnetic materials, compared to the ferromagnetic material of parts 6 and 8.
  • drop-out time is used to mean the time that elapses between the moment when the electrical supply to the coils 21 of the contactor 2 is stopped and the moment when the part 8 reaches the remote position.
  • the drop-out time indicates how quickly contactor 2 can change state, i.e. for example open and cut off the current flowing in the power circuit, from the moment where the contactor 2 has received the order, that is to say the moment when the coils 21 of the actuator 4 are no longer supplied with electrical energy. It is generally desirable to obtain the lowest possible fallout time. Without wishing to link the dropout time to any theory, it seems that the thinner the air gap, obtained in the contact position, is, the smaller the dropout time itself.
  • FR 2 746 541 A1 describes a movable magnetic circuit part, called the yoke, and a fixed magnetic circuit part, which are each in the shape of an “E”, that is to say each have three parallel branches, in particular a central branch.
  • a single coil is provided around the respective central branch of these two magnetic parts, and surrounds this branch.
  • the movable and fixed ferromagnetic parts, as well as the single coil described in FR 2 746 541 A1 are suitable for the invention.
  • the expression “ferromagnetic part” relates to at least one part of the ferromagnetic parts of the contactors described above, in particular parts 6 and 8 of the contactor 2. More precisely, the expression “ferromagnetic part” can apply to at least one ferromagnetic part among the ferromagnetic parts 22 and 30. Preferably, in the contactor 2, at least the ferromagnetic parts 22 and 30 are concerned by the following.
  • figure 4 shows one of the ferromagnetic parts 22 and the ferromagnetic part 30 in the contact position, that is to say in contact with one another via their respective faces 41 and 42.
  • the ferromagnetic part essentially comprises a soft ferromagnetic material, that is to say in particular for the main part of its volume.
  • This soft ferromagnetic metal is at least present at the heart of the ferromagnetic part, that is to say in a central internal part of its volume.
  • parts 22 and 30 include the soft ferromagnetic metal 100 at the core.
  • the soft ferromagnetic metal is also present on the surface of the ferromagnetic part, for surfaces not occupied by the layer of nickel described below.
  • soft is meant that the chosen metal easily magnetizes under the action of a magnetic field and easily loses its magnetization when it is no longer subjected to the magnetic field.
  • the chosen soft ferromagnetic metal is, for example, a soft iron alloy, or a low carbon steel.
  • the soft ferromagnetic metal is an iron-carbon alloy having a carbon content, that is to say a carbon content by mass, of less than 0.03% by weight.
  • the ferromagnetic part may have a laminated structure, i.e. be the result of a laminated stack of sheets made of the aforementioned ferromagnetic metal.
  • each of the ferromagnetic part can be massive, that is to say without lamination.
  • the ferromagnetic part is formed integrally by the soft ferromagnetic metal.
  • the ferromagnetic part comprises, for the entire surface of at least one of its faces, a surface layer of nickel, obtained by a chemical nickel plating step.
  • This surface nickel layer is present in the skin of the ferromagnetic part, on the face or faces concerned.
  • the surface nickel layer coats the soft ferromagnetic metal for that face (s). At this point, the soft ferromagnetic metal is therefore located under the surface nickel layer.
  • the contact faces 41 and 42 comprise a surface layer of nickel 102, in accordance with the above.
  • the ferromagnetic part comprises a skin surface layer of nickel and a core-soft ferromagnetic metal
  • a blank is first provided in the desired soft ferromagnetic metal, with the structure desired, for example laminated or massive, and the desired geometry, for example that described above for the parts 22 and 30. Then, one proceeds to the chemical nickel plating of at least a part of the raw part, to obtain the ferromagnetic part desired. At the end of the chemical nickel plating, the chemically nickel plated part is coated, on the surface, with a surface layer of nickel.
  • Any suitable chemical nickel plating process can be used, preferably, provided that medium or high phosphorus chemical nickel is used, i.e. greater than 5% phosphorus by weight.
  • the raw part is dipped in a bath.
  • the bath comprises an aqueous solution of nickel oxide and a reducing agent, preferably sodium hydrophosphite.
  • a reduction reaction of the nickel oxide occurs by itself, under the action of the reducing agent, so that it is not necessary to use an electric current.
  • the raw part is preferably stirred in the bath during soaking, so that the entire desired surface is coated, and is coated uniformly. For example, this brewing can be carried out in a barrel, an enclosure or a tank.
  • the thickness of the surface nickel layer is determined in particular by the immersion time in the bath and the concentration of reagents in the bath.
  • the nickel layer advantageously forms a non-magnetic layer on the surface of the ferromagnetic part.
  • the layer of nickel being provided on the faces 41 and 42, it advantageously serves as an air gap for the magnetic circuit formed by the parts 6 and 8.
  • the layer of nickel could be provided on only one of the two faces 41 and 42, the other face being advantageously treated by a different process.
  • this air gap integrated into parts 6 and 8, or at least one of them it is not compulsory to provide the separate air gap wedge, which makes it possible to obtain an air gap whose thickness , measured parallel to the X10 axis, is particularly weak and regular, perpendicular to the X10 axis.
  • Contactor 2 is therefore particularly efficient and has a particularly low drop-out time that is stable over time. Contactor 2 is more durable. This does not exclude the possibility of providing all the same a separate air gap part as explained above, without departing from the scope of the invention.
  • the surface nickel layer directly coats the soft ferromagnetic metal without an intermediate layer.
  • the ferromagnetic part can be used in this form.
  • the surface nickel layer being provided on at least one of the faces 41 and 42, it effectively protects the parts 22 and / or 30 from any impact liable to occur each time these ferromagnetic parts are brought into contact with each other, during of the passage in the contact position of the actuator 4 of the contactor 2.
  • the surface nickel layer has a high hardness compared to the soft ferromagnetic metal, for example between 400 and 500 HV (Vickers hardness measurement). Therefore, more generally, it is advantageously provided that the surface nickel layer covers at least one surface of a ferromagnetic part of the contactor, which surface comes into contact with another ferromagnetic part when the actuator is tilted from the remote position to the contact position.
  • the soft ferromagnetic metal is preferably bare.
  • the ferromagnetic metal is present only at the heart of the ferromagnetic part, being entirely covered, in skin, by the surface layer of nickel.
  • the ferromagnetic metal of the core is fully protected from impact and corrosion.
  • the surface nickel layer is advantageously external, that is to say it extends from the surface of the part 22 or 30 concerned.
  • the chemical nickel plating step is preferably carried out until the surface nickel layer has a thickness of between 3 and 50 ⁇ m, preferably between 5 and 25 ⁇ m.
  • the air gap obtained is therefore thinner than that which could be obtained using a non-magnetic shim, the thickness of which can hardly be less than 100 ⁇ m.
  • the thickness of the desired air gap is adjusted as a function of the application, in particular as a function of the type of contactor that is desired to be obtained, and of the type of power circuit into which it is desired to be integrated. This adjustment is easy to obtain, since it depends essentially on the time during which the ferromagnetic part is immersed in the chemical nickel plating bath and on the concentration of the reagents in this bath.
  • the thickness of the air gap being so small, the electrical energy to keep the movable and fixed ferromagnetic parts in the contact position is particularly low, even when the contactor is used. in a severe environment, that is to say including subjecting the contactor to shocks and vibrations.
  • the ferromagnetic part comprising the surface nickel layer has preferably undergone a magnetic annealing step, at least as regards the ferromagnetic metal.
  • the term “magnetic annealing” is understood to mean a heat treatment of the part concerned. This treatment is preferably aimed at restoring to the treated part its magnetic properties which may have been lost after deformations that the ferromagnetic metal of the part concerned may have undergone for the manufacture of the part. Magnetic annealing is preferably aimed at enlarging the iron grains of the ferromagnetic metal by stabilizing the carbides in the grain boundaries, thus promoting magnetic fluxes in the material.
  • Magnetic annealing comprises for example a step in which the ferromagnetic part is subjected to a rise in temperature, from ambient, to a temperature Tmax of between 800 and 850 ° C, with a maximum speed of 200 ° C per hour. The ferromagnetic part is then maintained at the temperature Tmax of between 800 and 850 ° C., this first step lasting between 3 and 5 hours. A duration of 4 hours is preferred. In a subsequent magnetic annealing step, following the step of maintaining the temperature Tmax, the temperature is slowly lowered to 500 ° C., before returning to ambient temperature. The total duration of the magnetic annealing operation comprising the first and the second stage is preferably about 20 hours.
  • the magnetic annealing can be carried out before application of the surface nickel layer by chemical nickel plating, in order then to apply the surface nickel layer on the surface.
  • ferromagnetic metal which has undergone magnetic annealing.
  • the nickel layer advantageously coats the annealed ferromagnetic metal without an intermediate layer, in particular with the thickness ranges mentioned above.
  • a diffused nickel layer is provided, intermediate between the surface nickel layer and the core soft ferromagnetic metal.
  • the magnetic annealing is implemented while the ferromagnetic part concerned is already coated with the surface nickel layer. Indeed, the presence of nickel on the surface is not incompatible with magnetic annealing.
  • the nickel layer diffuses in the direction of the core, that is to say that a new layer is created, called a “diffused nickel layer” between the surface nickel layer and the soft ferromagnetic metal, this diffused nickel layer comprising a mixture of nickel and soft ferromagnetic metal, the nickel of the surface nickel layer having propagated towards the core.
  • the diffused nickel layer is therefore of the type NiFe.
  • the diffused nickel layer extends from the surface nickel layer towards the core of the ferromagnetic part.
  • the ferromagnetic pieces 22 and 30 thus each comprise a layer of diffused nickel 104.
  • the part 22 does not include a diffused nickel layer 104 if it has not undergone the annealing step. It is even possible to provide that the part 22 comprises, instead of the nickel layer 102 applied by chemical nickel plating, a layer of electrolytic nickel, or has undergone another suitable treatment.
  • the surface nickel layer has a very high hardness, for example between 750 and 900 HV.
  • the diffused nickel layer has an intermediate hardness, for example about 220 to 260 HV.
  • the soft ferromagnetic metal exhibiting a generally lower hardness, for example less than 150 HV.
  • a hardness gradient is therefore obtained, suitable for improving the strength of the ferromagnetic part and for reducing the rate of wear of the surface nickel layer.
  • the presence of the diffused nickel layer prevents wear of the ferromagnetic parts, by improving the resistance of the surface nickel layer on the soft ferromagnetic metal core.
  • the diffused nickel layer has a thickness of between 3 and 40 ⁇ m, preferably between 10 and 30 ⁇ m.
  • the formation of the diffused nickel layer occurs to the detriment of the thickness of the surface nickel layer, which, while it was initially between 5 and 25 ⁇ m, is reduced, for example to a thickness between 3 and 20 ⁇ m.
  • a raw piece of soft iron was supplied, which was subjected to chemical nickel plating to obtain a surface layer of nickel 10 ⁇ m thick.
  • This blank was then subjected to magnetic annealing, including subjecting the ferromagnetic part to a temperature of 820 ° C for a cycle of 4 hours. After magnetic annealing, the surface nickel layer has a thickness of about 6.6 ⁇ m and the diffused nickel layer has a thickness of 10.3 ⁇ m.
  • a soft iron blank was provided, which was subjected to chemical nickel plating to obtain a 25 ⁇ m thick surface nickel layer.
  • This blank was then subjected to magnetic annealing, including subjecting the ferromagnetic part to a temperature of 820 ° C for a cycle of 4 hours. After annealing, the surface nickel layer has a thickness of about 14.8 ⁇ m and the diffused nickel layer has a thickness of 23.9 ⁇ m.
  • the layers 102 and 104 are provided, when the parts 30 and 32 are in the contact position as shown in the figure figure 4 , an air gap whose thickness is designated by the arrow 106.
  • the thickness of the air gap then includes the surface nickel layer and the diffused nickel layer.
  • Any ferromagnetic part manufactured using the manufacturing process steps can be integrated, that is to say mounted or assembled, in an electromagnetic contactor such as contactor 2, in order to form all or part of the ferromagnetic part.
  • an electromagnetic contactor such as contactor 2
  • the actuator of the contactor of the prior art comprises, for the fixed part and for the movable part, two respective ferromagnetic parts, which come into contact with one another each time they pass into the contact position.
  • the mobile part is coated with a layer of phosphate, applied by dry phosphating, for its contact face, and the fixed part is coated with a layer of electrolytic nickel.
  • the thickness of the phosphate layer applied to each of the parts is approximately 3.5 ⁇ m. No air gap part is interposed between the two ferromagnetic parts. These ferromagnetic parts have undergone magnetic annealing carried out before dry phosphating.
  • the contactor according to the invention is identical to the contactor of the prior art, except that the movable part has been coated, on its contact face, with a layer of nickel applied by chemical nickel plating, then has undergone an applied magnetic annealing. after nickel plating.
  • the thickness of the surface nickel layer applied to the movable part is approximately 25 ⁇ m, and that of the diffused nickel layer is approximately 30 ⁇ m.
  • the drop-out time of the actuator according to the invention comprised between 35 and 40 ms, is less than that of the actuator of the prior art, comprised between 40 and 50 ms .
  • the drop-out time of the actuator according to the invention comprised between 45 and 50 ms, is less than that of the actuator of the prior art, comprised between 160 and 170 ms.
  • the drop-out time increases irregularly as the cycles are carried out. Peaks are observed, particularly at 720,000 cycles, where the drop-out time is 142 ms, and at 1,779,300 cycles, where the drop-out time is 211 ms. Troughs are observed consecutively to the two aforementioned peaks, at 805987 cycles where the drop-out time is 111 ms and at 1944121 cycles where the drop-out time is 163 ms. It seems that these irregular variations are caused by the deformation of the ferromagnetic parts under the effect of impact, in combination with the detachment of parts of the phosphate layer.
  • the drop-out time increases more slightly, and more regularly. No significant peak or trough is observed for this growth.
  • the contactor according to the invention has the advantage of offering a very regular drop-out time, with a small deviation over time and particularly good repeatability.
  • the ferromagnetic parts of the contactor according to the invention exhibit a surface condition of acceptable and regular wear, while the surface condition of the ferromagnetic parts of the contactor of the prior art is much more deteriorated. : the parts have lost part of the phosphate coating, so that the ferromagnetic metal present in the core is visible on the surface.
  • the ferromagnetic parts of the contactor of the prior art are deformed on the surface, as if dented, and exhibit significant matting marks, whereas, in comparison, the ferromagnetic parts of the contactor of the invention have better retained their original geometry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Electromagnets (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

La présente invention concerne un procédé de fabrication d'une pièce ferromagnétique pour un contacteur électromagnétique, un procédé de fabrication d'un contacteur électromagnétique, une pièce ferromagnétique, un contacteur électromagnétique, et une utilisation d'une pièce ferromagnétique.The present invention relates to a method of manufacturing a ferromagnetic part for an electromagnetic contactor, a method of manufacturing an electromagnetic contactor, a ferromagnetic part, an electromagnetic contactor, and a use of a ferromagnetic part.

La présente invention est relative au domaine des appareils électrotechniques, en particulier pour la basse tension, et aux éléments ferromagnétiques destinés à équiper de tels appareils.The present invention relates to the field of electrotechnical devices, in particular for low voltage, and to ferromagnetic elements intended to equip such devices.

FR 2 746 541 A1 décrit un exemple d'appareil contacteur électromagnétique connu, comprenant un électro-aimant pourvu d'une bobine avec des bornes d'alimentation, d'une pièce fixe formant une partie fixe du circuit magnétique et d'une pièce mobile formant une partie mobile du circuit magnétique. La pièce mobile est reliée mécaniquement à un porte-contact de l'appareil. L'alimentation de la bobine entraîne le déplacement du porte-contact par déplacement de la pièce mobile par rapport à la pièce fixe sous l'effet du champ électromagnétique ainsi généré. Ce déplacement consiste en un rapprochement et une mise à l'écart de la pièce mobile par rapport à la pièce fixe. FR 2 746 541 A1 describes an example of a known electromagnetic contactor device, comprising an electromagnet provided with a coil with supply terminals, with a fixed part forming a fixed part of the magnetic circuit and with a movable part forming a movable part of the magnetic circuit. The moving part is mechanically connected to a contact holder of the device. The supply of the coil drives the displacement of the contact holder by displacement of the movable part relative to the fixed part under the effect of the electromagnetic field thus generated. This movement consists of moving the moving part closer to and apart from the fixed part.

Pour certaines applications, il est connu, afin d'améliorer le comportement électromagnétique de la pièce mobile et de la pièce fixe, de maintenir un entrefer amagnétique non nul entre la pièce fixe et la pièce mobile lorsque ces pièces sont dans leur position la plus rapprochée. Cela permet notamment d'améliorer le temps de retombée du contacteur, c'est-à-dire le temps que met la pièce mobile à retrouver sa position éloignée de la pièce fixe, lorsque la bobine n'est plus alimentée. Le temps de retombée est un paramètre important, puisqu'il correspond au temps que va mettre le contacteur à ouvrir ou fermer le circuit de puissance une fois qu'il en aura reçu la commande.For certain applications, it is known, in order to improve the electromagnetic behavior of the moving part and of the fixed part, to maintain a non-zero non-magnetic air gap between the fixed part and the moving part when these parts are in their closest position. . This makes it possible in particular to improve the drop-out time of the contactor, that is to say the time taken for the moving part to regain its position away from the fixed part, when the coil is no longer supplied. The drop-out time is an important parameter, since it corresponds to the time that the contactor will take to open or close the power circuit once it has received the command.

Pour cela, il est connu d'introduire une cale amagnétique fine entre les pièces fixe et mobile afin de borner leur rapprochement. Toutefois, il est difficile de concevoir une cale qui présente à la fois une épaisseur suffisamment faible pour que l'entrefer amagnétique soit optimal et à la fois une épaisseur suffisamment forte pour que la cale soit mécaniquement durable.For this, it is known to introduce a fine non-magnetic wedge between the fixed and mobile parts in order to limit their proximity. However, it is difficult to design a wedge which has both a sufficiently small thickness for the non-magnetic air gap to be optimal and at the same time a sufficiently large thickness for the wedge to be mechanically durable.

Il est également connu d'appliquer un traitement de surface de type phosphatation sèche, qui permet d'appliquer en surface des pièces fixe et mobile une couche fine de matériau amagnétique. Dans ce cas, le rapprochement des deux pièces entraîne une mise en contact de celles-ci par l'intermédiaire de leur couche de traitement de surface. A chaque mise en contact, il se produit un choc entre les deux pièces. Après de nombreuses manœuvres, les chocs successifs subits par ces deux pièces entraînent une détérioration de leur couche de traitement de surface, ainsi qu'un matage, c'est-à-dire une déformation ou une usure. La détérioration et le matage entraîne un changement des propriétés électromagnétiques dans le temps, notamment puisque la couche de traitement de surface s'amenuise et que les pièces sont déformées. Généralement, au cours de l'utilisation du contacteur, le temps de retombée augmente, ou varie de façon importante.It is also known practice to apply a surface treatment of the dry phosphating type, which makes it possible to apply to the surface of the fixed and mobile parts a thin layer of non-magnetic material. In this case, bringing the two parts together brings them into contact by means of their surface treatment layer. AT each contact, there is a shock between the two parts. After numerous maneuvers, the successive impacts undergone by these two parts lead to a deterioration of their surface treatment layer, as well as a matting, that is to say a deformation or a wear. Deterioration and matting cause electromagnetic properties to change over time, especially as the surface treatment layer shrinks and parts are deformed. Generally, during the use of the contactor, the drop-out time increases, or varies significantly.

JP 3 099945 B2 concerne un relais électromagnétique comprenant un aimant permanent et une armature en fer doux, couverte d'une couche de revêtement en nickel. JP 3 099945 B2 relates to an electromagnetic relay comprising a permanent magnet and a soft iron frame, covered with a nickel coating layer.

US 2017/040132 A1 décrit un relais dont une armature est revêtue d'une couche qui peut être en nickel. US 2017/040132 A1 describes a relay whose armature is coated with a layer which may be made of nickel.

FR 1 319 342 A décrit un entrefer rempli d'un corps en cuivre, laiton, chrome ou nickel, disposé par un procédé électrolytique ou chimique. FR 1 319 342 A describes an air gap filled with a body of copper, brass, chromium or nickel, arranged by an electrolytic or chemical process.

DE 75 20 386 U décrit un relais pour lequel des parties magnétiques sont pourvues d'une couche superficielle formée d'un alliage composé de phosphore, de cuivre et de nickel. DE 75 20 386 U describes a relay for which magnetic parts are provided with a surface layer formed of an alloy composed of phosphorus, copper and nickel.

Pour remédier aux inconvénients susmentionnés, un but de l'invention est de fournir un nouveau procédé de fabrication d'une pièce ferromagnétique présentant à la fois une endurance mécanique particulièrement élevée face aux chocs, de bonnes propriétés ferromagnétiques et une bonne tenue à la corrosion, tout en intégrant un entrefer amagnétique.To remedy the aforementioned drawbacks, an aim of the invention is to provide a new method of manufacturing a ferromagnetic part exhibiting both particularly high mechanical endurance against shocks, good ferromagnetic properties and good corrosion resistance, while integrating a non-magnetic air gap.

Selon un premier aspect, l'invention a pour objet un procédé de fabrication d'une pièce ferromagnétique pour un contacteur électromagnétique, le procédé comprenant les étapes successives suivantes :

  • une étape a) de fourniture d'une pièce brute en métal ferromagnétique doux ; et
  • une étape b) de nickelage chimique d'au moins une partie de la pièce brute pour obtenir la pièce ferromagnétique, dont la partie est revêtue en surface par une couche de nickel de surface, la pièce ferromagnétique obtenue comprenant le métal ferromagnétique doux, qui, pour ladite au moins une partie chimiquement nickelée, est disposé sous la couche de nickel de surface.
According to a first aspect, the subject of the invention is a method of manufacturing a ferromagnetic part for an electromagnetic contactor, the method comprising the following successive steps:
  • a step a) of supplying a blank piece of soft ferromagnetic metal; and
  • a step b) of chemical nickel plating of at least part of the blank to obtain the ferromagnetic part, the part of which is surface coated with a surface layer of nickel, the ferromagnetic part obtained comprising the soft ferromagnetic metal, which, for said at least one chemically nickel-plated part, is placed under the surface nickel layer.

Selon l'invention, le procédé comprend, après l'étape b), une étape c) de recuit magnétique de la pièce ferromagnétique revêtue lors de l'étape b), de sorte que la pièce ferromagnétique obtenue à l'issue de l'étape c) comprend :

  • en surface externe, la couche de nickel de surface,
  • le métal ferromagnétique doux recuit, sous la couche de nickel de surface pour ladite au moins une partie chimiquement nickelée au cours de l'étape b), et
  • une couche de nickel diffusé dans le métal ferromagnétique doux en raison du recuit magnétique, la couche de nickel diffusé reliant la couche de nickel de surface et le métal ferromagnétique doux recuit.
According to the invention, the method comprises, after step b), a step c) of magnetic annealing of the ferromagnetic part coated during step b), so that the ferromagnetic part obtained at the end of the step c) includes:
  • on the external surface, the surface nickel layer,
  • the annealed soft ferromagnetic metal, under the surface nickel layer for said at least one chemically nickel-plated part during step b), and
  • a layer of diffused nickel in the soft ferromagnetic metal due to magnetic annealing, the diffused nickel layer connecting the surface nickel layer and the annealed soft ferromagnetic metal.

Grâce à l'invention, la couche de nickel de surface confère une résistance aux chocs à la pièce ferromagnétique. Lorsque la pièce ferromagnétique est utilisée dans un contacteur électromagnétique, sa détérioration est plus lente que les moyens mis en oeuvre dans l'art antérieur. En particulier, la dérive du temps de retombée du contacteur est nettement moins élevée, et surtout, moins aléatoire. La couche de nickel de surface est amagnétique, relativement au métal ferromagnétique doux, de sorte que cette couche peut avantageusement être utilisée en tant qu'entrefer amagnétique intégré. La couche résiduelle de nickel confère aussi une résistance à la corrosion à la pièce ferromagnétique, étant donné que le métal ferromagnétique est susceptible d'y être sensible. Dans un mode de réalisation préférentiel où l'on applique un recuit magnétique à la pièce ferromagnétique, le nickelage chimique est compatible avec ce recuit magnétique, lequel peut donc être effectué postérieurement au nickelage chimique. Par conséquent, les propriétés magnétiques de la pièce ferromagnétique peuvent être rendues particulièrement bonnes pour l'application à un contacteur électromagnétique.Thanks to the invention, the surface layer of nickel confers impact resistance on the ferromagnetic part. When the ferromagnetic part is used in an electromagnetic contactor, its deterioration is slower than the means used in the prior art. In particular, the drift in the switch-off time of the contactor is much lower, and above all, less random. The surface nickel layer is non-magnetic, relative to the soft ferromagnetic metal, so that this layer can advantageously be used as an integrated non-magnetic air gap. The residual nickel layer also imparts corrosion resistance to the ferromagnetic part, since the ferromagnetic metal is likely to be sensitive to it. In a preferred embodiment where a magnetic annealing is applied to the ferromagnetic part, the chemical nickel plating is compatible with this magnetic annealing, which can therefore be carried out after the chemical nickel plating. Therefore, the magnetic properties of the ferromagnetic part can be made particularly good for application to an electromagnetic contactor.

Grâce à l'invention, après l'étape de recuit magnétique, la couche de nickel de surface présente une dureté très élevée, par exemple entre 750 et 900 HV. La couche de nickel diffusée présente une dureté intermédiaire, par exemple environ 220 à 260 HV. Le métal ferromagnétique doux présentant une dureté généralement inférieure, par exemple inférieure à 150 HV. Un gradient de dureté est donc obtenu, propre à améliorer la résistance de la pièce ferromagnétique et à réduire la vitesse d'usure de la couche de nickel de surface. En effet, la présence de la couche de nickel diffusé évite l'usure des pièces ferromagnétiques, en améliorant la tenue de la couche de nickel de surface sur le cœur de métal ferromagnétique doux.Thanks to the invention, after the magnetic annealing step, the surface nickel layer has a very high hardness, for example between 750 and 900 HV. The diffused nickel layer has an intermediate hardness, for example about 220 to 260 HV. The soft ferromagnetic metal exhibiting a generally lower hardness, for example less than 150 HV. A hardness gradient is therefore obtained, suitable for improving the strength of the ferromagnetic part and for reducing the rate of wear of the surface nickel layer. Indeed, the presence of the diffused nickel layer prevents wear of the ferromagnetic parts, by improving the resistance of the surface nickel layer on the soft ferromagnetic metal core.

D'autres caractéristiques avantageuses de l'invention sont définies dans ce qui suit :

  • l'étape b) comprend un trempage de la pièce brute dans un bain, le bain comprenant une solution aqueuse d'oxyde de nickel et un agent réducteur, de préférence de l'hydrophosphite de sodium, la pièce brute étant brassée dans le bain lors du trempage de sorte à être revêtue par la couche de nickel de surface sur au moins 95% de sa superficie, de préférence sur toute sa superficie.
  • l'étape c) comprend une soumission de la pièce ferromagnétique, revêtue au cours de l'étape b), à une température comprise entre 800°C et 850°C, pendant une durée comprise entre 3 heures et 5 heures, de préférence 4 heures.
  • le métal ferromagnétique doux est un alliage fer-carbone avec une teneur en carbone inférieure à 0,03 % en poids.
Other advantageous characteristics of the invention are defined in the following:
  • step b) comprises soaking the blank in a bath, the bath comprising an aqueous solution of nickel oxide and a reducing agent, preferably sodium hydrophosphite, the blank being stirred in the bath during dipping so as to be coated with the surface nickel layer over at least 95% of its area, preferably over its entire area.
  • step c) comprises subjecting the ferromagnetic part, coated during step b), to a temperature of between 800 ° C and 850 ° C, for a period of between 3 hours and 5 hours, preferably 4 hours.
  • the soft ferromagnetic metal is an iron-carbon alloy with a carbon content of less than 0.03% by weight.

L'invention a également pour objet un procédé de fabrication d'un contacteur électromagnétique, le contacteur électromagnétique comprenant :

  • un actionneur électromagnétique, comprenant au moins une bobine, une partie ferromagnétique mobile et une partie ferromagnétique fixe, les parties ferromagnétique mobile et fixe étant configurés pour basculer entre une position éloignée l'une de l'autre et une position de contact ; et
  • au moins une paire de contacts de puissance, qui est actionnée par la partie ferromagnétique mobile lors du basculement entre la position éloignée et la position de contact, ladite au moins une paire de contacts de puissance étant alors basculée entre une configuration fermée et une configuration ouverte,
le procédé de fabrication du contacteur électromagnétique comprenant une étape dans laquelle on intègre au moins une pièce ferromagnétique, obtenue à l'aide du procédé de fabrication d'une pièce ferromagnétique conforme à ce qui précède, à au moins l'une des parties ferromagnétique mobile et fixe.The subject of the invention is also a method of manufacturing an electromagnetic contactor, the electromagnetic contactor comprising:
  • an electromagnetic actuator, comprising at least a coil, a movable ferromagnetic part and a fixed ferromagnetic part, the movable and fixed ferromagnetic parts being configured to switch between a position remote from each other and a contact position; and
  • at least one pair of power contacts, which is actuated by the movable ferromagnetic part upon switching between the remote position and the contact position, said at least one pair of power contacts then being switched between a closed configuration and an open configuration ,
the method of manufacturing the electromagnetic contactor comprising a step in which at least one ferromagnetic part, obtained using the method of manufacturing a ferromagnetic part according to the above, is integrated into at least one of the movable ferromagnetic parts and fixed.

L'invention a également pour objet une pièce ferromagnétique pour un contacteur électromagnétique, la pièce ferromagnétique étant préférentiellement obtenue à l'aide d'un procédé conforme à ce qui précède, la pièce ferromagnétique ayant subi, pour au moins une partie de ladite pièce ferromagnétique, une étape b) de nickelage chimique, et, après l'étape b), une étape c) de recuit magnétique de la pièce ferromagnétique revêtue lors de l'étape b), ladite au moins une partie de la pièce ferromagnétique comprenant :

  • en surface externe, une couche de nickel de surface obtenue l'étape de nickelage chimique, et
  • un métal ferromagnétique doux recuit, revêtu par la couche de nickel de surface en étant sous la couche de nickel de surface pour ladite au moins une partie chimiquement nickelée au cours de l'étape b), et
  • une couche de nickel diffusé dans le métal ferromagnétique doux en raison du recuit magnétique, la couche de nickel diffusé reliant la couche de nickel de surface et le métal ferromagnétique doux recuit.
The subject of the invention is also a ferromagnetic part for an electromagnetic contactor, the ferromagnetic part being preferably obtained using a method in accordance with the above, the ferromagnetic part having undergone, for at least part of said ferromagnetic part. , a step b) of chemical nickel plating, and, after step b), a step c) of magnetic annealing of the ferromagnetic part coated during step b), said at least part of the ferromagnetic part comprising:
  • on the external surface, a surface nickel layer obtained by the chemical nickel plating step, and
  • an annealed soft ferromagnetic metal, coated with the surface nickel layer being under the surface nickel layer for said at least one chemically nickel-plated part during step b), and
  • a layer of diffused nickel in the soft ferromagnetic metal due to magnetic annealing, the diffused nickel layer connecting the surface nickel layer and the annealed soft ferromagnetic metal.

De préférence, la couche de nickel de surface mesure entre 3 et 50 µm d'épaisseur, de préférence entre 3 et 20 µm d'épaisseur. De préférence, la couche de nickel diffusé mesure entre 3 et 40 µm d'épaisseur, de préférence entre 10 et 30 µm d'épaisseur.Preferably, the surface nickel layer measures between 3 and 50 μm in thickness, preferably between 3 and 20 μm in thickness. Preferably, the layer of Diffused nickel is between 3 and 40 µm thick, preferably between 10 and 30 µm thick.

L'invention a également pour objet un contacteur électromagnétique comprenant :

  • un actionneur électromagnétique, comprenant au moins une bobine, une partie ferromagnétique mobile et une partie ferromagnétique fixe, les parties ferromagnétique mobile et fixe étant configurées pour basculer entre une position éloignée l'une de l'autre et une position de contact, au moins l'une des parties ferromagnétique mobile et fixe comprenant une pièce ferromagnétique conforme à ce qui précède ; et
  • au moins une paire de contacts de puissance, qui est actionnée par la partie ferromagnétique mobile lors du basculement entre la position éloignée et la position de contact, ladite au moins une paire de contacts de puissance étant alors basculée entre une configuration fermée et une configuration ouverte.
The subject of the invention is also an electromagnetic contactor comprising:
  • an electromagnetic actuator, comprising at least one coil, a movable ferromagnetic part and a fixed ferromagnetic part, the movable and fixed ferromagnetic parts being configured to switch between a position remote from each other and a contact position, at least l one of the movable and fixed ferromagnetic parts comprising a ferromagnetic part in accordance with the above; and
  • at least one pair of power contacts, which is actuated by the movable ferromagnetic part upon switching between the remote position and the contact position, said at least one pair of power contacts then being switched between a closed configuration and an open configuration .

L'invention a également pour objet une utilisation d'une pièce ferromagnétique conforme à ce qui précède dans un contacteur électromagnétique conforme à ce qui précède, la pièce ferromagnétique étant utilisée comme partie de la partie ferromagnétique mobile ou de la partie ferromagnétique fixe de l'actionneur électromagnétique.The invention also relates to the use of a ferromagnetic part in accordance with the above in an electromagnetic contactor in accordance with the above, the ferromagnetic part being used as part of the movable ferromagnetic part or of the fixed ferromagnetic part of the electromagnetic actuator.

La description qui suit concerne des modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés dans lesquels :

  • Les figures 1 et 2 sont deux coupes d'un même contacteur électromagnétique, selon deux configurations différentes, comportant des pièces ferromagnétiques conformes à l'invention ;
  • la figure 3 est une vue en perspective de l'une des pièces ferromagnétiques des figures précédentes ;
  • la figure 4 est un détail de la figure 2, représentant deux pièces ferromagnétiques du contacteur, de façon schématique et à plus grande échelle ; et
  • la figure 5 est un graphe montrant les résultats d'un test comparatif.
The following description relates to embodiments of the invention, given by way of non-limiting examples, with reference to the appended drawings in which:
  • The figures 1 and 2 are two sections of the same electromagnetic contactor, according to two different configurations, comprising ferromagnetic parts in accordance with the invention;
  • the figure 3 is a perspective view of one of the ferromagnetic parts of the previous figures;
  • the figure 4 is a detail of the figure 2 , showing two ferromagnetic parts of the contactor, schematically and on a larger scale; and
  • the figure 5 is a graph showing the results of a comparative test.

Sur les figures 1 et 2 est représenté un contacteur électromagnétique 2, permettant d'interrompre sélectivement le passage de courant dans un circuit de puissance, par exemple entre une source d'alimentation et une charge électrique. A la figure 1, le contacteur 2 est représenté dans une configuration ouverte, dans laquelle il bloque le passage de courant. A la figure 2, le contacteur 2 est représenté dans une configuration fermée, dans laquelle il autorise le passage du courant.On the figures 1 and 2 an electromagnetic contactor 2 is shown, making it possible to selectively interrupt the flow of current in a power circuit, for example between a power source and an electric load. To the figure 1 , the contactor 2 is shown in an open configuration, in which it blocks the flow of current. To the figure 2 , the contactor 2 is shown in a closed configuration, in which it allows current to flow.

Ce contacteur 2 est préférentiellement prévu pour un circuit de puissance dit « basse tension », c'est-à-dire présentant une tension comprise par exemple entre 1V et 600V, de préférence entre 100V et 400V. Par exemple, il peut s'agir d'un réseau domestique, c'est-à-dire un réseau alimentant un logement, à une tension de 110V ou 230V en monophasé. Alternativement, cela peut par exemple concerner un réseau industriel en 380V triphasé.This contactor 2 is preferably provided for a so-called "low voltage" power circuit, that is to say having a voltage of for example between 1V and 600V, preferably between 100V and 400V. For example, it can be a domestic network, that is to say a network supplying a dwelling, at a voltage of 110V or 230V in single phase. Alternatively, this may for example concern an industrial 380V three-phase network.

Le contacteur 2 comprend une ou plusieurs paires de contacts de puissance, chaque paire comprenant un contact mobile 12 et un contact fixe 14. Les contacts 12 et 14 sont des contacts de puissance, car ils sont configurés pour bloquer ou être traversés par le courant du circuit de puissance susmentionné, selon la configuration ouverte ou fermée du contacteur 2. Le nombre de paires de contacts 12 et 14 est par exemple choisi en fonction du nombre de phases du circuit de puissance, chaque paire étant associée à une phase. Dans le présent exemple, deux paires de contacts 12 et 14 sont prévues, s'agissant d'un circuit de puissance monophasé.The contactor 2 comprises one or more pairs of power contacts, each pair comprising a movable contact 12 and a fixed contact 14. The contacts 12 and 14 are power contacts, because they are configured to block or be crossed by the current of the. aforementioned power circuit, depending on the open or closed configuration of the contactor 2. The number of pairs of contacts 12 and 14 is for example chosen as a function of the number of phases of the power circuit, each pair being associated with one phase. In the present example, two pairs of contacts 12 and 14 are provided, being a single-phase power circuit.

Les contacts mobiles 12 sont portés par un porte-contact 10 qui est mobile selon un axe X10 entre :

  • la position dite « ouverte », représentée à la figure 1, dans laquelle les contacts mobiles 12 et les contacts fixes 14 sont séparés par une distance d'isolement électrique et
  • la position dite « fermée » représentée à la figure 2, dans laquelle les contacts mobiles 12 et les contacts fixes 14 sont en contact et connectés.
The movable contacts 12 are carried by a contact carrier 10 which is movable along an axis X10 between:
  • the so-called "open" position, shown in figure 1 , in which the movable contacts 12 and the fixed contacts 14 are separated by an electrical isolation distance and
  • the so-called "closed" position shown in figure 2 , wherein the movable contacts 12 and the fixed contacts 14 are in contact and connected.

Par déplacement du contact mobile 12 solidairement avec le porte-contact 10, chaque paire de contacts de puissance 12 et 14 évolue donc entre une configuration fermée, lorsque le contact 12 est en position fermée, et une configuration ouverte, lorsque le contact 12 est en position ouverte.By moving the movable contact 12 integrally with the contact carrier 10, each pair of power contacts 12 and 14 therefore changes between a closed configuration, when the contact 12 is in the closed position, and an open configuration, when the contact 12 is in. open position.

Le contacteur 2 comprend un actionneur électromagnétique 4 configuré pour actionner le porte-contact 10 entre ses deux configurations ouverte et fermée, et donc par extension, pour actionner simultanément chaque paire de contacts 12 et 14 entre leur position ouverte et fermée.The contactor 2 comprises an electromagnetic actuator 4 configured to actuate the contact carrier 10 between its two open and closed configurations, and therefore by extension, to simultaneously actuate each pair of contacts 12 and 14 between their open and closed position.

L'actionneur électromagnétique 4 comprend deux bobines 18, une partie ferromagnétique 6 fixe et une partie ferromagnétique 8 mobile. La partie 8 est mobile le long de l'axe X10, entre une position éloignée de la partie fixe 6, représentée à la figure 1 et une position de contact avec la partie fixe 6, représentée à la figure 2. La course en translation de la partie 8 par rapport à la partie 6 est représentée par la distance C à la figure 1, mesurée parallèlement à l'axe X10. En position éloignée, les parties 6 et 8 sont espacés par la distance C. En position de contact, les parties 6 et 8 sont en contact l'une contre l'autre et sont donc plus proche l'une de l'autre.The electromagnetic actuator 4 comprises two coils 18, a fixed ferromagnetic part 6 and a movable ferromagnetic part 8. The part 8 is movable along the axis X10, between a position remote from the fixed part 6, shown in figure 1 and a position of contact with the fixed part 6, shown in figure 2 . The travel in translation of part 8 relative to part 6 is represented by the distance C at the figure 1 , measured parallel to the X10 axis. In the remote position, the parts 6 and 8 are spaced apart by the distance C. In the contact position, the parts 6 and 8 are in contact with each other and are therefore closer to each other.

Le porte contact 10, et donc chaque contact 12 simultanément, est déplacé, préférentiellement en translation suivant l'axe X10, par l'intermédiaire de la partie mobile 8 de l'actionneur électromagnétique 4. Lorsque la partie 8 est en position éloignée, les paires de contacts 12 et 14 sont en configuration ouverte. Lorsque la partie 8 est en position de contact, les paires de contacts 12 et 14 sont en configuration fermée. Pour cela, on prévoit que la position du porte-contact 10 est liée à celle de la partie 8. Ici, le porte-contacts 10 et la partie mobile 8 de l'actionneur 4 sont liés en translation suivant l'axe X10. Dans l'exemple, la partie 8 de l'actionneur est assemblée sur le porte-contacts 10 de manière à la rendre solidaire du porte-contact 10.The contact carrier 10, and therefore each contact 12 simultaneously, is moved, preferably in translation along the axis X10, by means of the movable part 8 of the electromagnetic actuator 4. When the part 8 is in the remote position, the pairs of contacts 12 and 14 are in the open configuration. When the part 8 is in the contact position, the pairs of contacts 12 and 14 are in the closed configuration. For this, provision is made for the position of the contact holder 10 to be linked to that of part 8. Here, the contact holder 10 and the movable part 8 of the actuator 4 are linked in translation along the axis X10. In the example, part 8 of the actuator is assembled on contact carrier 10 so as to make it integral with contact carrier 10.

En variante, on pourrait prévoit à l'inverse que la position éloignée de la partie 8 entraîne une mise en configuration fermée des paires de contacts 12 et 14, et que la position de contact de la partie 8 entraîne une mise en configuration ouverte des paires de contacts 12 et 14.As a variant, it could conversely be provided that the remote position of part 8 causes the pairs of contacts 12 and 14 to be placed in closed configuration, and that the contact position of part 8 causes the pairs to be placed in the open configuration. contacts 12 and 14.

La partie fixe 6 comprend une armature ferromagnétique ayant une architecture en forme de U. L'armature comprend une base 20 et deux noyaux 21 qui s'étendent, à partir de la base 20, parallèlement à l'axe X10. L'armature de la partie fixe 6 comprend également deux pièces ferromagnétiques 22 séparées. Les pièces 22 sont montées respectivement aux extrémités libres des noyaux 21, à l'opposé de la base 20. Les deux pièces 22 sont chacune de forme plate dans un même plan orthogonal à l'axe X10.The fixed part 6 comprises a ferromagnetic frame having a U-shaped architecture. The frame comprises a base 20 and two cores 21 which extend, from the base 20, parallel to the axis X10. The frame of the fixed part 6 also comprises two separate ferromagnetic parts 22. The parts 22 are mounted respectively at the free ends of the cores 21, opposite the base 20. The two parts 22 are each of flat shape in the same plane orthogonal to the axis X10.

En variante, la partie fixe 6 pourrait être formée par une seule pièce ferromagnétique d'un seul tenant, plutôt que par assemblage des différentes pièces ferromagnétiques 20, 21 et 22 susmentionnées.Alternatively, the fixed part 6 could be formed by a single ferromagnetic part in one piece, rather than by assembling the various ferromagnetic parts 20, 21 and 22 mentioned above.

La partie mobile 8 comprend une pièce ferromagnétique 30, visible sur les figures 1 et 2, et représentée seule sur la figure 3. La pièce 30 est préférentiellement une pièce plate, qui s'étend dans un plan orthogonal à l'axe X10. La partie mobile comprend également une deuxième pièce ferromagnétique 31, qui forme également une pièce plate en appui plan contre la pièce 30.The movable part 8 comprises a ferromagnetic part 30, visible on the figures 1 and 2 , and represented alone on the figure 3 . The part 30 is preferably a flat part, which extends in a plane orthogonal to the axis X10. The mobile part also comprises a second ferromagnetic part 31, which also forms a flat part resting flat against the part 30.

En variante, la partie mobile 8 forme une seule pièce ferromagnétique d'un seul tenant.As a variant, the mobile part 8 forms a single ferromagnetic part in one piece.

La partie fixe 6 et la partie mobile 8 sont qualifiées de « ferromagnétique », c'est-à-dire qu'elles sont constituées de matériaux, et forment des structures, qui les rend susceptibles de s'aimanter sous l'effet du champ magnétique généré par les bobines 18 de façon à former un circuit magnétique, conduisant le flux magnétique produit par les bobines 18. Dans le présent exemple, les pièces ferromagnétiques 20, 21, 22, 30 et 31 forment un circuit magnétique fermé, en forme de boucle, lorsque la partie 8 est en position de contact avec la partie 6.The fixed part 6 and the moving part 8 are qualified as “ferromagnetic”, that is to say that they are made of materials, and form structures, which makes them susceptible to magnetization under the effect of the field. magnetic generated by the coils 18 so as to form a magnetic circuit, conducting the magnetic flux produced by the coils 18. In the present example, the ferromagnetic parts 20, 21, 22, 30 and 31 form a closed magnetic circuit, in the form of a buckle, when part 8 is in contact with part 6.

Chaque bobine 18 est enroulée autour l'un des noyaux 21. Lorsqu'elles sont alimentées en courant électrique, les bobines 18 génèrent un champ magnétique qui induit une aimantation de la partie fixe 6 et de la partie mobile 8. Les parties 6 et 8 sont ainsi mutuellement attirées l'une vers l'autre. Lorsque les bobines 18 sont alimentées, la partie 6 passe en position de contact avec la partie 8. Lorsque l'alimentation des bobines 18 est interrompue, les parties 6 et 8 se désaimantant, de sorte que les parties 6 et 8 ne sont plus attirées l'une vers l'autre. La partie 6 retourne ainsi en position éloignée de la partie 8, sous l'effet de moyens de rappel décrits ci-après.Each coil 18 is wound around one of the cores 21. When supplied with electric current, the coils 18 generate a magnetic field which induces magnetization of the fixed part 6 and of the moving part 8. The parts 6 and 8 are thus mutually attracted to each other. When the coils 18 are supplied, the part 6 passes into the position of contact with the part 8. When the supply of the coils 18 is interrupted, the parts 6 and 8 become demagnetized, so that the parts 6 and 8 are no longer attracted. towards each other. Part 6 thus returns to a position remote from part 8, under the effect of return means described below.

Les pièces 22 sont disposées en face de la pièce 30, parallèlement à l'axe X10. Les pièces 22 s'étendent dans un même plan qui est parallèle au plan de la pièce 30, ces plans étant orthogonaux à l'axe X10. Chaque pièce 22 comprend une face de contact respective 41 et la pièce 30 comprend une face de contact 42. En position éloignée, la pièce 30 est à l'écart des pièces 22, la face de contact 42 étant séparée par la distance C des faces 41. En position de contact, la pièce 30 est en appui plan contre les pièces 22, la face 42 venant en appui plan contre les faces 41.The parts 22 are arranged opposite the part 30, parallel to the axis X10. The parts 22 extend in the same plane which is parallel to the plane of the part 30, these planes being orthogonal to the axis X10. Each part 22 comprises a respective contact face 41 and the part 30 comprises a contact face 42. In the remote position, the part 30 is away from the parts 22, the contact face 42 being separated by the distance C of the faces. 41. In the contact position, the part 30 rests flat against the parts 22, the face 42 resting flat against the faces 41.

L'actionneur électromagnétique 4 comprend des moyens de rappel de la partie mobile 8 en position éloignée, qui s'étendent par exemple entre la partie fixe 6 et la partie mobile 8. Dans l'exemple illustré, ces moyens de rappel sont formés par deux ressorts de compression hélicoïdaux 24 interposés parallèlement à l'axe X10 entre la pièce 31 et les noyaux 21. Pour la clarté des dessins, les ressorts 24 ne sont pas représentés à la figure 2.The electromagnetic actuator 4 comprises means for returning the movable part 8 to the remote position, which extend for example between the fixed part 6 and the movable part 8. In the example illustrated, these return means are formed by two helical compression springs 24 interposed parallel to the axis X10 between the part 31 and the cores 21. For the clarity of the drawings, the springs 24 are not shown in figure 2 .

Les ressorts 24 sont maintenus en position vis-à-vis des parties 6 et 8. Pour cela, chaque ressort 24 est introduit dans un orifice respectif traversant 33 de la pièce 30 et dans un orifice respectif traversant 25 de de l'une des pièces 22. Chaque paire d'orifices traversants 25 et 33 associée à l'un des ressorts 24 est respectivement coaxiales avec un axe parallèle à l'axe X10. Les orifices 25 s'étendent respectivement à partir des faces 41 jusqu'au noyau 21. Les orifices 33 s'étendent à partir de la face 42 jusqu'à la pièce 31.The springs 24 are held in position vis-à-vis parts 6 and 8. For this, each spring 24 is introduced into a respective orifice 33 passing through part 30 and into a respective orifice 25 passing through one of the parts. 22. Each pair of through-holes 25 and 33 associated with one of the springs 24 is respectively coaxial with an axis parallel to the axis X10. The orifices 25 extend respectively from the faces 41 to the core 21. The orifices 33 extend from the face 42 to the part 31.

Le contacteur 2 comprend un boîtier 16 enfermant au moins partiellement les contacts 12 et 14, et enfermant complètement l'actionneur 4.The contactor 2 comprises a housing 16 at least partially enclosing the contacts 12 and 14, and completely enclosing the actuator 4.

De préférence, comme expliqué ci-après, les faces 41 et 42 sont dans un matériau amagnétique qui constitue un entrefer intégré aux pièces 22 et 30. Ainsi, le matériau d'entrefer est venu de matière avec respectivement les pièces 22 et 30. Par « entrefer », on désigne une partie du circuit magnétique dans laquelle le flux d'induction ne circule pas dans un matériau ferromagnétique. En d'autres termes, l'entrefer est une coupure du circuit magnétique formé par les parties 6 et 8, que l'on conserve en position de contact de la partie 8 du contacteur 2. En position éloignée, un entrefer est donc formé à la fois par l'air séparant les faces 41 et 42, et par la couche de matériau amagnétique formant les faces 41 et 42.Preferably, as explained below, the faces 41 and 42 are in a non-magnetic material which constitutes an air gap integrated into the parts 22 and 30. Thus, the air gap material is integral with the parts 22 and 30, respectively. “Air gap” denotes a part of the magnetic circuit in which the induction flux does not circulate in a ferromagnetic material. In other words, the air gap is a cut in the magnetic circuit formed by parts 6 and 8, which is kept in the contact position of part 8 of contactor 2. In the remote position, an air gap is therefore formed at that time by the air separating the faces 41 and 42, and by the layer of non-magnetic material forming the faces 41 and 42.

En variante, on peut prévoir d'intercaler une cale de matériau amagnétique, en plus de l'entrefer déjà fourni par les faces 41 et 42. Dès lors, les faces 41 et 42 ne sont pas en contact mutuel. En position de contact, la cale de matériau amagnétique reçoit en contact les faces 41 et 42, en étant interposée entre elles. Cela permet d'obtenir un entrefer plus épais en position de contact. Cette cale de matériau amagnétique est par exemple réalisée en bronze ou en matière plastique à base de polymère, qui sont des matériaux amagnétiques, comparativement au matériau ferromagnétique des parties 6 et 8.As a variant, provision can be made to insert a wedge of non-magnetic material, in addition to the air gap already provided by the faces 41 and 42. Consequently, the faces 41 and 42 are not in mutual contact. In the contact position, the wedge of non-magnetic material receives the faces 41 and 42 in contact, being interposed between them. This makes it possible to obtain a thicker air gap in the contact position. This wedge of non-magnetic material is for example made of bronze or of polymer-based plastic, which are non-magnetic materials, compared to the ferromagnetic material of parts 6 and 8.

On appelle « temps de retombée », la durée qui s'écoule entre le moment de l'arrêt de l'alimentation électrique des bobines 21 du contacteur 2 et le moment où la partie 8 atteint la position éloignée. En d'autres termes, le temps de retombée indique à quelle vitesse le contacteur 2 peut changer d'état, c'est-à-dire par exemple s'ouvrir et couper le courant circulant dans le circuit de puissance, à partir du moment où le contacteur 2 en a reçu l'ordre, c'est-à-dire le moment ou les bobines 21 de l'actionneur 4 ne sont plus alimentées en énergie électrique. Il s'avère généralement souhaitable d'obtenir le temps de retombée le plus faible possible. Sans vouloir lier le temps de retombée à une quelconque théorie, il semble que plus l'entrefer, obtenu en position de contact, est de faible épaisseur, plus le temps de retombée est lui-même faible.The term “drop-out time” is used to mean the time that elapses between the moment when the electrical supply to the coils 21 of the contactor 2 is stopped and the moment when the part 8 reaches the remote position. In other words, the drop-out time indicates how quickly contactor 2 can change state, i.e. for example open and cut off the current flowing in the power circuit, from the moment where the contactor 2 has received the order, that is to say the moment when the coils 21 of the actuator 4 are no longer supplied with electrical energy. It is generally desirable to obtain the lowest possible fallout time. Without wishing to link the dropout time to any theory, it seems that the thinner the air gap, obtained in the contact position, is, the smaller the dropout time itself.

En fonction de l'application, on pourra prévoir d'autres formes pour les pièces ferromagnétiques fixe et mobile du contacteur et pour les bobines. Par exemple, FR 2 746 541 A1 décrit une pièce de circuit magnétique mobile, nommée culasse, et une pièce de circuit magnétique fixe, qui sont chacune en forme de « E », c'est-à-dire présentent chacune trois branches parallèles, notamment une branche centrale. Dans ce document, une seule bobine est prévue autour de la branche centrale respective de ces deux pièces magnétiques, et entoure cette branche. Les pièces ferromagnétiques mobile et fixe, ainsi que l'unique bobine décrits dans FR 2 746 541 A1 conviennent pour l'invention.Depending on the application, other shapes can be provided for the fixed and mobile ferromagnetic parts of the contactor and for the coils. For example, FR 2 746 541 A1 describes a movable magnetic circuit part, called the yoke, and a fixed magnetic circuit part, which are each in the shape of an “E”, that is to say each have three parallel branches, in particular a central branch. In this document, a single coil is provided around the respective central branch of these two magnetic parts, and surrounds this branch. The movable and fixed ferromagnetic parts, as well as the single coil described in FR 2 746 541 A1 are suitable for the invention.

Dans la description qui suit, l'expression « pièce ferromagnétique » concerne au moins une pièce des parties ferromagnétiques des contacteurs décrits ci-dessus, en particulier les parties 6 et 8 du contacteur 2. Plus précisément, l'expression « pièce ferromagnétique » peut s'appliquer à au moins une pièce ferromagnétique parmi les pièces ferromagnétiques 22 et 30. De façon préférentielle, dans le contacteur 2, au moins les pièces ferromagnétique 22 et 30 sont concernées par ce qui suit.In the following description, the expression “ferromagnetic part” relates to at least one part of the ferromagnetic parts of the contactors described above, in particular parts 6 and 8 of the contactor 2. More precisely, the expression “ferromagnetic part” can apply to at least one ferromagnetic part among the ferromagnetic parts 22 and 30. Preferably, in the contactor 2, at least the ferromagnetic parts 22 and 30 are concerned by the following.

De façon schématique avec une échelle agrandie, et exagérée pour faciliter la compréhension, la figure 4 représente l'une des pièces ferromagnétique 22 et la pièce ferromagnétique 30 en position de contact, c'est-à-dire en contact l'une contre l'autre via leur face 41 et 42 respective.Schematically with an enlarged scale, and exaggerated to facilitate understanding, figure 4 shows one of the ferromagnetic parts 22 and the ferromagnetic part 30 in the contact position, that is to say in contact with one another via their respective faces 41 and 42.

La pièce ferromagnétique comprend essentiellement un matériau ferromagnétique doux, c'est-à-dire en particulier pour l'essentiel de son volume. Ce métal ferromagnétique doux est au moins présent à cœur de la pièce ferromagnétique, c'est-à-dire dans une partie interne centrale de son volume. Par exemple, comme montré sur la figure 4, les pièces 22 et 30 comprennent le métal ferromagnétique doux 100 à cœur. Dans certains modes de réalisations de l'invention, le métal ferromagnétique doux est également présent en surface de la pièce ferromagnétique, pour des surfaces non occupées par la couche de nickel décrite ci-après.The ferromagnetic part essentially comprises a soft ferromagnetic material, that is to say in particular for the main part of its volume. This soft ferromagnetic metal is at least present at the heart of the ferromagnetic part, that is to say in a central internal part of its volume. For example, as shown on figure 4 , parts 22 and 30 include the soft ferromagnetic metal 100 at the core. In certain embodiments of the invention, the soft ferromagnetic metal is also present on the surface of the ferromagnetic part, for surfaces not occupied by the layer of nickel described below.

Par « doux », on entend que le métal choisi s'aimante facilement sous l'action d'un champ magnétique et perd facilement son aimantation lorsqu'il n'est plus soumis au champ magnétique.By "soft" is meant that the chosen metal easily magnetizes under the action of a magnetic field and easily loses its magnetization when it is no longer subjected to the magnetic field.

Le métal ferromagnétique doux choisi est par exemple un alliage de fer doux, ou un acier bas carbone. Par exemple, on prévoit que le métal ferromagnétique doux est alliage fer-carbone présentant une teneur en carbone, c'est-à-dire un taux massique de carbone, inférieur à 0,03 % en poids. On peut prévoir un fer pur.The chosen soft ferromagnetic metal is, for example, a soft iron alloy, or a low carbon steel. For example, provision is made for the soft ferromagnetic metal to be an iron-carbon alloy having a carbon content, that is to say a carbon content by mass, of less than 0.03% by weight. We can provide a pure iron.

La pièce ferromagnétique peut avoir une structure feuilletée, c'est-à-dire être le résultat d'un empilement laminé de feuilles faites du métal ferromagnétique susmentionné.The ferromagnetic part may have a laminated structure, i.e. be the result of a laminated stack of sheets made of the aforementioned ferromagnetic metal.

Alternativement, la structure chacune de la pièce ferromagnétique peut être massive, c'est-à-dire sans feuilletage. Dans ce cas, la pièce ferromagnétique est formée d'un seul tenant par le métal ferromagnétique doux.Alternatively, the structure each of the ferromagnetic part can be massive, that is to say without lamination. In this case, the ferromagnetic part is formed integrally by the soft ferromagnetic metal.

La pièce ferromagnétique comprend, pour toute la superficie d'au moins l'une de ses faces, une couche de nickel de surface, obtenue par une étape de nickelage chimique. Cette couche de nickel de surface est présente en peau de la pièce ferromagnétique, sur la ou les faces concernées. La couche de nickel de surface revêt le métal ferromagnétique doux pour cette ou ces faces. A cet endroit, le métal ferromagnétique doux est donc situé sous la couche de nickel de surface.The ferromagnetic part comprises, for the entire surface of at least one of its faces, a surface layer of nickel, obtained by a chemical nickel plating step. This surface nickel layer is present in the skin of the ferromagnetic part, on the face or faces concerned. The surface nickel layer coats the soft ferromagnetic metal for that face (s). At this point, the soft ferromagnetic metal is therefore located under the surface nickel layer.

Pour les pièces 22 et 30 visibles sur la figure 4, les faces de contact 41 et 42 comprennent une couche de nickel de surface 102, conforme à ce qui précède.For parts 22 and 30 visible on the figure 4 , the contact faces 41 and 42 comprise a surface layer of nickel 102, in accordance with the above.

Pour obtenir que la pièce ferromagnétique comprend une couche de nickel de surface en peau et un métal ferromagnétique doux à cœur, on fournit dans un premier temps une pièce brute dans le métal ferromagnétique doux souhaité, avec la structure souhaitée, par exemple feuilletée ou massive, et la géométrie souhaitée, par exemple celle décrite ci-dessus pour les pièces 22 et 30. Ensuite, on procède au nickelage chimique d'au moins une partie de la pièce brute, pour obtenir la pièce ferromagnétique souhaitée. A l'issue du nickelage chimique, la partie chimiquement nickelée se trouve revêtue, en surface, par une couche de nickel de surface.In order to obtain that the ferromagnetic part comprises a skin surface layer of nickel and a core-soft ferromagnetic metal, a blank is first provided in the desired soft ferromagnetic metal, with the structure desired, for example laminated or massive, and the desired geometry, for example that described above for the parts 22 and 30. Then, one proceeds to the chemical nickel plating of at least a part of the raw part, to obtain the ferromagnetic part desired. At the end of the chemical nickel plating, the chemically nickel plated part is coated, on the surface, with a surface layer of nickel.

Tout procédé de nickelage chimique approprié peut être utilisé, de préférence, sous réserve d'utiliser un nickel chimique moyen ou haut phosphore, c'est-à-dire supérieur à 5 % de phosphore en poids.Any suitable chemical nickel plating process can be used, preferably, provided that medium or high phosphorus chemical nickel is used, i.e. greater than 5% phosphorus by weight.

De façon préférentielle, pour effectuer le nickelage chimique, on effectue un trempage de la pièce brute dans un bain. De préférence, le bain comprend une solution aqueuse d'oxyde de nickel et un agent réducteur, de préférence de l'hydrophosphite de sodium. Une réaction de réduction de l'oxyde de nickel se produit d'elle-même, sous l'action du réducteur, de sorte qu'il n'est pas nécessaire d'utiliser un courant électrique. La pièce brute est préférentiellement brassée dans le bain lors du trempage, pour que toute la surface souhaitée soit revêtue, et soit revêtue de façon uniforme. Par exemple, ce brassage peut être effectué dans un tonneau, une enceinte ou une cuve. L'épaisseur de la couche de nickel de surface est déterminée notamment par le temps d'immersion dans le bain et la concentration de réactifs du bain.Preferably, in order to carry out the chemical nickel plating, the raw part is dipped in a bath. Preferably, the bath comprises an aqueous solution of nickel oxide and a reducing agent, preferably sodium hydrophosphite. A reduction reaction of the nickel oxide occurs by itself, under the action of the reducing agent, so that it is not necessary to use an electric current. The raw part is preferably stirred in the bath during soaking, so that the entire desired surface is coated, and is coated uniformly. For example, this brewing can be carried out in a barrel, an enclosure or a tank. The thickness of the surface nickel layer is determined in particular by the immersion time in the bath and the concentration of reagents in the bath.

La couche de nickel forme avantageusement une couche amagnétique en surface de la pièce ferromagnétique. Pour l'actionneur 4, la couche de nickel étant prévue sur les faces 41 et 42, elle sert avantageusement d'entrefer pour le circuit magnétique formé par les parties 6 et 8.The nickel layer advantageously forms a non-magnetic layer on the surface of the ferromagnetic part. For the actuator 4, the layer of nickel being provided on the faces 41 and 42, it advantageously serves as an air gap for the magnetic circuit formed by the parts 6 and 8.

En variante, on pourrait prévoir la couche de nickel sur une seule des deux faces 41 et 42, l'autre face étant avantageusement traitée par un procédé différent.As a variant, the layer of nickel could be provided on only one of the two faces 41 and 42, the other face being advantageously treated by a different process.

Grâce à cet entrefer intégré aux parties 6 et 8, ou à au moins l'une d'entre elles, il n'est pas obligatoire de prévoir la cale d'entrefer distincte, ce qui permet d'obtenir un entrefer dont l'épaisseur, mesurée parallèlement à l'axe X10, est particulièrement faible et régulière, perpendiculairement à l'axe X10. Le contacteur 2 est donc particulièrement performant et présente un temps de retombée particulièrement faible et stable dans le temps. Le contacteur 2 est plus durable. Cela n'exclut pas la possibilité de prévoir tout de même une pièce d'entrefer séparée comme expliqué ci-dessus, sans sortie du cadre de l'invention.Thanks to this air gap integrated into parts 6 and 8, or at least one of them, it is not compulsory to provide the separate air gap wedge, which makes it possible to obtain an air gap whose thickness , measured parallel to the X10 axis, is particularly weak and regular, perpendicular to the X10 axis. Contactor 2 is therefore particularly efficient and has a particularly low drop-out time that is stable over time. Contactor 2 is more durable. This does not exclude the possibility of providing all the same a separate air gap part as explained above, without departing from the scope of the invention.

A l'issue de l'étape de nickelage chimique, la couche de nickel de surface revêt directement le métal ferromagnétique doux sans couche intermédiaire. La pièce ferromagnétique peut être utilisée sous cette forme.At the end of the chemical nickel plating step, the surface nickel layer directly coats the soft ferromagnetic metal without an intermediate layer. The ferromagnetic part can be used in this form.

La couche de nickel de surface étant prévue sur au moins l'une des faces 41 et 42, elle protège efficacement les pièces 22 et/ou 30 de tout choc susceptible de se produire à chaque mise en contact de ces pièces ferromagnétiques entre elles, lors du passage en position de contact de l'actionneur 4 du contacteur 2. En effet, la couche de nickel de surface présente une dureté élevée comparativement au métal ferromagnétique doux, par exemple entre 400 et 500 HV (mesure de dureté Vickers). Par conséquent, plus généralement, on prévoit avantageusement que la couche de nickel de surface revêt au moins une surface d'une pièce ferromagnétique du contacteur, laquelle surface entre en contact avec une autre pièce ferromagnétique lorsque l'actionneur est basculé de la position éloignée à la position de contact.The surface nickel layer being provided on at least one of the faces 41 and 42, it effectively protects the parts 22 and / or 30 from any impact liable to occur each time these ferromagnetic parts are brought into contact with each other, during of the passage in the contact position of the actuator 4 of the contactor 2. In fact, the surface nickel layer has a high hardness compared to the soft ferromagnetic metal, for example between 400 and 500 HV (Vickers hardness measurement). Therefore, more generally, it is advantageously provided that the surface nickel layer covers at least one surface of a ferromagnetic part of the contactor, which surface comes into contact with another ferromagnetic part when the actuator is tilted from the remote position to the contact position.

Pour les surfaces extérieures des pièces 22 et 30 qui ne sont pas revêtues par la couche de nickel de surface, le métal ferromagnétique doux est préférentiellement nu.For the outer surfaces of parts 22 and 30 which are not coated with the surface nickel layer, the soft ferromagnetic metal is preferably bare.

On peut prévoir de revêtir de nickel une seule face, comme expliqué ci-dessus. De préférence toutefois, on prévoit qu'au moins 95% de la superficie de la surface externe de la pièce ferromagnétique est revêtue par la couche de nickel de surface. Encore plus préférentiellement, on peut prévoir de revêtir toute la surface externe de la pièce ferromagnétique, c'est-à-dire, toute la superficie externe de la pièce concernée. Dans ce cas, le métal ferromagnétique est présent seulement à cœur de la pièce ferromagnétique, en étant entièrement recouvert, en peau, par la couche de nickel de surface. Ainsi, le métal ferromagnétique du cœur est entièrement protégé des chocs et de la corrosion.It is possible to provide for coating a single face with nickel, as explained above. Preferably, however, provision is made for at least 95% of the surface area of the outer surface of the ferromagnetic part to be coated with the surface nickel layer. Even more preferably, provision can be made to coat the entire external surface of the ferromagnetic part, that is to say, the entire external surface of the part concerned. In this case, the ferromagnetic metal is present only at the heart of the ferromagnetic part, being entirely covered, in skin, by the surface layer of nickel. Thus, the ferromagnetic metal of the core is fully protected from impact and corrosion.

Pour l'utilisation de la pièce ferromagnétique au sein du contacteur 2, la couche de nickel de surface est avantageusement externe, c'est-à-dire qu'elle s'étend depuis la surface de la pièce 22 ou 30 concernée.For the use of the ferromagnetic part within the contactor 2, the surface nickel layer is advantageously external, that is to say it extends from the surface of the part 22 or 30 concerned.

L'étape de nickelage chimique est préférentiellement effectuée jusqu'à obtenir que la couche de nickel de surface présente une épaisseur comprise entre 3 et 50 µm, de préférence entre 5 et 25 µm.The chemical nickel plating step is preferably carried out until the surface nickel layer has a thickness of between 3 and 50 μm, preferably between 5 and 25 μm.

L'entrefer obtenu est donc plus fin que celui que l'on pourrait obtenir à l'aide d'une cale amagnétique, dont l'épaisseur peut difficilement être inférieure à 100 µm. On règle l'épaisseur de l'entrefer souhaité en fonction de l'application, notamment en fonction du type de contacteur que l'on souhaite obtenir, et du type de circuit de puissance auquel on souhaite l'intégrer. Ce réglage est facile à obtenir, car il dépend essentiellement de la durée pendant laquelle la pièce ferromagnétique est plongée dans le bain de nickelage chimique et de la concentration des réactifs dans ce bain. L'épaisseur de l'entrefer étant si faible, l'énergie électrique pour maintenir les parties ferromagnétiques mobile et fixe en position de contact est particulièrement faible, y compris lorsque le contacteur est utilisé dans un environnement sévère, c'est-à-dire incluant la soumission du contacteur à des chocs et à des vibrations.The air gap obtained is therefore thinner than that which could be obtained using a non-magnetic shim, the thickness of which can hardly be less than 100 μm. The thickness of the desired air gap is adjusted as a function of the application, in particular as a function of the type of contactor that is desired to be obtained, and of the type of power circuit into which it is desired to be integrated. This adjustment is easy to obtain, since it depends essentially on the time during which the ferromagnetic part is immersed in the chemical nickel plating bath and on the concentration of the reagents in this bath. The thickness of the air gap being so small, the electrical energy to keep the movable and fixed ferromagnetic parts in the contact position is particularly low, even when the contactor is used. in a severe environment, that is to say including subjecting the contactor to shocks and vibrations.

La pièce ferromagnétique comportant la couche de nickel de surface a préférentiellement subi une étape de recuit magnétique, au moins en ce qui concerne le métal ferromagnétique. Par « recuit magnétique », on entend un traitement thermique de la pièce concernée. Ce traitement vise de préférence à rendre à la pièce traitée ses propriétés magnétiques éventuellement perdues après des déformations que le métal ferromagnétique de la pièce concernée a pu subir pour la fabrication de la pièce. Le recuit magnétique vise de préférence à faire grossir les grains de fer du métal ferromagnétique en stabilisant les carbures dans les joints de grains, favorisant ainsi les flux magnétiques dans le matériau. Le recuit magnétique comprend par exemple une étape où l'on soumet la pièce ferromagnétique à une montée en température, depuis l'ambiante, jusqu'à une température Tmax comprise entre 800 et 850°C, avec une vitesse maximale de 200°C par heure. On maintient ensuite la pièce ferromagnétique à la température Tmax comprise entre 800 et 850°C, cette première étape durant entre 3 et 5 heures. Une durée de 4 heures est préférentielle. Dans une étape suivante du recuit magnétique, suivant l'étape de maintien à la température Tmax, on abaisse lentement la température jusqu'à 500°C, avant de revenir à l'ambiante. La durée totale de l'opération de recuit magnétique comprenant la première et la deuxième étape est préférentiellement d'environ 20 heures.The ferromagnetic part comprising the surface nickel layer has preferably undergone a magnetic annealing step, at least as regards the ferromagnetic metal. The term “magnetic annealing” is understood to mean a heat treatment of the part concerned. This treatment is preferably aimed at restoring to the treated part its magnetic properties which may have been lost after deformations that the ferromagnetic metal of the part concerned may have undergone for the manufacture of the part. Magnetic annealing is preferably aimed at enlarging the iron grains of the ferromagnetic metal by stabilizing the carbides in the grain boundaries, thus promoting magnetic fluxes in the material. Magnetic annealing comprises for example a step in which the ferromagnetic part is subjected to a rise in temperature, from ambient, to a temperature Tmax of between 800 and 850 ° C, with a maximum speed of 200 ° C per hour. The ferromagnetic part is then maintained at the temperature Tmax of between 800 and 850 ° C., this first step lasting between 3 and 5 hours. A duration of 4 hours is preferred. In a subsequent magnetic annealing step, following the step of maintaining the temperature Tmax, the temperature is slowly lowered to 500 ° C., before returning to ambient temperature. The total duration of the magnetic annealing operation comprising the first and the second stage is preferably about 20 hours.

Dans un mode de réalisation qui n'est pas illustré et qui ne concerne pas l'invention, on peut effectuer le recuit magnétique avant application de la couche de nickel de surface par nickelage chimique, pour ensuite appliquer la couche de nickel de surface sur le métal ferromagnétique ayant subi le recuit magnétique. Dans ce cas, la couche de nickel revêt avantageusement le métal ferromagnétique recuit sans couche intermédiaire, notamment avec les gammes d'épaisseurs mentionnées ci-avant.In an embodiment which is not illustrated and which does not relate to the invention, the magnetic annealing can be carried out before application of the surface nickel layer by chemical nickel plating, in order then to apply the surface nickel layer on the surface. ferromagnetic metal which has undergone magnetic annealing. In this case, the nickel layer advantageously coats the annealed ferromagnetic metal without an intermediate layer, in particular with the thickness ranges mentioned above.

Dans un mode de réalisation décrit ci-dessous et dont un exemple est visible sur la figure 4, une couche de nickel diffusé est prévue, de façon intermédiaire entre la couche de nickel de surface et le métal ferromagnétique doux à cœur. Pour cela, le recuit magnétique est mis en œuvre alors que la pièce ferromagnétique concernée est déjà revêtue de la couche nickel de surface. En effet, la présence du nickel en surface n'est pas incompatible avec le recuit magnétique. Dans ce cas, la couche de nickel diffuse en direction du cœur, c'est-à-dire qu'il se crée une nouvelle couche, dite « couche de nickel diffusé » entre la couche de nickel de surface et le métal ferromagnétique doux, cette couche de nickel diffusé comportant un mélange nickel et du métal ferromagnétique doux, le nickel de la couche de nickel de surface s'étant propagé en direction du cœur. Dans le cas d'un alliage fer-carbone ou d'un fer pur, la couche de nickel diffusée est donc de type NiFe. La couche de nickel diffusé s'étend à partir de la couche de nickel de surface en direction du cœur de la pièce ferromagnétique.In an embodiment described below and an example of which can be seen on the figure 4 , a diffused nickel layer is provided, intermediate between the surface nickel layer and the core soft ferromagnetic metal. For this, the magnetic annealing is implemented while the ferromagnetic part concerned is already coated with the surface nickel layer. Indeed, the presence of nickel on the surface is not incompatible with magnetic annealing. In this case, the nickel layer diffuses in the direction of the core, that is to say that a new layer is created, called a “diffused nickel layer” between the surface nickel layer and the soft ferromagnetic metal, this diffused nickel layer comprising a mixture of nickel and soft ferromagnetic metal, the nickel of the surface nickel layer having propagated towards the core. In the case of an iron-carbon alloy or a pure iron, the diffused nickel layer is therefore of the type NiFe. The diffused nickel layer extends from the surface nickel layer towards the core of the ferromagnetic part.

Sur la figure 4, les pièces ferromagnétiques 22 et 30 comportent ainsi chacune une couche de nickel diffusé 104.On the figure 4 , the ferromagnetic pieces 22 and 30 thus each comprise a layer of diffused nickel 104.

Selon une variante ne concernant pas l'invention, on peut avantageusement prévoir que la pièce 22 ne comporte pas de couche de nickel diffusé 104 si elle n'a pas subi l'étape de recuit. On peut même prévoir que la pièce 22 comporte, au lieu de la couche de nickel 102 appliquée par nickelage chimique, une couche de nickel électrolytique, ou a subi un autre traitement approprié.According to a variant not relating to the invention, it is advantageously possible to provide that the part 22 does not include a diffused nickel layer 104 if it has not undergone the annealing step. It is even possible to provide that the part 22 comprises, instead of the nickel layer 102 applied by chemical nickel plating, a layer of electrolytic nickel, or has undergone another suitable treatment.

Après l'étape de recuit magnétique, la couche de nickel de surface présente une dureté très élevée, par exemple entre 750 et 900 HV. La couche de nickel diffusée présente une dureté intermédiaire, par exemple environ 220 à 260 HV. Le métal ferromagnétique doux présentant une dureté généralement inférieure, par exemple inférieure à 150 HV. Un gradient de dureté est donc obtenu, propre à améliorer la résistance de la pièce ferromagnétique et à réduire la vitesse d'usure de la couche de nickel de surface. En effet, la présence de la couche de nickel diffusé évite l'usure des pièces ferromagnétiques, en améliorant la tenue de la couche de nickel de surface sur le cœur de métal ferromagnétique doux.After the magnetic annealing step, the surface nickel layer has a very high hardness, for example between 750 and 900 HV. The diffused nickel layer has an intermediate hardness, for example about 220 to 260 HV. The soft ferromagnetic metal exhibiting a generally lower hardness, for example less than 150 HV. A hardness gradient is therefore obtained, suitable for improving the strength of the ferromagnetic part and for reducing the rate of wear of the surface nickel layer. Indeed, the presence of the diffused nickel layer prevents wear of the ferromagnetic parts, by improving the resistance of the surface nickel layer on the soft ferromagnetic metal core.

De préférence, la couche de nickel diffusé présente une épaisseur comprise entre 3 et 40 µm, de préférence entre 10 et 30 µm. La formation de la couche de nickel diffusée se fait au détriment de l'épaisseur de la couche de nickel de surface, qui, alors qu'elle était initialement comprise entre 5 et 25 µm, se trouve réduite, par exemple à une épaisseur comprise entre 3 et 20 µm.Preferably, the diffused nickel layer has a thickness of between 3 and 40 μm, preferably between 10 and 30 μm. The formation of the diffused nickel layer occurs to the detriment of the thickness of the surface nickel layer, which, while it was initially between 5 and 25 μm, is reduced, for example to a thickness between 3 and 20 µm.

Dans un premier essai, on a fourni une pièce brute en fer doux, que l'on a soumise à un nickelage chimique pour obtenir une couche de nickel de surface de 10 µm d'épaisseur. On a ensuite soumis cette pièce brute à un recuit magnétique, incluant de soumettre la pièce ferromagnétique à une température de 820°C pendant un cycle de 4h. Après le recuit magnétique, la couche de nickel de surface présente une épaisseur d'environ 6,6 µm et la couche de nickel diffusé présente une épaisseur de 10,3 µm. Dans un deuxième essai, on a fourni une pièce brute en fer doux, qui l'on a soumise à un nickelage chimique pour obtenir une couche de nickel de surface de 25 µm d'épaisseur. On a ensuite soumis cette pièce brute à un recuit magnétique, incluant de soumettre la pièce ferromagnétique à une température de 820°C pendant un cycle de 4h. Après le recuit, la couche de nickel de surface présente une épaisseur d'environ 14,8 µm et la couche de nickel diffusé présente une épaisseur de 23,9 µm.In a first test, a raw piece of soft iron was supplied, which was subjected to chemical nickel plating to obtain a surface layer of nickel 10 μm thick. This blank was then subjected to magnetic annealing, including subjecting the ferromagnetic part to a temperature of 820 ° C for a cycle of 4 hours. After magnetic annealing, the surface nickel layer has a thickness of about 6.6 µm and the diffused nickel layer has a thickness of 10.3 µm. In a second test, a soft iron blank was provided, which was subjected to chemical nickel plating to obtain a 25 µm thick surface nickel layer. This blank was then subjected to magnetic annealing, including subjecting the ferromagnetic part to a temperature of 820 ° C for a cycle of 4 hours. After annealing, the surface nickel layer has a thickness of about 14.8 µm and the diffused nickel layer has a thickness of 23.9 µm.

Dans le cas où l'on prévoit les couches 102 et 104, on obtient, lorsque les pièces 30 et 32 sont en position de contact comme montré sur la figure 4, un entrefer dont l'épaisseur est désignée par la flèche 106. L'épaisseur de l'entrefer inclut alors la couche de nickel de surface et la couche de nickel diffusé.In the case where the layers 102 and 104 are provided, one obtains, when the parts 30 and 32 are in the contact position as shown in the figure figure 4 , an air gap whose thickness is designated by the arrow 106. The thickness of the air gap then includes the surface nickel layer and the diffused nickel layer.

Toute pièce ferromagnétique fabriquée à l'aide des étapes de procédé de fabrication, peut être intégrée, c'est-à-dire montée ou assemblée, dans un contacteur électromagnétique tel que le contacteur 2, afin de former tout ou partie de la partie ferromagnétique mobile ou de la partie ferromagnétique fixe.Any ferromagnetic part manufactured using the manufacturing process steps can be integrated, that is to say mounted or assembled, in an electromagnetic contactor such as contactor 2, in order to form all or part of the ferromagnetic part. mobile or the fixed ferromagnetic part.

L'essai comparatif suivant a été réalisé. Un test d'endurance a été effectué sur deux contacteurs tripolaires, l'un appartenant à l'art antérieur, l'autre étant conforme à l'invention. Pour chacun de ces contacteurs, on a effectué environ deux millions de cycles à intervalle de temps régulier. Chaque cycle consiste à faire basculer la partie mobile de l'actionneur de la position éloignée à la position de contact, puis de la position de contact à la position éloignée. Chaque cycle porte un numéro, de un à deux millions, porté sur l'axe des abscisses X de la figure 5. Pour une trentaine de cycles parmi les deux millions, le temps de retombée a été mesuré et porté en ordonnée Y de la figure 5. Le temps de retombée est exprimé en millisecondes.The following comparative test was carried out. An endurance test was carried out on two three-pole contactors, one belonging to the prior art, the other being in accordance with the invention. For each of these contactors, approximately two million cycles were performed at regular time intervals. Each cycle consists of tilting the movable part of the actuator from the remote position to the contact position, then from the contact position to the remote position. Each cycle has a number, from one to two million, carried on the x-axis X of the figure 5 . For about thirty cycles among the two million, the fall-out time was measured and plotted on the y-axis of the figure 5 . The dropout time is expressed in milliseconds.

L'actionneur du contacteur de l'art antérieur comprend, pour la partie fixe et pour la partie mobile, deux pièces ferromagnétiques respectives, qui entrent en contact l'une avec l'autre à chaque passage en position de contact. La partie mobile est revêtue d'une couche de phosphate, appliquée par phosphatation sèche, pour sa face de contact, et la partie fixe est revêtue d'une couche de nickel électrolytique. Avant la mise en œuvre des cycles susmentionnés, l'épaisseur de la couche de phosphate appliquée sur chacune des pièces est d'environ 3,5 µm. Aucune pièce d'entrefer n'est interposée entre les deux pièces ferromagnétiques. Ces pièces ferromagnétiques ont subi un recuit magnétique effectué avant la phosphatation sèche.The actuator of the contactor of the prior art comprises, for the fixed part and for the movable part, two respective ferromagnetic parts, which come into contact with one another each time they pass into the contact position. The mobile part is coated with a layer of phosphate, applied by dry phosphating, for its contact face, and the fixed part is coated with a layer of electrolytic nickel. Before the implementation of the aforementioned cycles, the thickness of the phosphate layer applied to each of the parts is approximately 3.5 µm. No air gap part is interposed between the two ferromagnetic parts. These ferromagnetic parts have undergone magnetic annealing carried out before dry phosphating.

Les valeurs de temps de retombée pour cet actionneur de l'art antérieur est illustré par la courbe 90 de la figure 5.The drop-out time values for this prior art actuator is illustrated by curve 90 of the figure 5 .

Le contacteur conforme à l'invention est identique au contacteur de l'art antérieur, sauf que la partie mobile a été revêtue, sur sa face de contact, d'une couche de nickel appliquée par nickelage chimique, puis a subi un recuit magnétique appliqué après nickelage. Avant la mise en œuvre des cycles susmentionnés, l'épaisseur de la couche de nickel de surface appliquée sur la partie mobile est d'environ 25 µm, et celle de la couche de nickel diffusé est d'environ 30 µm.The contactor according to the invention is identical to the contactor of the prior art, except that the movable part has been coated, on its contact face, with a layer of nickel applied by chemical nickel plating, then has undergone an applied magnetic annealing. after nickel plating. Before the implementation of the above-mentioned cycles, the thickness of the surface nickel layer applied to the movable part is approximately 25 μm, and that of the diffused nickel layer is approximately 30 μm.

Les valeurs de temps de retombée pour cet actionneur conforme à l'invention est illustré par la courbe 92 de la figure 5.The drop-out time values for this actuator according to the invention is illustrated by curve 92 of the figure 5 .

Pour les 5000 premiers cycles, on observe que le temps de retombée de l'actionneur conforme à l'invention, compris entre 35 et 40 ms, est inférieur à celui de l'actionneur de l'art antérieur, compris entre 40 et 50 ms.For the first 5000 cycles, it is observed that the drop-out time of the actuator according to the invention, comprised between 35 and 40 ms, is less than that of the actuator of the prior art, comprised between 40 and 50 ms .

Au bout de deux millions de cycles on observe que le temps de retombée de l'actionneur conforme à l'invention, compris entre 45 et 50 ms, est inférieur à celui de l'actionneur de l'art antérieur, compris entre 160 et 170 ms.After two million cycles, it is observed that the drop-out time of the actuator according to the invention, comprised between 45 and 50 ms, is less than that of the actuator of the prior art, comprised between 160 and 170 ms.

Pour le contacteur de l'art antérieur, le temps de retombé augmente de façon irrégulière au fur et à mesure que les cycles sont effectués. On observe des pics, notamment à 720000 cycles, où le temps de retombée s'élève à 142 ms, et à 1779300 cycles, où le temps de retombée s'élève à 211 ms. On observe des creux consécutivement aux deux pics susmentionnés, à 805987 cycles où le temps de retombée s'élève à 111 ms et à 1944121 cycles où le temps de retombée s'élève à 163 ms. Il semble que ces variations irrégulières sont causées par la déformation des pièces ferromagnétiques sous l'effet des chocs, en combinaison avec le décrochement de parties de la couche de phosphate.For the contactor of the prior art, the drop-out time increases irregularly as the cycles are carried out. Peaks are observed, particularly at 720,000 cycles, where the drop-out time is 142 ms, and at 1,779,300 cycles, where the drop-out time is 211 ms. Troughs are observed consecutively to the two aforementioned peaks, at 805987 cycles where the drop-out time is 111 ms and at 1944121 cycles where the drop-out time is 163 ms. It seems that these irregular variations are caused by the deformation of the ferromagnetic parts under the effect of impact, in combination with the detachment of parts of the phosphate layer.

Pour le contacteur conforme à l'invention, le temps de retombée croît plus légèrement, et de façon plus régulière. On n'observe pas de pic ou de creux significatif pour cette croissance.For the contactor according to the invention, the drop-out time increases more slightly, and more regularly. No significant peak or trough is observed for this growth.

Le contacteur conforme à l'invention présente l'avantage d'offrir un temps de retombée très régulier, avec une faible déviation dans le temps et une répétabilité particulièrement bonne. Après deux millions de cycle, les pièces ferromagnétiques du contacteur conforme à l'invention présentent un état de surface d'une usure acceptable et régulière, alors que l'état de surface des pièces ferromagnétiques du contacteur de l'art antérieur est nettement plus détérioré : les pièces ont perdu une partie du revêtement de phosphate, de sorte que le métal ferromagnétique présent à cœur est visible en surface. Les pièces ferromagnétiques du contacteur de l'art antérieur sont déformées en surface, comme cabossées, et présentent des marques de matage significatives, alors que, comparativement, les pièces ferromagnétiques du contacteur de l'invention ont mieux conservé leur géométrie d'origine.The contactor according to the invention has the advantage of offering a very regular drop-out time, with a small deviation over time and particularly good repeatability. After two million cycles, the ferromagnetic parts of the contactor according to the invention exhibit a surface condition of acceptable and regular wear, while the surface condition of the ferromagnetic parts of the contactor of the prior art is much more deteriorated. : the parts have lost part of the phosphate coating, so that the ferromagnetic metal present in the core is visible on the surface. The ferromagnetic parts of the contactor of the prior art are deformed on the surface, as if dented, and exhibit significant matting marks, whereas, in comparison, the ferromagnetic parts of the contactor of the invention have better retained their original geometry.

Claims (10)

  1. Method for manufacture of a ferromagnetic part (22, 30) for an electromagnetic contactor (2), the method comprising the following successive steps:
    - a step a) of supplying an unfinished part made of soft ferromagnetic metal (100); and
    - a step b) of chemical nickel-plating of at least one part of the unfinished part in order to obtain the ferromagnetic part (22, 30), the part of which is coated on the surface by a surface nickel layer (102), the obtained ferromagnetic part comprising the soft ferromagnetic metal (100) which, for said at least one chemically nickel-plated part, is disposed under the surface nickel layer (102),
    characterised in that the method comprises, after step b), a step c) of magnetic annealing of the ferromagnetic part coated during step b), so that the ferromagnetic part (22, 30) obtained at the end of step c) comprises:
    - on the external surface, the surface nickel layer (102),
    - the annealed soft ferromagnetic metal (100), under the surface nickel layer (102) for said at least one part which is chemically nickel-plated during step b), and
    - a nickel layer (104) diffused into the soft ferromagnetic metal (100) due to the magnetic annealing, the diffused nickel layer (104) connecting the surface nickel layer (102) and the annealed soft ferromagnetic metal (100).
  2. Method for manufacture of a ferromagnetic part (22, 30) according to claim 1, characterised in that step b) comprises immersion of the unfinished part in a bath, the bath comprising an aqueous solution of nickel oxide and a reducing agent, preferably sodium hydrophosphite, the unfinished part being swirled in the bath during immersion so as to be coated by the surface nickel layer (102) over at least 95% of its surface, preferably over all its surface.
  3. Method for manufacture of a ferromagnetic part (22, 30) according to any of the preceding claims, characterised in that step c) comprises subjection of the ferromagnetic part (22; 30), coated during step b), to a temperature between 800°C and 850°C for a duration of between 3 hours and 5 hours, preferably 4 hours.
  4. Method for manufacture of a ferromagnetic part (22, 30) according to any of the preceding claims, characterised in that the soft ferromagnetic metal (100) is an iron-carbon alloy with a carbon content less than 0.03% by weight.
  5. Method for manufacture of an electromagnetic contactor (2), the electromagnetic contactor (2) comprising:
    - an electromagnetic actuator (4) comprising at least one coil (18), a movable ferromagnetic part (8) and a fixed ferromagnetic part (6), the movable (8) and fixed (6) ferromagnetic parts being configured to rock between a position removed one from the other and a position of contact; and
    - at least one pair of power contacts (12, 14) which is actuated by the movable ferromagnetic part (8) during rocking between the removed position and the contact position, said at least one pair of power contacts (12, 14) being then rocked between a closed configuration and an open configuration,
    the method for manufacture of the electromagnetic contactor (2) comprising a step in which there is integrated at least one ferromagnetic part (22; 30) obtained by means of the method for manufacture of a ferromagnetic part according to one of claims 1 to 4, with at least one of the movable (8) and fixed (6) ferromagnetic parts.
  6. Ferromagnetic part (22, 30) for an electromagnetic contactor (2), the ferromagnetic part (22, 30) being preferably obtained by means of a method according to any of claims 1 to 4, the ferromagnetic part (22, 30) having undergone, for at least one part of said ferromagnetic part, a step b) of chemical nickel-plating and, after step b), a step c) of magnetic annealing of the ferromagnetic part coated in step b), said at least one part of the ferromagnetic part comprising:
    - as outer surface, a surface nickel layer (102) obtained by the step of chemical nickel-plating,
    - an annealed soft ferromagnetic metal (100), coated by the surface nickel layer (102) by being under the surface nickel layer for said at least one part chemically nickel-plated during step b), and
    - a nickel layer (104) diffused into the soft ferromagnetic metal (100) due to the magnetic annealing, the layer of diffused nickel (104) connecting the surface nickel layer (102) and the annealed soft ferromagnetic metal (100).
  7. Ferromagnetic part (22, 30) according to claim 6, characterised in that the surface nickel layer (102) measures between 3 and 50 µm in thickness, preferably between 3 and 20 µm in thickness.
  8. Ferromagnetic part (22, 30) according to any of claims 6 or 7, characterised in that the diffused nickel layer (104) measures between 3 and 40 µm in thickness, preferably between 10 and 30 µm in thickness.
  9. Electromagnetic contactor (2) comprising:
    - an electromagnetic actuator (4) comprising at least one coil (18), a movable ferromagnetic part (8) and a fixed ferromagnetic part (6), the movable (8) and fixed (6) ferromagnetic parts being configured to rock between a position removed one from the other and a position of contact, at least one of the movable (8) and fixed (6) ferromagnetic parts comprising a ferromagnetic part (22, 30) according to any of claims 6 to 8; and
    - at least one pair of power contacts (12, 14) which is actuated by the movable ferromagnetic part (8) during rocking between the removed position and the contact position, said at least one pair of power contacts (12, 14) being then rocked between a closed configuration and an open configuration.
  10. Use of a ferromagnetic part (22, 30) according to any of claims 6 to 8, in an electromagnetic contactor (2) according to claim 9, the ferromagnetic part (22, 30) being used as part of the movable ferromagnetic part (8) or of the fixed ferromagnetic part (6) of the electromagnetic actuator (4).
EP19178911.4A 2018-06-08 2019-06-07 Ferromagnetic part for an electromagnetic contactor, its manufacturing process and its use Active EP3579262B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1855023A FR3082352B1 (en) 2018-06-08 2018-06-08 FERROMAGNETIC PART FOR AN ELECTROMAGNETIC CONTACTOR, ITS MANUFACTURING PROCESS AND ITS USE

Publications (2)

Publication Number Publication Date
EP3579262A1 EP3579262A1 (en) 2019-12-11
EP3579262B1 true EP3579262B1 (en) 2021-04-28

Family

ID=63491658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19178911.4A Active EP3579262B1 (en) 2018-06-08 2019-06-07 Ferromagnetic part for an electromagnetic contactor, its manufacturing process and its use

Country Status (4)

Country Link
US (1) US11183350B2 (en)
EP (1) EP3579262B1 (en)
ES (1) ES2872974T3 (en)
FR (1) FR3082352B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021527825A (en) * 2018-06-21 2021-10-14 トラファグ アクツィエンゲゼルシャフトTrafag Ag Load measurement equipment, this manufacturing method, and the load measurement method that can be carried out with it.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099945B2 (en) * 1996-10-24 2000-10-16 日本電気株式会社 Electromagnetic relay

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1319342A (en) * 1962-01-16 1963-03-01 Cie De Construction Electr Improvements to polarized relays, associated with differential circuit breakers
CH415846A (en) * 1964-04-03 1966-06-30 Jucker Erich Electromagnetic relay and method of making the same
DE7520386U (en) * 1975-06-26 1975-11-20 Siemens Ag Electromagnetic relay
JPS5846412U (en) * 1981-09-24 1983-03-29 三菱電機株式会社 electromagnet
JP2527043B2 (en) 1989-09-13 1996-08-21 トヨタ自動車株式会社 Vehicle traction control device
FR2746541B1 (en) 1996-03-25 1998-04-24 Schneider Electric Sa CONTACTOR APPARATUS AND MOUNTING OF ITS ELEMENTS WITHIN ITS ENCLOSURE
JP5756825B2 (en) * 2013-04-22 2015-07-29 オムロン株式会社 Electromagnetic relay
WO2017027524A2 (en) * 2015-08-09 2017-02-16 Microsemi Corporation High voltage relay systems and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099945B2 (en) * 1996-10-24 2000-10-16 日本電気株式会社 Electromagnetic relay

Also Published As

Publication number Publication date
FR3082352A1 (en) 2019-12-13
ES2872974T3 (en) 2021-11-03
US11183350B2 (en) 2021-11-23
US20190378672A1 (en) 2019-12-12
EP3579262A1 (en) 2019-12-11
FR3082352B1 (en) 2020-11-27

Similar Documents

Publication Publication Date Title
EP3579262B1 (en) Ferromagnetic part for an electromagnetic contactor, its manufacturing process and its use
EP0170562A1 (en) Direct-current electromagnet, in particular for an electric commutator device
EP0780858B1 (en) Miniature device to execute a predetermined function, in particular a microrelay
CH696881A5 (en) micro-mechanical part reinforced silicon and its manufacturing process.
EP2598952B1 (en) Contactless force transmission in a clock movement
FR2557151A1 (en) IMPROVED METHOD AND APPARATUS FOR STABILIZING AN EVAPORATIVE ARC INCLUDING INITIAL TARGET CLEANING
EP1837722A2 (en) Micro-mechanical piece in thermal material and method of manufacture
JP2007256290A (en) Minute machine parts made from insulating material, and manufacturing method thereof
EP0526361B1 (en) High performance electrode wire for electric discharge machining and process for preparing same
EP1837721A1 (en) Micro-mechanical piece made from insulating material and method of manufacture therefor
EP2603886B1 (en) Antenna for an electronic device of a tyre
FR2765724A1 (en) SOFT MAGNETIC ALLOY OF THE FE-NI-CR-TI TYPE FOR MAGNETIC CIRCUIT OF A RELAY WITH HIGH SENSITIVITY
WO2016002553A1 (en) Electromagnetic relay
EP0301935B1 (en) Highly sensitive electromagnetic tripping device and production thereof
EP0004824A2 (en) Means providing detachable contact beteween two conductors and method of coating a piece of aluminium with a layer of nickel
CH712760A2 (en) Pivot axis for watch movement.
FR2532107A1 (en) Electromagnetic connection apparatus comprising a magnetic control and a contact apparatus mounted on the latter.
EP0794026A1 (en) Process for the production of a composite wire of small diameter, in particular a wire electrode for electro-discharge machining and a wire electrode obtained thereby
EP3339968A1 (en) Part for clock movement
EP3279907B1 (en) Electromagnetic actuator for an electric contactor
FR2982704A1 (en) ELECTROMAGNETIC CONTACTOR FOR STARTER
EP2942792B1 (en) Process for manufacturing a magnetic part of a differential relay comprising a surface treatment by shot-peening
CH713264A2 (en) Pivot axis for watch movement.
CH707669B1 (en) micro-mechanical part of electrically insulating material or silicon or its compounds and its manufacturing process.
CH718550A2 (en) Watchmaking pivot pin and method of manufacturing such a watchmaking pivot pin.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200513

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 18/36 20060101ALI20200623BHEP

Ipc: H01H 50/16 20060101AFI20200623BHEP

Ipc: C23C 18/16 20060101ALI20200623BHEP

INTG Intention to grant announced

Effective date: 20200710

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20201124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019004169

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1388036

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1388036

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2872974

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210729

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210830

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019004169

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210607

26N No opposition filed

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 5

Ref country code: DE

Payment date: 20230627

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 5

Ref country code: ES

Payment date: 20230721

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230607