EP3576433B1 - Verfahren zur verringerung eines auftretens einer akustischen rückkopplung in einem hörgerät - Google Patents

Verfahren zur verringerung eines auftretens einer akustischen rückkopplung in einem hörgerät Download PDF

Info

Publication number
EP3576433B1
EP3576433B1 EP19174570.2A EP19174570A EP3576433B1 EP 3576433 B1 EP3576433 B1 EP 3576433B1 EP 19174570 A EP19174570 A EP 19174570A EP 3576433 B1 EP3576433 B1 EP 3576433B1
Authority
EP
European Patent Office
Prior art keywords
situation
frequency
feedback
hearing device
hearing aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19174570.2A
Other languages
English (en)
French (fr)
Other versions
EP3576433A1 (de
Inventor
Stefan Aschoff
Stefan Petrausch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP3576433A1 publication Critical patent/EP3576433A1/de
Application granted granted Critical
Publication of EP3576433B1 publication Critical patent/EP3576433B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17819Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the output signals and the reference signals, e.g. to prevent howling
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/41Detection or adaptation of hearing aid parameters or programs to listening situation, e.g. pub, forest
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/01Hearing devices using active noise cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/30Monitoring or testing of hearing aids, e.g. functioning, settings, battery power
    • H04R25/305Self-monitoring or self-testing

Definitions

  • the invention relates to a method for reducing the occurrence of acoustic feedback in a hearing aid, with a first wearing situation being established which defines a positioning of the hearing aid relative to the wearer, with a first use situation being established for the first wearing situation, and with a specification for a Adjusting at least one hearing aid parameter takes place.
  • acoustic feedback poses a particular problem in the operation of a hearing aid
  • Signal processing of the hearing aid in which an amplification is applied to the signal from the input transducer. If the attenuation factor by which the sound from the output transducer is attenuated on the sound path to the input transducer is lower than the amplification factor of the signal processing, the system can become unstable as a result of the closed amplification loop. This can be heard as a whistling sound at the relevant frequencies and therefore leads to a considerable impairment of the wearer's hearing.
  • One of the common measures for suppressing such acoustic feedback is to reduce the amplification of the signal processing when the feedback is registered.
  • the reduction in gain can be limited to those frequency ranges in which the feedback occurs.
  • this has the disadvantage that the amplification of the signal processing is no longer selected solely as a function of the wearer's individual hearing impairment, so that an output sound signal generated by the output transducer is no longer optimally matched to the wearer's audiological needs.
  • acoustic feedback path can affect changes such as using a mobile phone or putting on headgear can be changed so that the attenuation is reduced, and thus a critical feedback loop occurs.
  • a spontaneous occurrence of feedback often leads to a whistling noise that is perceived as unpleasant in the described measures for suppression.
  • the EP 2 869 600 A1 calls for a hearing aid suppression of acoustic feedback by means of a compensation signal which is subtracted from an input signal of the hearing aid, with an estimation of a residual feedback which is not suppressed by the compensation signal.
  • a gain parameter in the hearing aid is adapted on the basis of the residual feedback.
  • the US 2010/0 260 365 A1 calls a hearing aid with two different units for detecting acoustic feedback on the hearing aid, the respective output signals of the two units being able to indicate respective probabilities of acoustic feedback, and for example in a comparator circuit be compared with one another or with a predetermined limit value.
  • the two units for detecting the acoustic feedback can differ, for example, in a time constant, so that one of the units reacts particularly quickly, the other detects feedback more slowly but more reliably.
  • the invention is based on the object of specifying a method by which a spontaneous occurrence of feedback is reduced in certain situations, which should have as little influence as possible on the output signals generated based on the input signals according to the individual hearing impairment of the wearer of the hearing aid.
  • the stated object is achieved according to the invention by a method for reducing the occurrence of acoustic feedback in a hearing aid, with a first wearing situation being established which defines a positioning of the hearing aid relative to the wearer, with a first use situation being established for the first wearing situation, which is established by at least one body movement of the wearer of the hearing aid and / or at least one relative position of an external object to the wearer's body is characterized, and a plurality of frequency-resolved curves of a feedback tendency of the hearing aid is determined for the first use situation.
  • a first criticality measure is determined on the basis of each frequency-resolved curve for the first use situation, which contains information on a frequency range that is critical with regard to the occurrence of acoustic feedback and a corresponding relative probability for an occurrence of acoustic feedback, with that for a given frequency
  • First criticality measure for the first user situation based on a scatter measure for the values of the feedback tendency resulting from the plurality of frequency-resolved curves in each case at this frequency, a second use situation being established for the first wearing situation, with a second criticality measure in one for the second use situation is determined in an analogous manner to how the first criticality measure for the first usage situation, and based on the entirety of the first criticality measure and the second criticality measure a specification for adapting at least one hearing aid parameter is made.
  • a wearing situation is to be understood here in particular as the entirety of the circumstances under which the hearing aid is locally fixed on the wearer, and in particular an exchangeable acoustic coupling piece (such as an ear mold or a so-called "dome") that may be present assumes a certain position .
  • two wearing situations can differ with regard to the exact spatial position of the hearing aid and / or the acoustic coupling piece, or they can also be given by using different acoustic coupling pieces.
  • a usage situation here and in the following includes in particular that the wearer of the hearing aid carries out body movements during operation, in particular in a specific wearing situation, or moves himself relative to limiting objects such as walls or windows, so that the movements occurring in the usage situation are particularly suitable for this are to influence an acoustic feedback path of the hearing aid.
  • a feedback tendency of the hearing aid includes, in particular, a frequency-dependent parameter, on the basis of which a quantitative probability of an acoustic feedback occurring at the relevant frequency can be determined.
  • a tendency towards feedback can be given here by a ratio or a difference between an attenuation of the acoustic feedback path and a gain due to signal processing taking place in the hearing aid.
  • a frequency-resolved curve of a feedback tendency can in this respect be given by the respective values of the feedback tendency over the corresponding frequency spectrum, or by the values of the feedback tendency at a plurality of support points for the frequency, which are to be selected with a sufficiently high frequency resolution.
  • the first criticality measure for the feedback tendency is also determined on the basis of a weighting of the values of the various curves at a given frequency determined.
  • the criticality measure is preferably calculated in such a way that at a given frequency for a high variance of values of the feedback tendencies of the various curves a higher value is generated for the first criticality measure than in a situation with an identical maximum value of the feedback tendencies with a lower one Variance. This takes into account the fact that at a certain frequency for a high variance of the values of the feedback tendency in the first use situation, an even further spread beyond the decimal value recorded in the measurement is to be expected, while a low variance of the values at a given frequency speaks for a greater intrinsic stability of the system.
  • the relative probability of such an occurrence of the feedback can in particular also be related to other frequency ranges, so the first criticality measure in particular make a statement that feedback is more likely for a first frequency than for a second frequency if the value of the first Criticality measure at the first frequency is greater than the value at the second frequency.
  • the at least one hearing aid parameter is preferably adapted in accordance with the specification made on the basis of the first criticality measure, it being possible for the adaptation in particular to take place automatically.
  • the adjustment can also be carried out manually by a hearing aid acoustician in accordance with the specification.
  • the at least one hearing aid parameter is preferably adapted with the additional specification of impairing signal amplification and reproduction dynamics in the hearing aid as little as possible. This can take place in particular in that the at least one hearing aid parameter is only adapted for that frequency range for which, on the basis of the first criticality measure, an occurrence of feedback in the first use situation is considered to be sufficiently likely at all.
  • the evaluation can be done by a threshold comparison of the frequency-resolved first criticality measure over the entire spectrum.
  • the probability of feedback occurring can be limited in a targeted manner to those frequency ranges in which a change in the present hearing aid parameters is necessary in order to avoid feedback, thereby adapting the reproduction properties the hearing aid can be designed "minimally invasive".
  • Previous methods for reducing or suppressing feedback which are based on an adaptation of hearing aid parameters, usually check the occurrence of feedback in a frequency band. The adjustment of the hearing aid parameters for the signals involved takes place with the smallest possible time delay for their checking, since it takes place during the ongoing operation of the hearing aid.
  • the hearing aid parameters are set frequency band-wise at the level of adaptation, whereby, for example, if a gain factor in a frequency band is reduced, the reproduction for the entire frequency band is affected, while a critical probability for an occurrence of a There is feedback, and thus an adjustment of the gain would only be sufficient over this interval.
  • the first criticality measure and the described adaptation can be used to check whether the probability of feedback for the first feedback situation can really be reduced by the corresponding adaptation of the at least one hearing aid parameter. If this is not the case, this can be interpreted as an indication of a problem which, in the broadest sense, is related to the wearing situation of the hearing aid, and further measures can be coordinated accordingly.
  • a plurality of frequency-resolved curves of a feedback tendency is determined for the first usage situation, the first criticality measure for the first user situation being formed for a given frequency using a degree of dispersion of the values of the feedback tendency resulting from the plurality of frequency-resolved curves at this frequency.
  • the first usage situation is continuously maintained, e.g. by maintaining and / or repeating a corresponding body movement. Specifically, this can be done in such a way that the body movement, which characterizes the first use situation, is repeated several times, and a plurality of curves of the feedback tendency are determined in the process.
  • the degree of dispersion for each frequency i.e. the variance of the values for example, is calculated which the different curves show for the feedback tendency at this frequency, and the first criticality measure is formed on the basis of the determined variances for different frequencies.
  • the at least one hearing aid parameter can also be adapted accordingly if none of the values determined for the feedback tendency is directly critical for feedback at a given frequency.
  • the degree of dispersion of the values for the feedback tendency can therefore be viewed as an indicator of the stability of the feedback path in the first use situation.
  • An attenuation of an acoustic feedback path is expediently measured, the tendency for feedback at a given frequency to be determined in each case on the basis of a signal amplification in the hearing aid and on the basis of the attenuation of the acoustic feedback path.
  • the feedback tendency for a given frequency is determined as a sum or as a product of the attenuation of the acoustic feedback path and the signal amplification in the hearing aid.
  • the attenuation of the acoustic feedback path can in particular be determined by means of an adaptive filter, or measured directly by means of a modulated test signal.
  • the first use situation is established by the wearer putting on a headgear, and / or a movement of the jaw of the wearer, and / or the wearer using a mobile phone near the hearing aid, and / or a sporty one Actuation of the carrier and / or a positioning of the carrier in the immediate vicinity of a spatial delimitation.
  • a hat, a cap and a headscarf are included as headgear.
  • the jaw movement can consist of a chewing movement or speaking.
  • a spatial delimitation here includes in particular a window and a wall. The positioning is not tied to the movement process, but a purely static situation in the vicinity of the boundary can also be used.
  • the first use situation if the first use situation is present, a cumulative presence of the above-mentioned conditions is possible, for example, in that a headgear has been removed for a telephone call that is beginning.
  • the mentioned possibilities for the first use situation cover a broad spectrum of situations that can occur in everyday life and in which an acoustic feedback path can in principle change.
  • the at least one hearing aid parameter is selected from an overall gain at a frequency and / or a compression characteristic curve at a frequency and / or a readjustment speed.
  • the compression characteristic curve at a frequency is defined here in particular by a compression ratio and a knee point.
  • an immediately surrounding frequency interval can also be included in the overall amplification at a frequency.
  • the at least one hearing aid parameter the overall gain or the compression characteristic curve in this interval, or also a readjustment speed of the adaptive filter, can now be adapted.
  • the hearing aid parameters mentioned are suitable, on the one hand, for suppressing acoustic feedback through appropriate adaptation. On the other hand, their adaptation in the hearing aid is technically possible without any additional effort, so that there is no unnecessary burden on the signal processing.
  • a second use situation is established for the first wearing situation, a second criticality measure being determined for the second use situation, the second criticality measure being used to specify an adjustment of the at least one hearing aid parameter and / or a further hearing aid parameter.
  • the second criticality measure for the second usage situation is determined in a manner analogous to the first criticality measure for the first usage situation. This allows the probability of feedback occurring for different processes to be assessed individually, and the adaptation of one or more hearing aid parameters to be specified as a function of the totality of the assessments.
  • the second usage situation is established by one of the processes mentioned for the first usage situation.
  • the at least one hearing aid parameter is adjusted according to the specification made using the first criticality measure, the hearing aid being operated with the adjusted hearing aid parameter in a test mode, the first use situation being established in the test mode, and the first use situation being set up in the test mode a third criticality measure is determined for, in particular, automatic checking of the adaptation.
  • the third criticality measure is preferably determined in the manner described above, that is to say in particular in a manner analogous to the first criticality measure, which ensures that the values can be compared at a given frequency.
  • test operation can also consist of a resumption of regular operation of the hearing aid, with the aforementioned checking of the hearing aid parameter adjusted on the basis of the first criticality measure initially taking place using the third criticality measure, and regular operation simply being continued in the event of a positive assessment of the checking, and in In the event of a negative evaluation of the review, further measures are proposed.
  • the test operation can, however, also be formed by an independent routine. In this case, the first usage situation is established within the framework of said routine, and the present setting of the hearing aid is checked by means of the third criticality measure, which setting comprises the adaptation of the at least one hearing aid parameter made on the basis of the first criticality measure.
  • a second wearing situation is established, the first use situation being established for the second wearing situation, a fourth criticality level being determined for the first use situation in the second carrying situation, and a specification with regard to the fourth criticality level being established a suitability of the second wearing situation for the operation of the hearing aid takes place.
  • the fourth criticality measure is preferably determined in the manner described above, in particular in a manner analogous to the first criticality measure and particularly preferably also to the third criticality measure, whereby the values of the first criticality measure and at least the fourth criticality measure, particularly preferably also the third criticality measure, can be compared is ensured at a given frequency.
  • Establishing a second wearing situation can be particularly advantageous if the probability of feedback occurring in the first use situation cannot be significantly reduced by adjusting the hearing aid parameters, and this is determined in particular by checking the adjustment using the third criticality measure.
  • a specification for changing the at least one hearing aid parameter can be made based on the first criticality measure, and this can be adapted accordingly under the secondary conditions that result from the requirements for the playback dynamics and volume for the wearer.
  • the first usage situation is then established in the test mode and the third criticality measure for the adjusted settings is determined. If it is found that feedback is still critically probable even after the settings have been adjusted, preferably within the audiologically acceptable framework, this is assessed as an indication of a mechanical problem in the broadest sense, i.e. a change in the wearing situation can be recoverable.
  • the fourth criticality measure On the basis of the fourth criticality measure, it is now checked in particular whether the settings already adjusted in the first step - on the basis of the first criticality measure - are suitable for regular operation of the hearing aid in the second wearing situation, i.e. in particular the likelihood of feedback - according to the criticality measure used as a criterion - is significantly reduced compared to the first wearing situation.
  • a specification is therefore preferably made on the basis of the fourth criticality measure with regard to the suitability of the second wearing situation for operating the hearing aid with the at least one hearing aid parameter adapted on the basis of the first criticality measure
  • the second wearing situation is expediently produced by correcting the position of an acoustic coupling piece of the hearing aid, and / or using an acoustic coupling piece with changed dimensions, and / or using an acoustic coupling piece with a modified ventilation opening.
  • An acoustic coupling piece here includes in particular an ear mold, a so-called “dome” and a so-called “earmould”.
  • the measures mentioned represent, on the one hand, frequent sources of error when putting the hearing aid in its regular wearing position; by the wearer himself or a person of trust, without a visit to a hearing aid acoustician being necessary - and no further, more complex interventions on the hearing aid are required.
  • the first wearing situation is produced in particular by simply putting on the hearing aid - in accordance with the present mechanical configuration - in the supposed wearing position.
  • At least the first wearing situation and the first usage situation are expediently recorded by means of a video recording system.
  • Acquisition by a video recording system can in particular enable a specialist, e.g. a hearing aid acoustician, to be omitted to reduce the likelihood of feedback, which is convenient for the wearer.
  • image data generated by the video recording system are transmitted to a video playback system spatially separated from the carrier and reproduced by the latter, and / or an automatic command for determining the number of frequency-resolved curves of a feedback tendency based on the image data generated by the video recording system Hearing aid is generated in the first use situation.
  • the automatic command can in particular be generated using facial or generally image recognition, which determines that the first usage situation has been properly established, e.g. by detecting a chewing or speaking movement of the jaw or the wearer bringing a mobile phone to the ear.
  • the video playback system can be arranged in a hearing aid acoustician's work rooms, while the wearer is at home in the detection area of the video recording system.
  • the wearer establishes the first use situation in the first wearing situation, e.g. by putting on a headgear or bringing a mobile phone to his ear.
  • the first usage situation can now be ended on the one hand by the expiry of a fixed period of time, or on the other hand it can be ended when the determined curves for the feedback tendency no longer exceed their own extreme values or envelopes for a certain measurement period.
  • the first criticality measure is now determined from the curves determined for the feedback tendency.
  • An adaptation of the at least one hearing aid parameter is now specified on the basis of the first criticality measure.
  • the adaptation itself can either be carried out by the wearer himself, by a person of trust of the wearer (in particular if the wearer is unable to do so himself), or via suitable remote access by the hearing aid acoustician.
  • the first usage situation can be established again in the test mode, and further curves of the feedback tendency can be determined, from which the third criticality measure is then determined.
  • the third criticality measure it is now checked whether the adjustment of the settings has sufficiently reduced the tendency for feedback. If this is not the case, the hearing aid acoustician can instruct the wearer to create the second wearing situation, the specific selection of the measure being made using the third and possibly also using the first criticality measure - for example, via courses characteristic of certain errors and in particular can be specified automatically. If a measure is specified as the establishment of the second wearing situation, which the wearer cannot carry out independently, the person they trust can establish the second wearing situation via the video monitoring system under the instruction of the hearing aid acoustician.
  • the first use situation is now established in the manner described above in response to a start signal, and a new series of measurements of the feedback tendency is carried out to determine the fourth criticality measure, on the basis of which the suitability of the second wearing situation for suppressing feedback is assessed.
  • the invention also refers to a hearing aid which is set up to carry out the method described above.
  • the hearing aid has means for detecting at least the attenuation of an acoustic feedback from an output transducer of the hearing aid to an input transducer.
  • the hearing aid preferably also has means for transmitting a signal amplification and the attenuation resulting from the acoustic feedback to an external detection unit.
  • parts of the method described above such as the determination of the first and further criticality measures and the corresponding specifications, can take place in the external recording unit.
  • the hearing aid preferably comprises means for calculating the first and further criticality measures.
  • a hearing aid 1 is shown schematically in a block diagram.
  • the input signal 6 is fed to a signal processor 8 in the hearing aid 1 and processed there in accordance with the audiological needs of the wearer of the hearing aid 1 and, in particular, is amplified as a function of the frequency band.
  • the output signal 10 resulting from the signal processing 8 is converted by an output transducer 12 of the hearing aid 1 into an output sound signal 14, which is passed to the hearing of the wearer of the hearing aid 1, which is not shown in detail.
  • the output transducer 14 is provided by a loudspeaker which is arranged in an acoustic coupling piece 15 of the hearing device 1.
  • the acoustic coupling piece is given as an ear mold.
  • part of the output sound signal 14 can now reach the input transducer 2 again, and thus find its way into the input signal 6, whereby a closed feedback loop is formed in which signal components are continuously amplified by the signal processing 8.
  • the amplification can now be reduced in signal processing 8 on the one hand.
  • this is also associated with a loss of amplification for other signal components not affected by the acoustic feedback, so that the signal processing 8 no longer works optimally in accordance with the audiological specifications of the wearer of the hearing aid 1.
  • the output signal 10 is often branched off and fed to an adaptive filter 18.
  • the signal resulting from this subtraction finds its way into the signal processing 8 on the one hand and is also fed to the adaptive filter as an error signal 22 on the other hand.
  • the adaptive filter 18 in particular the acoustic feedback path 16 or its frequency response is estimated.
  • the occurrence of acoustic feedback sometimes has predominantly mechanical causes, such as, for example, the acoustic coupling piece 15 of the hearing aid 1 not being optimally seated in the wearer's ear, as a result of which a particularly high proportion of the output sound signal 14 can escape and reach the input transducer 2 again.
  • Further causes, which are essentially mechanical, can depend on a specific usage situation such as a chewing or speaking movement or the influence of a mobile phone or other similar object in the vicinity of the hearing aid 1 on the acoustic feedback path 16.
  • the suppression of the feedback by the adaptive filter 18 with the risk of artifacts in the output signal 10 is not always effective.
  • a first wearing situation 30 is produced in which the wearer uses the hearing aid 1 after Figure 1 is applied regularly.
  • the first wearing situation 30 is characterized in particular by the global position of the hearing aid 1 relative to the wearer, and also by the use of individual, reversibly exchangeable components such as the acoustic coupling piece 15 and their positioning relative to the wearer.
  • a first use situation 32 is now produced, which is characterized by at least one body movement of the wearer and / or by an external object.
  • a plurality of frequency-resolved curves, 34a-c of a feedback tendency of the hearing aid are determined. This is done in that, for example, by repeating the movement that speaks of the first use situations, the measurement process for the feedback tendency is repeated, and over time a plurality of "screenshots" of the feedback tendency is generated over the frequency. From the frequency-resolved curves 34a-c of the feedback tendency, a first criticality measure 36 is generated in a manner still to be described, on the basis of which a specification 38 is made for an adaptation of at least one hearing aid parameter.
  • a second usage situation can also be produced in the first wearing situation 30, in which frequency-resolved curves follow a feedback tendency of the hearing aid 1 Figure 1 can be determined from which a second criticality measure is determined.
  • a specification for the adjustment of one or more hearing aid parameters can then also be made, the specification on the one hand being able to relate to the hearing aid parameter (s) 40 for which a specification 38 for adaptation is already made based on the first criticality measure 36.
  • the created on the basis of the second criticality measure Specification also relate to other hearing aid parameters for which no specification yet exists.
  • the hearing aid parameter 40 is now adapted in accordance with the specification 38 and possibly in accordance with a further specification created in a second use situation.
  • the hearing aid parameter 40 can be, for example, an overall gain at a specific frequency and / or a compression characteristic curve at a specific frequency, but also a parameter of the adaptive filter 18 Figure 1 , for example by a readjustment speed or a step size.
  • a test mode 42 is now started, in which the hearing device 1 is tested in the first use situation 32.
  • frequency-resolved curves 44a-c are determined for the feedback tendency of the hearing aid.
  • the frequency-resolved curves 44a-c are thus generated while the movement corresponding to the first usage situation is repeated in test mode 42.
  • a third criticality measure 46 is generated from the frequency-resolved curves 44a-c in a manner analogous to the first criticality measure 36. On the basis of the third criticality measure 46 it can now be determined whether the adaptation of the hearing device parameter 40 according to the specification 38 has significantly reduced the probability of an acoustic feedback occurring during the first use situation 32.
  • a second carrying situation 50 is suggested.
  • This can be, for example, a position correction of the acoustic coupling piece 15 of the hearing aid 1, or the use of an acoustic coupling piece with changed dimensions and / or a changed ventilation openings.
  • the wearer of the hearing aid 1 or a person of trust establishes the second wearing situation.
  • the first use situation is then established again for the second carrying situation 50 by means of the corresponding movement.
  • frequency-resolved curves 54a-c are determined for the feedback tendency, on the basis of which a fourth criticality measure 56 is determined.
  • the fourth criticality measure 56 can now It can be checked whether the specification made according to the first criticality measure 36 for the adaptation of the hearing device parameter 40 in the second wearing situation 50 is suitable for keeping the probability of the occurrence of acoustic feedback sufficiently low. If this is the case, the second carrying situation 50 can be identified as a carrying situation to be used from now on, for example by continuing to use an acoustic coupling piece that may have been replaced, or by continuously ensuring that it is properly inserted when the acoustic coupling piece is put on Penetrates the ear canal.
  • a third wearing situation (not shown in detail) can be produced in a manner analogous to the second wearing situation 50, or a visit to a hearing aid acoustician can be recommended as a "last resource" measure.
  • a feedback tendency 60 in dB is plotted against the frequency f.
  • the feedback tendency 60 which represents a measure of the probability of an acoustic feedback occurring, is formed here by following the attenuation 62 of the acoustic feedback path 16 Figure 1 (dashed line) the amplification 64 taking place in the signal processing 8 (dashed-dotted line) is added.
  • FIG 4 a plurality of frequency-resolved curves 60a-m for the feedback tendency is shown. These correspond, for example, to various individual measurements that were carried out during the first usage situation Figure 2 be performed. While the individual curves 60a-m hardly differ from one another in the frequency range up to approx. 3 kHz, and thus the variance of the various curve values is hardly significant at a given frequency, the curves 60a-m drift noticeably apart from 3 kHz upwards. A narrow frequency range around 6 kHz should be mentioned in particular, in which the individual curves differ in their values by up to 30 dB. From 7 kHz upwards, the course of the curves is again almost uniform.
  • a criticality measure 66 is now determined in a manner analogous to the first criticality measure 36, the third criticality measure 64 and the fourth criticality measure 56. This is done by adding a correction term to the maximum value 60m for the feedback tendency (dotted line) at each frequency f, which depends monotonically on the variance of the individual values of the curves 60a-m at a given frequency f. For the high variance, which is present at just below 6 kHz, the criticality measure 66 (dashed line) is maximum.
  • the criticality measure 66 is greater there than at 2 kHz. This takes into account the fact that the system is more stable over the entire range of possible values during the first use situation at 2 kHz than at 4 kHz, which is why it can be assumed that at 4 kHz the maximum value determined is not necessarily the absolutely possible Corresponds to the maximum value, while this is probably the case at 2 kHz due to the high stability.
  • the criticality level is correspondingly higher at 4 kHz.
  • Frequency ranges 68 can now be identified from the criticality measure 66, for which the occurrence of acoustic feedback in the relevant usage situation is particularly likely and is to be adapted in accordance with a hearing aid parameter.
  • the exceeding of a threshold value by the criticality measure 66 can be used as a criterion, whereby 0 dB - that is to say the limit for a critical gain - can be selected as the threshold value in a first approximation

Landscapes

  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Otolaryngology (AREA)
  • Neurosurgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Verringerung eines Auftretens einer akustischen Rückkopplung in einem Hörgerät, wobei eine erste Tragesituation hergestellt wird, welche eine Positionierung des Hörgerätes relativ zum Träger festlegt, wobei für die erste Tragesituation eine erste Benutzungssituation hergestellt wird, und wobei eine Vorgabe für ein Anpassen wenigstens eines Hörgeräteparameters erfolgt.
  • Im Betrieb eines Hörgerätes stellt das Auftreten von akustischen Rückkopplungen ein besonderes Problem dar. Der von einem Ausgangswandler des Hörgerätes erzeugte Schall, welcher für das Gehör des Trägers des Hörgerätes vorgesehen ist, propagiert hierbei teilweise zu einem Eingangswandler des Hörgerätes, und gelangt hierdurch erneut in die Signalverarbeitung des Hörgerätes, in welcher auf das Signal des Eingangswandlers eine Verstärkung angewandt wird. Ist hierbei der Dämpfungsfaktor, um welchen der Schall des Ausgangswandlers auf dem Schallweg zum Eingangswandler abgedämpft wird, geringer als der Verstärkungsfaktor der Signalverarbeitung, so kann das System infolge der geschlossenen Verstärkungsschleife instabil werden. Dies ist als ein Pfeifgeräusch bei den betreffenden Frequenzen hörbar, und führt daher zu einer erheblichen Beeinträchtigung des Hörempfindens des Trägers.
  • Eine der geläufigen Maßnahmen zur Unterdrückung einer solchen akustischen Rückkopplung ist es, die Verstärkung der Signalverarbeitung zu reduzieren, wenn die Rückkopplung registriert wird. Die Reduktion der Verstärkung kann sich dabei auf diejenigen Frequenzbereiche beschränken, in welchen die Rückkopplung auftritt. Dies hat jedoch den Nachteil, dass die Verstärkung der Signalverarbeitung nicht mehr ausschließlich in Abhängigkeit der individuellen Hörschwäche des Trägers gewählt wird, sodass ein vom Ausgangswandler erzeugtes Ausgangsschallsignal nicht mehr optimal auf die audiologischen Bedürfnisse des Trägers abgestimmt ist. Auch ist es möglich, die akustische Rückkopplung mittels eines adaptiven Filters durch die Implementierung einer elektrischen Rückkopplungsschleife zu unterdrücken. Hierdurch können jedoch aufgrund der erfolgenden elektronischen Auslöschung von Signalanteilen Artefakte im Ausgangsschallsignal entstehen.
  • Überdies ist das Auftreten von akustischen Rückkopplungen in erheblichem Maße an die konkrete Benutzungssituation gebunden. Während beispielsweise im normalen Betrieb bei einer gegebenen Frequenz infolge des Verhältnisses aus Dämpfung im akustischen Rückkopplungspfad und Verstärkung in der elektronischen Signalverarbeitung gegebenenfalls keine Rückkopplung zu erwarten ist, kann bei Veränderungen wie zum Beispiel dem telefonieren mit einem Mobiltelefon oder dem Aufsetzen einer Kopfbedeckung der akustische Rückkopplungspfad dahingehend verändert werden, dass die Dämpfung verringert wird, und es somit zu einer kritischen Rückkopplungsschleife kommt. Gerade ein derartiges spontanes Auftreten von Rückkopplungen führt bei den beschriebenen Maßnahmen zur Unterdrückung oftmals zu einem als unangenehm empfundenen Pfeifgeräusch.
  • Die EP 2 869 600 A1 nennt für ein Hörgerät eine Unterdrückung einer akustischen Rückkopplung mittels eines Kompensationssignals, welches von einem Eingangssignal des Hörgerätes subtrahiert wird, wobei eine Abschätzung einer residualen Rückkopplung erfolgt, welche durch das Kompensationssignal nicht unterdrückt wird. Anhand der residualen Rückkopplung wird ein Verstärkungsparameter im Hörgerät angepasst.
  • Die US 2010 / 0 260 365 A1 nennt ein Hörgerät mit zwei voneinander verschiedenen Einheiten zum Erkennen einer akustischen Rückkopplung am Hörgerät, wobei die jeweiligen Ausgangssignale der beiden Einheiten jeweilige Wahrscheinlichkeiten einer akustischen Rückkopplung angeben können, und z.B. in einer Komparatorschaltung miteinander oder mit einem vorgegebenen Grenzwert verglichen werden. Die beiden Einheiten zur Erkennung der akustischen Rückkopplung können sich beispielsweise in einer Zeitkonstanten unterscheiden, sodass eine der Einheiten besonders schnell reagiert, die andere eine Rückkopplung langsamer aber dafür zuverlässiger erkennt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, durch welches ein spontanes Auftreten von Rückkopplungen in bestimmten Situationen verringert wird, welches einen möglichst geringen Einfluss auf die gemäß der individuellen Hörschwäche des Trägers des Hörgerätes anhand der Eingangssignale erzeugten Ausgangssignale haben soll.
  • Die genannte Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Verringerung eines Auftretens einer akustischen Rückkopplung in einem Hörgerät, wobei eine erste Tragesituation hergestellt wird, welche eine Positionierung des Hörgerätes relativ zum Träger festlegt, wobei für die erste Tragesituation eine erste Benutzungssituation hergestellt wird, welche durch wenigstens eine Körperbewegung des Trägers des Hörgerätes und/oder wenigstens eine Relativposition eines externen Objektes zum Körper des Trägers charakterisiert ist, und wobei für die erste Benutzungssituation eine Mehrzahl an frequenzaufgelösten Kurven einer Rückkopplungsneigung des Hörgerätes bestimmt wird. Hierbei ist vorgesehen, dass anhand jeder frequenzaufgelösten Kurve für die erste Benutzungssituation ein erstes Kritikalitätsmaß ermittelt wird, welches Informationen zu einem hinsichtlich eines Auftretens einer akustischen Rückkopplung kritischen Frequenzbereich und einer entsprechenden relativen Wahrscheinlichkeit für ein Auftreten einer akustischen Rückkopplung enthält, wobei zu einer gegebenen Frequenz das erste Kritikalitätsmaß für die erste Benutzersituation anhand eines Streuungsmaßes für die sich aus der Mehrzahl an frequenzaufgelösten Kurven jeweils ergebenden Werte der Rückkopplungsneigung bei dieser Frequenz gebildet wird, wobei für die erste Tragesituation eine zweite Benutzungssituation hergestellt wird, wobei für die zweite Benutzungssituation ein zweites Kritikalitätsmaß in einer analogen Weise ermittelt wird, wie das erste Kritikalitätsmaß für die erste Benutzungssituation, und anhand der Gesamtheit des ersten Kritikalitätsmaßes und des zweiten Kritikalitätsmaßes eine Vorgabe für ein Anpassen wenigstens eines Hörgeräteparameters erfolgt. Vorteilhafte und teils für sich gesehen erfinderische Ausgestaltungen sind Gegenstand der Unteransprüche und der nachfolgenden Beschreibung.
  • Unter einer Tragesituation ist hierbei insbesondere die Gesamtheit der Umstände zu verstehen, unter denen das Hörgerät örtlich am Träger fixiert ist, und dabei insbesondere ein gegebenenfalls vorhandenes, austauschbares akustisches Ankopplungsstück (wie z.B. ein Ohrpassstück oder ein sog. "Dome") eine bestimmte Position einnimmt. Insofern können sich zwei Tragesituationen hinsichtlich der genauen räumlichen Position des Hörgerätes und/oder des akustischen Ankopplungsstücks unterscheiden, oder auch durch eine Verwendung unterschiedlicher akustischer Ankopplungsstücke gegeben sein. Unter einer Benutzungssituation ist hierbei und im folgenden insbesondere umfasst, dass der Träger des Hörgerätes während des Betriebs insbesondere in einer konkret gegebenen Tragesituation Körperbewegungen durchführt oder sich selbst relativ zu begrenzenden Objekten wie Wänden oder Fenstern bewegt, sodass die in der Benutzungssituation erfolgenden Bewegungen insbesondere dazu geeignet sind, einen akustischen Rückkopplungspfad des Hörgerätes zu beeinflussen.
  • Unter einer Rückkopplungsneigung des Hörgerätes ist insbesondere eine frequenzabhängige Kenngröße umfasst, anhand derer eine quantitative Wahrscheinlichkeit für ein Auftreten einer akustischen Rückkopplung bei der betreffenden Frequenz bestimmbar ist. Insbesondere kann eine Rückkopplungsneigung hierbei gegeben sein durch ein Verhältnis oder eine Differenz einer Dämpfung des akustischen Rückkopplungspfades und einer Verstärkung durch eine im Hörgerät erfolgende Signalverarbeitung. Eine frequenzaufgelöste Kurve einer Rückkopplungsneigung kann insofern gegeben sein durch die jeweiligen Werte der Rückkopplungsneigung über das entsprechende Frequenzspektrum, oder durch die Werte der Rückkopplungsneigung an einer Mehrzahl an Stützstellen für die Frequenz gebildet werden, welche in hinreichend hoher Frequenzauflösung zu wählen sind.
  • Das erste Kritikalitätsmaß wird für die Rückkopplungsneigung auch anhand einer Gewichtung der Werte der verschiedenen Kurven bei einer gegebenen Frequenz ermittelt. In diesem Fall ist bevorzugt das Kritikalitätsmaß derart zu berechnen, dass bei einer gegebenen Frequenz für eine hohe Varianz an Werten der Rücckopplungsneigungen der verschiedenen Kurven ein höherer Wert für das erste Kritikalitätsmaß erzeugt wird, als in einer Situation mit einem identischen Maximalwert der Rückkopplungsneigungen bei einer geringeren Varianz. Dies trägt dem Umstand Rechnung, dass bei einer bestimmten Frequenz für eine hohe Varianz der Werte der Rückkopplungsneigung in der ersten Benutzungssituation auch eine noch weitere Streuung über den in der Messung erfassten Dezimalwert hinaus zu erwarten ist, während eine geringe Varianz der Werte bei einer gegebenen Frequenz für eine größere intrinsische Stabilität des Systems spricht. In diesem Sinn kann anhand der Maximalwerte der Rückkopplungsneigung sowie anhand der Variation über die verschiedenen Kurven bei einer gegebenen Frequenz auf die Gefahr eines Auftretens einer Rückkopplung bei der entsprechenden Frequenz für die erste Benutzungssituation geschlossen werden. Die relative Wahrscheinlichkeit für ein solches Auftreten der Rückkopplung kann hierbei insbesondere auch auf andere Frequenzbereiche bezogen sein, also das erste Kritikalitätsmaß insbesondere dahingehend eine Aussage treffen, dass eine Rückkopplung für eine erste Frequenz dann wahrscheinlicher ist als für eine zweite Frequenz, wenn der Wert des ersten Kritikalitätsmaßes bei der ersten Frequenz größer ist als der Wert bei der zweiten Frequenz.
  • Bevorzugt wird der wenigstens eine Hörgeräteparameter entsprechend der anhand des ersten Kritikalitätsmaßes getroffenen Vorgabe angepasst, wobei die Anpassung insbesondere automatisch erfolgen kann. Alternativ dazu kann die Anpassung entsprechend der Vorgabe auch manuell durch einen Hörgeräteakustiker folgen. Bevorzugt wird hierbei der wenigstens eine Hörgeräteparameter unter der zusätzlichen Vorgabe angepasst, eine Signalverstärkung und eine Wiedergabedynamik im Hörgerät möglichst wenig zu beeinträchtigen. Dies kann insbesondere dadurch erfolgen, dass der wenigstens eine Hörgeräteparameter nur für denjenigen Frequenzbereich angepasst wird, für welchen anhand des ersten Kritikalitätsmaßes ein Auftreten einer Rückkopplung in der ersten Benutzungssituation überhaupt als hinreichend wahrscheinlich betrachtet wird. Die Bewertung kann dabei durch einen Schwellwertvergleich des frequenzaufgelösten ersten Kritikalitätsmaßes über das gesamte Spektrum erfolgen.
  • Durch die Anpassung des wenigstens einen Hörgeräteparameters anhand des ersten Kritikalitätsmaßes kann somit zum einen die Wahrscheinlichkeit für ein Auftreten von Rückkopplungen zielgerichtet auf diejenigen Frequenzbereiche limitiert werden, in welchen eine Änderung der vorliegenden Hörgeräteparameter zur Vermeidung von Rückkopplungen überhaupt erforderlich ist, wodurch die Anpassung hinsichtlich der Wiedergabeeigenschaften des Hörgerätes "minimal invasiv" ausgestaltet werden kann. Bisherige Verfahren zur Verringerung oder Unterdrückung von Rückkopplungen, welche auf einer Anpassung von Hörgeräteparametern basieren, überprüfen üblicherweise das Auftreten von Rückkopplungen frequenzbandweise. Die Anpassung der Hörgeräteparameter für die involvierten Signale erfolgt dabei mit möglichst geringer Zeitverzögerung zu ihrer Überprüfung, da sie während des laufenden Betriebs des Hörgerätes erfolgt. Hierdurch steht zum einen auf der Ebene der Überprüfung nur eine begrenzte Anzahl an Frequenzbändern zur Verfügung, da sonst die für eine Aufteilung eines Eingangssignals in verschiedene Frequenzbänder verwendeten Filter eine zu hohe Latenz bedingen würden. Zum anderen werden auf der Ebene der Anpassung die Hörgeräteparameter frequenzbandweise eingestellt, wodurch z.B. bei einer Absenkung eines Verstärkungsfaktors in einem Frequenzband die Wiedergabe für das gesamte Frequenzband betroffen ist, während ggf. nur für ein schmales Frequenzintervall innerhalb dieses Frequenzbandes eine kritische Wahrscheinlichkeit für ein Auftreten einer Rückkopplung besteht, und somit eine Anpassung der Verstärkung nur über dieses Intervall ausreichen würde.
  • Zum anderen kann anhand des ersten Kritikalitätsmaßes und anhand der beschriebenen Anpassung überprüft werden, ob eine Wahrscheinlichkeit einer Rücckopplung für die erste Rückkopplungssituation wirklich durch die entsprechende Anpassung des wenigstens einen Hörgeräteparameters verringert werden kann. Sollte dies nicht der Fall sein, kann dies als ein Indiz für ein Problem gewertet werde, welches im Weitesten Sinn mit der Tragesituation des Hörgerätes zusammenhängt, und entsprechend können weitere Maßnahmen hierauf abgestimmt werden.
  • Erfindungsgemäß wird für die erste Benutzungssituation eine Mehrzahl an frequenzaufgelösten Kurven einer Rückkopplungsneigung bestimmt, wobei zu einer gegebenen Frequenz das erste Kritikalitätsmaß für die erste Benutzersituation anhand eines Streuungsmaßes der sich aus der Mehrzahl an frequenzaufgelösten Kurven jeweils ergebenden Werte der Rückkopplungsneigung bei dieser Frequenz gebildet wird. Insbesondere wird hierbei die erste Benutzungssituation kontinuierlich aufrechterhalten, z.B. durch eine Aufrechterhaltung und/oder Wiederholung einer entsprechenden Körperbewegung. Konkret kann dies derart erfolgen, dass die Körperbewegung, durch welche die erste Benutzungssituation charakterisiert ist, mehrfach wiederholt wird, und hierbei eine Mehrzahl an Kurven der Rückkopplungsneigung bestimmt werden. Dies kann über einen vorgegebenen Zeitraum erfolgen, oder bis eine vorgegebene Menge an Messwerten und/oder Kurven für die Rückkopplungsneigung in ausreichender Messqualität bestimmt wurden. Anschließend wird zu jeder Frequenz das Streuungsmaß, also z.B. die Varianz der Werte berechnet, welche die verschiedenen Kurven für die Rückkopplungsneigung bei dieser Frequenz aufweisen, und anhand der ermittelten Varianzen für verschiedene Frequenzen das erste Kritikalitätsmaß gebildet.
  • Durch die Verwendung eines Streuungsmaßes, welches Aufschluss gibt, wie sich bei einer gegebenen Frequenz die Werte der Rückkopplungsneigung über die erste Benutzungssituation hinweg unterscheiden können, können diejenigen Frequenzbereiche identifiziert werden, in welchen mit einer Überschreitung der Rücckopplungsneigung über die in den vorliegenden Kurven ermittelten Werte gerechnet werden sollte, und entsprechend auch dann der wenigstens eine Hörgeräteparameter angepasst werden kann, wenn bei einer gegebenen Frequenz keiner der ermittelten Werte für die Rückkopplungsneigung unmittelbar kritisch für eine Rückkopplung ist. Bei einer gegebenen Frequenz kann also das Streuungsmaß der Werte für die Rückkopplungsneigung als ein Indikator der Stabilität des Rücckopplungspfades in der ersten Benutzungssituation betrachtet werden. Bei einem geringen Wert des Streumaßes wird dabei davon ausgegangen, dass die Werte im realen Betrieb des Hörgerätes bei einer Reproduktion der ersten Benutzungssituation nur unwesentlich über den ermittelten Wertebereich für die gegebene Frequenz hinausgehen, wodurch die Anpassung des wenigstens einen Hörgeräteparameters weiter eingeschränkt werden kann, was sich positiv auf die Wiedergabeeigenschaften des Hörgerätes auswirkt.
  • Zweckmäßigerweise wird eine Dämpfung eines akustischen Rückkopplungspfades gemessen, wobei die Rückkopplungsneigung zu einer gegebenen Frequenz jeweils anhand einer Signalverstärkung im Hörgerät und anhand der Dämpfung des akustischen Rückkopplungspfades bestimmt wird. Insbesondere wird zu einer gegebenen Frequenz die Rückkopplungsneigung als eine Summe oder als ein Produkt der Dämpfung des akustischen Rückkopplungspfades und der Signalverstärkung im Hörgerät bestimmt. Die Dämpfung des akustischen Rückkopplungspfades kann hierbei insbesondere mittels eines adaptiven Filters bestimmt werden, oder mittels eines modulierten Testsignals direkt gemessen werden.
  • Als vorteilhaft erweist es sich, wenn die erste Benutzungssituation hergestellt wird durch das Aufsetzen einer Kopfbedeckung durch den Träger, und/oder eine Kieferbewegung des Trägers, und/oder den Gebrauch eines Mobiltelefons in der Nähe des Hörgerätes durch den Träger, und/oder eine sportliche Betätigung des Trägers, und/oder eine Positionierung des Trägers in unmittelbarer Nähe einer räumlichen Begrenzung. Insbesondere sind als Kopfbedeckung ein Hut, eine Mütze, und ein Kopftuch umfasst. Insbesondere kann die Kieferbewegung in einer Kaubewegung oder in Sprechen bestehen. Unter einer räumlichen Begrenzung sind hierbei insbesondere ein Fenster und eine Wand umfasst. Die Positionierung ist dabei nicht an den Bewegungsvorgang gebunden, es kann jedoch insbesondere auch auf eine rein statische Situation in der Nähe der Begrenzung abgestellt werden. Insbesondere ist für ein Vorliegen der ersten Benutzungssituation ein kumulatives Vorliegen von den genannten Bedingungen möglich, z.B., indem für ein beginnendes Telefongespräch eine Kopfbedeckung abgesetzt wurde. Die genannten Möglichkeiten für die erste Benutzungssituation decken ein breites Spektrum an Situationen ab, welche im Alltag auftreten können, und in welchen sich prinzipiell ein akustischer Rückkopplungspfad ändern kann.
  • In einer vorteilhaften Ausgestaltung der Erfindung wird der wenigstens eine Hörgeräteparameter ausgewählt aus einer Gesamtverstärkung bei einer Frequenz, und/oder einer Kompressionskennlinie bei einer Frequenz, und/oder einer Nachregelungsgeschwindigkeit. Die Kompressionskennlinie bei einer Frequenz ist hierbei insbesondere durch ein Kompressionsverhältnis und einen Kniepunkt definiert. Insbesondere kann bei der Gesamtverstärkung bei einer Frequenz auch ein unmittelbar umgebendes Frequenzintervall umfasst sein. Wenn das erste Kritikalitätsmaß im Wesentlichen kontinuierlich über die Frequenz ermittelt wird, so ergeben sich hinsichtlich einer Wahrscheinlichkeit für eine akustische Rückkopplung kritische Frequenzen meist nicht isoliert - da bei einer solchen Frequenz das erste Kritikalitätsmaß seinen kritischen Wert exakt als Berührpunkt einnehmen müsste - sondern über ein Intervall von Frequenzen. Als der wenigstens eine Hörgeräteparameter kann nun die Gesamtverstärkung oder die Kompressionskennlinie in diesem Intervall, oder auch eine Nachregelungsgeschwindigkeit des adaptiven Filters angepasst werden. Die genannten Hörgeräteparameter sind einerseits dazu geeignet, eine akustische Rückkopplung durch entsprechend Anpassung zu unterdrücken. Andererseits ist ihre Anpassung im Hörgerät technisch auch ohne Mehraufwand möglich, sodass sich keine unnötige Belastung der Signalverarbeitung ergibt.
  • Erfindungsgemäß wird für die erste Tragesituation eine zweite Benutzungssituation hergestellt, wobei für die zweite Benutzungssituation ein zweites Kritikalitätsmaß ermittelt wird, wobei anhand des zweiten Kritikalitätsmaßes eine Vorgabe für ein Anpassen des wenigstens einen Hörgeräteparameters und/oder eines weiteren Hörgeräteparameters erfolgt. Hierbei wird das zweite Kritikalitätsmaß für die zweite Benutzungssituation in einer analogen Weise ermittelt wie das erste Kritikalitätsmaß für die erste Benutzungssituation. Dies erlaubt es, die Wahrscheinlichkeit für ein Auftreten von Rückkopplungen für verschiedene Vorgänge einzeln zu bewerten, und die Anpassung eines oder mehrerer Hörgeräteparameter in Abhängigkeit der Gesamtheit der Bewertungen vorzugeben. Dabei wird die zweite Benutzungssituation hergestellt durch einen der für die erste Benutzungssituation genannten Vorgänge.
  • In einer weiter vorteilhaften Ausgestaltung wird der wenigstens eine Hörgeräteparameter entsprechend der anhand des ersten Kritikalitätsmaßes erfolgten Vorgabe angepasst, wobei das Hörgerät mit dem angepassten Hörgeräteparameter in einem Testbetrieb betrieben wird, wobei im Testbetrieb die erste Benutzungssituation hergestellt wird, und wobei für die erste Benutzungssituation im Testbetrieb ein drittes Kritikalitätsmaß zur insbesondere automatischen Überprüfung der Anpassung ermittelt wird. Bevorzugt wird das dritte Kritikalitätsmaß in vorbeschriebener Weise, also insbesondere in analoger Weise zum ersten Kritikalitätsmaß ermittelt, wodurch eine Vergleichbarkeit der Werte bei einer gegebenen Frequenz sichergestellt wird. Insbesondere kann der Testbetrieb auch in einer Wiederaufnahme des regulären Betriebs des Hörgerätes bestehen, wobei zunächst mittels des dritten Kritikalitätsmaßes die besagte Überprüfung des anhand des ersten Kritikalitätsmaßes angepassten Hörgeräteparameters erfolgt, und der reguläre Betrieb im Fall einer positiven Bewertung der Überprüfung einfach fortgesetzt wird, und im Fall einer negativen Bewertung der Überprüfung weitere Maßnahmen vorgeschlagen werden. Der Testbetrieb kann jedoch auch durch eine eigenständige Routine gebildet werden. In diesem Fall wird die erste Benutzungssituation im Rahmen der besagten Routine hergestellt, und mittels des dritten Kritikalitätsmaßes die vorliegende Einstellung des Hörgerätes überprüft, welche die anhand des ersten Kritikalitätsmaßes vorgenommene Anpassung des wenigstens einen Hörgeräteparameters umfasst.
  • Als weiter vorteilhaft erweist es sich dabei, wenn eine zweite Tragesituation hergestellt wird, wobei für die zweite Tragesituation die erste Benutzungssituation hergestellt wird, wobei für die erste Benutzungssituation in der zweiten Tragesituation ein viertes Kritikalitätsmaß ermittelt wird, und wobei anhand des vierten Kritikalitätsmaßes eine Vorgabe hinsichtlich einer Eignung der zweiten Tragesituation für den Betrieb des Hörgerätes erfolgt. Bevorzugt wird das vierte Kritikalitätsmaß in vorbeschriebener Weise, also insbesondere in analoger Weise zum ersten Kritikalitätsmaß und besonders bevorzugt auch zum dritten Kritikalitätsmaß ermittelt, wodurch eine Vergleichbarkeit der Werte des ersten Kritikalitätsmaßes und wenigstens des vierten Kritikalitätsmaßes, besonders bevorzugt auch des dritten Kritikalitätsmaßes bei einer gegebenen Frequenz sichergestellt wird. Das Herstellen einer zweiten Tragesituation kann insbesondere dann von Vorteil sein, wenn sich die Wahrscheinlichkeit für das Auftreten einer Rückkopplung in der ersten Benutzungssituation nicht wesentlich über eine Anpassung der Hörgeräteparameter verringern lässt, und dies insbesondere anhand einer Überprüfung der Anpassung mittels des dritten Kritikalitätsmaßes festgestellt wird.
  • So kann z.B. anhand des ersten Kritikalitätsmaßes eine Vorgabe zur Änderung des wenigstens einen Hörgeräteparameters erfolgen, und dieser entsprechend unter den Nebenbedingungen angepasst werden, welche sich aus den Anforderung an die Wiedergabedynamik und -lautstärke für den Träger ergeben. Anschließend wird im Testbetrieb die erste Benutzungssituation hergestellt, und hierbei das dritte Kritikalitätsmaß zu den angepassten Einstellungen ermittelt. Wird nun festgestellt, dass eine Rückkopplung selbst nach einer erfolgten Anpassung der Einstellungen, bevorzugt innerhalb des audiologisch akzeptablen Rahmen, immer noch kritisch wahrscheinlich ist, so wird dies als ein Indiz für ein im weitesten Sinne mechanisches Problem gewertet, welches also über eine Änderung der Tragesituation behebbar sein kann.
  • Anhand des vierten Kritikalitätsmaßes wird nun insbesondere überprüft, ob die bereits im ersten Schritt - anhand des ersten Kritikalitätsmaßes - angepassten Einstellungen für einen regulären Betrieb des Hörgerätes in der zweiten Tragesituation geeignet sind, also insbesondere die Wahrscheinlichkeit einer Rückkopplung - gemäß der verwendeten Kritikalitätsmaße als Kriterium - wesentlich gegenüber der ersten Tragesituation reduziert wird. Bevorzugt erfolgt also anhand des vierten Kritikalitätsmaßes eine Vorgabe hinsichtlich einer Eignung der zweiten Tragesituation für den Betrieb des Hörgerätes mit dem anhand des ersten Kritikalitätsmaßes angepassten wenigstens einen Hörgeräteparameter
  • Zweckmäßigerweise wird die zweite Tragesituation hergestellt durch eine Positionskorrektur eines akustischen Ankopplungsstücks des Hörgerätes, und/oder eine Verwendung eines akustischen Ankopplungsstücks mit veränderten Abmessungen, und/oder eine Verwendung eines akustischen Ankopplungsstücks mit einer veränderten Belüftungsöffnung. Unter einem akustischen Ankopplungsstück sind hierbei insbesondere ein Ohrpassstück, ein sog. "Dome" und ein sog. "Earmould" umfasst. Die genannten Maßnahmen stellen zum einen häufige Fehlerquellen beim Anlegen des Hörgerätes in seine reguläre Trageposition dar, zum anderen sind akustische Rückkopplungen durch die Verwendung eines anderen akustischen Ankopplungsstücks dahingehend besonders effizient zu korrigieren, dass sich dieses meist einfach und ohne große Fachkenntnis ersetzen lässt - also auch durch den Träger selbst oder eine Vertrauensperson, ohne dass ein Besuch bei einem Hörgeräteakustiker erforderlich wäre - und dabei keine weiteren, komplexeren Eingriffe am Hörgerät erforderlich werden. Vor diesem Hintergrund wird die erste Tragesituation insbesondere durch ein einfaches Anlegen des Hörgerätes - gemäß der vorliegenden mechanischen Konfiguration - in die vermeintliche Trageposition hergestellt.
  • Günstigerweise werden wenigstens die erste Tragesituation und die erste Benutzungssituation mittels eines Videoaufnahmesystems erfasst. Eine Erfassung durch ein Videoaufnahmesystem kann hierbei insbesondere ermöglichen, dass das Aufsuchen einer Fachperson, z.B. eines Hörgeräteakustiker, für die Verringerung der Wahrscheinlichkeit einer Rückkopplung unterbleiben kann, was sich für den Träger als komfortabel erweist.
  • Als weiter vorteilhaft erweist es sich dabei, wenn vom Videoaufnahmesystems erzeugte Bilddaten zu einem räumlich vom Träger getrennten Videowiedergabesystem übertragen und von diesem wiedergegeben werden, und/oder anhand der vom Videoaufnahmesystem erzeugte Bilddaten ein automatischer Befehl für das Bestimmen der Anzahl an frequenzaufgelösten Kurven einer Rückkopplungsneigung des Hörgerätes in der ersten Benutzungssituation erzeugt wird. Der automatische Befehl kann hierbei insbesondere anhand einer Gesichts- oder allgemein einer Bilderkennung erzeugt werden, welche das ordnungsgemäße Herstellen der ersten Benutzungssituation feststellt, z.B. durch das Erfassen einer Kau- oder Sprechbewegung des Kiefers oder das Hinführen eines Mobiltelefons zum Ohr durch den Träger.
  • Beispielsweise kann das Videowiedergabesystem bei einem Hörgeräteakustiker in dessen Arbeitsräumen angeordnet sein, während der Träger sich zuhause im Erfassungsbereich des Videoaufnahmesystems befindet. Auf ein Startsignal des Hörgeräteakustikers hin, auf welches hin auch die Ermittlung der Rückkopplungsneigung beginnen soll, stellt der Träger in der ersten Tragesituation die erste Benutzungssituation her, also z.B. durch ein Aufsetzen einer Kopfbedeckung oder das Hinführen eines Mobiltelefons an sein Ohr. Die erste Benutzungssituation kann nun einerseits durch das Ablaufen einer festen Zeitspanne beendet werden, oder andererseits beendet werden, wenn die ermittelten Kurven für die Rückkopplungsneigung ihre eigenen Extremwerte bzw. Einhüllenden für eine bestimmte Messdauer nicht mehr überschreiten. Aus den ermittelten Kurven der Rückkopplungsneigung wird nun das erste Kritikalitätsmaß ermittelt. Anhand des ersten Kritikalitätsmaßes wird nun eine Anpassung des wenigstens einen Hörgeräteparameters vorgegeben. Die Anpassung selbst kann dabei entweder durch den Träger selbst, durch eine Vertrauensperson des Trägers (insbesondere, wenn dieser selbst dazu nicht in der Lage ist), oder über einen geeigneten Fernzugriff durch den Hörgeräteakustiker erfolgen.
  • Nach erfolgter Anpassung kann nun auf ein weiteres Startsignal hin erneut die erste Benutzungssituation im Testbetrieb hergestellt werden, und dabei weitere Kurven der Rückkopplungsneigung bestimmt werden, aus welchen anschließend das dritte Kritikalitätsmaß ermittelt wird. Anhand des dritten Kritikalitätsmaßes wird nun überprüft, ob die Anpassung der Einstellungen die Rückkopplungsneigung hinreichend verringert hat. Falls dies nicht der Fall ist, so kann der Hörgeräteakustiker den Träger anweisen, die zweite Tragesituation herzustellen, wobei ggf. die konkrete Auswahl der Maßnahme anhand des dritten und ggf. auch anhand des ersten Kritikalitätsmaßes getroffen - z.B. über für bestimmte Fehler charakteristische Verläufe -wird und insbesondere automatisch vorgegeben werden kann. Ist als Herstellen der zweiten Tragesituation eine Maßnahme vorgegeben, welche der Träger nicht selbständig durchführen kann, kann dessen Vertrauensperson unter Anweisung des Hörgeräteakustikers über das Videoüberwachungssystem die zweite Tragesituation herstellen.
  • Nun wird in vorbeschriebener Weise auf ein Startsignal hin die erste Benutzungssituation hergestellt, und dabei eine erneute Messreihe der Rückkopplungsneigung zum Ermitteln des vierten Kritikalitätsmaßes durchgeführt, anhand dessen die Eignung der zweiten Tragesituation zur Unterdrückung der Rückkopplung bewertet wird.
  • Die Erfindung nennt weiter ein Hörgerät, welches zur Durchführung des vorbeschriebenen Verfahrens eingerichtet ist. Insbesondere weist hierbei das Hörgerät Mittel zur Erfassung wenigstens der Dämpfung einer akustischen Rückkopplung von einem Ausgangswandler des Hörgerätes zu einem Eingangswandler auf. Bevorzugt weist das Hörgerät zudem Mittel zur Übertragung einer Signalverstärkung sowie der durch die akustische Rückkopplung erfolgenden Dämpfung an eine externe Erfassungseinheit auf. In diesem Fall können Teile des vorbeschriebenen Verfahrens wie z.B. das Ermitteln des ersten und weiterer Kritikalitätsmaße und die entsprechenden Vorgaben in der externen Erfassungseinheit erfolgen. Alternativ dazu umfasst das Hörgerät bevorzugt Mittel zur Berechnung des ersten und weiterer Kritikalitätsmaße.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Hierbei zeigen jeweils schematisch:
    • Fig. 1 in einem Blockschaltbild ein Hörgerät, in welchem eine akustische Rückkopplung auftritt,
    • Fig. 2 in einem Blockdiagramm ein Verfahren zur Verringerung einer Rücckopplungsneigung in einem Hörgerät in Abhängigkeit einer Tragesituation,
    • Fig. 3 in einem Diagramm eine Rückkopplungsneigung gegen eine Frequenz, und
    • Fig. 4 in einem Diagramm eine Mehrzahl an Rückkopplungsneigungen für verschiedene Benutzungssituationen und ein hieraus resultierendes Kritikalitätsmaß.
  • Einander entsprechende Teile und Größen sind in allen Figuren jeweils mit gleichen Bezugszeichen versehen.
  • In Figur 1 ist schematisch in einem Blockschaltbild ein Hörgerät 1 dargestellt. Ein Eingangswandler 2 des Hörgerätes 1, welcher vorliegend als ein Mikrofon ausgestaltet ist, wandelt ein Schallsignal 4 der Umgebung in ein Eingangssignal 6 um. Das Eingangssignal 6 wird im Hörgerät 1 einer Signalverarbeitung 8 zugeführt und dort gemäß der audiologischen Notwendigkeiten des Trägers des Hörgerätes 1 verarbeitet und hierbei insbesondere frequenzbandabhängig verstärkt. Das aus der Signalverarbeitung 8 resultierende Ausgangssignal 10 wird durch einen Ausgangswandler 12 des Hörgerätes 1 in ein Ausgangsschallsignal 14 umgewandelt, welches zum nicht näher dargestellten Gehör des Trägers des Hörgerätes 1 geführt wird. Der Ausgangswandler 14 ist vorliegend gegeben durch einen Lautsprecher, welcher in einem akustischen Ankopplungsstück 15 des Hörgeräts 1 angeordnet ist. Das akustische Ankopplungsstück ist dabei vorliegend als ein Ohrpassstück gegeben. Entlang eines akustischen Rückkopplungspfades 16, kann nun ein Teil des Ausgangsschallsignals 14 erneut zum Eingangswandler 2 gelangen, und somit Eingang in das Eingangssignal 6 finden, wodurch sich eine geschlossene Rückkopplungsschleife bildet, in welcher Signalanteile durch die Signalverarbeitung 8 immer weiter verstärkt werden.
  • Zur Unterdrückung der auftretenden akustischen Rückkopplung kann nun einerseits in der Signalverarbeitung 8 die Verstärkung reduziert werden. Dies ist jedoch mit einem Verlust von Verstärkung auch für andere, nicht von der akustischen Rückkopplung betroffenen Signalanteile verbunden, sodass die Signalverarbeitung 8 nicht mehr optimal gemäß den audiologischen Vorgaben des Trägers des Hörgerätes 1 arbeitet. Um eine Unterdrückung der akustischen Rückkopplung auch unter Berücksichtigung dieser Vorgaben gewährleisten zu können, wird oftmals das Ausgangssignal 10 abgezweigt und einem adaptiven Filter 18 zugeführt.
  • Dieses erzeugt ein Kompensationssignal 20, welches dem Eingangssignal 6 zugeführt und von diesem subtrahiert wird. Das aus dieser Subtraktion resultierende Signal findet einerseits Eingang in die Signalverarbeitung 8, und wird andererseits auch dem adaptiven Filter als Fehlersignal 22 zugeführt. Im adaptiven Filter 18 wird dabei insbesondere der akustische Rückkopplungspfad 16 bzw. sein Frequenzgang geschätzt.
  • Es können jedoch auch Situationen eintreten, in welchen die Subtraktion des Kompensationssignals 20 vom Eingangssignal 6 zu unerwünschten Effekten wie beispielsweise Artefakten im Ausgangssignal 10 führt. Die Geschwindigkeit, mit welcher die Schätzung des Rückkopplungspfades aktualisiert wird, bildet als einen variablen Zeitparameter des adaptiven Filters 18. Je kürzer dieser Zeitparameter eingestellt ist, desto schneller passt sich die Unterdrückung der Rückkopplung an eine Änderung des akustischen Rückkopplungspfades an. Jedoch kann auch umso häufiger die schnelle Nachregelung durch den Benutzer als ein störendes Artefakt empfunden werden. Insofern ist für ein angenehmes Klangempfinden möglichst ohne Rückkopplung hier ein Trade-off zu wählen.
  • Überdies hat das Auftreten einer akustischen Rückkopplung bisweilen auch vorwiegend mechanische Ursachen, wie beispielsweise ein nicht optimaler Sitz des akustischen Ankopplungsstücks 15 des Hörgerätes 1 im Ohr des Trägers, wodurch ein besonders hoher Anteil des Ausgangsschallsignal 14 entweichen und erneut zum Eingangswandler 2 gelangen kann. Weitere, im wesentlichen als mechanisch zu bezeichnende Ursachen können von einer konkreten Benutzungssituation wie zum Beispiel einer Kau- oder Sprechbewegung oder der Beeinflussung des akustischen Rückkopplungspfades 16 durch ein Mobiltelefon oder einen anderen ähnlichen Gegenstand in der Nähe des Hörgerätes 1 abhängen. In diesem Fall ist einerseits die Unterdrückung der Rückkopplung durch das adaptive Filter 18 unter dem Risiko von Artefakten im Ausgangssignal 10 nicht immer zielführend. Andererseits kann es nützlich oder wünschenswert sein, die in Abhängigkeit der konkreten Benutzungssituation auftretende akustische Rückkopplung bereits im Vorfeld zu erschweren, ohne dabei die Wiedergabe des Hörgerätes 1 maßgeblich in ihrer Dynamik einzuschränken.
  • Dies ist in Figur 2 in einem Blockdiagramm gezeigt, welches ein entsprechendes Verfahren zum Gegenstand hat. Zunächst wird eine erste Tragesituation 30 hergestellt, in denen der Träger das Hörgerät 1 nach Figur 1 regulär anliegt. Die erste Tragesituation 30 ist hierbei insbesondere charakterisiert durch die globale Position des Hörgerätes 1 zum Träger, und auch durch die Verwendung einzelner, reversibel austauschbarer Komponenten wie zum Beispiel dem akustischen Ankopplungsstück 15 sowie deren Positionierung relativ zum Träger. In der ersten Tragesituation 30 wird nun eine erste Benutzungssituation 32 hergestellt, welche durch wenigstens eine Körperbewegung des Trägers und/oder durch ein externes Objekt charakterisiert ist. Dies kann beispielsweise durch das Aufsetzen einer Kopfbedeckung wie einem Hut oder einer Mütze, durch eine Kieferbewegung des Trägers beim Sprechen oder Kauen oder auch durch den Gebrauch eines Mobiltelefons in der Nähe des Hörgerätes erfolgen. Während der ersten Benutzungssituation wird eine Mehrzahl an frequenzaufgelösten Kurven, 34a-c einer Rückkopplungsneigung des Hörgerätes bestimmt. Dies geschieht, indem beispielsweise durch eine Wiederholung der Bewegung, welche der ersten Benutzungssituationen spricht, der Messvorgang für die Rückkopplungsneigung wiederholt wird, und dabei über die Zeit eine Mehrzahl an "Screenshots" der Rückkopplungsneigung über die Frequenz erzeugt wird. Aus den frequenzaufgelösten Kurven 34a-c der Rückkopplungsneigung wird in noch zu beschreibender Weise ein erstes Kritikalitätsmaß 36 erzeugt, anhand dessen eine Vorgabe 38 für ein Anpassen wenigstens eines Hörgeräteparameters erfolgt.
  • In analoger, nicht näher dargestellter Weise kann zudem in der ersten Tragesituation 30 eine zweite Benutzungssituation hergestellt werden, in welcher ebenfalls frequenzaufgelösten Kurven einer Rückkopplungsneigung des Hörgerätes 1 nach Figur 1 bestimmt werden, aus welchen ein zweites Kritikalitätsmaß ermittelt wird. Anhand des so ermittelten zweiten Kritikalitätsmaßes kann dann ebenfalls eine Vorgabe für das Anpassen eines oder mehrere Hörgeräteparameter erfolgen, wobei die Vorgabe einerseits den oder die Hörgerätparameter 40 betreffen kann, für welche bereits anhand des ersten Kritikalitätsmaßes 36 eine Vorgabe 38 zur Anpassung erfolgt. Andererseits kann die anhand des zweiten Kritikalitätsmaßes erstellte Vorgabe auch andere Hörgeräteparameter betreffen, für welche noch keine Vorgabe existiert.
  • Gemäß der Vorgabe 38 und gegebenenfalls gemäß einer weiteren, in einer zweiten Benutzungssituation erstellten Vorgabe wird nun der Hörgeräteparameter 40 angepasst. Beim Hörgeräteparameter 40 kann es sich beispielsweise um eine Gesamtverstärkung bei einer konkreten Frequenz, und/oder um einen Kompressionskennlinie bei einer konkreten Frequenz handeln, aber auch um einen Parameter des adaptiven Filters 18 nach Figur 1, beispielsweise um eine Nachregelungsgeschwindigkeit oder eine Schrittweite. Nun wird ein Testbetrieb 42 aufgenommen, in welchem das Hörgerät 1 in der ersten Benutzungssituation 32 getestet wird. Hierbei werden erneut frequenzaufgelöste Kurven 44a-c für die Rückkopplungsneigung des Hörgerätes ermittelt. Die frequenzaufgelösten Kurven 44a-c werden also generiert, während die der ersten Benutzungssituation entsprechende Bewegung im Testbetrieb 42 wiederholt wird. Aus den frequenzaufgelösten Kurven 44a-c wird ein drittes Kritikalitätsmaß 46 in analoger Weise zum ersten Kritikalitätsmaß 36 erzeugt. Anhand des dritten Kritikalitätsmaßes 46 kann nun festgestellt werden, ob die Anpassung des Hörgeräteparameters 40 gemäß der Vorgabe 38 die Wahrscheinlichkeit für ein Auftreten einer akustischen Rückkopplung während der ersten Benutzungssituation 32 maßgeblich verringert hat.
  • Ist dies nicht der Fall, so wird eine zweite Tragesituation 50 vorgeschlagen. Bei dieser kann es sich beispielsweise um eine Positionskorrektur des akustischen Ankopplungsstücks 15 des Hörgerätes 1 handeln, oder um eine Verwendung eines akustischen Ankopplungsstücks mit veränderten Abmessungen und/oder einer veränderten Belüftungsöffnungen. Nachdem die entsprechende Maßnahme, welche die zweite Tragesituation 50 charakterisiert, vorgeschlagen wurde, was insbesondere automatisch erfolgen kann, stellt der Träger des Hörgerätes 1 oder eine Vertrauensperson die zweite Tragesituation her. Anschließend wird für die zweite Tragesituation 50 erneut die erste Benutzungssituation durch die entsprechende Bewegung hergestellt. Erneut werden hierbei frequenzaufgelöste Kurven 54a-c für die Rückkopplungsneigung ermittelt, anhand derer ein viertes Kritikalitätsmaß 56 bestimmt wird. Anhand des vierten Kritikalitätsmaßes 56 kann nun überprüft werden, ob gemäß dem ersten Kritikalitätsmaß 36 erfolgte Vorgabe für die Anpassung des Hörgeräteparameters 40 in der zweiten Tragesituation 50 dazu geeignet ist, die Wahrscheinlichkeit für das Auftreten einer akustischen Rückkopplung hinreichend niedrig zu halten. Ist dies der Fall, so kann die zweite Tragesituation 50, als fortan zu verwendende Tragesituation identifiziert werden, indem beispielsweise ein gegebenenfalls ausgetauschtes akustisches Ankopplungsstück nun weiter verwendet wird, oder indem gegebenenfalls beim Anlegen des akustischen Ankopplungsstücks fortdauernd darauf geachtet wird, dass dieses ordnungsgemäß in den Gehörgang eindringt. Falls das vierte Kritikalitätsmaß 56 keine wesentliche Verbesserung der Rückkopplungsneigung nahelegt, so kann entweder in zur zweiten Tragesituation 50 analoger Weise eine dritte Tragesituation (nicht näher dargestellt) hergestellt werden, oder als "last resource"-Maßnahme das Aufsuchen eines Hörgeräteakustiker empfohlen werden.
  • In Figur 3 ist in einem Diagramm eine Rückkopplungsneigung 60 in dB gegen die Frequenz f aufgetragen. Die Rückkopplungsneigung 60, welche ein Maß für eine Wahrscheinlichkeit für ein Auftreten einer akustischen Rückkopplung darstellt, wird hierbei gebildet, indem der Dämpfung 62 des akustischen Rückkopplungspfades 16 nach Figur 1 (gestrichelte Linie) die in der Signalverarbeitung 8 erfolgende Verstärkung 64 (gestrichpunktete-Linie) hinzu addiert wird.
  • In Figur 4 ist eine Mehrzahl an frequenzaufgelösten Kurven 60a-m für die Rücckopplungsneigung dargestellt. Diese entsprechen dabei beispielsweise verschiedenen Einzelmessungen, welche während der ersten Benutzungssituation nach Figur 2 durchgeführt werden. Während im Frequenzbereich bis ca. 3 kHz die einzelnen Kurven 60a-m sich kaum voneinander unterscheiden, und somit auch die Varianz der verschiedenen Kurvenwerte bei einer gegebenen Frequenz kaum nennenswert ist, driften die Kurven 60a-m von 3 kHz an aufwärts merklich auseinander. Hierbei ist insbesondere ein schmaler Frequenzbereich um 6 kHz zu erwähnen, in welchen die einzelnen Kurven sich in ihren Werten um bis zur 30 dB unterscheiden. Von 7 kHz an aufwärts ist der Verlauf der Kurven wieder nahezu gleichförmig.
  • Anhand der Kurven 60a-m wird nun ein Kritikalitätsmaß 66 in analoger Weise zum ersten Kritikalitätsmaß 36, zum dritten Kritikalitätsmaß 64 und zum vierten Kritikalitätsmaß 56 ermittelt. Dies erfolgt, indem bei jeder Frequenz f zum Maximalwert 60m für die Rückkopplungsneigung (gepunktete Linie) ein Korrekturterm hinzu addiert wird, welcher monoton von der Varianz der einzelnen Werte der Kurven 60a-m bei gegebener Frequenz f abhängt. So ist für die hohe Varianz, welche bei knapp unterhalb von 6 kHz vorliegt, das Kritikalitätsmaß 66 (gestrichelte Linie) maximal.
  • Während die Absolutwerte der einzelnen Kurven 60a-m im Bereich um 2 kHz sogar höher liegen als der Maximalwert 60m bei ca. 4 kHz, ist dennoch aufgrund der höheren Varianz bei 4 kHz das Kritikalitätsmaß 66 dort größer als bei 2 kHz. Dies trägt dem Umstand Rechnung, dass über die gesamte Breite an möglichen Werten während der ersten Benutzungssituation bei 2 kHz eine höhere Stabilität des Systems vorliegt als bei 4 kHz, weswegen davon ausgegangen werden darf, dass bei 4 kHz der ermittelte Maximalwert nicht zwangsläufig dem absolut möglichen Maximalwert entspricht, während dies infolge der hohen Stabilität bei 2 kHz wohl der Fall ist. Entsprechend ist das Kritikalitätsmaß bei 4 kHz höher.
  • Es können nun aus dem Kritikalitätsmaß 66 Frequenzbereiche 68 identifiziert werden, für welche das Auftreten einer akustischen Rückkopplung in der betreffenden Benutzungssituation besonders wahrscheinlich ist, und entsprechend einem Hörgeräteparameter anzupassen ist. Hierfür kann das Überschreiten eines Schwellwertes durch das Kritikalitätsmaß 66 als Kriterium herangezogen werden, wobei als Schwellwert in erster Näherung 0 dB - also die Grenze für eine kritische Verstärkung - gewählt werden kann
  • Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, ist die Erfindung nicht durch dieses Ausführungsbeispiel eingeschränkt. Andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.
  • Bezugszeichenliste
  • 1
    Hörgerät
    2
    Eingangswandler
    4
    Schallsignal
    6
    Eingangssignal
    8
    Signalverarbeitung
    10
    Ausgangssignal
    12
    Ausgangswandler
    14
    Ausgangsschallsignal
    15
    akustisches Ankopplungsstück
    16
    akustischer Rückkopplungspfad
    18
    adaptives Filter
    20
    Kompensationssignal
    22
    Fehlersignal
    30
    erste Tragesituation
    32
    erste Benutzungssituation
    34a-c
    frequenzaufgelöste Kurven
    36
    erstes Kritikalitätsmaß
    38
    Vorgabe
    40
    Hörgeräteparameter
    42
    Testbetrieb
    44a-c
    frequenzaufgelöste Kurven
    46
    drittes Kritikalitätsmaß
    50
    zweite Tragesituation
    54a-c
    frequenzaufgelöste Kurven
    56
    viertes Kritikalitätsmaß
    60
    Rückkopplungsneigung
    60a-m
    frequenzaufgelöste Kurven (für Rückkopplungsneigung)
    60m
    Maximalwert
    62
    Dämpfung
    64
    Verstärkung
    66
    Kritikalitätsmaß
    68
    Frequenzbereich

Claims (11)

  1. Verfahren zur Verringerung eines Auftretens einer akustischen Rückkopplung in einem Hörgerät (1),
    wobei eine erste Tragesituation (30) hergestellt wird, welche eine Positionierung des Hörgerätes (1) relativ zum Träger festlegt,
    wobei für die erste Tragesituation (30) eine erste Benutzungssituation (32) hergestellt wird, welche durch wenigstens eine Körperbewegung des Trägers des Hörgerätes (1) und/oder wenigstens eine Relativposition eines externen Objektes zum Körper des Trägers charakterisiert ist, wobei für die erste Benutzungssituation (32) eine Mehrzahl an frequenzaufgelösten Kurven (34a-c) einer Rückkopplungsneigung (60) des Hörgerätes (1) bestimmt wird,
    wobei anhand der frequenzaufgelösten Kurve (34a-c) für die erste Benutzungssituation (32) ein erstes Kritikalitätsmaß (36) ermittelt wird, welches Informationen zu einem hinsichtlich eines Auftretens einer akustischen Rückkopplung kritischen Frequenzbereich (68) und einer entsprechenden relativen Wahrscheinlichkeit für ein Auftreten einer akustischen Rückkopplung enthält,
    wobei zu einer gegebenen Frequenz das erste Kritikalitätsmaß (36) für die erste Benutzersituation (32) anhand eines Streuungsmaßes für die sich aus der Mehrzahl an frequenzaufgelösten Kurven (34a-c) jeweils ergebenden Werte der Rücckopplungsneigung (60) bei dieser Frequenz gebildet wird,
    wobei für die erste Tragesituation (30) eine zweite Benutzungssituation hergestellt wird,
    wobei für die zweite Benutzungssituation ein zweites Kritikalitätsmaß in einer analogen Weise ermittelt wird, wie das erste Kritikalitätsmaß für die erste Benutzungssituation, und
    wobei anhand der Gesamtheit des ersten Kritikalitätsmaßes (36) und des zweiten Kritikalitätsmaßes eine Vorgabe (38) für ein Anpassen wenigstens eines Hörgeräteparameters (40) erfolgt.
  2. Verfahren nach Anspruch 1,
    wobei eine Dämpfung (62) eines akustischen Rückkopplungspfades (16) gemessen wird, und
    wobei die Rückkopplungsneigung (60) zu einer gegebenen Frequenz jeweils anhand einer Signalverstärkung im Hörgerät (1) und anhand der Dämpfung (62) des akustischen Rückkopplungspfades (16) bestimmt wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei die erste Benutzungssituation (32) hergestellt wird durch
    - das Aufsetzen einer Kopfbedeckung durch den Träger, und/oder
    - eine Kieferbewegung des Trägers, und/oder
    - den Gebrauch eines Mobiltelefons in der Nähe des Hörgerätes (1) durch den Träger, und/oder
    - eine sportliche Betätigung des Trägers, und/oder
    - eine Positionierung des Trägers in unmittelbarer Nähe einer räumlichen Begrenzung.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei der wenigstens eine Hörgeräteparameter (40) ausgewählt wird aus
    - einer Gesamtverstärkung bei einer Frequenz, und/oder
    - einer Kompressionskennlinie bei einer Frequenz, und/oder
    - einer Nachregelungsgeschwindigkeit.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei der wenigstens eine Hörgeräteparameter (40) entsprechend der anhand des ersten Kritikalitätsmaßes (36) erfolgten Vorgabe (38) angepasst wird,
    wobei das Hörgerät (1) mit dem angepassten Hörgeräteparameter (40) in einem Testbetrieb (42) betrieben wird,
    wobei im Testbetrieb (42) die erste Benutzungssituation (32) hergestellt wird, und
    wobei für die erste Benutzungssituation (32) im Testbetrieb ein drittes Kritikalitätsmaß (46) zur Überprüfung der Anpassung ermittelt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei eine zweite Tragesituation (50) hergestellt wird,
    wobei für die zweite Tragesituation (50) die erste Benutzungssituation (32) hergestellt wird,
    wobei für die erste Benutzungssituation (32) in der zweiten Tragesituation (50) ein viertes Kritikalitätsmaß (56) ermittelt wird, und
    wobei anhand des vierten Kritikalitätsmaßes (56) eine Vorgabe hinsichtlich einer Eignung der zweiten Tragesituation (50) für den Betrieb des Hörgerätes (1) erfolgt.
  7. Verfahren nach Anspruch 5 mit Anspruch 6,
    wobei anhand des vierten Kritikalitätsmaßes (56) eine Vorgabe hinsichtlich einer Eignung der zweiten Tragesituation (50) für den Betrieb des Hörgerätes (1) mit dem anhand des ersten Kritikalitätsmaßes (36) angepassten wenigstens einen Hörgeräteparameter (40) erfolgt.
  8. Verfahren nach Anspruch 6 oder Anspruch 7,
    wobei die zweite Tragesituation (50) hergestellt wird ist durch
    - eine Positionskorrektur eines akustischen Ankopplungsstücks (15) des Hörgerätes (1), und/oder
    - eine Verwendung eines akustischen Ankopplungsstücks (15) mit veränderten Abmessungen, und/oder
    - eine Verwendung eines akustischen Ankopplungsstücks (15) mit einer veränderten Belüftungsöffnung.
  9. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei wenigstens die erste Tragesituation (30) und die erste Benutzungssituation (32) mittels eines Videoaufnahmesystems erfasst werden.
  10. Verfahren nach Anspruch 9,
    wobei vom Videoaufnahmesystems erzeugte Bilddaten zu einem räumlich vom Träger getrennten Videowiedergabesystem übertragen werden, und von diesem wiedergegeben werden, und/oder
    wobei anhand der vom Videoaufnahmesystems erzeugte Bilddaten ein automatischer Befehl für das Bestimmen der Anzahl an frequenzaufgelösten Kurven (34a-c, 44a-c, 54a-c, 60a-m) einer Rückkopplungsneigung (60) des Hörgerätes (1) in der ersten Benutzungssituation (32) erzeugt wird.
  11. Hörgerät (1), welches zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche eingerichtet ist.
EP19174570.2A 2018-05-30 2019-05-15 Verfahren zur verringerung eines auftretens einer akustischen rückkopplung in einem hörgerät Active EP3576433B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018208657.5A DE102018208657B3 (de) 2018-05-30 2018-05-30 Verfahren zur Verringerung eines Auftretens einer akustischen Rückkopplung in einem Hörgerät

Publications (2)

Publication Number Publication Date
EP3576433A1 EP3576433A1 (de) 2019-12-04
EP3576433B1 true EP3576433B1 (de) 2021-08-11

Family

ID=66554227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19174570.2A Active EP3576433B1 (de) 2018-05-30 2019-05-15 Verfahren zur verringerung eines auftretens einer akustischen rückkopplung in einem hörgerät

Country Status (5)

Country Link
US (1) US10873817B2 (de)
EP (1) EP3576433B1 (de)
CN (1) CN110557708B (de)
DE (1) DE102018208657B3 (de)
DK (1) DK3576433T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10681458B2 (en) * 2018-06-11 2020-06-09 Cirrus Logic, Inc. Techniques for howling detection
EP4021017A1 (de) * 2020-12-28 2022-06-29 Oticon A/s Hörgerät mit rückkopplungssteuerungssystem

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7664275B2 (en) * 2005-07-22 2010-02-16 Gables Engineering, Inc. Acoustic feedback cancellation system
EP3429232B1 (de) * 2007-06-12 2023-01-11 Oticon A/s Online-rückkoppelungsschutzsystem für ein hörgerät
EP2046073B1 (de) * 2007-10-03 2017-03-08 Oticon A/S Hörgerätsystem mit Rückkoppelungsanordnung zur Vorhersage und Unterdrückung von akustischer Rückkoppelung
EP2217007B1 (de) * 2009-02-06 2014-06-11 Oticon A/S Hörgerät mit adaptiver Rückkopplungsunterdrückung
DE102009016845B3 (de) * 2009-04-08 2010-08-05 Siemens Medical Instruments Pte. Ltd. Anordnung und Verfahren zur Erkennung von Rückkopplungen bei Hörvorrichtungen
US8553897B2 (en) * 2009-06-09 2013-10-08 Dean Robert Gary Anderson Method and apparatus for directional acoustic fitting of hearing aids
US8355517B1 (en) * 2009-09-30 2013-01-15 Intricon Corporation Hearing aid circuit with feedback transition adjustment
EP2486537A4 (de) * 2009-10-07 2013-08-21 John T Mcelveen System zur fernüberwachung und modulation eines medizinischen geräts
US9729976B2 (en) * 2009-12-22 2017-08-08 Starkey Laboratories, Inc. Acoustic feedback event monitoring system for hearing assistance devices
DE102010011729A1 (de) 2010-03-17 2011-09-22 Siemens Medical Instruments Pte. Ltd. Hörvorrichtung und Verfahren zum Einstellen derselben für einen rückkopplungsfreien Betrieb
US9654885B2 (en) * 2010-04-13 2017-05-16 Starkey Laboratories, Inc. Methods and apparatus for allocating feedback cancellation resources for hearing assistance devices
GB201021912D0 (en) * 2010-12-23 2011-02-02 Soundchip Sa Noise Reducing Earphone
EP2670168A1 (de) * 2012-06-01 2013-12-04 Starkey Laboratories, Inc. Adaptive Hörhilfevorrichtung mit mehrfacher Umgebungserkennung und Klassifizierung
EP2677770B1 (de) * 2012-06-21 2015-07-29 Oticon A/s Hörgerät mit Rückkopplungs-Alarm
US9148735B2 (en) * 2012-12-28 2015-09-29 Gn Resound A/S Hearing aid with improved localization
US9332359B2 (en) * 2013-01-11 2016-05-03 Starkey Laboratories, Inc. Customization of adaptive directionality for hearing aids using a portable device
US9635479B2 (en) * 2013-03-15 2017-04-25 Cochlear Limited Hearing prosthesis fitting incorporating feedback determination
US9094769B2 (en) * 2013-06-27 2015-07-28 Gn Resound A/S Hearing aid operating in dependence of position
EP2869600B1 (de) * 2013-11-05 2016-12-28 GN Resound A/S Adaptive Restrückkopplungsunterdrückung
EP2908549A1 (de) 2014-02-13 2015-08-19 Oticon A/s Hörgerätevorrichtung mit Sensorelement
EP2988529B1 (de) * 2014-08-20 2019-12-04 Sivantos Pte. Ltd. Adaptive teilungsfrequenz in hörhilfegeräten
EP4184950A1 (de) * 2017-06-09 2023-05-24 Oticon A/s Mikrofonsystem und hörgerät mit einem mikrofonsystem

Also Published As

Publication number Publication date
CN110557708A (zh) 2019-12-10
CN110557708B (zh) 2021-10-22
DE102018208657B3 (de) 2019-09-26
US20190373379A1 (en) 2019-12-05
US10873817B2 (en) 2020-12-22
DK3576433T3 (da) 2021-11-08
EP3576433A1 (de) 2019-12-04

Similar Documents

Publication Publication Date Title
EP3222057B1 (de) Verfahren und vorrichtung zum schnellen erkennen der eigenen stimme
DE102005020317B4 (de) Automatische Verstärkungseinstellung bei einem Hörhilfegerät
DE69933141T2 (de) Tonprozessor zur adaptiven dynamikbereichsverbesserung
EP3068146B1 (de) Verfahren zum betrieb eines hörgeräts sowie hörgerät
EP3266222B1 (de) Vorrichtung und verfahren zum ansteuern der dynamikkompressoren einer binauralen hörhilfe
DE3229457C2 (de) Hörhilfegerät
DE102007037659B4 (de) Verfahren zum Betrieb eines Hörgerätesystems und Hörgerätesystem
EP3576433B1 (de) Verfahren zur verringerung eines auftretens einer akustischen rückkopplung in einem hörgerät
EP3793209B1 (de) Hörgerät mit aktiver geräuschunterdrückung und verfahren zum betrieb desselben
EP3139633A1 (de) Verfahren zur unterdrückung einer rückkopplung in einem hörgerät
DE102009010892A1 (de) Vorrichtung und Verfahren zur Reduzierung von Trittschallwirkungen bei Hörvorrichtungen mit aktiver Okklusionsreduktion
EP3337189A1 (de) Verfahren zum bestimmen einer richtung einer nutzsignalquelle
EP3393143B1 (de) Verfahren zum betrieb eines hörgerätes
EP3275211B1 (de) Verfahren zum betreiben eines elektroakustischen systems und ein elektroakustisches system
EP3951780B1 (de) Verfahren zum betrieb eines hörgeräts und hörgerät
EP3373599B1 (de) Verfahren zur frequenzverzerrung eines audiosignals und nach diesem verfahren arbeitende hörvorrichtung
EP3355592A1 (de) Verfahren zum betrieb eines binauralen hörgerätesystems
EP1351550B1 (de) Verfahren zur Anpassung einer Signalverstärkung in einem Hörgerät sowie ein Hörgerät
DE102019211943B4 (de) Verfahren zur direktionalen Signalverarbeitung für ein Hörgerät
WO2021239864A1 (de) Verfahren, vorrichtung, kopfhörer und computerprogramm zur aktiven unterdrückung des okklusionseffektes bei der wiedergabe von audiosignalen
EP3793217A1 (de) Hörgerät mit aktiver geräuschunterdrückung und verfahren zum betrieb desselben
EP4187928A1 (de) Verfahren zum betrieb eines hörinstrumentes
WO2023104865A1 (de) Vorrichtung zur aktiven störgeräusch- und/oder okklusionsunterdrückung, entsprechendes verfahren und computerprogramm
EP3796676A1 (de) Verfahren zum betrieb eines hörgeräts und hörgerät
DE102015225010A1 (de) Vorrichtung und Verfahren zur Audiosignalübertragung in einem Fahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200603

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210311

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019001995

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1420628

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20211102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019001995

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 5

Ref country code: DK

Payment date: 20230522

Year of fee payment: 5

Ref country code: DE

Payment date: 20230519

Year of fee payment: 5

Ref country code: CH

Payment date: 20230605

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811