EP3571450A1 - Heat pump arrangement and method for operating a heat pump arrangement - Google Patents

Heat pump arrangement and method for operating a heat pump arrangement

Info

Publication number
EP3571450A1
EP3571450A1 EP18706390.4A EP18706390A EP3571450A1 EP 3571450 A1 EP3571450 A1 EP 3571450A1 EP 18706390 A EP18706390 A EP 18706390A EP 3571450 A1 EP3571450 A1 EP 3571450A1
Authority
EP
European Patent Office
Prior art keywords
heat
working fluid
heat pump
bypass line
pump assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18706390.4A
Other languages
German (de)
French (fr)
Other versions
EP3571450B1 (en
Inventor
Mark Reissig
Florian REISSNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3571450A1 publication Critical patent/EP3571450A1/en
Application granted granted Critical
Publication of EP3571450B1 publication Critical patent/EP3571450B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means

Definitions

  • the invention relates to a heat pump assembly according to the preamble of claim 1. Furthermore, the invention relates to He ⁇ a method for operating a heat pump assembly according to the preamble of claim 10.
  • Heat pumps using thermal energy (heat) to heat ⁇ source to evaporate a working fluid It is advantageous if the evaporation temperature of the working fluid is as high as possible, since this achieves a low pressure ratio and thus a high coefficient of performance (COP for short). Consequently, a mög ⁇ lichst small temperature difference between the sources of heat ⁇ le and the evaporation temperature is advantageous. Typically, a temperature difference of about five Kelvin is used, so that at a temperature of the heat source of 80 degrees Celsius an evaporation temperature of 75 degrees Celsius is provided.
  • the heat pump arrangement comprises a compressor, a condenser and an evaporator, which are fluidically coupled by means of a working cycle for a working fluid.
  • the heat pump arrangement comprises a heat exchanger, a jet pump and a
  • bypass line configured to at least a portion of the working fluid after the jet pump and before the evaporator to the heat exchanger and back to
  • the working cycle of the heat pump assembly can therefore be divided into a primary and a secondary working cycle.
  • the primary working cycle ei ⁇ NEN heat pump cycle .
  • the secondary working circuit is formed by the bypass line.
  • the working cycle or working cycles have a direction with respect to which an element of the heat pump assembly is arranged before or after another element of the heat pump assembly.
  • a low temperature-controlled heat source is thermally coupled with the overall heat exchanger can be efficiently integrated into the work circuit of the heat pump.
  • the ther ⁇ mix energy of the heat source is at least partially transferred to the working fluid within the bypass line.
  • the da ⁇ by warmed working fluid to the jet pump intimidge- passes and serves as a suction medium preferably, said original from the capacitor coming working fluid (not expanded condensate) is provided as a driving medium. Because of ⁇ are advantageous for driving the Bypass line no additional structural components, such as pumps, required.
  • further improved by the energy efficiency of the heat pump assembly, since, for example, no pump for the bypass line must be supplied with electrical energy.
  • the jet pump as an expansion valve and a pump for the working fluid vorgese ⁇ hen, the pumping action finished by the verwen- as a driving medium unexpanded condensed working fluid is istge ⁇ represents.
  • a typical expansion valve in the primary working cycle of the heat pump assembly can be saved.
  • Other advantages of the jet pump are that it is particularly simple in construction, typically has no moving construction ⁇ parts and is particularly robust and low maintenance.
  • a working fluid is compressed within an Ar ⁇ beitsniklaufes by a compressor, condensed with ⁇ means of a capacitor and evaporated by means of a Ver ⁇ steamer.
  • a part of the working fluid is conducted by means of a bypass line to a jet pump of the heat pump arrangement and before the evaporator to a heat exchanger for heat exchange and back to the jet pump.
  • jet pump designed as ejector.
  • the jet pump generates a negative pressure, due to which the bypass line is operable, that is due to which the working fluid in the bypass line is sucked back into the primary working cycle.
  • bypass line is preferably configured to guide the working fluid back to a suction port of the jet pump.
  • the heat exchanger is designed as a heat exchanger of a cooling device.
  • the bypass line is thermally coupled by means of a common heat exchanger with the cooling device, so that the heat exchange takes place by means of theificattau ⁇ shear of the cooling device.
  • the heat dissipated by the cooling device for cooling is thereby further used.
  • the energy effi ⁇ ciency of the heat pump device and the cooling device is increased.
  • the cooling device for cooling the compressor is an etc.
  • the compressor of the heat pump is cooled by the cooling device.
  • the heat removed by the cooling of the compressor heat is conducted again to the heat pump ⁇ circuit by means of the heat exchanger in the bypass line to ⁇ , so that the energy efficiency of the furnishedpumpenan ⁇ order is further increased.
  • the waste heat generated by the Be ⁇ operation of the compressor therefore, is not completely lost, but is at least partially Harborge ⁇ and returned to the heat pump cycle.
  • externaldenikläu ⁇ fe or cooling devices for cooling the compressor can be saved. This reduces the investment costs.
  • the structural compactness of the system is improved because additional elements for dissipating the waste heat of the compressor, such as cooling fins or cooling towers, can be saved.
  • the cooling device is designed to cool a transmission device of the compressor.
  • the cooling device is particularly preferably designed as a transmission oil cooling.
  • an oil which is typically provided for cooling the transmission device, led from the Geretevorrich- direction to the heat exchanger.
  • the heat exchanger is designed as an oil cooler.
  • the bypass line comprises an expansion valve, wherein the expansion ⁇ valve is arranged in front of the heat exchanger.
  • the pressure of the working fluid within the bypass line can be adjusted such that a defined heating or an evaporation of the working fluid takes place in the heat exchanger.
  • the pressure of the working fluid is adjusted before the heat exchanger within the bypass line by means of the at least one expansion valve.
  • the evaporation pressure of the working fluid within the evaporator can be adjusted by means of the jet pump.
  • the jet pump is provided as an expansion valve.
  • the heat pump arrangement comprises a working fluid which has at least one substance from the group of fluoroketones and / or hydrofluoroolefins and / or hydrofluorochloroolefins.
  • the working fluid used is at least one fluoroketone and / or hydrofluoroolefins and / or hydrofluorochloroolefins.
  • Another advantage of the said working fluids is their technical handling. They are characterized by good environmental compatibility and ten of their enjoyedeigenschaf- such as no flammability or a very ge ⁇ ring global warming potential from.
  • the single figure shows a schematic circuit diagram of a heat pump assembly according to an embodiment of the present invention.
  • a heat pump assembly 1 according to an embodiment of the present invention is shown schematically.
  • the heat pump arrangement 1 has a compressor 2, a condenser 6, an evaporator 8 and a jet pump 42.
  • the heat pump assembly comprises a primary and secondary working circuit 101, 102 for a working ⁇ fluid.
  • the primary working circuit 101 forms a heat on mepumpen Vietnamese Feed, wherein the working fluid in the dense Ver ⁇ 2 compressed, condensed in the condenser 6, is evaporated in the evaporator 8 and is expanded by means of the jet pump 42nd
  • a heat pump is formed by the compressor 2, the condenser 6, the evaporator 8 and the jet pump 42.
  • the secondary working cycle 102 is by means of a
  • Bypass line 4 is formed, which branches off after the jet pump 42 and before the evaporator 8, and at least a portion of the working fluid via a heat exchanger 41 back to a suction port of the jet pump 42 leads.
  • the working circuits 101, 102 are therefore connected fluidically in parallel with respect to the working fluid.
  • the jet pump 42 is designed as ejector, so that a
  • Vacuum is generated, which sucks the working fluid from the bypass line 4 again.
  • the heat exchanger 41 is coupled to a cooling line 12 of an oil cooling.
  • the heat exchanger can be used with any heat source, in particular with low-temperature
  • Waste heat sources be thermally coupled.
  • the waste heat is transferred via the heat exchanger 41 to the working fluid in the Bypass line 4 at least partially transmitted.
  • the pressure at which said heat transfer occurs in the heat exchanger 41 can be adjusted by means of an expansion valve 40.
  • the oil cooling is provided for the cooling of a transmission device 21 of the compressor 2.
  • cooling lines 12 are fluidically coupled to the transmission device 21. This will advantageously the
  • Compressor 2 and its transmission device 21 cooled.
  • the waste heat of the transmission device 21 is - in contrast to known cooling a compressor - not completely lost, since at least a part by means of the heat exchanger 41 and by means of the inventively provided
  • Bypass line 4 is transmitted to the working fluid of the heat pump.
  • the energy efficiency of the heat pump assembly 1, which essentially forms a heat pump in the illustrated embodiment, is increased.
  • the heat pump assembly 1 provides an improved heat pump.
  • the compressor 2 comprises an electric motor 22 for its operation, which can also be cooled by means of oil cooling.
  • the jet pump 42 in conjunction with the bypass line 4 therefore allows the integration of a heat source with a comparatively low temperature level, without additional power-consuming components, such as pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Compressor (AREA)

Abstract

The invention relates to a heat pump arrangement (1) which comprises a compressor (2), a condenser (6) and an evaporator (8) that are fluidically coupled by means of a working circuit (100) for a working fluid. According to the invention, the heat pump arrangement (1) comprises a heat exchanger (41), a jet pump (42) and a bypass line (4), said bypass line (4) being designed to conduct at least part of the working fluid downstream of the jet pump (42) and upstream of the condenser (8) to the heat exchanger (41) and back to the jet pump (42). The invention further relates to a method for operating a heat pump arrangement (1) according to the invention.

Description

Beschreibung description
Wärmepumpenanordnung und Verfahren zum Betrieb einer Wärmepumpenanordnung Heat pump assembly and method of operating a heat pump assembly
Die Erfindung betrifft eine Wärmepumpenanordnung gemäß dem Obergriff des Patentanspruches 1. Weiterhin betrifft die Er¬ findung ein Verfahren zum Betrieb einer Wärmepumpenanordnung gemäß dem Oberbegriff des Patentanspruches 10. The invention relates to a heat pump assembly according to the preamble of claim 1. Furthermore, the invention relates to He ¬ a method for operating a heat pump assembly according to the preamble of claim 10.
Wärmepumpen verwenden thermische Energie (Wärme) einer Wärme¬ quelle um ein Arbeitsfluid zu verdampfen. Hierbei ist es von Vorteil, wenn die Verdampfungstemperatur des Arbeitsfluids möglichst hoch ist, da dadurch ein niedriges Druckverhältnis und somit eine hohe Leistungszahl (englisch: Coefficient of Performance; kurz COP) erreicht wird. Folglich ist ein mög¬ lichst geringer Temperaturunterschied zwischen der Wärmequel¬ le und der Verdampfungstemperatur vorteilhaft. Typischerweise wird ein Temperaturunterschied von etwa fünf Kelvin verwen- det, sodass bei einer Temperatur der Wärmequelle von 80 Grad Celsius eine Verdampfungstemperatur von 75 Grad Celsius vorgesehen ist. Heat pumps using thermal energy (heat) to heat ¬ source to evaporate a working fluid. It is advantageous if the evaporation temperature of the working fluid is as high as possible, since this achieves a low pressure ratio and thus a high coefficient of performance (COP for short). Consequently, a mög ¬ lichst small temperature difference between the sources of heat ¬ le and the evaporation temperature is advantageous. Typically, a temperature difference of about five Kelvin is used, so that at a temperature of the heat source of 80 degrees Celsius an evaporation temperature of 75 degrees Celsius is provided.
Soll eine Wärmequelle mit einer vergleichsweise niedrigen Temperatur, beispielsweise 50 Grad Celsius, verwendet werden, so würde dies zu einer entsprechend niedrigen Verdampfungs¬ temperatur, beispielsweise 45 Grad Celsius, führen. Dadurch würde jedoch die Leistungszahl deutlich verringert werden. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, dieIf a heat source at a comparatively low temperature, for example 50 degrees Celsius, are used, this would result in a correspondingly low evaporation ¬ temperature, for example 45 degrees Celsius. However, this would significantly reduce the coefficient of performance. The present invention is based on the object, the
Verwendung einer niedertemperierten Wärmequelle für eine Wärmepumpe zu verbessern. Use of a low-temperature heat source for a heat pump to improve.
Die Aufgabe wird durch eine Wärmepumpenanordnung mit den Merkmalen des unabhängigen Patentanspruches 1 sowie durch ein Verfahren zum Betrieb einer Wärmepumpenanordnung mit den Merkmalen des unabhängigen Patentanspruches 10 gelöst. In den abhängigen Patentansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung angegeben. The object is achieved by a heat pump assembly with the features of independent claim 1 and by a method for operating a heat pump assembly having the features of independent claim 10. In the dependent claims advantageous embodiments and refinements of the invention are given.
Die erfindungsgemäße Wärmepumpenanordnung umfasst einen Ver- dichter, einen Kondensator und einen Verdampfer, die mittels eines Arbeitskreislaufes für ein Arbeitsfluid fluidisch ge¬ koppelt sind. Erfindungsgemäß umfasst die Wärmepumpenanord¬ nung einen Wärmetauscher, eine Strahlpumpe und eine The heat pump arrangement according to the invention comprises a compressor, a condenser and an evaporator, which are fluidically coupled by means of a working cycle for a working fluid. According to the invention, the heat pump arrangement comprises a heat exchanger, a jet pump and a
Bypassleitung, wobei die Bypassleitung dazu ausgestaltet ist, wenigstens einen Teil des Arbeitsfluids nach der Strahlpumpe und vor dem Verdampfer zum Wärmetauscher und zurück zur Bypass line, wherein the bypass line is configured to at least a portion of the working fluid after the jet pump and before the evaporator to the heat exchanger and back to
Strahlpumpe zu führen. To lead jet pump.
Der Arbeitskreislauf der Wärmepumpenanordnung kann demnach in einen primären und einen sekundären Arbeitskreislauf eingeteilt werden. Hierbei bildet der primäre Arbeitskreislauf ei¬ nen Wärmepumpenkreislauf aus. Der sekundäre Arbeitskreislauf wird durch die Bypassleitung ausgebildet. Der primäre und se¬ kundäre Arbeitskreislauf sind bezüglich des Arbeitsfluid fluidisch gekoppelt. The working cycle of the heat pump assembly can therefore be divided into a primary and a secondary working cycle. Here, the primary working cycle ei ¬ NEN heat pump cycle . The secondary working circuit is formed by the bypass line. The primary and se ¬ kundäre working circuit with respect to the working fluid fluidically coupled.
Der Arbeitskreislauf beziehungsweise die Arbeitskreisläufe weisen eine Richtung auf, bezüglich derer ein Element der Wärmepumpenanordnung vor oder nach einem weiteren Element der Wärmepumpenanordnung angeordnet ist. The working cycle or working cycles have a direction with respect to which an element of the heat pump assembly is arranged before or after another element of the heat pump assembly.
Durch die erfindungsgemäß vorgesehene Strahlpumpe und den er¬ findungsgemäß vorgesehenen Wärmetauscher kann eine niedertemperierte Wärmequelle, die mit dem Wärmetauscher thermisch ge- koppelt ist, effizient in den Arbeitskreislauf der Wärmepumpe eingebunden werden. Mittels des Wärmetauschers wird die ther¬ mische Energie der Wärmequelle wenigstens teilweise auf das Arbeitsfluid innerhalb der Bypassleitung übertragen. Das da¬ durch aufgewärmte Arbeitsfluid wird zur Strahlpumpe zurückge- leitet und dient dort bevorzugt als Saugmedium, wobei als Treibmedium das ursprüngliche vom Kondensator kommende Arbeitsfluid (nicht expandiertes Kondensat) vorgesehen ist. Da¬ durch sind vorteilhafterweise für das Treiben der Bypassleitung keine zusätzlichen baulichen Komponenten, beispielsweise Pumpen, erforderlich. Vorteilhaftweise wird da¬ durch die energetische Effizienz der Wärmepumpenanordnung weiter verbessert, da beispielsweise keine Pumpe für die Bypassleitung mit elektrischer Energie versorgt werden muss. By inventively provided aspirator and he ¬ inventively provided heat exchanger, a low temperature-controlled heat source is thermally coupled with the overall heat exchanger can be efficiently integrated into the work circuit of the heat pump. By means of the heat exchanger, the ther ¬ mix energy of the heat source is at least partially transferred to the working fluid within the bypass line. The da ¬ by warmed working fluid to the jet pump zurückge- passes and serves as a suction medium preferably, said original from the capacitor coming working fluid (not expanded condensate) is provided as a driving medium. Because of ¬ are advantageous for driving the Bypass line no additional structural components, such as pumps, required. Advantageously, since ¬ further improved by the energy efficiency of the heat pump assembly, since, for example, no pump for the bypass line must be supplied with electrical energy.
Mit anderen Worten ist erfindungsgemäß die Strahlpumpe als Expansionsventil und als Pumpe für das Arbeitsfluid vorgese¬ hen, wobei die Pumpwirkung durch das als Treibmedium verwen- dete nicht expandierte kondensierte Arbeitsfluid bereitge¬ stellt wird. Dadurch kann ein typisches Expansionsventil im primären Arbeitskreislauf der Wärmepumpenanordnung eingespart werden . Weitere Vorteile der Strahlpumpe sind, dass diese besonders einfach aufgebaut ist, typischerweise keine beweglichen Bau¬ teile aufweist und besonders robust und wartungsarm ist. In other words, according to the invention, the jet pump as an expansion valve and a pump for the working fluid vorgese ¬ hen, the pumping action finished by the verwen- as a driving medium unexpanded condensed working fluid is bereitge ¬ represents. As a result, a typical expansion valve in the primary working cycle of the heat pump assembly can be saved. Other advantages of the jet pump are that it is particularly simple in construction, typically has no moving construction ¬ parts and is particularly robust and low maintenance.
Bei dem erfindungsgemäßen Verfahren zum Betrieb einer Wärme- pumpenanordnung wird ein Arbeitsfluid innerhalb eines Ar¬ beitskreislaufes mittels eines Verdichters verdichtet, mit¬ tels eines Kondensators kondensiert und mittels eines Ver¬ dampfers verdampft. Erfindungsgemäß wird ein Teil des Ar- beitsfluids mittels einer Bypassleitung nach einer Strahlpum- pe der Wärmepumpenanordnung und vor dem Verdampfer zu einem Wärmetauscher zum Wärmeaustausch und zurück zur Strahlpumpe geführt . In the inventive method for operating a heat pump arrangement a working fluid is compressed within an Ar ¬ beitskreislaufes by a compressor, condensed with ¬ means of a capacitor and evaporated by means of a Ver ¬ steamer. According to the invention, a part of the working fluid is conducted by means of a bypass line to a jet pump of the heat pump arrangement and before the evaporator to a heat exchanger for heat exchange and back to the jet pump.
Es ergeben sich zur erfindungsgemäßen Wärmepumpenanordnung gleichartige und gleichwertige Vorteile des erfindungsgemäßen Verfahrens . The heat pump arrangement according to the invention results in similar and equivalent advantages of the method according to the invention.
Besonders bevorzugt ist hierbei die Strahlpumpe als Ejektor ausgebildet . Particularly preferred here is the jet pump designed as ejector.
Mit anderen Worten erzeugt die Strahlpumpe einen Unterdruck, aufgrund dessen die Bypassleitung betreibbar ist, das heißt aufgrund dessen das Arbeitsfluid in der Bypassleitung in den primären Arbeitskreislauf zurückgesaugt wird. In other words, the jet pump generates a negative pressure, due to which the bypass line is operable, that is due to which the working fluid in the bypass line is sucked back into the primary working cycle.
Hierbei ist die Bypassleitung bevorzugt dazu ausgestaltet das Arbeitsfluid zurück zu einem Sauganschluss der Strahlpumpe zu führen . Here, the bypass line is preferably configured to guide the working fluid back to a suction port of the jet pump.
Mit anderen Worten wird das Arbeitsfluid über die In other words, the working fluid is over the
Bypassleitung zurück zu wenigstens dem einen Sauganschluss der Strahlpumpe geführt. Bypass line led back to at least one suction port of the jet pump.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist der Wärmetauscher als ein Wärmetauscher einer Kühlvorrichtung ausgebildet . According to an advantageous embodiment of the invention, the heat exchanger is designed as a heat exchanger of a cooling device.
Mit anderen Worten ist die Bypassleitung mittels eines gemeinsamen Wärmetauschers thermisch mit der Kühlvorrichtung gekoppelt, sodass der Wärmeaustausch mittels des Wärmetau¬ schers der Kühlvorrichtung erfolgt. Vorteilhafterweise wird dadurch die durch die Kühlvorrichtung zur Kühlung abgeführte Wärme weiterverwendet. Dadurch wird die energetische Effizi¬ enz der Wärmepumpenanordnung und der Kühlvorrichtung erhöht. In other words, the bypass line is thermally coupled by means of a common heat exchanger with the cooling device, so that the heat exchange takes place by means of the Wärmetau ¬ shear of the cooling device. Advantageously, the heat dissipated by the cooling device for cooling is thereby further used. Thus, the energy effi ¬ ciency of the heat pump device and the cooling device is increased.
In einer besonders vorteilhaften Weiterbildung der Erfindung ist die Kühlvorrichtung zur Kühlung des Verdichters ausgebil det . In a particularly advantageous embodiment of the invention, the cooling device for cooling the compressor is ausgebil det.
Mit anderen Worten wird der Verdichter der Wärmepumpe durch die Kühlvorrichtung gekühlt. Hierbei wird die durch die Küh- lung des Verdichters abgeführte Wärme wieder dem Wärmepumpen¬ kreislauf mittels des Wärmetauschers in der Bypassleitung zu¬ geführt, sodass die energetische Effizienz der Wärmepumpenan¬ ordnung weiter erhöht wird. Die Abwärme, die durch den Be¬ trieb des Verdichters erzeugt wird, geht daher nicht voll- ständig verloren, sondern wird wenigstens teilweise zurückge¬ wonnen und dem Wärmepumpenkreislauf wieder zugeführt. Weiterhin ergibt sich der Vorteil, dass externe Kühlkreisläu¬ fe oder Kühlvorrichtungen zur Kühlung des Verdichters eingespart werden können. Dadurch werden die Investitionskosten verringert. Ferner wird die bauliche Kompaktheit der Anlage verbessert, da zusätzliche Elemente zur Abführung der Abwärme des Verdichters, beispielsweise Kühlrippen oder Kühltürme, eingespart werden können. In other words, the compressor of the heat pump is cooled by the cooling device. Here, the heat removed by the cooling of the compressor, heat is conducted again to the heat pump ¬ circuit by means of the heat exchanger in the bypass line to ¬, so that the energy efficiency of the Wärmepumpenan ¬ order is further increased. The waste heat generated by the Be ¬ operation of the compressor, therefore, is not completely lost, but is at least partially zurückge ¬ and returned to the heat pump cycle. Furthermore, there is the advantage that external Kühlkreisläu ¬ fe or cooling devices for cooling the compressor can be saved. This reduces the investment costs. Furthermore, the structural compactness of the system is improved because additional elements for dissipating the waste heat of the compressor, such as cooling fins or cooling towers, can be saved.
Hierbei ist es besonders bevorzugt, wenn die Kühlvorrichtung zur Kühlung einer Getriebevorrichtung des Verdichters ausgebildet ist. It is particularly preferred if the cooling device is designed to cool a transmission device of the compressor.
Insbesondere ist die Kühlvorrichtung besonders bevorzugt als Getriebeölkühlung ausgestaltet. In particular, the cooling device is particularly preferably designed as a transmission oil cooling.
Hierbei wird ein Öl, welches typischerweise zur Kühlung der Getriebevorrichtung vorgesehen ist, von der Getriebevorrich- tung zum Wärmetauscher geführt. Mit anderen Worten ist der Wärmetauscher als Ölkühler ausgebildet. Here, an oil, which is typically provided for cooling the transmission device, led from the Getriebevorrich- direction to the heat exchanger. In other words, the heat exchanger is designed as an oil cooler.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung umfasst die Bypassleitung ein Expansionsventil, wobei das Expansions¬ ventil vor dem Wärmetauscher angeordnet ist. Dadurch kann vorteilhafterweise der Druck des Arbeitsfluids innerhalb der Bypassleitung derart eingestellt werden, dass eine festgelegte Erwärmung oder eine Verdampfung des Arbeits- fluid im Wärmetauscher erfolgt. Mit anderen Worten wird der Druck des Arbeitsfluids vor dem Wärmetauscher innerhalb der Bypassleitung mittels des wenigstens einen Expansionsventils eingestellt . According to an advantageous embodiment of the invention, the bypass line comprises an expansion valve, wherein the expansion ¬ valve is arranged in front of the heat exchanger. As a result, advantageously, the pressure of the working fluid within the bypass line can be adjusted such that a defined heating or an evaporation of the working fluid takes place in the heat exchanger. In other words, the pressure of the working fluid is adjusted before the heat exchanger within the bypass line by means of the at least one expansion valve.
Weiterhin kann gemäß einer bevorzugten Ausgestaltung der Erfindung der Verdampfungsdruck des Arbeitsfluids innerhalb des Verdampfers mittels der Strahlpumpe eingestellt werden. Furthermore, according to a preferred embodiment of the invention, the evaporation pressure of the working fluid within the evaporator can be adjusted by means of the jet pump.
Dadurch wird eine Anpassung des Verdampfungsdrucks ohne ein zusätzliches Expansionsventil innerhalb des primären Wärme- pumpenkreislaufes ermöglicht. Mit anderen Worten ist die Strahlpumpe als Expansionsventil vorgesehen. This will adjust the evaporation pressure without an additional expansion valve within the primary heat pump cycle allows. In other words, the jet pump is provided as an expansion valve.
In einer vorteilhaften Weiterbildung der Erfindung umfasst die Wärmepumpenanordnung ein Arbeitsfluid, welches wenigstens einen Stoff aus der Gruppe der Fluorketone und/oder Hydroflu- orolefine und/oder Hydrofluorchlorolefine aufweist. In an advantageous development of the invention, the heat pump arrangement comprises a working fluid which has at least one substance from the group of fluoroketones and / or hydrofluoroolefins and / or hydrofluorochloroolefins.
Mit anderen Worten wird als Arbeitsfluid wenigstens ein Flu- orketon und/oder Hydrofluorolefine und/oder Hydrofluorchlorolefine verwendet. In other words, the working fluid used is at least one fluoroketone and / or hydrofluoroolefins and / or hydrofluorochloroolefins.
Dadurch wird vorteilhafterweise eine Hochtemperaturwärmepumpe ausgebildet, die es ermöglicht ihre Wärme auf einem Tempera- turniveau oberhalb von 100 Grad Celsius abzugeben beziehungs¬ weise für einen Wärmeverbraucher bereitzustellen. Weiterhin sind Arbeitsfluide mit Fluorketonen und/oder Hydrofluorolefi- ne und/oder Hydrofluorchlorolefine besonders vorteilhaft um die Wärme auf niedrigem Temperaturniveau mittels des Wärme- tauschers aufzunehmen. This advantageously a high-temperature heat pump formed which enables its heat to a temperature level in excess of 100 degrees Celsius to give relationship ¬, for a provide heat consumer. Furthermore, working fluids with fluoroketones and / or hydrofluoroolefins and / or hydrofluorochloroolefins are particularly advantageous for absorbing the heat at a low temperature level by means of the heat exchanger.
Ein weiterer Vorteil der genannten Arbeitsfluide ist ihre technische Handhabbarkeit. Sie zeichnen sich durch eine gute Umweltverträglichkeit sowie durch ihre Sicherheitseigenschaf- ten, wie beispielsweise keine Brennbarkeit oder ein sehr ge¬ ringes Treibhauspotential, aus. Another advantage of the said working fluids is their technical handling. They are characterized by good environmental compatibility and ten of their Sicherheitseigenschaf- such as no flammability or a very ge ¬ ring global warming potential from.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung er¬ geben sich aus dem im Folgenden beschriebenen Ausführungsbei- spielen sowie anhand der Zeichnung. Dabei zeigt die einzige Figur ein schematisches Schaltdiagramm einer Wärmepumpenanordnung gemäß einer Ausgestaltung der vorliegenden Erfindung. Further advantages, features and details of the invention ¬ give themselves playing from the exemplary embodiments described below and from the drawing. The single figure shows a schematic circuit diagram of a heat pump assembly according to an embodiment of the present invention.
Gleichartige, gleichwertige oder gleichwirkende Elemente kön- nen in der Figur mit denselben Bezugszeichen versehen sein. In der Figur ist eine Wärmepumpenanordnung 1 gemäß einer Ausgestaltung der vorliegenden Erfindung schematisch dargestellt . Die Wärmepumpenanordnung 1 weist einen Verdichter 2, einen Kondensator 6, einen Verdampfer 8 sowie eine Strahlpumpe 42 auf. Weiterhin umfasst die Wärmepumpenanordnung einen primären und sekundären Arbeitskreislauf 101, 102 für ein Arbeits¬ fluid auf. Der primäre Arbeitskreislauf 101 bildet einen Wär- mepumpenkreislauf auf, bei welchem das Arbeitsfluid im Ver¬ dichter 2 verdichtet, im Kondensator 6 kondensiert, im Verdampfer 8 verdampft und mittels der Strahlpumpe 42 expandiert wird. Mit anderen Worten wird durch den Verdichter 2, den Kondensator 6, den Verdampfer 8 und der Strahlpumpe 42 eine Wärmepumpe ausgebildet. Similar, equivalent or equivalent elements can be provided with the same reference numerals in the figure. In the figure, a heat pump assembly 1 according to an embodiment of the present invention is shown schematically. The heat pump arrangement 1 has a compressor 2, a condenser 6, an evaporator 8 and a jet pump 42. Furthermore, the heat pump assembly comprises a primary and secondary working circuit 101, 102 for a working ¬ fluid. The primary working circuit 101 forms a heat on mepumpenkreislauf, wherein the working fluid in the dense Ver ¬ 2 compressed, condensed in the condenser 6, is evaporated in the evaporator 8 and is expanded by means of the jet pump 42nd In other words, a heat pump is formed by the compressor 2, the condenser 6, the evaporator 8 and the jet pump 42.
Der sekundäre Arbeitskreislauf 102 wird mittels einer The secondary working cycle 102 is by means of a
Bypassleitung 4 gebildet, die nach der Strahlpumpe 42 und vor dem Verdampfer 8 abzweigt, und wenigstens einen Teil des Ar- beitsfluids über einen Wärmetauscher 41 zurück zu einem Saug- anschluss der Strahlpumpe 42 führt. Die Arbeitskreisläufe 101, 102 sind folglich bezüglich des Arbeitsfluids fluidisch parallel verschaltet. Die Strahlpumpe 42 ist als Ejektor ausgebildet, sodass einBypass line 4 is formed, which branches off after the jet pump 42 and before the evaporator 8, and at least a portion of the working fluid via a heat exchanger 41 back to a suction port of the jet pump 42 leads. The working circuits 101, 102 are therefore connected fluidically in parallel with respect to the working fluid. The jet pump 42 is designed as ejector, so that a
Unterdruck erzeugt wird, der das Arbeitsfluid wieder aus der Bypassleitung 4 ansaugt. Mit anderen Worten wird die Vacuum is generated, which sucks the working fluid from the bypass line 4 again. In other words, the
Durchströmung der Bypassleitung 4 mit dem Arbeitsfluid durch das Arbeitsfluid selbst getrieben, sodass das Arbeitsfluid gleichzeitig als Treibmedium für die Strahlpumpe 42 ausgebil¬ det ist. Dadurch ist vorteilhafterweise keine zusätzliche Pumpe zum treiben der Bypassleitung 4 erforderlich. Flow through the bypass line 4 with the working fluid driven by the working fluid itself, so that the working fluid is ausgebil ¬ det at the same time as a driving medium for the jet pump 42. As a result, advantageously no additional pump for driving the bypass line 4 is required.
Der Wärmetauscher 41 ist mit einer Kühlleitung 12 einer Öl- kühlung gekoppelt. Grundsätzlich kann der Wärmetauscher mit jeder Wärmequelle, insbesondere mit niedertemperierten The heat exchanger 41 is coupled to a cooling line 12 of an oil cooling. In principle, the heat exchanger can be used with any heat source, in particular with low-temperature
Abwärmequellen, thermisch gekoppelt sein. Die Abwärme wird über den Wärmetauscher 41 an das Arbeitsfluid in der Bypassleitung 4 wenigstens teilweise übertragen. Der Druck, bei welcher die genannte Wärmeübertragung im Wärmetauscher 41 erfolgt, kann mittels eines Expansionsventils 40 eingestellt werden . Waste heat sources, be thermally coupled. The waste heat is transferred via the heat exchanger 41 to the working fluid in the Bypass line 4 at least partially transmitted. The pressure at which said heat transfer occurs in the heat exchanger 41 can be adjusted by means of an expansion valve 40.
In der dargestellten, besonders bevorzugten Ausgestaltung der vorliegenden Erfindung ist die Ölkühlung für die Kühlung einer Getriebevorrichtung 21 des Verdichters 2 vorgesehen. In the illustrated, particularly preferred embodiment of the present invention, the oil cooling is provided for the cooling of a transmission device 21 of the compressor 2.
Hierzu sind die Kühlleitungen 12 mit der Getriebevorrichtung 21 fluidisch gekoppelt. Dadurch wird vorteilhafterweise derFor this purpose, the cooling lines 12 are fluidically coupled to the transmission device 21. This will advantageously the
Verdichter 2 beziehungsweise seine Getriebevorrichtung 21 gekühlt. Die Abwärme der Getriebevorrichtung 21 geht - im Gegensatz zu bekannten Kühlungen eines Verdichters - nicht vollständig verloren, da wenigstens ein Teil mittels des Wär- metauschers 41 und mittels der erfindungsgemäß vorgesehenenCompressor 2 and its transmission device 21 cooled. The waste heat of the transmission device 21 is - in contrast to known cooling a compressor - not completely lost, since at least a part by means of the heat exchanger 41 and by means of the inventively provided
Bypassleitung 4 an das Arbeitsfluid der Wärmepumpe übertragen wird. Dadurch wird die energetische Effizienz der Wärmepumpenanordnung 1, die im dargestellten Ausführungsbeispiel im Wesentlichen eine Wärmepumpe ausbildet, erhöht. Mit anderen Worten stellt die Wärmepumpenanordnung 1 eine verbesserte Wärmepumpe bereit. Bypass line 4 is transmitted to the working fluid of the heat pump. As a result, the energy efficiency of the heat pump assembly 1, which essentially forms a heat pump in the illustrated embodiment, is increased. In other words, the heat pump assembly 1 provides an improved heat pump.
Weiterhin umfasst der Verdichter 2 einen elektrischen Motor 22 zu dessen Betrieb, der ebenfalls mittels der Ölkühlung ge- kühlt werden kann. Furthermore, the compressor 2 comprises an electric motor 22 for its operation, which can also be cooled by means of oil cooling.
Die Strahlpumpe 42 in Verbindung mit der Bypassleitung 4 ermöglicht daher die Einbindung einer Wärmequelle mit einem vergleichsweise niedrigen Temperaturniveau, ohne zusätzliche stromverbrauchende Bauteile, beispielsweise Pumpen. The jet pump 42 in conjunction with the bypass line 4 therefore allows the integration of a heat source with a comparatively low temperature level, without additional power-consuming components, such as pumps.
Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele ein- geschränkt oder andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen. Although the invention has been further illustrated and described in detail by the preferred embodiments, the invention is not limited by the disclosed examples, or other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention.

Claims

Patentansprüche claims
1. Wärmepumpenanordnung (1), umfassend einen Verdichter (2), einen Kondensator (6) und einen Verdampfer (8), die mittels eines Arbeitskreislaufes (100) für ein Arbeitsfluid fluidisch gekoppelt sind, dadurch gekennzeichnet, dass die Wärmepumpen¬ anordnung (1) einen Wärmetauscher (41), eine Strahlpumpe (42) und eine Bypassleitung (4) umfasst, wobei die Bypassleitung (4) dazu ausgestaltet ist, wenigstens einen Teil des Arbeits- fluids nach der Strahlpumpe (42) und vor dem Verdampfer (8) zum Wärmetauscher (41) und zurück zur Strahlpumpe (42) zu führen . 1 heat pump assembly (1), comprising a compressor (2), a condenser (6) and an evaporator (8), which are fluidly coupled by means of a working circuit (100) for a working fluid, characterized in that the heat pump ¬ arrangement (1 ) comprises a heat exchanger (41), a jet pump (42) and a bypass line (4), wherein the bypass line (4) is adapted to at least a portion of the working fluid after the jet pump (42) and before the evaporator (8) to the heat exchanger (41) and back to the jet pump (42) to lead.
2. Wärmepumpenanordnung (1) gemäß Anspruch 1, dadurch gekenn- zeichnet, dass die Strahlpumpe (42) als Ejektor ausgebildet ist . 2. Heat pump assembly (1) according to claim 1, characterized marked characterized in that the jet pump (42) is designed as ejector.
3. Wärmepumpenanordnung (1) gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Bypassleitung (4) dazu ausgestaltet ist das Arbeitsfluid zurück zu einem Sauganschluss der 3. Heat pump assembly (1) according to claim 1 or 2, characterized in that the bypass line (4) is configured to the working fluid back to a suction port of
Strahlpumpe (42) zu führen. Jet pump (42) to lead.
4. Wärmepumpenanordnung (1) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmetauscher (41) als ein Wärmetauscher einer Kühlvorrichtung (12) ausgebildet ist. 4. Heat pump assembly (1) according to one of the preceding claims, characterized in that the heat exchanger (41) is designed as a heat exchanger of a cooling device (12).
5. Wärmepumpenanordnung (1) gemäß Anspruch 4 dadurch gekennzeichnet, dass die Kühlvorrichtung (12) zur Kühlung des Ver- dichters (2) ausgebildet ist. 5. heat pump assembly (1) according to claim 4, characterized in that the cooling device (12) for cooling the compressor (2) is formed.
6. Wärmepumpenanordnung (1) gemäß Anspruch 5, dadurch gekennzeichnet, dass der Verdichter (2) eine Getriebevorrichtung (21) umfasst, wobei die Kühlvorrichtung (12) zur Kühlung der Getriebevorrichtung (21) ausgebildet ist. 6. heat pump assembly (1) according to claim 5, characterized in that the compressor (2) comprises a transmission device (21), wherein the cooling device (12) for cooling the transmission device (21) is formed.
7. Wärmepumpenanordnung (1) gemäß Anspruch 6, dadurch gekennzeichnet, dass die Kühlvorrichtung (12) als Getriebeölkühlung ausgestaltet ist. 8. Wärmepumpenanordnung (1) gemäß einem der vorhergehenden7. heat pump assembly (1) according to claim 6, characterized in that the cooling device (12) is designed as a transmission oil cooling. 8. Heat pump assembly (1) according to one of the preceding
Ansprüche, dadurch gekennzeichnet, dass die Bypassleitung (4) ein Expansionsventil (40) umfasst, wobei das ExpansionsventilClaims, characterized in that the bypass line (4) comprises an expansion valve (40), wherein the expansion valve
(40) vor dem Wärmetauscher (41) angeordnet ist. (40) is arranged in front of the heat exchanger (41).
9. Wärmepumpenanordnung (1) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese das Arbeits- fluid umfasst, wobei das Arbeitsfluid wenigstens einen Stoff aus der Gruppe der Fluorketone und/oder Hydrofluorolefine und/oder Hydrofluorchlorolefine aufweist. 9. heat pump assembly (1) according to one of the preceding claims, characterized in that it comprises the working fluid, wherein the working fluid comprises at least one substance from the group of fluoroketones and / or hydrofluoroolefins and / or hydrofluorochloroolefins.
10. Verfahren zum Betrieb einer Wärmepumpenanordnung (1) gemäß einem der vorhergehenden Ansprüche, bei dem ein Arbeitsfluid innerhalb eines Arbeitskreislaufes (100) mittels eines Verdichters (2) verdichtet, mittels eines Kondensators (6) kondensiert und mittels eines Verdampfers (8) verdampft wird, dadurch gekennzeichnet, dass wenigstens ein Teil des Arbeits- fluids mittels einer Bypassleitung (4) nach einer Strahlpumpe (42) der Wärmepumpenanordnung (1) und vor dem Verdampfer (8) zu einem Wärmetauscher (41) zum Wärmeaustausch und zurück zur Strahlpumpe (42) geführt wird. 10. A method for operating a heat pump assembly (1) according to one of the preceding claims, wherein a working fluid within a working circuit (100) by means of a compressor (2) compacted, condensed by means of a condenser (6) and evaporated by means of an evaporator (8) , characterized in that at least a portion of the working fluid by means of a bypass line (4) after a jet pump (42) of the heat pump assembly (1) and before the evaporator (8) to a heat exchanger (41) for heat exchange and back to the jet pump (42 ) to be led.
11. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass das Arbeitsfluid über die Bypassleitung (4) zurück zu einem Sauganschluss der Strahlpumpe (42) geführt wird. 11. The method according to claim 10, characterized in that the working fluid via the bypass line (4) is guided back to a suction port of the jet pump (42).
12. Verfahren gemäß Anspruch 10 oder 11, dadurch gekennzeichnet, dass der Wärmeaustausch mittels eines Wärmetauschers12. The method according to claim 10 or 11, characterized in that the heat exchange by means of a heat exchanger
(41) einer Kühlvorrichtung erfolgt. 13. Verfahren gemäß einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass der Druck des Arbeitsfluids vor dem Wär¬ metauscher (41) innerhalb der Bypassleitung (4) mittels eines Expansionsventils (40) eingestellt wird. (41) a cooling device takes place. 13. The method according to any one of claims 10 to 12, characterized in that the pressure of the working fluid in front of the heat ¬ exchanger (41) within the bypass line (4) by means of an expansion valve (40) is set.
14. Verfahren gemäß einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass der Verdampfungsdruck des Arbeitsfluids innerhalb des Verdampfers (8) mittels der Strahlpumpe (42) eingestellt wird. 14. The method according to any one of claims 10 to 13, characterized in that the evaporation pressure of the working fluid within the evaporator (8) by means of the jet pump (42) is set.
15. Verfahren gemäß einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass als Arbeitsfluid ein Fluid mit einem Fluorketon und/oder Hydrofluorolefine und/oder Hydrofluor- chlorolefine verwendet wird. 15. The method according to any one of claims 10 to 14, characterized in that a fluid with a fluoroketone and / or hydrofluoroolefins and / or hydrofluoro-chloroolefins is used as the working fluid.
EP18706390.4A 2017-02-24 2018-01-23 Heat pump arrangement and method for operating a heat pump arrangement Active EP3571450B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017203043.7A DE102017203043A1 (en) 2017-02-24 2017-02-24 Heat pump assembly and method of operating a heat pump assembly
PCT/EP2018/051506 WO2018153589A1 (en) 2017-02-24 2018-01-23 Heat pump arrangement and method for operating a heat pump arrangement

Publications (2)

Publication Number Publication Date
EP3571450A1 true EP3571450A1 (en) 2019-11-27
EP3571450B1 EP3571450B1 (en) 2020-12-30

Family

ID=61256889

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18706390.4A Active EP3571450B1 (en) 2017-02-24 2018-01-23 Heat pump arrangement and method for operating a heat pump arrangement

Country Status (7)

Country Link
EP (1) EP3571450B1 (en)
JP (1) JP2020508433A (en)
KR (1) KR20190105228A (en)
CN (1) CN110337573A (en)
DE (1) DE102017203043A1 (en)
DK (1) DK3571450T3 (en)
WO (1) WO2018153589A1 (en)

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043345U (en) * 1973-08-14 1975-05-01
JPS5218242A (en) * 1975-08-01 1977-02-10 Sharp Corp Refrigerating cycle
KR20060128041A (en) * 2004-03-04 2006-12-13 이 아이 듀폰 디 네모아 앤드 캄파니 Haloketone refrigerant compositions and uses thereof
CN104059613A (en) * 2008-07-30 2014-09-24 霍尼韦尔国际公司 Compositions Containing Fluorine Substituted Olefins
ES2601854T3 (en) 2009-02-27 2017-02-16 Vestas Wind Systems A/S A wind turbine and a method for cooling a component that generates heat from a wind turbine
JP5370028B2 (en) 2009-09-10 2013-12-18 株式会社デンソー Ejector
JP5328713B2 (en) * 2010-04-27 2013-10-30 三菱電機株式会社 Refrigeration cycle equipment
JP2012172917A (en) * 2011-02-22 2012-09-10 Nippon Soken Inc Cooling device
JP5482767B2 (en) * 2011-11-17 2014-05-07 株式会社デンソー Ejector refrigeration cycle
TWI577949B (en) 2013-02-21 2017-04-11 強生控制科技公司 Lubrication and cooling system
WO2014158329A1 (en) * 2013-03-25 2014-10-02 Carrier Corporation Compressor bearing cooling
JP6186998B2 (en) 2013-07-31 2017-08-30 株式会社デンソー Air conditioner for vehicles
JP5999050B2 (en) 2013-08-29 2016-09-28 株式会社デンソー Ejector refrigeration cycle and ejector
DE202014010264U1 (en) 2014-01-09 2015-02-25 Siemens Aktiengesellschaft Vehicle with a compression refrigeration machine
JP2015194300A (en) * 2014-03-31 2015-11-05 荏原冷熱システム株式会社 turbo refrigerator
JP6448936B2 (en) * 2014-07-15 2019-01-09 三菱重工サーマルシステムズ株式会社 Oil recovery device for turbo refrigerator
CN204593934U (en) * 2014-12-11 2015-08-26 华南理工大学 A kind of electric motor car Waste Heat Reuse frequency conversion heat pump air-conditioning system
CN105823256B (en) * 2016-03-22 2018-11-06 东南大学 A kind of compressor returns the working method of oil cooled heat pump apparatus of air source
CN105890210B (en) 2016-06-01 2018-09-07 珠海格力电器股份有限公司 A kind of high-temperature air conditioner unit
CN205669895U (en) * 2016-06-01 2016-11-02 珠海格力电器股份有限公司 A kind of high-temperature air conditioner unit

Also Published As

Publication number Publication date
JP2020508433A (en) 2020-03-19
KR20190105228A (en) 2019-09-16
CN110337573A (en) 2019-10-15
DE102017203043A1 (en) 2018-08-30
DK3571450T3 (en) 2021-03-08
EP3571450B1 (en) 2020-12-30
WO2018153589A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
DE102017211256B4 (en) Refrigeration system for a vehicle with a refrigerant circuit having a heat exchanger
EP2199706B1 (en) A switching device air conditioner and operation method thereof
WO2020156942A1 (en) Cooling arrangement and method for cooling an at least two-stage compressed air generator
DE102014204257A1 (en) cooler
WO2014183892A1 (en) Thermal energy store
WO2013023231A2 (en) High-pressure gas drive unit
DE102018215026B4 (en) Refrigeration system for a vehicle with a refrigerant circuit having a double-flow heat exchanger, as well as heat exchangers and a method for operating the refrigeration system
DE3219680A1 (en) HEAT PUMP SYSTEM
EP3571450A1 (en) Heat pump arrangement and method for operating a heat pump arrangement
DE2401556A1 (en) METHOD OF HEATING A BUILDING AND HEATING SYSTEM
DE102016220634A1 (en) Waste heat power plant with gradual heat supply
EP2989397B1 (en) Method and device for cooling an engine
DE1288615B (en) Device for cooling a chamber
EP3060767B1 (en) Device and method for an orc process with multi-stage expansion
DE2651888A1 (en) Steam turbine waste heat recovery circuit - has part of heat exchange medium passed through condenser driven by turbine
DE102017208079A1 (en) Apparatus and method for increasing the heat yield of a heat source
DE102021101268B4 (en) Fuel cell device and method for operating a fuel cell device
DE102016007949A1 (en) Improving the number of work for heat pumps of all kinds with a compact design Motor, compressor, turbine (instead of expansion valve, throttle) for rotary energy recovery. a kind of heat transformer
DE102014011579A1 (en) Cooling device for a motor vehicle
DE102016217886A1 (en) Plant and process with a thermal power plant and a process compressor
DE102016216303A1 (en) Waste heat recovery system
EP3583366B1 (en) Device and method for increasing the thermal output of a heat source
DE112022000877T5 (en) TRILATERAL CYCLE SYSTEM
DE102022122278A1 (en) heat pump device
AT504762A2 (en) HEAT PUMP

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200828

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1350337

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018003490

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210302

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018003490

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

26N No opposition filed

Effective date: 20211001

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20211202 AND 20211209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201230

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20231228

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240118

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 7

Ref country code: GB

Payment date: 20240123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240125

Year of fee payment: 7

Ref country code: DK

Payment date: 20240125

Year of fee payment: 7