EP3060767B1 - Device and method for an orc process with multi-stage expansion - Google Patents

Device and method for an orc process with multi-stage expansion Download PDF

Info

Publication number
EP3060767B1
EP3060767B1 EP15700344.3A EP15700344A EP3060767B1 EP 3060767 B1 EP3060767 B1 EP 3060767B1 EP 15700344 A EP15700344 A EP 15700344A EP 3060767 B1 EP3060767 B1 EP 3060767B1
Authority
EP
European Patent Office
Prior art keywords
recuperator
turbine
working medium
heat
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15700344.3A
Other languages
German (de)
French (fr)
Other versions
EP3060767A1 (en
Inventor
Hannes Fogt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3060767A1 publication Critical patent/EP3060767A1/en
Application granted granted Critical
Publication of EP3060767B1 publication Critical patent/EP3060767B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type

Definitions

  • the invention relates to a method for carrying out a thermal cycle process based on the principle of the Organic Rankine Cycle for converting energy from a heat source into mechanical energy, in which a working medium circulates in a circuit and the circuit has an evaporator for evaporating the working medium, a downstream turbine, a downstream condenser, a downstream feed pump and a return to the evaporator.
  • Organic Rankine Cycle Plants for running a thermal cycle according to the principle of the Organic Rankine Cycle (ORC plants) of the type mentioned above are known in principle.
  • the Organic Rankine Cycle is a process for operating steam turbines with a working fluid/working medium other than steam.
  • ORC systems are typically fed using heat transfer media (in particular thermal oil), heat being supplied to an ORC working medium for the ORC cycle process via the heat transfer medium, as a result of which it is heated and ultimately evaporated.
  • the vaporized working medium is expanded in a known manner in a turbine, condensed, conveyed to the vaporizer and vaporized again.
  • Such a device for performing a thermal cycle is, for example, in WO 2013/171685 A disclosed.
  • the DE 10 2007 009503 A1 discloses an apparatus comprising a turbine having a plurality of turbine stages, wherein at least two turbine stages each have a first and a second recuperator downstream. The working fluid is reheated by means of the first recuperator and then fed to the downstream turbine stage.
  • the object of the invention is therefore to specify an improved method for an ORC cycle process.
  • the use of comparatively small heat exchangers or recuperators and thus a reduction in the costs of an ORC system or its increase in performance should be made possible with simple transport of the system components.
  • the object of the invention is achieved by the method of claim 1, wherein heat is extracted from the working medium in the first and in the second recuperator.
  • One embodiment of the invention provides that the heat in the first and in the second recuperator is withdrawn while the pressure remains the same.
  • the first turbine/turbine stage has a first flow of the first recuperator downstream in the circuit of the working medium and a second flow of the named recuperator, which is thermally coupled to the first flow, is downstream of the feed pump. In this way, the energy recovered in the first recuperator can be used to reheat the condensed working medium.
  • the second turbine/turbine stage has a first flow of the second recuperator downstream in the circuit of the working medium and a second flow of the named recuperator, which is thermally coupled to the first flow, is downstream of the feed pump. In this way, the energy recovered in the second recuperator can also be used to reheat the condensed working fluid.
  • first throughflow of the second recuperator is downstream of the first throughflow of the first recuperator in the working fluid circuit and that the second throughflow of the second recuperator is upstream of the second throughflow of the first recuperator in the working fluid circuit. This achieves a particularly high temperature increase in the condensed working medium.
  • first turbine/turbine stage and the second turbine/turbine stage are arranged on a common shaft. This results in a comparatively simple mechanical construction and the possibility of using a single generator.
  • the invention is not tied to the use of a generator, but the energy generated by the turbines can also be used directly mechanically or converted into another form of energy.
  • first turbine/turbine stage and the second turbine/turbine stage are arranged on different shafts.
  • the turbines/turbine stages can be adapted particularly well to the cyclic process, since the turbines/turbine stages can run at different speeds.
  • the waves are coupled to one another, for example via a Transmission.
  • the turbines/turbine stages can run at different speeds, but it is possible to provide only a single output shaft and consequently only a single generator.
  • the energy generated by the turbines can be used directly mechanically or converted into another form of energy.
  • the device 1 shows a schematic block diagram of a device 1 for performing a thermal cycle process according to the principle of the Organic Rankine Cycle for converting energy from a heat source into mechanical energy, in which an organic working medium circulates in a circuit.
  • the device 1 comprises an evaporator 2 for evaporating the working medium, a first downstream turbine 3, a first downstream recuperator 4, a second downstream turbine 5, a second downstream recuperator 6, a heat exchanger 7, a condenser 8, a feed pump 9, and a return to the evaporator 2.
  • the 1 a generator 10 coupled to the turbines 3, 5 and a motor 11 coupled to the feed pump 9 for driving the same.
  • the first turbine 3 is provided with a first throughput of the first recuperator 4 (namely the one in 1 vertical flow) in the circuit of the working medium downstream downstream. Furthermore, a second flow of the named recuperator 4 (namely the one in 1 horizontal flow) which is thermally coupled to the first flow downstream of the feed pump 9 .
  • a first flow of the second recuperator 6 downstream in the circuit of the working fluid and a second flow of said recuperator 6, thermally coupled to the first flow, is downstream of the feed pump 9.
  • the energy recovered in the recuperators 4, 6 can be used in the ORC circuit. In principle, however, it would of course also be conceivable to use the energy obtained in the recuperators 4, 6 outside of the ORC circuit.
  • the first flow of the second recuperator 6 is downstream of the first flow of the first recuperator 4 in the working fluid circuit, and the second flow of the second recuperator 6 is upstream of the second flow of the first recuperator 4 in the working fluid circuit.
  • the condensed working medium can be preheated to a comparatively high temperature in front of the evaporator 2 with the aid of the recuperators 4 , 6 .
  • the first and the second turbine 3, 5 are arranged on a common shaft and are connected to the generator 10 via this shaft, as a result of which the mechanical energy obtained in the turbines 3, 5 can be converted into electrical energy.
  • this is by no means the only possibility. It would also be conceivable for the first and the second turbine 3, 5 to be arranged on different shafts.
  • one generator 10 is driven by one turbine 3, 5 each. But it is also conceivable that the waves are coupled to each other, for example via a Transmission. As a result, the turbines 3, 5 can run at different speeds, but it is possible to provide only a single output shaft and consequently only a single generator 10.
  • the use of the generator 10 is not mandatory, but the mechanical energy generated via the turbines 3, 5 can also be used directly mechanically or converted into another form of energy.
  • pumping stations, compressors or even ship propulsion systems would be conceivable.
  • the working medium in the first turbine 3 is expanded to the second process point Z2, as a result of which the pressure p and the temperature T decrease and the entropy S increases. If the pressure p remains the same, heat is extracted from the working medium in the first recuperator 4 .
  • the cyclic process therefore runs along an isobar from the process point Z2 to the process point Z3.
  • the working medium expands further after the process point Z4. With the pressure remaining the same, heat is again withdrawn from the working medium in the second recuperator 6 .
  • the cyclic process therefore runs along an isobar from the process point Z4 to the process point Z5. In the heat exchanger 7, there is further cooling down to the process point Z6 and finally the working medium is condensed in the condenser 8. With the temperature T remaining the same, the entropy decreases to the process point Z7.
  • the condensed working medium is fed into the second recuperator 6 with the aid of the feed pump 9 (process point Z8) and heated there up to the process point Z9. Subsequently, the working medium in the first recuperator 4 is heated from the process point Z9 to the process point Z10. This is followed by further heating and finally evaporation of the working medium in the evaporator 2, which closes the cycle by returning to the process point Z1.
  • the temperature T9 i.e. the outlet temperature at the second flow of the second recuperator 6
  • the temperature T5 i.e. the outlet temperature at the first flow of the second recuperator 6
  • the temperature T10 i.e. the outlet temperature at the second Flow of the first recuperator 4 in turn is less than the temperature T3 (ie the outlet temperature at the first flow of the first recuperator 4).
  • the area q45 lying under the line connecting the process points Z4 and Z5 is equal to the area q89 lying under the line connecting the process points Z8 and Z9.
  • the areas q45 and q89 indicate the amount of heat transferred in the second recuperator 6 .
  • the area q23 lying under the line connecting the process points Z2 and Z3 is equal to the area q910 lying under the line connecting the process points Z9 and Z10.
  • the areas q23 and q910 indicate the amount of heat transferred in the first recuperator 4 .
  • the area q56 lying under the line connecting the process points Z5 and Z6 also indicates the energy removed in the heat exchanger 7 before the condensation of the working medium.
  • the area q67 below the connecting line of the process points Z6 and Z7 also indicates the energy dissipated in the condenser 8 and the area q101 below the connecting line of the process points Z10 and Z1 finally indicates the energy supplied in the evaporator 2.
  • ORC device may also include more or fewer components than illustrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Technisches Gebiettechnical field

Die Erfindung betrifft ein Verfahren zum Ausführen eines thermischen Kreisprozesses nach dem Prinzip des Organic Rankine Cycle zur Umwandlung einer Energie einer Wärmequelle in mechanische Energie, bei dem ein Arbeitsmittel in einem Kreislauf zirkuliert und der Kreislauf einen Verdampfer zum Verdampfen des Arbeitsmittels, eine stromabwärts gelegene Turbine, einen stromabwärts gelegenen Kondensator, eine stromabwärts gelegene Speisepumpe und eine Rückführung zum Verdampfer umfasst.The invention relates to a method for carrying out a thermal cycle process based on the principle of the Organic Rankine Cycle for converting energy from a heat source into mechanical energy, in which a working medium circulates in a circuit and the circuit has an evaporator for evaporating the working medium, a downstream turbine, a downstream condenser, a downstream feed pump and a return to the evaporator.

Stand der TechnikState of the art

Anlagen zum Ausführen eines thermischen Kreisprozesses nach dem Prinzip des Organic Rankine Cycle (ORC-Anlagen) der oben genannten Art sind grundsätzlich bekannt. Der Organic Rankine Cycle ist ein Verfahren zum Betrieb von Dampfturbinen mit einem anderen Arbeitsmittel/Arbeitsmedium als Wasserdampf. ORC-Anlagen werden typischerweise mittels Wärmeträgermedien (insbesondere Thermo-Öl) gespeist, wobei einem ORC-Arbeitsmittel für den ORC-Kreisprozess über den Wärmeträger Wärme zugeführt wird, wodurch dieses erhitzt und letztlich verdampft wird. Das verdampfte Arbeitsmittel wird in an sich bekannter Weise in einer Turbine entspannt, kondensiert, zum Verdampfer gefördert und wiederum verdampft.Plants for running a thermal cycle according to the principle of the Organic Rankine Cycle (ORC plants) of the type mentioned above are known in principle. The Organic Rankine Cycle is a process for operating steam turbines with a working fluid/working medium other than steam. ORC systems are typically fed using heat transfer media (in particular thermal oil), heat being supplied to an ORC working medium for the ORC cycle process via the heat transfer medium, as a result of which it is heated and ultimately evaporated. The vaporized working medium is expanded in a known manner in a turbine, condensed, conveyed to the vaporizer and vaporized again.

Eine solche Vorrichtung zum Ausführen eines thermischen Kreisprozesses ist beispielsweise in der WO 2013/171685 A offenbart. Die DE 10 2007 009503 A1 offenbart eine Vorrichtung, umfassend eine Turbine mit mehreren Turbinenstufen, wobei wenigstens zwei Turbinenstufen je ein erster und ein zweiter Rekuperator nachgeschaltet ist. Das Arbeitsfluid wird dabei mittels des ersten Rekuperators zwischenüberhitzt und anschließend der nachgeschalteten Turbinenstufe zugeführt.Such a device for performing a thermal cycle is, for example, in WO 2013/171685 A disclosed. the DE 10 2007 009503 A1 discloses an apparatus comprising a turbine having a plurality of turbine stages, wherein at least two turbine stages each have a first and a second recuperator downstream. The working fluid is reheated by means of the first recuperator and then fed to the downstream turbine stage.

Bei einem OCR-Prozess werden in der Regel Fluide mit "steigender Sattdampfkurve" eingesetzt. Die Expansion in der Turbine verläuft dabei von der Grenzkurve "ins Trockene". Vor der Wärmeabfuhr im Kondensator wird dem Arbeitsmedium zunächst Wärme bei gasförmigem Zustand entzogen. Die spezifischen Volumina des Arbeitsmediums sind dabei sehr hoch, was sehr ungünstige Bedingungen für die Wärmeübertragung schafft. Um diese Wärme mit Rücksicht auf den Gesamtwirkungsgrad bei geringen Strömungsverlusten abzuführen, sind große Querschnitte erforderlich, welche eine geringe Strömungsgeschwindigkeit des Arbeitsmediums erlauben. Die Folge sind große, teure Strömungswege, insbesondere im Wärmetauscher. Die Fertigung sehr großer Wärmetauscher (Rekuperatoren) verursachen jedoch einen erblichen Teil der Gesamtkosten einer ORC-Anlage. Darüber hinaus begrenzen sie die maximale Leistung/Größe der ORC-Anlage, wenn sie in einem Stück transportiert werden sollen.In an OCR process, fluids with a "rising saturated steam curve" are generally used. The expansion in the turbine runs from the limit curve "into the dry". Before the heat is dissipated in the condenser, heat is first extracted from the working medium in the gaseous state. The specific volumes of the working medium are very high, which creates very unfavorable conditions for heat transfer. In order to dissipate this heat with regard to the overall efficiency with low flow losses, large cross sections are required, which allow a low flow rate of the working medium. The consequences are large, expensive flow paths, especially in the heat exchanger. However, the production of very large heat exchangers (recuperators) causes a significant part of the total costs of an ORC plant. In addition, they limit the maximum power/size of the ORC system if they are to be transported in one piece.

Offenbarung der ErfindungDisclosure of Invention

Die Aufgabe der Erfindung besteht somit darin, ein verbessertes Verfahren für einen ORC-Kreisprozess anzugeben. Insbesondere soll der Einsatz vergleichsweise kleiner Wärmetauscher beziehungsweise Rekuperatoren und damit eine Reduktion der Kosten einer ORC-Anlage respektive deren Leistungssteigerung bei einfachem Transport der Anlagenkomponenten ermöglicht werden.The object of the invention is therefore to specify an improved method for an ORC cycle process. In particular, the use of comparatively small heat exchangers or recuperators and thus a reduction in the costs of an ORC system or its increase in performance should be made possible with simple transport of the system components.

Die Aufgabe der Erfindung wird durch das Verfahren des Anspruchs 1 gelöst, wobei das Arbeitsmittel im ersten und im zweiten Rekuperator Wärme entzogen wird.The object of the invention is achieved by the method of claim 1, wherein heat is extracted from the working medium in the first and in the second recuperator.

Auf diese Weise wird bereits zwischen den einzelnen Expansionsschritten Wärme abgeführt, wodurch die Zustandsänderung des Arbeitsmediums nahe der Sattdampfkurve verläuft und die Ausbildung sehr großer spezifischer Volumina vermieden wird. Damit kann ein Teil der Wärme bei deutlich günstigeren Bedingungen abgeführt werden. Beispielsweise sinkt die Wärmeübertragungsfläche bei vergleichbaren Verlusten, wodurch die Baugröße von Anlagenkomponenten, insbesondere der Rekuperatoren, entsprechend verringert werden kann. Dies geht wiederum mit Vorteilen hinsichtlich der Kosten, der Fertigung und der Handhabbarkeit einher. Weiterhin kann eine bessere Anpassung des Kreisprozesses respektive der Turbine(n) erfolgen, indem diese mehrstufig ausgeführt werden und/oder mehrere Turbinen hintereinander geschaltet werden. Insgesamt kann mit Hilfe der vorgeschlagenen Maßnahmen der Gesamtwirkungsgrads des Kreisprozesses verbessert werden. Selbstverständlich ist die Erfindung nicht auf die Anwendung von nur zwei Turbinen/Turbinenstufen und Rekuperatoren beschränkt, sondern es können auch mehr als zwei Turbinen/Turbinenstufen und Rekuperatoren vorgesehen sein.In this way, heat is already dissipated between the individual expansion steps, as a result of which the change in state of the working medium runs close to the saturated steam curve and the formation of very large specific volumes is avoided. This allows some of the heat to be dissipated under significantly more favorable conditions. For example, the heat transfer surface decreases with comparable losses, as a result of which the size of system components, in particular the recuperators, can be correspondingly reduced. This in turn is accompanied by advantages in terms of costs, production and handling. Furthermore, a better adaptation of the cycle process or the turbine(s) can take place in that these are carried out in multiple stages and/or several turbines are connected in series. Overall, the overall efficiency of the cycle can be improved with the help of the proposed measures. Of course, the invention is not limited to the use of only two turbines/turbine stages and recuperators, but more than two turbines/turbine stages and recuperators can also be provided.

Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus dem Unteranspruch sowie aus der Beschreibung in Zusammenschau mit den Figuren.Further advantageous refinements and developments of the invention result from the dependent claim and from the description in conjunction with the figures.

Eine Ausgestaltung der Erfindung sieht vor, dass die Wärme im ersten und im zweiten Rekuperator jeweils bei gleichbleibendem Druck entzogen wird.One embodiment of the invention provides that the heat in the first and in the second recuperator is withdrawn while the pressure remains the same.

Vorteilhaft ist es, wenn der ersten Turbine/Turbinenstufe ein erster Durchfluss des ersten Rekuperators im Kreislauf des Arbeitsmittels stromabwärts nachgelagert ist und einem zweiten Durchfluss des genannten Rekuperators, welcher mit dem ersten Durchfluss wärmegekoppelt ist, der Speisepumpe stromabwärts nachgelagert ist. Auf diese Weise kann die im ersten Rekuperator gewonnene Energie für die erneute Erwärmung des kondensierten Arbeitsmittels eingesetzt werden.It is advantageous if the first turbine/turbine stage has a first flow of the first recuperator downstream in the circuit of the working medium and a second flow of the named recuperator, which is thermally coupled to the first flow, is downstream of the feed pump. In this way, the energy recovered in the first recuperator can be used to reheat the condensed working medium.

Vorteilhaft ist es weiterhin, wenn der zweiten Turbine/Turbinenstufe ein erster Durchfluss des zweiten Rekuperators im Kreislauf des Arbeitsmittels stromabwärts nachgelagert ist und einem zweiten Durchfluss des genannten Rekuperators, welcher mit dem ersten Durchfluss wärmegekoppelt ist, der Speisepumpe stromabwärts nachgelagert ist. Auf diese Weise kann auch die im zweiten Rekuperator gewonnene Energie für die erneute Erwärmung des kondensierten Arbeitsmittels eingesetzt werden.It is also advantageous if the second turbine/turbine stage has a first flow of the second recuperator downstream in the circuit of the working medium and a second flow of the named recuperator, which is thermally coupled to the first flow, is downstream of the feed pump. In this way, the energy recovered in the second recuperator can also be used to reheat the condensed working fluid.

Besonders vorteilhaft ist es in obigem Zusammenhang, wenn der erste Durchfluss des zweiten Rekuperators dem ersten Durchfluss des ersten Rekuperators im Kreislauf des Arbeitsmittels stromabwärts nachgelagert ist und dass der zweite Durchfluss des zweiten Rekuperators dem zweiten Durchfluss des ersten Rekuperators im Kreislauf des Arbeitsmittels stromabwärts vorgelagert ist. Dadurch wird eine besonders hohe Temperaturerhöhung des kondensierten Arbeitsmediums erreicht.It is particularly advantageous in the above context if the first throughflow of the second recuperator is downstream of the first throughflow of the first recuperator in the working fluid circuit and that the second throughflow of the second recuperator is upstream of the second throughflow of the first recuperator in the working fluid circuit. This achieves a particularly high temperature increase in the condensed working medium.

Günstig ist es, wenn die erste Turbine/Turbinenstufe und die zweite Turbine/Turbinenstufe auf einer gemeinsamen Welle angeordnet sind. Dadurch ergibt sich ein vergleichsweise einfacher mechanischer Aufbau und die Möglichkeit zur Verwendung eines einzigen Generators. Selbstverständlich ist die Erfindung nicht an die Verwendung eines Generators gebunden, sondern die über die Turbinen erzeugte Energie kann auch direkt mechanisch genutzt oder in eine andere Energieform umgewandelt werden.It is favorable if the first turbine/turbine stage and the second turbine/turbine stage are arranged on a common shaft. This results in a comparatively simple mechanical construction and the possibility of using a single generator. Of course, the invention is not tied to the use of a generator, but the energy generated by the turbines can also be used directly mechanically or converted into another form of energy.

Günstig ist es aber auch, wenn die erste Turbine/Turbinenstufe und die zweite Turbine/Turbinenstufe auf verschiedenen Wellen angeordnet sind. Dadurch können die Turbinen/Turbinenstufen besonders gut an den Kreisprozess angepasst werden, da die Turbinen/Turbinenstufen mit unterschiedlichen Drehzahlen laufen können.However, it is also favorable if the first turbine/turbine stage and the second turbine/turbine stage are arranged on different shafts. As a result, the turbines/turbine stages can be adapted particularly well to the cyclic process, since the turbines/turbine stages can run at different speeds.

Günstig es in obigem Zusammenhang schließlich auch, wenn die Wellen miteinander gekoppelt sind, beispielsweise über ein Getriebe. Dadurch können die Turbinen/Turbinenstufen mit unterschiedlichen Drehzahlen laufen, jedoch ist es möglich nur eine einzige Abtriebswelle und demzufolge nur einen einzigen Generator vorzusehen. Auch hier kann die mit den Turbinen erzeugte Energie direkt mechanisch genutzt oder in eine andere Energieform umgewandelt werden.Finally, in the above context, it is also advantageous if the waves are coupled to one another, for example via a Transmission. As a result, the turbines/turbine stages can run at different speeds, but it is possible to provide only a single output shaft and consequently only a single generator. Here, too, the energy generated by the turbines can be used directly mechanically or converted into another form of energy.

Kurze Beschreibung der FigurenBrief description of the figures

  • Figur 1 zeigt ein schematisches Blockschaltbild einer ORC-Anlage mit mehreren je einer Turbine/Turbinenstufe nachgeschalteten Rekuperatoren und figure 1 shows a schematic block diagram of an ORC system with several recuperators each downstream of a turbine/turbine stage and
  • Figur 2 zeigt ein beispielhaftes Temperatur-Entropie-Diagramm des mit der Anlage aus Fig. 1 ausgeführte Kreisprozess. figure 2 shows an example temperature-entropy diagram of the system 1 executed cycle process.
Detaillierte Beschreibung der ErfindungDetailed description of the invention

Fig. 1 zeigt ein schematisches Blockschaltbild einer Vorrichtung 1 zum Ausführen eines thermischen Kreisprozesses nach dem Prinzip des Organic Rankine Cycle zur Umwandlung einer Energie einer Wärmequelle in mechanische Energie, bei dem ein organisches Arbeitsmittel in einem Kreislauf zirkuliert. Die Vorrichtung 1 umfasst einen Verdampfer 2 zum Verdampfen des Arbeitsmittels, eine stromabwärts gelegene erste Turbine 3, einen stromabwärts gelegenen ersten Rekuperator 4, eine stromabwärts gelegene zweite Turbine 5, einen stromabwärts gelegenen zweiten Rekuperator 6, einen Wärmetauscher 7, einen Kondensator 8, eine Speisepumpe 9, und eine Rückführung zum Verdampfer 2. Weiterhin zeigt die Fig. 1 einen mit den Turbinen 3, 5 gekoppelten Generator 10 sowie einen mit der Speisepumpe 9 gekoppelten Motor 11 zum Antrieb derselben. 1 shows a schematic block diagram of a device 1 for performing a thermal cycle process according to the principle of the Organic Rankine Cycle for converting energy from a heat source into mechanical energy, in which an organic working medium circulates in a circuit. The device 1 comprises an evaporator 2 for evaporating the working medium, a first downstream turbine 3, a first downstream recuperator 4, a second downstream turbine 5, a second downstream recuperator 6, a heat exchanger 7, a condenser 8, a feed pump 9, and a return to the evaporator 2. Furthermore, the 1 a generator 10 coupled to the turbines 3, 5 and a motor 11 coupled to the feed pump 9 for driving the same.

In diesem Beispiel ist der ersten Turbine 3 ein erster Durchfluss des ersten Rekuperators 4 (nämlich der in der Fig. 1 vertikal verlaufende Durchfluss) im Kreislauf des Arbeitsmittels stromabwärts nachgelagert. Weiterhin ist einem zweiten Durchfluss des genannten Rekuperators 4 (nämlich der in der Fig. 1 horizontal verlaufende Durchfluss), welcher mit dem ersten Durchfluss wärmegekoppelt ist, der Speisepumpe 9 stromabwärts nachgelagert. In diesem Beispiel ist darüber hinaus der zweiten Turbine 5 analog ein erster Durchfluss des zweiten Rekuperators 6 im Kreislauf des Arbeitsmittels stromabwärts nachgelagert, und einem zweiten Durchfluss des genannten Rekuperators 6, welcher mit dem ersten Durchfluss wärmegekoppelt ist, ist der Speisepumpe 9 stromabwärts nachgelagert. Dadurch kann die in den Rekuperatoren 4, 6 gewonnene Energie im ORC-Kreislauf eingesetzt werden. Prinzipiell wäre aber natürlich auch denkbar, die in den Rekuperatoren 4, 6 gewonnene Energie außerhalb des ORC-Kreislaufs einzusetzen.In this example, the first turbine 3 is provided with a first throughput of the first recuperator 4 (namely the one in 1 vertical flow) in the circuit of the working medium downstream downstream. Furthermore, a second flow of the named recuperator 4 (namely the one in 1 horizontal flow) which is thermally coupled to the first flow downstream of the feed pump 9 . In this example, moreover, analogously to the second turbine 5, there is a first flow of the second recuperator 6 downstream in the circuit of the working fluid, and a second flow of said recuperator 6, thermally coupled to the first flow, is downstream of the feed pump 9. As a result, the energy recovered in the recuperators 4, 6 can be used in the ORC circuit. In principle, however, it would of course also be conceivable to use the energy obtained in the recuperators 4, 6 outside of the ORC circuit.

Konkret ist der erste Durchfluss des zweiten Rekuperators 6 dem ersten Durchfluss des ersten Rekuperators 4 im Kreislauf des Arbeitsmittels stromabwärts nachgelagert, und der zweite Durchfluss des zweiten Rekuperators 6 ist dem zweiten Durchfluss des ersten Rekuperators 4 im Kreislauf des Arbeitsmittels stromabwärts vorgelagert. Dadurch kann das kondensierte Arbeitsmittel mit Hilfe der Rekuperatoren 4, 6 vor dem Verdampfer 2 auf eine vergleichsweise hohe Temperatur vorgewärmt werden.Specifically, the first flow of the second recuperator 6 is downstream of the first flow of the first recuperator 4 in the working fluid circuit, and the second flow of the second recuperator 6 is upstream of the second flow of the first recuperator 4 in the working fluid circuit. As a result, the condensed working medium can be preheated to a comparatively high temperature in front of the evaporator 2 with the aid of the recuperators 4 , 6 .

In dem gezeigten Beispiel sind die erste und die zweite Turbine 3, 5 auf einer gemeinsamen Welle angeordnet und über diese mit dem Generator 10 verbunden, wodurch die in den Turbinen 3, 5 gewonnene mechanische Energie in elektrische Energie umgewandelt werden kann. Dies ist jedoch keineswegs die einzige Möglichkeit. Denkbar wäre auch, dass die erste und die zweite Turbine 3, 5 auf verschiedenen Wellen angeordnet sind.In the example shown, the first and the second turbine 3, 5 are arranged on a common shaft and are connected to the generator 10 via this shaft, as a result of which the mechanical energy obtained in the turbines 3, 5 can be converted into electrical energy. However, this is by no means the only possibility. It would also be conceivable for the first and the second turbine 3, 5 to be arranged on different shafts.

Denkbar ist dabei, dass von je einer Turbine 3, 5 je ein Generator 10 angetrieben wird. Denkbar ist aber auch, dass die Wellen miteinander gekoppelt sind, beispielsweise über ein Getriebe. Dadurch können die Turbinen 3, 5 mit unterschiedlichen Drehzahlen laufen, jedoch ist es möglich nur eine einzige Abtriebswelle und demzufolge nur einen einzigen Generator 10 vorzusehen.It is conceivable that one generator 10 is driven by one turbine 3, 5 each. But it is also conceivable that the waves are coupled to each other, for example via a Transmission. As a result, the turbines 3, 5 can run at different speeds, but it is possible to provide only a single output shaft and consequently only a single generator 10.

Generell ist die Verwendung des Generators 10 nicht zwingend, sondern die über die Turbinen 3, 5 erzeugte mechanische Energie kann auch direkt mechanisch genutzt oder in eine andere Energieform umgewandelt werden. Denkbar wären beispielsweise Pumpstationen, Kompressoren oder auch Schiffsantriebe.In general, the use of the generator 10 is not mandatory, but the mechanical energy generated via the turbines 3, 5 can also be used directly mechanically or converted into another form of energy. For example, pumping stations, compressors or even ship propulsion systems would be conceivable.

Fig. 2 zeigt nun ein beispielhaftes Diagramm der Temperatur T über der Entropie S, anhand dessen der mit der Vorrichtung 1 ausgeführte Kreisprozess näher erläutert wird. Um die Zuordnung des Diagramms zur Vorrichtung 1 zu erleichtern, sind in beiden Diagrammen Prozesspunkte Z1..Z10 eingezeichnet. Dabei ist jedem Prozesspunkt Z1..Z10 in der Vorrichtung der gleichnamige Prozesspunkt im Temperatur/Entropie-Diagramm zugeordnet. 2 now shows an exemplary diagram of the temperature T over the entropy S, on the basis of which the cycle process carried out with the device 1 is explained in more detail. In order to facilitate the assignment of the diagram to device 1, process points Z1..Z10 are drawn in both diagrams. Each process point Z1..Z10 in the device is assigned the process point of the same name in the temperature/entropy diagram.

Ausgehend vom Prozesspunkt Z1 wird das Arbeitsmedium in der ersten Turbine 3 auf den zweiten Prozesspunkt Z2 entspannt, wodurch der Druck p und die Temperatur T abnimmt und die Entropie S zunimmt. Bei gleichbleibendem Druck p wird dem Arbeitsmedium im ersten Rekuperator 4 Wärme entzogen. Der Kreisprozess verläuft daher entlang einer Isobaren vom Prozesspunkt Z2 auf den Prozesspunkt Z3. In der zweiten Turbine 5 folgt eine weitere Entspannung des Arbeitsmediums auf den Prozesspunkt Z4. Bei gleichbleibendem Druck wird dem Arbeitsmedium im zweiten Rekuperator 6 wiederum Wärme entzogen. Der Kreisprozess verläuft daher entlang einer Isobaren vom Prozesspunkt Z4 auf den Prozesspunkt Z5. Im Wärmetauscher 7 erfolgt eine weitere Abkühlung auf den Prozesspunkt Z6 und schließlich eine Kondensation des Arbeitsmittels im Kondensator 8. Bei gleichbleibender Temperatur T erfolgt dabei eine Abnahme der Entropie auf den Prozesspunkt Z7.Starting from the process point Z1, the working medium in the first turbine 3 is expanded to the second process point Z2, as a result of which the pressure p and the temperature T decrease and the entropy S increases. If the pressure p remains the same, heat is extracted from the working medium in the first recuperator 4 . The cyclic process therefore runs along an isobar from the process point Z2 to the process point Z3. In the second turbine 5, the working medium expands further after the process point Z4. With the pressure remaining the same, heat is again withdrawn from the working medium in the second recuperator 6 . The cyclic process therefore runs along an isobar from the process point Z4 to the process point Z5. In the heat exchanger 7, there is further cooling down to the process point Z6 and finally the working medium is condensed in the condenser 8. With the temperature T remaining the same, the entropy decreases to the process point Z7.

Das kondensierte Arbeitsmedium wird mit Hilfe der Speisepumpe 9 in den zweiten Rekuperator 6 geleitet (Prozesspunkt Z8) und dort bis zum Prozesspunkt Z9 erwärmt. In weiterer Folge wird das Arbeitsmedium im ersten Rekuperator 4 vom Prozesspunkt Z9 auf den Prozesspunkt Z10 erwärmt. Danach erfolgt eine weitere Erwärmung und schließlich Verdampfung des Arbeitsmediums im Verdampfer 2, wodurch sich der Kreislauf durch Rückkehr zum Prozesspunkt Z1 schließt.The condensed working medium is fed into the second recuperator 6 with the aid of the feed pump 9 (process point Z8) and heated there up to the process point Z9. Subsequently, the working medium in the first recuperator 4 is heated from the process point Z9 to the process point Z10. This is followed by further heating and finally evaporation of the working medium in the evaporator 2, which closes the cycle by returning to the process point Z1.

Zu beachten ist an dem Kreisprozess, dass die Temperatur T9 (also die Austrittstemperatur am zweiten Durchfluss des zweiten Rekuperators 6) kleiner als die Temperatur T5 (also die Austrittstemperatur am ersten Durchfluss des zweiten Rekuperators 6) und die Temperatur T10 (also die Austrittstemperatur am zweiten Durchfluss des ersten Rekuperators 4) wiederum kleiner als die Temperatur T3 (also die Austrittstemperatur am ersten Durchfluss des ersten Rekuperators 4) ist.It should be noted in the cyclic process that the temperature T9 (i.e. the outlet temperature at the second flow of the second recuperator 6) is lower than the temperature T5 (i.e. the outlet temperature at the first flow of the second recuperator 6) and the temperature T10 (i.e. the outlet temperature at the second Flow of the first recuperator 4) in turn is less than the temperature T3 (ie the outlet temperature at the first flow of the first recuperator 4).

Des Weiteren ist die unter der Verbindungslinie der Prozesspunkte Z4 und Z5 liegende Fläche q45 gleich der unter der Verbindungslinie der Prozesspunkte Z8 und Z9 liegende Fläche q89. Die Flächen q45 und q89 geben dabei die im zweiten Rekuperator 6 transferierte Wärmemenge an. In analoger Weise ist die unter der Verbindungslinie der Prozesspunkte Z2 und Z3 liegende Fläche q23 gleich der unter der Verbindungslinie der Prozesspunkte Z9 und Z10 liegende Fläche q910. Die Flächen q23 und q910 geben dabei die im ersten Rekuperator 4 transferierte Wärmemenge an.Furthermore, the area q45 lying under the line connecting the process points Z4 and Z5 is equal to the area q89 lying under the line connecting the process points Z8 and Z9. The areas q45 and q89 indicate the amount of heat transferred in the second recuperator 6 . In an analogous manner, the area q23 lying under the line connecting the process points Z2 and Z3 is equal to the area q910 lying under the line connecting the process points Z9 and Z10. The areas q23 and q910 indicate the amount of heat transferred in the first recuperator 4 .

Die unter der Verbindungslinie der Prozesspunkte Z5 und Z6 liegende Fläche q56 gibt weiterhin die im Wärmetauscher 7 vor der Kondensation des Arbeitsmittels abgeführte Energie an. Die unter der Verbindungslinie der Prozesspunkte Z6 und Z7 liegende Fläche q67 gibt darüber hinaus die im Kondensator 8 abgeführte Energie an und die unter der Verbindungslinie der Prozesspunkte Z10 und Z1 liegende Fläche q101 schließlich die im Verdampfer 2 zugeführte Energie.The area q56 lying under the line connecting the process points Z5 and Z6 also indicates the energy removed in the heat exchanger 7 before the condensation of the working medium. The area q67 below the connecting line of the process points Z6 and Z7 also indicates the energy dissipated in the condenser 8 and the area q101 below the connecting line of the process points Z10 and Z1 finally indicates the energy supplied in the evaporator 2.

In den in den Fig. 1 und 2 dargestellten Beispiel wurde bisher davon ausgegangen, dass zwei unterschiedliche Turbinen 3, 5 eingesetzt werden. Völlig gleichwertig wäre aber auch denkbar, die vorgestellten Maßnahmen auf unterschiedliche Turbinenstufen einer einzigen Turbine anzuwenden. In der Fig. 1 treten an die Stelle der Turbinen 3, 5 demzufolge Turbinenstufen 3, 5.In the in the 1 and 2 example shown was previously assumed that two different turbines 3, 5 are used. However, it would also be completely equivalent to apply the measures presented to different turbine stages of a single turbine. In the 1 turbine stages 3, 5 take the place of turbines 3, 5.

Generell ist es auch denkbar, die vorgestellten Maßnahmen auf mehr als zwei Turbinen 3, 5 respektive Turbinenstufen anzuwenden. Insbesondere ist es auch vorstellbar, mehrere Turbinen mit mehreren Turbinenstufen vorzusehen, wobei jeder oder zumindest mehreren Turbinenstufen ein Rekuperator nachgeschaltet ist.In general, it is also conceivable to apply the measures presented to more than two turbines 3, 5 or turbine stages. In particular, it is also conceivable to provide a plurality of turbines with a plurality of turbine stages, with a recuperator being connected downstream of each or at least a plurality of turbine stages.

Durch die Wärmeabfuhr (Z2→Z3, Z4→Z5) zwischen den einzelnen Expansionsschritten (Z1→Z2, Z3→Z4) verläuft die Zustandsänderung des Arbeitsmediums nahe der Sattdampfkurve, wodurch die Ausbildung sehr großer spezifischer Volumina vermieden wird. Damit kann ein Teil der Wärme bei vergleichsweise günstigeren Bedingungen abgeführt werden, wodurch die Baugröße von Anlagenkomponenten, insbesondere der Rekuperatoren 4, 6 entsprechend verringert werden kann. Ein weiterer Vorteil besteht auch in der guten Anpassbarkeit der Turbinen 3 und 5 an den Kreisprozess, sowie einer Verbesserung des Wirkungsgrades des Kreisprozesses.Due to the heat dissipation (Z2→Z3, Z4→Z5) between the individual expansion steps (Z1→Z2, Z3→Z4), the change in state of the working medium runs close to the saturated steam curve, which avoids the formation of very large specific volumes. In this way, part of the heat can be dissipated under comparatively more favorable conditions, as a result of which the size of the system components, in particular the recuperators 4, 6, can be correspondingly reduced. A further advantage consists in the good adaptability of the turbines 3 and 5 to the cyclic process, as well as an improvement in the efficiency of the cyclic process.

Abschließend wird angemerkt, dass die ORC-Vorrichtung auch mehr oder weniger Bauteile als dargestellt umfassen kann. Schließlich wird angemerkt, dass sich die obigen Ausgestaltungen und Weiterbildungen der Erfindung auf beliebige Art und Weise kombinieren lassen.Finally, it is noted that the ORC device may also include more or fewer components than illustrated. Finally, it is noted that the above configurations and developments of the invention can be combined in any way.

Claims (2)

  1. Method for performing a thermal cycling process on the principle of the Organic Rankine Cycle for converting energy from a heat source into mechanical energy, in which process a working medium is circulated in a circuit and the circuit comprises an evaporator (2) for evaporating the working medium, a downstream first turbine (3), a downstream condenser (8), a downstream feed pump (9) and a return to the evaporator (2),
    wherein the working medium,
    a) after passing a first turbine stage of the first turbine (3), passes a first recuperator (4), a second turbine stage of the first turbine (3) and a second recuperator (6) or
    b) after passing the first turbine (3), passes a first recuperator (4), a second turbine (5) and a second recuperator (6),
    characterized in that
    the working medium, after passing the first turbine stage of the first turbine (3) and before entering the second turbine stage of the first turbine (3), flows through the first recuperator (4) and heat is thereby extracted from the working medium by the first recuperator (4) and, after passing the second turbine stage (6), flows through the second recuperator (6) and heat is thereby extracted from the working medium by the second recuperator (6), or
    the working medium, after passing the first turbine (3) and before entering the second turbine (5), flows through the first recuperator (4) and heat is thereby extracted from the working medium by the first recuperator (4) and, after passing the second turbine (5), flows through the second recuperator (6) and heat is extracted from the working medium by the second recuperator (6).
  2. Method according to Claim 1,
    characterized in that
    the heat is extracted in the first and in the second recuperator (4, 6) in each case at a constant pressure.
EP15700344.3A 2014-02-20 2015-01-08 Device and method for an orc process with multi-stage expansion Active EP3060767B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014203121.4A DE102014203121B4 (en) 2014-02-20 2014-02-20 Apparatus and method for an ORC cycle with multi-stage expansion
PCT/EP2015/050196 WO2015124325A1 (en) 2014-02-20 2015-01-08 Device and method for an orc process with multi-stage expansion

Publications (2)

Publication Number Publication Date
EP3060767A1 EP3060767A1 (en) 2016-08-31
EP3060767B1 true EP3060767B1 (en) 2022-06-29

Family

ID=52350088

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15700344.3A Active EP3060767B1 (en) 2014-02-20 2015-01-08 Device and method for an orc process with multi-stage expansion

Country Status (4)

Country Link
EP (1) EP3060767B1 (en)
DE (1) DE102014203121B4 (en)
PL (1) PL3060767T3 (en)
WO (1) WO2015124325A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900004733A1 (en) 2019-03-29 2020-09-29 Saipem Spa RE-COMPRESSED TRANSCRITICAL CYCLE WITH POST-EXPANSION IN CRYOGENIC OR LOW TEMPERATURE APPLICATIONS, AND / OR WITH REFRIGERANT FLUIDS
EP4403751A1 (en) * 2023-01-20 2024-07-24 Wise Open Foundation Power generation system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007009503A1 (en) * 2007-02-25 2008-09-18 Deutsche Energie Holding Gmbh Multi-stage ORC cycle with intermediate dehumidification

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572871A (en) * 1994-07-29 1996-11-12 Exergy, Inc. System and apparatus for conversion of thermal energy into mechanical and electrical power
US20060112693A1 (en) * 2004-11-30 2006-06-01 Sundel Timothy N Method and apparatus for power generation using waste heat
US8438849B2 (en) 2007-04-17 2013-05-14 Ormat Technologies, Inc. Multi-level organic rankine cycle power system
DE202007012871U1 (en) 2007-09-14 2007-11-15 Gesellschaft für Motoren und Kraftanlagen GmbH Device for energy conversion
US20100319346A1 (en) * 2009-06-23 2010-12-23 General Electric Company System for recovering waste heat
US8752381B2 (en) 2010-04-22 2014-06-17 Ormat Technologies Inc. Organic motive fluid based waste heat recovery system
WO2012159194A1 (en) * 2011-05-24 2012-11-29 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources High pressure oxy-fuel combustion system (hiprox) bottoming cycle
US8495878B1 (en) * 2012-04-09 2013-07-30 Eif Nte Hybrid Intellectual Property Holding Company, Llc Feedwater heating hybrid power generation
ITMI20120852A1 (en) * 2012-05-17 2013-11-18 Exergy Orc S R L ORC SYSTEM FOR THE PRODUCTION OF ENERGY BY ORGANIC RANKINE CYCLE
US9284857B2 (en) 2012-06-26 2016-03-15 The Regents Of The University Of California Organic flash cycles for efficient power production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007009503A1 (en) * 2007-02-25 2008-09-18 Deutsche Energie Holding Gmbh Multi-stage ORC cycle with intermediate dehumidification

Also Published As

Publication number Publication date
DE102014203121B4 (en) 2017-03-02
DE102014203121A1 (en) 2015-08-20
WO2015124325A1 (en) 2015-08-27
EP3060767A1 (en) 2016-08-31
PL3060767T3 (en) 2022-10-17

Similar Documents

Publication Publication Date Title
EP2188499B1 (en) Method and device for converting thermal energy of a low temperature heat source into mechanical energy
EP3362739B1 (en) Generation of process steam by means of a high-temperature heat pump
EP3976940B1 (en) System for converting thermal energy into mechanical work
EP2889479B1 (en) Geothermal power plant system, method for operating a geothermal power plant system and method for increasing the efficiency of a geothermal power plant system
DE19513285A1 (en) Turbine drive for boiler feed pump / feed water pipe system
EP1820964A1 (en) Method and device to increase the energy production in a solar thermal power plant
DE2611890B2 (en) Arrangement for converting heat contained in a gaseous primary fluid into another type of energy
WO2011138215A2 (en) Solar power plant part of a solar thermal power plant and solar thermal power plant provided with solar collector surfaces for a heat transfer medium and working medium
EP2986910B1 (en) System and method for preheating makeup water in steam power plants, with process steam outcoupling
DE202008018661U1 (en) Device for generating energy
EP3060767B1 (en) Device and method for an orc process with multi-stage expansion
DE102016112601A1 (en) Device for power generation according to the ORC principle, geothermal system with such a device and operating method
DE102009013570A1 (en) Power plant comprises a steam generator, a steam turbine, a steam pipe that connects a steam outlet of the steam generator with an inlet of the steam turbine, a recirculation line, and heat exchangers
EP3232023B1 (en) Method and installation for energy conversion of pressure energy to electrical energy
CH701012A2 (en) Cycle power plant system with two steam trains whose capacitors are coupled in series with a source of coolant.
DE102016220634A1 (en) Waste heat power plant with gradual heat supply
DE102010011737A1 (en) Method for energy conversion, involves generating electrical energy from waste heat by expander and generator, where waste heat is initially fed to Clausius Rankine cycle and subsequently residual heat is fed to oil cycle
EP2122165B1 (en) Method and a device for the generation of steam in steam power plants, wherein cold condensate and/or combustion air is preheated before the generation of steam
DE102010010614B4 (en) Method and device for generating energy in an ORC system
DE102010050090A1 (en) Steam system comprises low pressure degasser for degassing feed water, low pressure steam rail, whose operating pressure is at second pressure level, and high pressure steam rail, whose operating pressure is at third pressure level
DE102012100645A1 (en) Device for performing organic rankine cycle (ORC) process for generating power using waste heat obtained from industrial plant, involves providing heat exchanger with throttle for throttling condensed process fluid
DE102016217886A1 (en) Plant and process with a thermal power plant and a process compressor
EP3571450B1 (en) Heat pump arrangement and method for operating a heat pump arrangement
EP3052772B1 (en) Device and method for an orc cycle
DE102023200876A1 (en) Method and device for heat transfer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200309

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220225

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1501487

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015928

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220929

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015928

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230108

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230108

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20231219

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1501487

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231214

Year of fee payment: 10

Ref country code: IT

Payment date: 20240123

Year of fee payment: 10

Ref country code: FR

Payment date: 20240125

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629