EP3571381A1 - Centrale thermique à vapeur à réserve de régulation améliorée - Google Patents

Centrale thermique à vapeur à réserve de régulation améliorée

Info

Publication number
EP3571381A1
EP3571381A1 EP18716912.3A EP18716912A EP3571381A1 EP 3571381 A1 EP3571381 A1 EP 3571381A1 EP 18716912 A EP18716912 A EP 18716912A EP 3571381 A1 EP3571381 A1 EP 3571381A1
Authority
EP
European Patent Office
Prior art keywords
steam
pressure
memory
turbine
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18716912.3A
Other languages
German (de)
English (en)
Inventor
Stefan Becker
Vladimir Danov
Christian Mielke
Thomas Loeper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3571381A1 publication Critical patent/EP3571381A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K1/00Steam accumulators
    • F01K1/04Steam accumulators for storing steam in a liquid, e.g. Ruth's type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/008Use of steam accumulators of the Ruth type for storing steam in water; Regulating thereof

Definitions

  • the share of renewable energies in the energy mix is steadily increasing and is thus an essential element in the implementation of the energy transition.
  • the goal is to increase the share of renewable energies.
  • the challenges with the use of renewable energies lie in particular in the time-varying supply characteristics.
  • FIG. 5 shows a diagram with two functions of power over time. Shown is the temporal deviation of power supply and demand in terms of energy consumption 1 (load) and wind power 2 as an example of renewable energy. Only in the fewest cases does the demanded amount of energy match the supply and the limited possibilities of regulation. Either the load 1 must be operated by stored energy 3, or there is excess wind energy 4 from the wind power production 2 before. In addition, renewable energy sources are not equally ⁇ SEN distributed locally available. This has the consequence that an increased network expansion is necessary, if no Alternati ⁇ ven can be used. This behavior leads to a reserve power market. It will be rewarded for that one is able for a short time to produce either energy to consume (negati ⁇ ve control power), or energy (positive control power).
  • a positive control power in seconds range can be provided in a steam power plant, for example, by the turbine inlet valves are opened for a short time and by the withdrawal of steam from the Boiler in the short term more power is generated.
  • the Dros ⁇ selung of the main condensate in the condenser, and an additional firing in the steam generator are well-known measures to provide more power in the short term.
  • Ruths stores 1 shows a Ruth's memory in the form of a vapor memory which consists of a large pressure vessel 6 in Wesentli ⁇ chen. Since the heat is stored in the end sensitive in the water, such memory supply only conditionally constant steam temperatures and can be used only for a short time due to the economy and especially the size. Scaling is usually done by the number of devices.
  • Liquid salt storage are usually used in the steam cycle at high temperatures. The heat is stored sensitively in molten salt. chert. The performance depends mainly on the rate of heat transfer and pump performance. Since energy is usually stored at a very high level, all components must be insulated very well in order to avoid losses.
  • batteries for storing electrical energy.
  • the electrical energy can be used for heating.
  • the prices for battery solutions are, however, relatively high.
  • PCM latent heat storage phase change materials
  • the object of the invention is to provide a method and a device, can be provided by the additional control power in a power plant process.
  • the directed to a method object of the invention comprises a switched into a steam cycle steam turbine ⁇ , with at least one high pressure and a medium and / or low pressure part, which are connected to each other via a cold Anlagenüberhitzungs effet (KZÜ), a
  • a steam storage which is a Ruths memory, in which an encapsulated PCM memory is integrated.
  • KZÜ cold reheat line
  • the object relating to a power plant OF INVENTION comprising a switched into a water-steam cycle steam turbine with at least one high-pressure and a medium and / or low-pressure part, which are connected to one another via a cold Eisenüberhitzungs effet (KZÜ).
  • KZÜ cold breederhitzungs effet
  • the steam storage is connected for loading with superheated steam with the cold reheat line (KZÜ) between the high pressure and the middle and / or low pressure part of the steam turbine, and connected for discharging with the steam circuit between the steam generator and the condenser.
  • FIG. 2 shows a Ruths memory 5 according to the invention with integrated macroencapsulated PCM.
  • FIG. 3 shows an alternative embodiment of the invention with a Ruths memory 5 with externally connected pipe register system 8 with externally arranged PCM.
  • the Ruth memories in FIGS. 2 and 3 use the saturated water of the Ruth's store 5 as the heat transfer fluid. Each variant can only absorb a certain amount of saturated water. Taking the water volume of a pure Ruth's memory 5 as a reference, the Ruth memory with macro-encapsulated 7 PCM displaces nearly 50% of the water content.
  • the present invention is based on the consideration of integrating these encapsulated PCM materials 7 into a Ruth memory 5.
  • the resulting vapor storage has a much higher capacity per volume, and is thus clearly superior to a Ruth memory of the prior art.
  • the present invention is based on the idea to integrate the modified Ruths memory according to the invention in a steam power plant.
  • the storage according to the invention can provide constant steam parameters over a long time, since the heat is not stored sensitively. During the discharge of Spei ⁇ chers or solidification of PCM material is continuous released heat at a constant temperature level. As a result, the use of this memory is also possible in places where the Grbertechniken are relatively small. The invention will be explained in more detail below with reference to FIG. 6:
  • FIG. 6 shows the integration according to the invention of a Ruth's memory 5 with encapsulated PCM materials 7 in one
  • the PCM phase change temperature is selected as follows:
  • the 15K represents the rate of temperature of the water / steam inventory of the Ruth's memory 5 to the temperature of the integrated PCM material 7.
  • the control valve 18 is advantageous for adjusting the vapor pressure in accordance with the reservoir loading temperature. Since you can quickly remove steam according to the duration of the control valve 18, quickly reduces the power plant performance and thus is already the participation in the negative reserve power market possible with small block performance.
  • the 15 K represents the rate of temperature of the integrated PCM material to the temperature of the Ruth's 5 water / steam inventory.
  • the steam is passed to the Niederbuchvormaschiner 19 and used by heat transfer to the main condensate. Since ⁇ by the Dampfentnähme is mini mized or even prevented ⁇ from the steam turbine. 11 Thus, more steam remains in the turbine 11 and generates higher power, which can be used as a rule ⁇ performance.
  • PCM phase change material
  • NaNÜ3-NaOH has a higher thermal conductivity and can better match the energy stored in the molten PCM with the heat transfer. transport the carrying surface of the capsule. Therefore, NaNC> 3-NaOH is the preferred PCM for the invention.
  • FIG. 4 shows an embodiment of a capsule 20 in which a PCM 21 is arranged.
  • the capsule 20 is a stainless steel tube ⁇ having a diameter between 20 and 100 mm, preferably 50 mm, a length of between 200 mm to 1000 mm, preferably 400 mm, and a wall thickness of between 0.2 and 5 mm, preferably 1 mm , for use.
  • both ends are pressed together and welded. This results in both capsules 20, a section of 5 mm.
  • the capsule 20 is filled only between 50 and 95%, preferably 80%, with PCM because the PCM volume changes during the phase change.
  • the invention enables cost-effective integration ei ⁇ nes memory in a steam cycle, increases the flexibility of the steam cycle and thus allows participation in the negative and positive reserve power market.
  • Another advantage is that the integration manages with minimal additional expenses, which are limited to namely the Ruths memory 5 to be integrated with integrated PCM 7 and connecting pipes.
  • the integration does not require any structural changes in the low pressure feedwater preheating.
  • a control valve 18 is provided to adjust the saturated steam parameters according to the selected PCM.
  • the steam storage can also be unregulated. It is particularly advantageous that the memory saturated steam he witnesses ⁇ , the heat can be transferred directly from the low-pressure economizer 19 to the main condensate.
  • Turbine withdrawal steam is reduced. Any additional storage for providing support steam for the feed water tank is avoided by this concept or its requirements are reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne un procédé et un dispositif permettant de produire une puissance de régulation supplémentaire d'un processus de centrale électrique (10). Le processus de centrale électrique (10) comporte une turbine à vapeur (11) branchée dans un circuit de vapeur d'eau, laquelle turbine à vapeur comprend au moins une partie haute pression (12) et une partie moyenne pression (13) et/ou une partie basse pression (14), lesquelles sont reliées les unes aux autres par le biais d'une conduite de surchauffe intermédiaire froide (17), un générateur de vapeur et un condenseur (22). Selon l'invention, il est prévu un accumulateur de vapeur, qui est réalisé sous forme d'accumulateur Ruth (5) et dans lequel est intégré un accumulateur MCP encapsulé (7). Pour le chargement de l'accumulateur de vapeur, de la vapeur chaude est déchargée de la conduite de surchauffe intermédiaire froide (17) entre la partie haute pression (12), la partie moyenne pression (13) et/ou la partie basse pression (14) de la turbine à vapeur et par conséquent, pour produire une puissance de régulation supplémentaire, de la vapeur est prélevée de l'accumulateur de vapeur (5) et est renvoyée dans le circuit de vapeur d'eau entre le générateur de vapeur et le condenseur (22).
EP18716912.3A 2017-03-22 2018-03-21 Centrale thermique à vapeur à réserve de régulation améliorée Withdrawn EP3571381A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017204854 2017-03-22
PCT/EP2018/057178 WO2018172415A1 (fr) 2017-03-22 2018-03-21 Centrale thermique à vapeur à réserve de régulation améliorée

Publications (1)

Publication Number Publication Date
EP3571381A1 true EP3571381A1 (fr) 2019-11-27

Family

ID=61952629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18716912.3A Withdrawn EP3571381A1 (fr) 2017-03-22 2018-03-21 Centrale thermique à vapeur à réserve de régulation améliorée

Country Status (3)

Country Link
US (1) US20200131940A1 (fr)
EP (1) EP3571381A1 (fr)
WO (1) WO2018172415A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4192144A (en) * 1977-01-21 1980-03-11 Westinghouse Electric Corp. Direct contact heat exchanger with phase change of working fluid
FR2995005B1 (fr) * 2012-08-29 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme de stockage thermique de vapeur
ES2935581T3 (es) * 2013-09-24 2023-03-08 Siemens Energy Global Gmbh & Co Kg Procedimiento para la operación de una unidad de turbina a vapor
DE102014202277A1 (de) * 2014-02-07 2015-08-13 Siemens Aktiengesellschaft Energiespeicher zur Zwischenspeicherung elektrischer Energie
DE102014203545A1 (de) 2014-02-27 2015-08-27 Siemens Aktiengesellschaft Verkapselung von Phasenwechselmaterialien

Also Published As

Publication number Publication date
WO2018172415A1 (fr) 2018-09-27
US20200131940A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
EP2812542B1 (fr) Centrale d'accumulation d'énergie et procédé de fonctionnement d'une telle centrale
EP0088756B1 (fr) Procede et installation pour diminuer les pertes au demarrage et a la mise a l'arret, pour augmenter la puissance disponible et pour ameliorer la facilite de reglage d'une centrale thermique
EP3025031B1 (fr) Procédé de fonctionnement d'une centrale à turbine à vapeur
DE2632777A1 (de) Einrichtung und verfahren zur spitzenlastdeckung und ausfallsreserve in dampfkraftwerken
EP1584798B1 (fr) Méthode et appareil pour la production d'électricité et de chaleur
WO2010097203A2 (fr) Procédé pour faire fonctionner une centrale
DE2907068C2 (de) Dampfkraftanlage für Grundlastbetrieb mit Einrichtung zur Deckung von Lastspitzen
EP3269948B1 (fr) Procédé d'adaptation de la puissance d'une centrale à turbine à vapeur et centrale à turbine à vapeur
EP2811124A1 (fr) Dispositif d'accumulation d'énergie destinée au préchauffage d'eau d'alimentation
WO2018172107A1 (fr) Centrale électrique servant à produire une énergie électrique et procédé servant à faire fonctionner une centrale électrique
DE2620023A1 (de) Verfahren und vorrichtung zur speicherung von energie in kraftwerken
EP3469190B1 (fr) Centrale électrique à réservoir thermique
DE102013225543B3 (de) Dampfspeicherung mit Latentwärmespeicher und Dampf-Thermokompressor
EP3571381A1 (fr) Centrale thermique à vapeur à réserve de régulation améliorée
DE102012210957A1 (de) Hochtemperatur-Wärmespeicher mit Induktionsheizung und Metallschmelze und Wärmespeicher-Verbundsystem
EP3511534A1 (fr) Centrale thermique et procédé de fonctionnement d'une centrale thermique
EP2880273A1 (fr) Centrale à gaz améliorée pour le stockage des flux
WO2013010763A2 (fr) Dispositif de préchauffage à puissance multiple basse pression pour la régulation secondaire et/ou primaire ou de fréquence pour une centrale thermo-solaire
WO2013034139A1 (fr) Procédé et dispositif de stockage et de récupération d'une énergie thermique
EP2769093A1 (fr) Centrale héliothermique et procédé pour faire fonctionner une centrale héliothermique
DE2146952A1 (de) Wärmekraftanlage und Verfahren zu deren Betrieb
EP3365534B1 (fr) Procédé de préchauffage d'eau d'alimentation d'une chaudière à vapeur d'une centrale électrique et centrale à vapeur pour la mise en oeuvre du procédé
AT377576B (de) Dampfkraftwerk mit dampfausfallsreserve
EP2932054A2 (fr) Centrale a turbine a gaz de fonctionnement plus flexible
AT377577B (de) Einrichtung zur spitzenlast- oder ueberlasterzeugung aus einem dampfkraftwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20190819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DANOV, VLADIMIR

Inventor name: BECKER, STEFAN

Inventor name: MIELKE, CHRISTIAN

Inventor name: LOEPER, THOMAS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200710