EP3568672B1 - Détection de débit d'écoulement sur plage dynamique - Google Patents

Détection de débit d'écoulement sur plage dynamique Download PDF

Info

Publication number
EP3568672B1
EP3568672B1 EP18701889.0A EP18701889A EP3568672B1 EP 3568672 B1 EP3568672 B1 EP 3568672B1 EP 18701889 A EP18701889 A EP 18701889A EP 3568672 B1 EP3568672 B1 EP 3568672B1
Authority
EP
European Patent Office
Prior art keywords
flow rate
rate range
power
plot
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18701889.0A
Other languages
German (de)
English (en)
Other versions
EP3568672A1 (fr
Inventor
Minfu Lu
Michael SAPACK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Expro Meters Inc
Original Assignee
Expro Meters Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Expro Meters Inc filed Critical Expro Meters Inc
Publication of EP3568672A1 publication Critical patent/EP3568672A1/fr
Application granted granted Critical
Publication of EP3568672B1 publication Critical patent/EP3568672B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7082Measuring the time taken to traverse a fixed distance using acoustic detecting arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/028Compensating or correcting for variations in pressure, density or temperature for low flow rates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters

Definitions

  • the system 100 includes an active SONAR-type flowmeter that includes a spatial array of at least two sensors (e.g., sensors 120a and 120b) disposed at different axial positions along a pipe 140.
  • Each of the sensors 120a/120b includes a transmitter (TX) that transmits a respective signal 122a/122b through/across the pipe 140 and a receiver (RX) that provides a respective signal 126a/126b indicative of a characteristic of the flow 104 passing through the pipe 140.
  • the signals 126a and 126b from the sensors 120a and 120b (e.g., from the respective receivers RX) are sent to a processor 150 where they are processed to determine the rate of the flow 104 passing within the pipe 140.
  • a time domain to frequency domain transformation/translation such as for example a Fourier-based transform (e.g., a Fast Fourier Transform [FFT]), is frequently implemented by the processor 150 in determining the rate of the flow 104 passing through the pipe 140.
  • FFT Fast Fourier Transform
  • US 4 430 722 A discloses a method and an apparatus for correlating first and second signals where sampling values of the signals are multiplied together and discrete values of the correlation function are determined.
  • the signals are sampled at different sampling frequencies such that one sampling frequency is a multiple of the other sampling frequency.
  • a number of the respective last sampling values of the more fully sampled signal are stored and each sampling value of the more rapidly sampled signal is multiplied simultaneously by all of the stored sampling values of the more slowly sampled signal.
  • the results of the multiplication are separately summed corresponding to equal time displacements between the multiplied sampling values.
  • a microcomputer is programmed for sampling the two signals with sampling frequencies having a ratio 1:k.
  • the more slowly sampled signals are stored in an n stage register.
  • US 2008/0189057 A1 discloses methods and apparatus for sensing the flow of a fluid inside a conduit with an array of pressure or strain sensors for measuring over a wide dynamic range of flow velocities according to the prior art.
  • flowmeters are incapable of detecting flow rates.
  • the flow rate of a flow is too low (e.g., less than a threshold)
  • high frequency bins associated with the FFT contain so much noise that the energy of the low frequency bins is overwhelmed.
  • low frequency bins associated with the FFT which contain the actual low flow velocity energy, are omitted in the flow rate calculation by the processor 150.
  • the flowmeter may fail to report a flow rate and/or the reported flow rate may be invalid/inaccurate.
  • a technician/operator of the flowmeter has to initialize the flowmeter with configuration parameters based on assumptions regarding the flow rate. For example, an assumption is made regarding whether the flow rate is generally high (e.g., greater than a threshold) or generally low (e.g., less than a threshold), and associated configuration parameters are selected for the flowmeter based on that assumption.
  • the flowmeter uses these configuration parameters to provide for a proper initialization in terms of detecting the flow rate of the flow.
  • aspects of the disclosure are directed to a method comprising: obtaining a first plurality of signals associated with a fluid flow in a pipe, processing, by a processor, the first plurality of signals to obtain a first plot of power associated with first vortices in the fluid flow and a flow rate of the fluid flow in the pipe over a first flow rate range, determining, by the processor, that a maximum value of the power in the first plot corresponds to a maximum value of the flow rate included in the first flow rate range or that the power is increasing as a function of the flow rate towards an end of the first plot, and based on said determining, multiplying, by the processor, values of the first flow rate range to obtain a second flow rate range.
  • multiplying values of the first flow rate range corresponds to doubling the values of the first flow rate range to obtain the second flow rate range.
  • the method further comprises processing, by the processor, a second plurality of signals to obtain a second plot of power associated with second vortices in the fluid flow and the flow rate of the fluid flow in the pipe over the second flow rate range.
  • the method further comprises determining, by the processor, an actual flow rate of the fluid flow based on the second plot, and outputting, by an output device, the actual flow rate.
  • the actual flow rate of the fluid flow corresponds to a maximum value of the power in the second plot.
  • the method further comprises obtaining a second plurality of signals associated with the fluid flow in the pipe, and processing, by the processor, the second plurality of signals to obtain a second plot of power associated with second vortices in the fluid flow and a flow rate of the fluid flow in the pipe over a third flow rate range.
  • the method further comprises determining that a minimum value included in the third flow rate range is less than a threshold, and based on determining that the minimum value included in the third flow rate range is less than the threshold, multiplying, by the processor, values of the third flow rate range to obtain a fourth flow rate range.
  • the method further comprises determining, by the processor, that a maximum value of the power in the second plot corresponds to a flow rate that is greater than a fraction of the third flow rate range, and based on determining that the maximum value of the power in the second plot corresponds to the flow rate that is greater than the fraction of the third flow rate range, multiplying, by the processor, values of the third flow rate range to obtain a fourth flow rate range.
  • the determining that the maximum value of the power in the second plot corresponds to the flow rate that is greater than the fraction of the third flow rate range includes determining that the maximum value of the power in the second plot corresponds to a flow rate that is greater than half the third flow rate range.
  • multiplying values of the third flow rate range corresponds to doubling the values of the third flow rate range to obtain the fourth flow rate range.
  • the method further comprises determining, by the processor, that a maximum value of the power in the second plot corresponds to a flow rate that is less than a fraction of the third flow rate range, and based on determining that the maximum value of the power in the second plot corresponds to the flow rate that is less than the fraction of the third flow rate range, dividing, by the processor, values of the third flow rate range to obtain a fourth flow rate range.
  • the determining that the maximum value of the power in the second plot corresponds to the flow rate that is less than the fraction of the third flow rate range includes determining that the maximum value of the power in the second plot corresponds to a flow rate that is less than one-quarter of the third flow rate range. In some embodiments, dividing values of the third flow rate range corresponds to halving the values of the third flow rate range to obtain the fourth flow rate range.
  • aspects of the disclosure are directed to a system comprising: a processor, and a non-transitory storage device having instructions stored thereon that, when executed by the processor, cause the system to: obtain a first plurality of signals associated with a fluid flow in a pipe, process the first plurality of signals to obtain a first plot of power associated with first vortices in the fluid flow and a flow rate of the fluid flow in the pipe over a first flow rate range, determine that a maximum value of the power in the first plot corresponds to a maximum value of the flow rate included in the first flow rate range or that the power is increasing as a function of the flow rate towards an end of the first plot, based on said determination, multiply values of the first flow rate range to obtain a second flow rate range, obtain a second plurality of signals associated with the fluid flow in the pipe, process the second plurality of signals to obtain a second plot of power associated with second vortices in the fluid flow and the flow rate of the fluid flow in the pipe over the second flow rate range, determine an actual flow rate of
  • the non-transitory storage device includes at least one of a memory or a computer-readable medium, the system further comprising: the output device, the pipe, a first sensor positioned at a first axial location of the pipe, and a second sensor positioned at a second axial location of the pipe, where the first sensor provides a first of the first plurality of signals and the second sensor provides a second of the first plurality of signals.
  • the instructions when executed by the processor, cause the system to: obtain a third plurality of signals associated with the fluid flow in the pipe, process the third plurality of signals to obtain a third plot of power associated with third vortices in the fluid flow and the flow rate of the fluid flow in the pipe over a third flow rate range, determine that a maximum value of the power in the third plot corresponds to a flow rate that is greater than half of the third flow rate range, based on determining that the maximum value of the power in the third plot corresponds to the flow rate that is greater than the fraction of the third flow rate range, double values of the third flow rate range to obtain a fourth flow rate range, and determine and output an actual flow rate based on the fourth flow rate range.
  • the instructions when executed by the processor, cause the system to: obtain a third plurality of signals associated with the fluid flow in the pipe, process the third plurality of signals to obtain a third plot of power associated with third vortices in the fluid flow and the flow rate of the fluid flow in the pipe over a third flow rate range, determine that a maximum value of the power in the third plot corresponds to a flow rate that is less than a quarter of the third flow rate range, based on determining that the maximum value of the power in the third plot corresponds to the flow rate that is less than a quarter of the third flow rate range, half values of the third flow rate range to obtain a fourth flow rate range, and determine and output an actual flow rate based on the fourth flow rate range.
  • connections are set forth between elements in the following description and in the drawings (the contents of which are included in this disclosure by way of reference). It is noted that these connections are general and, unless specified otherwise, may be direct or indirect and that this specification is not intended to be limiting in this respect.
  • a coupling between two or more entities may refer to a direct connection or an indirect connection.
  • An indirect connection may incorporate one or more intervening entities or a space/gap between the entities that are being coupled to one another.
  • apparatuses, systems, and methods are described for determining/detecting a fluid flow rate through, e.g., a pipe/conduit.
  • a flow range that is used may be adjusted/modified as part of the determination of flow rate.
  • FIG. 2 a flow chart of a method 200 for determining a flow rate in accordance with aspects of this disclosure is shown.
  • the method 200 is described in relation to the system 100 of FIG. 1 for the sake of illustrative convenience, with the understanding that the method 200 may be adapted/modified to accommodate other types of systems/flowmeters.
  • a first variable (illustratively referred to as a 'flow range multiplier' [FRM] variable) may be set equal to a minimum (Min) FRM Threshold value.
  • a second variable associated with a 'flow rate range' [FRR] may be set equal to a(n initial) range of flow rates.
  • the second variable may have a value coinciding with a range of flow rates of 1 to 80 (where the flow rate may be expressed in one or more units, such as for example meters per second).
  • signals may be obtained/received from one or more sensors (e.g., sensors 120a/120b).
  • the signals may contain information regarding characteristics associated with a fluid flow rate.
  • a determination may be made by, e.g., a processor (e.g., processor 402 of FIG. 4 ) whether the FRM is within a range of the Min FRM Threshold and 1. If outside the range, the FRM may be set to either the Min FRM Threshold or 1, depending on whether it is less than or greater than the range, respectively.
  • a processor e.g., processor 402 of FIG. 4
  • the signals of block 208 may be processed by, e.g., the processor to obtain a plot/relationship of power as a function of flow rate;
  • FIG. 3A illustrates one example of such a plot with the power reflected on the vertical axis and the flow rate reflected on the horizontal axis.
  • the processing of block 212 may include one or more algorithms as would be known to one of skill in the art. While expressed in terms of power, alternative expressions (e.g., energy) may be used.
  • the power of the plot shown in FIG. 3A may correspond to the power associated with vortices in the fluid flow. The power may be expressed in terms of, e.g., amplitude and/or phase.
  • a determination may be made whether at least one of the following conditions is satisfied: (1) the plot of block 212 has a maximum power value at the last point on the plot (e.g., at a flow rate of 80 in FIG. 3A ), or ( 2 ) the power is increasing as a function of the flow rate towards the end (e.g., the right-most portion) of the plot corresponding to the maximum values of the flow rate in the FRR.
  • the maximum power value occurs at approximately a flow rate of 22 and the power is increasing (starting at a flow rate of 44) proximate/towards 80.
  • condition (2) described above is satisfied for the plot of FIG. 3A .
  • the first variable (e.g., the FRM variable) may be multiplied by two.
  • the second variable (e.g., the FRR variable) may be multiplied by the first variable (e.g., the FRM variable), where the first variable has the value assumed in block 220.
  • the loop established between, e.g., blocks 208, 209, 212, 216, 220, and 224 may be repeated so long as: (1) the test in block 216 continues to be answered in the affirmative, and (2) a specified/predetermined threshold (e.g., maximum threshold) for either the FRM or the FRR is not reached.
  • This loop may enable the flowmeter to detect high value flow rates (e.g., flow rates that are greater than a maximum value included in the FRR as the FRR is selected at any given point in time). Once execution of this loop is complete, flow may proceed to block 230.
  • a determination may be made whether a specified quality is less than a threshold. For example, as part of block 230, a determination may be made whether the minimum value included in the FRR variable is less than the threshold. If so, flow may proceed from block 230 to block 220; otherwise, flow may proceed from block 230 to block 252.
  • the threshold of block 230 may be based on one or more factors, such as for example the accuracy/quality of the flowmeter in terms of low flow rate measurement, the processing speed/capability of the flowmeter, etc.
  • a portion of the method 200 may be used to determine/detect flow rates that are greater than a maximum value included in the FRR variable at a given point in time.
  • the determined/detected actual flow rate may correspond to the maximum value of the power on the respective plots of power versus flow rate; e.g., the flow rate may be equal to 22 in relation to FIGS. 3A-3B .
  • the portion of the method 200 described above may be used to determine/detect/lockon to a flow rate in the first instance.
  • the portion of the method 200 described below may be used to adjust the FRR on the basis of a change in the actual flow rate.
  • the FRM variable may be multiplied by two.
  • the FRR variable may be multiplied by the FRM variable, where the FRM variable has the value assumed in block 220". From block 224", flow may proceed to block 208.
  • the result of the multiplications provided in relation to blocks 220" and 224" is shown in comparing the plots shown in FIGS. 3C and 3D .
  • the values for the range of flow rates in FIG. 3D are shown as being doubled relative to the corresponding values for the range of flow rates in FIG. 3C .
  • the maximum value of the power (corresponding to a flow rate value of 60) is to the left of the mid-point of the FRR (with a value of 81) in FIG. 3D .
  • blocks 220" and 224" are depicted separately from blocks 220 and 224, respectively, in some embodiments the blocks 220" and 224" may correspond to the blocks 220 and 224, respectively, which is to say that flow may proceed from block 252 to block 220 in some embodiments.
  • the FRM variable may be divided by two
  • the FRR variable may be multiplied by the FRM variable, where the FRM variable has the value assumed in block 234′′′. From block 238′′′, flow may proceed to block 208.
  • the result of the multiplications provided in relation to blocks 234′′′ and 238′′′ is shown in comparing the plots shown in FIGS. 3E and 3F .
  • the values for the range of flow rates in FIG. 3F are shown as being half of the corresponding values for the range of flow rates in FIG. 3E .
  • the maximum value of the power (corresponding to a flow rate value of 12) is to the right of the one-quarter point value of the FRR (with a value of 10.125) in FIG. 3F .
  • a portion of the method 200 may serve to adjust the FRR when the flow rate corresponding to the maximum power of the plot is greater than half of the FRR or less than one-quarter of the FRR.
  • the FRR may be adapted based on a changing/dynamic flow rate value.
  • the test/determination associated with block 262 (in conjunction with blocks 234′′′ and 238′′′) may help to ensure that low-valued flow rates (e.g., flow rates that are less than a threshold) are detected.
  • the method 200 is illustrative. In some embodiments, one or more blocks of the method 200, or portions thereof, may be optional. In some embodiments, the blocks may execute in an order or sequence that is different from what is shown in FIG. 2 . In some embodiments, additional blocks not shown may be included.
  • One or more portions of the method 200 may be executed at various points in time. At least some, if not all, of the method 200 may be executed repeatedly, potentially as part of a larger program/algorithm, to obtain flow rate values at various points in time.
  • the signals, plots, values of power, flow rates, etc. may be distinguished from one another using terms like "first”, "second”, etc.
  • FIG. 4 illustrates a computing system 400 that may include a processor 402 and a memory 408.
  • the memory 408 may store instructions (e.g., instructions 414a) that, when executed by the processor 402, may cause the system 400 to perform the method 200.
  • At least a portion of the instructions (e.g., instructions 414b) may be stored on a computer-readable medium (CRM) 420, such as for example a non-transitory CRM.
  • CRM computer-readable medium
  • the instructions 414b of the CRM 420 may be used as an alternative to, or in addition to, the use of the instructions 414a of the memory 408.
  • One or both of the memory 408 and the CRM 420, taken individually or collectively, may be referred to as a storage device.
  • the system 400 may include one or more input/output (I/O) devices 426.
  • the I/O devices 426 may provide an interface between the system 400 and one or more other components or devices.
  • the I/O devices 426 may include one or more of a graphical user interface (GUI), a display screen, a touchscreen, a keyboard, a mouse, a joystick, a pushbutton, a microphone, a speaker, a transceiver, etc.
  • GUI graphical user interface
  • the I/O devices 426 may be used to output data (e.g., flow rates, plots, etc.) in one or more formats (e.g., a visual or audio rendering).
  • a flowmeter that is able to locate/lock-on to a flow rate of a fluid flow in a first instance and is able to adaptively adjust to a change in the flow rate thereafter. Such an ability may ensure the availability of a flow rate measurement in the first instance and may avoid a need for a technician/operator to select and enter configuration parameters for the flowmeter. Thus, a flowmeter in accordance with this disclosure will be more reliable than conventional flowmeters and will be less susceptible to technician/operator error.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Measuring Volume Flow (AREA)

Claims (15)

  1. Procédé, comprenant les étapes consistant à :
    obtenir une première pluralité de signaux associés à un écoulement de fluide (104) dans un tuyau (100) ;
    traiter, par un processeur (402), la première pluralité de signaux afin d'obtenir un premier tracé de puissance associé aux premiers vortex dans l'écoulement de liquide (104) et à un débit de l'écoulement de liquide (104) dans le tuyau (100) sur une première plage de débit ;
    caractérisé en ce que le procédé comprend en outre l'étape consistant à :
    déterminer, par le processeur (402), qu'une valeur maximale de la puissance dans le premier tracé correspond à une valeur maximale du débit incluse dans la première plage de débit, ou que la puissance augmente en fonction du débit en tant que fonction du débit vers une extrémité du premier tracé, et
    sur la base de ladite détermination, multiplier, par le processeur (402), des valeurs de la première plage de débit afin d'obtenir une deuxième plage de débit.
  2. Procédé selon la revendication 1, dans lequel des valeurs de multiplication de la première plage de débit correspondent au doublement des valeurs de la première plage de débit afin d'obtenir la deuxième plage de débit.
  3. Procédé selon la revendication 1, comprenant en outre l'étape suivante :
    traiter, par le processeur (402), une deuxième pluralité de signaux afin d'obtenir un second tracé de puissance associé aux deuxièmes vortex dans l'écoulement de liquide (104) et au débit de l'écoulement de liquide (104) dans le tuyau (100) sur la deuxième plage de débit.
  4. Procédé selon la revendication 3, comprenant en outre les étapes consistant à :
    déterminer, par le processeur (402), un débit réel de l'écoulement de fluide (104) sur la base du second tracé, et
    produire, par un dispositif de sortie, le débit réel,
    dans lequel le débit réel de l'écoulement de fluide (104) correspond en particulier à une valeur maximale de la puissance dans le second tracé.
  5. Procédé selon la revendication 1, comprenant en outre les étapes consistant à :
    obtenir une deuxième pluralité de signaux associés à l'écoulement de fluide (104) dans le tuyau (100), et
    traiter, par le processeur (402), la deuxième pluralité de signaux afin d'obtenir un second tracé de puissance associé aux deuxièmes vortex dans l'écoulement de liquide (104) et à un débit de l'écoulement de liquide (104) dans le tuyau (100) sur une troisième plage de débit.
  6. Procédé selon la revendication 5, comprenant en outre l'étape suivante :
    déterminer qu'une valeur minimale incluse dans la troisième plage de débit est inférieure à un seuil, et
    sur la base de ladite détermination que la valeur minimale incluse dans la troisième plage de débit est inférieure au seuil, multiplier, par le processeur (402), des valeurs de la troisième plage de débit afin d'obtenir une quatrième plage de débit.
  7. Procédé selon la revendication 5, comprenant en outre les étapes consistant à :
    déterminer, par le processeur (402) qu'une valeur maximale de la puissance dans le second tracé correspond à un débit supérieur à une fraction de la troisième plage de débit, et
    sur la base de la détermination que la valeur maximale de la puissance dans le second tracé correspond au débit supérieur à la fraction de la troisième plage de débit, et multiplier, par le processeur (402), des valeurs de la troisième plage de débit afin d'obtenir une quatrième plage de débit.
  8. Procédé selon la revendication 7, dans lequel la détermination que valeur maximale de la puissance dans le second tracé correspond au débit supérieur à la fraction de la troisième plage de débit inclut la détermination que la valeur maximale de la puissance dans le second tracé correspond à un débit supérieur à la moitié de la troisième plage de débit, ou dans lequel des valeurs de multiplication de la troisième plage de débit correspondent au doublement des valeurs de la troisième plage de débit afin d'obtenir la quatrième plage de débit.
  9. Procédé selon la revendication 5, comprenant en outre l'étape suivante :
    déterminer, par le processeur (402), qu'une valeur minimale de la puissance dans le second tracé correspond à un débit inférieur à une fraction de la troisième plage de débit, et
    sur la base de la détermination que la valeur maximale de la puissance dans le second tracé correspond au débit inférieur à la fraction de la troisième plage de débit, diviser, par le processeur (402), des valeurs de la troisième plage de débit afin d'obtenir une quatrième plage de débit.
  10. Procédé selon la revendication 8, dans lequel la détermination que la valeur maximale de la puissance dans le second tracé correspond au débit inférieur à la fraction de la troisième plage de débit inclut la détermination que la valeur maximale de la puissance dans le second tracé correspond à un débit inférieur à un quart de la troisième plage de débit.
  11. Procédé selon la revendication 9, dans lequel des valeurs de division de la troisième plage de débit correspondent à la division de moitié des valeurs de la troisième plage de débit afin d'obtenir la quatrième plage de débit.
  12. Système (400), comprenant :
    un processeur (402), et
    un dispositif de stockage non transitoire (408, 420) présentant des instructions (414a, 412b) stockées sur celui-ci, lesquelles lorsqu'elles sont exécutées par le processeur (402), font en sorte que le système (400) fonctionne pour :
    obtenir une première pluralité de signaux associés à un écoulement de fluide (104) dans un tuyau (100) ;
    traiter la première pluralité de signaux afin d'obtenir un premier tracé de puissance associé aux premiers vortex dans l'écoulement de liquide (104) et à un débit de l'écoulement de liquide (104) dans le tuyau (100) sur une première plage de débit ;
    déterminer qu'une valeur maximale de la puissance dans le premier tracé correspond à une valeur maximale du débit incluse dans la première plage de débit, ou que la puissance augmente en fonction du débit en tant que fonction du débit vers une extrémité du premier tracé,
    sur la base de ladite détermination, multiplier des valeurs de la première plage de débit afin d'obtenir une deuxième plage de débit ;
    obtenir une deuxième pluralité de signaux associés à l'écoulement de fluide (104) dans le tuyau (100) ;
    traiter la deuxième pluralité de signaux afin d'obtenir un second tracé de puissance associé aux deuxièmes vortex dans l'écoulement de liquide (104) et au débit de l'écoulement de liquide (104) dans le tuyau (100) sur la deuxième plage de débit ;
    déterminer un débit réel de l'écoulement de fluide (104) sur la base d'une valeur maximale de la puissance dans le second tracé, et
    faire en sorte que le débit réel soit produit via un dispositif de sortie.
  13. Système (400) selon la revendication 12, dans lequel le dispositif de stockage non transitoire (408, 420) inclut au moins un élément parmi une mémoire (408) ou un support lisible par ordinateur (420), le système (400) comprenant en outre :
    le dispositif de sortie ;
    le tuyau (100) ;
    un premier capteur (120a) positionné sur un premier emplacement axial du tuyau (100), et
    un second capteur (120b) positionné sur un second emplacement axial du tuyau (100),
    dans lequel le premier capteur (120a) fournit un premier signal de la première pluralité de signaux, et le second capteur (120b) fournit un second signal de la première pluralité de signaux.
  14. Système (400) selon la revendication 12, dans lequel les instructions (414a, 412b) lesquelles lorsqu'elles sont exécutées par le processeur (402), font en sorte que le système (400) fonctionne pour :
    obtenir une troisième pluralité de signaux associés à l'écoulement de fluide (104) dans un tuyau (100) ;
    traiter la troisième pluralité de signaux afin d'obtenir un troisième tracé de puissance associé aux troisièmes vortex dans l'écoulement de liquide (104) et au débit de l'écoulement de liquide (104) dans le tuyau (100) sur une troisième plage de débit ;
    déterminer qu'une valeur maximale de la puissance dans le troisième tracé correspond à un débit supérieur à la moitié de la troisième plage de débit ;
    sur la base de la détermination que la valeur maximale de la puissance dans le troisième tracé correspond au débit supérieur à la fraction de la troisième plage de débit, doubler des valeurs de la troisième plage de débit afin d'obtenir une quatrième plage de débit, et
    déterminer et produire un débit réel sur la base de la quatrième plage de débit.
  15. Système (400) selon la revendication 12, dans lequel les instructions (414a, 412b), lesquelles lorsqu'elles sont exécutées par le processeur (402), font en sorte que le système (400) fonctionne pour :
    obtenir une troisième pluralité de signaux associés à l'écoulement de fluide (104) dans le tuyau (100) ;
    traiter la troisième pluralité de signaux afin d'obtenir un troisième tracé de puissance associé aux troisièmes vortex dans l'écoulement de liquide (104) et au débit de l'écoulement de liquide (104) dans le tuyau (100) sur une troisième plage de débit ;
    déterminer qu'une valeur maximale de la puissance dans le troisième tracé correspond à un débit inférieur à un quart de la troisième plage de débit ;
    sur la base de la détermination que la valeur maximale de la puissance dans le troisième tracé correspond au débit inférieur à un quart de la troisième plage de débit, des valeurs divisées de moitié de la troisième plage de débit, afin d'obtenir une quatrième plage de débit, et
    déterminer et produire un débit réel sur la base de la quatrième plage de débit.
EP18701889.0A 2017-01-10 2018-01-10 Détection de débit d'écoulement sur plage dynamique Active EP3568672B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/402,533 US10502601B2 (en) 2017-01-10 2017-01-10 Detection of flow rate over dynamic range
PCT/US2018/013086 WO2018132418A1 (fr) 2017-01-10 2018-01-10 Détection de débit d'écoulement sur plage dynamique

Publications (2)

Publication Number Publication Date
EP3568672A1 EP3568672A1 (fr) 2019-11-20
EP3568672B1 true EP3568672B1 (fr) 2022-12-07

Family

ID=61054572

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18701889.0A Active EP3568672B1 (fr) 2017-01-10 2018-01-10 Détection de débit d'écoulement sur plage dynamique

Country Status (5)

Country Link
US (1) US10502601B2 (fr)
EP (1) EP3568672B1 (fr)
AU (1) AU2018208491B2 (fr)
CA (1) CA3049724C (fr)
WO (1) WO2018132418A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080189057A1 (en) * 2007-02-06 2008-08-07 Perry Leslie W Flowmeter array processing algorithm with wide dynamic range

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046155A (fr) * 1973-08-28 1975-04-24
EP0026877B1 (fr) 1979-10-03 1983-10-05 Endress u. Hauser GmbH u.Co. Procédé et dispositif pour la corrélation de deux signaux
US6691584B2 (en) 1999-07-02 2004-02-17 Weatherford/Lamb, Inc. Flow rate measurement using unsteady pressures
US7121152B2 (en) 2003-06-06 2006-10-17 Cidra Corporation Portable flow measurement apparatus having an array of sensors
WO2007009097A1 (fr) * 2005-07-13 2007-01-18 Cidra Corporation Procede et appareil de mesure de parametres d'un ecoulement de liquide au moyen d'un reseau de capteurs
US20080105839A1 (en) * 2006-10-08 2008-05-08 Insight Process Solutions, Llc Flow control systems and control valves therefor
US8452551B2 (en) 2009-05-26 2013-05-28 Expro Meters, Inc. Method and apparatus for monitoring multiphase fluid flow
WO2014062818A2 (fr) 2012-10-16 2014-04-24 Expro Meters, Inc. Systèmes et procédés permettant de gérer des emplacements de puits produisant des matières hydrocarbonées faisant appel à des débitmètres non intrusifs
US9713489B2 (en) * 2013-03-07 2017-07-25 Arthrocare Corporation Electrosurgical methods and systems
US20170276527A1 (en) * 2016-03-25 2017-09-28 General Electric Company System and method for metering gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080189057A1 (en) * 2007-02-06 2008-08-07 Perry Leslie W Flowmeter array processing algorithm with wide dynamic range

Also Published As

Publication number Publication date
EP3568672A1 (fr) 2019-11-20
CA3049724A1 (fr) 2018-07-19
WO2018132418A1 (fr) 2018-07-19
US20180195888A1 (en) 2018-07-12
AU2018208491A1 (en) 2019-07-25
AU2018208491B2 (en) 2022-08-18
CA3049724C (fr) 2023-01-03
US10502601B2 (en) 2019-12-10

Similar Documents

Publication Publication Date Title
CA2619424C (fr) Algorithme de traitement de debimetres en reseau avec une vaste portee dynamique
JP4970820B2 (ja) 導圧管詰まり検出装置及び導圧管詰まり検出方法
CA2746802A1 (fr) Detecteur de fuite
US11549841B2 (en) Ultrasonic meter employing two or more dissimilar chordal multipath integration methods in one body
JP6652054B2 (ja) 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体
KR102038689B1 (ko) 거리차-주파수 분석을 이용한 배관의 누설 감지장치 및 방법
CN107024250A (zh) 气体流量测量的系统及方法
JP2004132817A (ja) 管路閉塞検出装置
EP3568672B1 (fr) Détection de débit d'écoulement sur plage dynamique
JP5891138B2 (ja) 導圧管の詰まり診断装置および詰まり診断方法
CN108195459A (zh) 一种小孔径声压水听器阵的被动目标空间谱检测方法
US11609110B2 (en) Ultrasonic flowmeter, method for operating an ultrasonic flowmeter, measuring system and method for operating a measuring system
US11099055B1 (en) Self-checking ultrasonic fluid flow measurement system
KR20170035555A (ko) 초음파 유량계의 신호처리시스템
CN110131591B (zh) 管道泄漏的定位方法、装置和设备
JP6428073B2 (ja) 分析装置、分析システム、分析方法及びプログラム
JP2019124613A (ja) 漏水検出装置
JP2018128264A (ja) 超音波流量計および流量計測方法
WO2023183403A1 (fr) Correction d'écoulement de gaz en présence de liquide dans une canalisation de gaz
Jeong et al. Implementation of Ultrasonic Flow Meter System with Quadrature Demodulation
WO2023230651A3 (fr) Procédé et système d'évaluation d'état de pipeline
Skwarek et al. Multipath cross-correlation flowmeters
JPS58167938A (ja) パイプラインの漏洩発生検出装置
KR20190068061A (ko) 누유 검출 장치 및 방법
JPH0682058B2 (ja) 相関式流量計

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220623

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1536560

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018043930

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221207

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20221207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230110

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1536560

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602018043930

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230407

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

26N No opposition filed

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231130

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230110

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230207