EP3568243B1 - Procédé destiné à une régulation de traction - Google Patents

Procédé destiné à une régulation de traction Download PDF

Info

Publication number
EP3568243B1
EP3568243B1 EP18700485.8A EP18700485A EP3568243B1 EP 3568243 B1 EP3568243 B1 EP 3568243B1 EP 18700485 A EP18700485 A EP 18700485A EP 3568243 B1 EP3568243 B1 EP 3568243B1
Authority
EP
European Patent Office
Prior art keywords
speed
tension
strip
variant
shaped material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18700485.8A
Other languages
German (de)
English (en)
Other versions
EP3568243A1 (fr
Inventor
Jörn Sieghart
Ronny PETERS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3568243A1 publication Critical patent/EP3568243A1/fr
Application granted granted Critical
Publication of EP3568243B1 publication Critical patent/EP3568243B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/52Tension control; Compression control by drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/02Tension
    • B21B2265/06Interstand tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/06Product speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/08Coiler speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control

Definitions

  • the invention relates to a method for tension control in the case of strip-shaped material, in particular in the case of a metal strip, between two clamping points, at least one of the clamping points having a rotary drive for influencing the tensile stress of the material.
  • the clamping points can be, for example, two adjacent roll stands
  • a decisive criterion for a rolling mill is the rolling stability.
  • the rolling stability depends largely on the stability of the tension of the metal strip to be rolled.
  • Tension regulators that is to say regulators which regulate the controlled variable train, are basically known in the prior art, e.g. B. from the EP 2 454 033 B1 or the generic DE 10 2006 048 421 A1 .
  • the hydraulic adjustment in a roll stand for adjustment of the work rolls can serve as an actuator of the known tension controls.
  • the work rolls are preferably position-controlled, since the position control acts faster on the train than a control of the train by adjusting the speed of the rotary drives of the rolls.
  • Force control is often used on the last stands of a tandem mill in order to introduce a certain surface roughness onto the rolled metal strip.
  • the rotary drive of the rolls of a rolling stand with variable speed setting serve as an actuator for the tension control.
  • the invention is therefore based on the object of developing a known method for regulating the tension in the case of a strip-shaped material between two tensioning points in such a way that the tension control becomes more effective and faster.
  • This object is achieved by the method claimed in claim 1.
  • This method is characterized in that the controller output signal, as part of its conversion into the control signal, is varied at least temporarily as a function of a variable g (t) representing the speed of the metal strip.
  • the term “at least temporarily” means that the inventive conversion of the controller output signal into the control signal does not always have to take place during tension control.
  • the conversion according to the invention can be exposed to the tension control during individual phases, for example before the tension control has reached a steady state.
  • a (physical) variable representing the speed of the strip-shaped material is to be interpreted broadly.
  • the term means the speed of the metal belt itself.
  • it also includes any other physical variable that allows an indication of the size of the speed of the metal strip between the two clamping points.
  • it also includes the rotational speed or the circumferential speed of rolls in a roll stand if such a roll stand functions as a clamping point within the meaning of the invention.
  • the size also does not necessarily have to be a measured value.
  • metal strip is always used only as an example. It stands synonymously for strip-shaped material made of any material to which the invention relates in general.
  • the present invention only relates to tension controls in which a rotary drive functions as an actuator and in which an actuating signal therefore specifies speeds or changes in speed for the rotary drive.
  • the core idea of the invention is that the output signal of the tension regulator - unlike in the prior art - does not serve directly as a control signal for a rotary drive in a clamping point, for example in a roll stand, but is processed or converted beforehand.
  • This conversion according to the invention advantageously has the effect that tension disturbances in the metal strip caused by changes in speed are pre-controlled.
  • the inventive conversion of the controller output signal into the control signal for the rotary drive enables a previously very expensive and time-consuming commissioning of a tension controller to be significantly simplified and shortened. A large number of metal strips that were previously used for test purposes, in particular for jump tests, during commissioning, and the time required by specialist staff to set the tension controller dynamics for different speed ranges, can be significantly reduced when using the method according to the invention.
  • a first variant and a second variant are described for the tension control according to the invention.
  • Claims 2 to 5 relate to the first variant, while claims 6 and 7 relate to the second variant.
  • the following dependent claims 8 to 20 each relate to both variants.
  • the first variant of the tension control according to the invention described in claim 2 describes a feedforward control that does not have any speed-dependent influence on the line gain V (t) and nevertheless makes necessary changes to the tension controller output signal R (t) relative to the variable g (t) representing the speed of the metal strip .
  • This first variant of the tension control according to the invention works with learning points. If the number of learning points is increased towards infinity, the tension correction is made directly dependent on the system speed and thus also on its line gain.
  • V (t) is an amplification factor which represents the course of the variable g (t) representing the speed of the metal strip (200), preferably normalized to the predetermined constant g (t 0), over time.
  • learning points t i are based on real interference, such as B. manual reference train changes, redistributions, general disruptions from the process, etc. generated. Because of these disruptive influences / events, as they are also shown in claim 3, the ambient conditions for the tension control change.
  • the aforementioned learning points help to adapt the controller output immediately and precisely to the currently changed conditions of the mass flow.
  • the first variant of the tension control according to the invention describes an adaptive feedforward control. The tension control becomes faster overall, the control signal S (t) probably only needs to make small, perhaps ideally even no more corrections if the system changes its speed after and during a fault.
  • the dependent claim 4 describes different situations when the train control is operated according to the first variant, i. H.
  • the output of the tension controller R (t) is increased or decreased directly with the gain factor V (t), which can change continuously with the system speed, and is thus converted into the control signal S (t).
  • variant 2 offers the possibility of significantly reducing the effort involved in commissioning the tension control by changing the dynamics of the control by the factor V (t) analogous to the speed is changed automatically and this therefore does not have to be set by experiments or only to a lesser extent.
  • the tension control can optionally be switched from the second variant to the first variant as soon as and as long as the variable representing the speed of the metal strip, in particular the speed of the metal strip itself, exceeds a predetermined positive speed limit.
  • This speed limit is defined, for example, by the lower threshold value g min1 of variant 1 if this is greater than the upper threshold value g max2 of the second variant.
  • the temporary switchover means that the speed correction continues to be changed according to the mass flow, but the tension controller keeps the gain constant at high speeds.
  • the controller gain must z. B. can then be kept constant when the dynamics of the rotary drives is or becomes the limiting variable for the dynamics of the tension regulator.
  • Both the first and the second variant are preferably operated when the tension control is in a steady state.
  • the control signal S (t) or the gain factor V (t) is advantageously calculated in the first and / or in the second variant, taking into account the lead k of the metal strip, preferably by multiplication with a function f (k).
  • the tension control according to the invention is preset or precontrolled even better for speed-changing disturbances and is therefore even more effective and even faster.
  • the advance k itself can either depend on the variable g (t), which represents the speed of the metal strip, in the form k (g (t)), or it can be specified as a constant.
  • control signal S (t) always specifies a speed or a change in speed for a rotary drive in the context of the present invention
  • the controller output signal R (t) can either change the speed for the rotary drive or a change in the thickness of the metal strip in a roll stand pretend. In the latter case, the controller output signal must be converted into the control signal for the rotary drive.
  • the two tensioning points between which the metal strip is clamped under tension can be two preferably adjacent rolling stands of a rolling train, at least one of the rolling stands having the rotary drive for driving one of its rollers in rotation.
  • a thickness control then takes place on the first roll stand in the rolling direction and on the second roll stand downstream in the rolling direction the tension control according to the invention with a control of the rotary drive there as an actuator.
  • the preceding speed control significantly relieves the downstream tension control, ie the control signal only needs to output minor changes in speed to the rotary drive.
  • the controller output signal on the one hand represents the said change in the decrease in thickness of the metal strip for the thickness control on the first roll stand and in this respect acts as a control signal for the decrease in thickness on the first roll stand.
  • the controller output signal R (t) can then, on the other hand, be converted into the control signal for the rotary drive according to the first or second variant of the tension control according to the invention, the conversion also including a conversion of the change in the decrease in thickness into a change in the speed for the rotary drive.
  • the two tensioning points between which the tension of the metal strip is regulated with the method according to the invention can alternatively be a pair of rollers as the first tensioning point and a reel device downstream of the roller pair as the second tensioning point.
  • the rotary drive required for the tension control according to the invention can then be present either in the pair of rollers for driving at least one of its rollers in rotation and / or in the reel device for driving the reel in rotation.
  • the pair of rolls can be a pair of driver rolls or a pair of work rolls in a roll stand.
  • Figure 100 shows a schematic 100 of a tension control according to the present invention.
  • the basis of the invention is a control loop for a tension control, as shown in Figure 1 is generally shown.
  • the control loop provides that the actual tension of a metal strip is measured or otherwise determined with the aid of a determination device 160 when the metal strip is clamped between two tensioning points under tension or passes through these tensioning points under tension.
  • train is synonymous with tensile stress.
  • the actual tension determined in this way is compared in a target / actual value comparator 110 with a specified target tension for the metal strip, and the result of this comparison, which is typically a difference, is used as a control deviation e ( t) is output to a regulator device 120.
  • the regulator device generates a regulator output signal R (t) at its output.
  • This controller output signal R (t) typically represents a change in speed for a rotary drive.
  • the controller output signal R (t) is not used directly as a control signal for Control of an actuator 140 in the form of a rotary drive, but rather the present invention provides that the controller output signal is first converted into a control signal S (t) in a conversion device 130 in a suitable manner, as described below. Only the actuator S (t) is then actually used to control the rotary drive 140.
  • the rotary drive 140 is controlled in such a way that the tension of the metal strip 200 is regulated to the specified target value when the metal strip runs through the controlled system 150, which essentially consists of two tensioning points consists.
  • the regulation described works preferably continuously over time, so that the determination of the actual tension of the metal strip described in the introduction takes place continuously within the controlled system and the determined actual tension is continuously regulated to the specified target tension.
  • Figure 2 shows the functional structure of the in Figure 3 conversion device 130 shown in detail.
  • the conversion device 130 receives the controller output signal R (t) as an input variable and outputs the said control signal S (t) as an output variable to the rotary drive 140 as an actuator.
  • the converter 130 also receives a variable g (t) representing the speed of the metal strip 200. This can be the specific speed of the metal strip itself; however, it can also be any other physical variable act, which allows an indication of the size of the speed of the metal strip between the two tensioning points.
  • the derivative signal a (t) then enables an acceleration correction for the rotary drive.
  • the tension control according to the invention and in particular the conversion device 130 can be operated in a first variant or, alternatively, in a second variant; Depending on the variant, the function blocks F1 and F2 are operated or designed differently within the conversion device 130. The respectively different design or mode of operation of the conversion device 130 for both variants is primarily described mathematically below.
  • the block F2 provides within the conversion device 130 the generation of a gain factor V (t) in which the received input signal g (t) is preferably normalized to a predetermined constant g (t 0 ).
  • Figure 3 illustrates the generation of the actuating signal S (t) as an output signal of the conversion device 130 according to the first variant on the basis of specific examples for the input signals g (t) and R (t).
  • the gain factor V (t) is identical in its time curve to the input signal g (t), ie the normalization factor g (t 0 ) was set to 1 here as an example.
  • various other intermediate signals A1 (t), Z (t) and A2 (t) are generated within the conversion device 130, from which the control signal S (t) is ultimately calculated.
  • the calculation of the intermediate signals is shown mathematically above and, as said, in Figure 3 explained using an example.
  • the feedforward control is immediately and precisely adapted to the current conditions, in particular to speed-related changes in the mass flow.
  • the future controller output signal R (t) ie the controller output signal copied to the pilot control branch in the form of the signal Z (t) after the learning time set in each case; please refer Figure 2 so that the control signal S (t) does not change in total when the learning times are set.
  • the newly learned mass flow disturbance is automatically precontrolled by the conversion device 130 in that the mass flow control is again changed linearly to the system speed by the actuating signal S (t).
  • the controller output signal R (t) must make no or only very small corrections when the system changes its speed, i.e. when there is a change in g (t) .
  • Fig. 3 shows exemplary signal curves for the input signals R (t) and g (t) and the control signal S (t) calculated therefrom according to formula 2 in the conversion device 130.
  • a comparison of the controller output signal R (t), which is typically used directly in the prior art as a control signal for a downstream rotary drive, with the control signal S (t) calculated according to the invention shows, in particular between times t 0 and t 2 , that the controller output signal R ( t) was weighted or varied to calculate the control signal S (t) with the variable g (t) representing the speed of the metal strip or the gain factor V (t).
  • FIG Figure 4 An example of such a calculation of the actuating signal S (t) according to the second variant is shown in FIG Figure 4 shown. Also in Figure 4 A comparison of the controller output signal R (t) with the control signal S (t) shows that the controller output signal is varied or weighted according to the invention as a function of the gain factor V (t) or as a function of the variable g (t) representing the speed of the metal strip. In contrast to the weighting according to the first variant, the weighting in the second variant takes effect much more directly; this is shown by the actually proportional gain of the local maxima and minima, in particular in the area ⁇ t. In the first variant, these are not amplified or only amplified to a lesser extent, as can be seen from the signal curve S (t) in FIG Figure 3 is recognizable.
  • the second variant can not only be used when the tension control is in a steady state, but also before the steady state is reached, e.g. B. when threading metal strip into a system, in particular between the two tensioning points, or during a tension build-up sequence, etc.
  • V t 1
  • the tension control is in a steady state, it can be operated according to the invention either according to the first or the second variant.
  • this steady state begins at the point in time t 0 with the speed g (t 0 ).
  • the steady state it is also possible to switch between the first and the second variant.
  • a switch to the second variant can take place if a more favorable control behavior can be achieved by changing the speed of the system, in that the dynamics of the tension regulator are also changed due to the speed change.
  • the dynamics are adjusted at least partially automatically by converting the variable R (t) into S (t) according to the invention.
  • the direct amplification of the controller signal R (t) during the conversion into the control signal S (t) has the advantage that the controller can be started up more quickly, since the dependence of the control dynamics on the speed is at least partially due to the conversion R according to the invention (t) is solved for S (t).
  • the resulting continuous adaptation of the dynamics of the controller to the requirements during and after the change in speed can also be more precise than the conventional setting for different operating points.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Claims (20)

  1. Procédé destiné à un réglage de la tension en ce qui concerne une matière en forme de bande (200) entre deux endroits de serrage ; dans lequel, en ce qui concerne les deux endroits de serrage, il s'agit de deux cages de laminoir de préférence voisines ; et dans lequel au moins une des cages de laminoir présente un entraînement en rotation (140) qui est destiné à l'entraînement en rotation d'un de ses cylindres ; ou dans lequel, en ce qui concerne un des deux endroits de serrage, il s'agit d'une paire de rouleaux et en ce qui concerne l'autre endroit parmi les deux endroits de serrage, il s'agit d'un dispositif de bobinage monté à la suite dans la direction de laminage ; dans lequel la paire de rouleaux présente l'entraînement en rotation (140) qui est destiné à l'entraînement en rotation d'au moins un de ses rouleaux et/ou le mécanisme de bobinage présente l'entraînement en rotation (140) qui est destiné à l'entraînement rotation de l'enrouleur, procédé qui présente les étapes suivantes dans lesquelles :
    on détermine la tension réelle entre les deux endroits de serrage ;
    on détermine un écart de réglage e(t) à titre de différence entre la tension réelle et une tension de consigne qui a été prédéfinie ;
    on introduit l'écart de réglage e(t) dans un mécanisme faisant office de dispositif de commande (120) dans le but de générer un signal de sortie du dispositif de commande R(t) ;
    on transforme le signal de sortie du dispositif de commande R(t) en un signal de réglage S(t) ; et
    on règle la tension réelle à la tension de consigne en faisant varier la vitesse de rotation de l'entraînement en rotation (140) à titre d'organe de réglage en fonction du signal de réglage S(t) ;
    caractérisé
    en ce qu'on fait varier le signal de sortie du dispositif de commande R(t) dans le cadre de sa modification pour obtenir le signal de réglage S(t), au moins de manière temporaire, en fonction d'une valeur g(t) qui représente la vitesse de la matière en forme de bande.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on met en oeuvre le réglage de la tension en conformité avec une première variante selon laquelle :
    on élabore un facteur de renforcement V(t) comme suit : V t = g t g t 0 ,
    Figure imgb0047
    qui représente l'allure normalisée, de préférence à une constante g(t0) qui a été prédéfinie, de la valeur g(t) qui représente la vitesse de la matière en forme de bande (200), au cours du temps ; et
    on élabore le signal de réglage S(t) en se référant à la formule représentée ci-après : S t = R t t i t A 1 t i + g t g t 0 t i t A 1 t i V t i
    Figure imgb0048
    dans laquelle :
    A1 (t0) est prédéfini ;
    Z(t0) est prédéfini ;
    ti : représente des moments au cours de l'apprentissage ;
    t0 : représente le premier moment au cours de l'apprentissage.
  3. Procédé selon la revendication 2, caractérisé en ce que l'on considère les moments au cours de l'apprentissage auxquels la valeur g(t) qui représente la vitesse de la matière en forme de bande (200) atteint respectivement une valeur seuil gLPi qui a été prédéfinie ;
    ou
    auxquels la valeur g(t) qui représente la vitesse de la matière en forme de bande (200) n'est plus constante, mais commence à se modifier d'une manière telle que dg(t)/dt ≠ 0 ;
    ou
    auxquels - au cours d'une phase d'accélération de la matière en forme de bande (200) - la valeur de A1(t) dépasse vers le haut une valeur seuil A1max qui a été prédéfinie ;
    comme étant respectivement les moments au cours de l'apprentissage ti.
  4. Procédé selon l'une quelconque des revendications 2 ou 3, caractérisé en ce que l'on calcule le signal de réglage (S(t)) en se référant à la formule (2) lorsque la valeur g(t) qui représente la vitesse de la matière en forme de bande (200) dépasse vers le bas une valeur seuil supérieure gmax qui a été prédéfinie et dépasse vers le haut une valeur seuil inférieure gmin qui a été prédéfinie.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que - lorsque le réglage de la tension se trouve dans un état transitoire - on calcule le signal de réglage S(t) en conformité avec la première variante.
  6. Procédé selon la revendication 1, caractérisé en ce qu'on met en œuvre le réglage de la tension en conformité avec une deuxième variante, dans laquelle on élabore un facteur de renforcement V(t) comme indiqué ci-après : V t = g t g t 0
    Figure imgb0049
    qui représente l'allure normalisée, de préférence à la constante g(t0) qui a été prédéfinie, de la valeur g(t) qui représente la vitesse de la matière en forme de bande (200), au cours du temps ; et
    on élabore le signal de réglage S(t) en se référant à la formule représentée ci-après : S t = R t V t
    Figure imgb0050
    dans laquelle
    R(t) représente un signal de sortie du dispositif de commande.
  7. Procédé selon la revendication 6, caractérisé en ce que l'on calcule le signal de réglage S(t) en se référant à la formule (3) lorsque la valeur g(t) qui représente la vitesse de la matière en forme de bande (200) dépasse vers le bas une valeur seuil supérieure gmax2 qui a été prédéfinie et dépasse vers le haut une valeur seuil inférieure gmin2 qui a été prédéfinie ;
    ou
    lorsque le signal de renforcement V(t) est sensé avoir une influence, sur la dynamique du réglage de la tension, qui est supérieure à celle en vigueur dans le cadre de la formule 2 ;
    ou
    avant que le réglage de la tension ne se retrouve dans un état transitoire ; dans cette condition, l'équation V(t)=1 est de préférence d'application.
  8. Procédé selon les revendications 6 ou 7, caractérisé en ce qu'on fait passer par commutation le réglage de la tension de la deuxième variante à la première variante dès que et tant que l'on se trouve dans la condition indiquée ci-après, à savoir : g t > g min 1 > g max 2
    Figure imgb0051
  9. Procédé selon les revendications 6 à 8, caractérisé en ce que - lorsque le réglage de la tension ne se retrouve dans un état transitoire - on calcule le signal de réglage S(t) en conformité avec la deuxième variante.
  10. Procédé selon la revendication 2 à 9, caractérisé en ce que l'on limite le facteur de renforcement V(t) à une valeur constante lorsque la valeur g(t) qui représente la vitesse de la matière en forme de bande (200) dépasse vers le haut une valeur seuil gmaxi qui a été prédéfinie.
  11. Procédé selon la revendication 10, caractérisé en ce que :
    dans le cas de la formule 2, on se base sur l'équation : g min 1 < g maxi < g max 1
    Figure imgb0052
    ou
    dans le cas de la formule 3, on se base sur l'équation : g min 2 < g maxi < g max 2
    Figure imgb0053
  12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on limite la valeur de réglage S(t) en fonction de la valeur g(t) qui représente la vitesse de la matière en forme de bande (200), par exemple comme indiqué ci-après : S t min g t < S t < S max g t
    Figure imgb0054
  13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on calcule le signal de réglage S(t) en prenant en compte l'avance de la matière en forme de bande, de préférence par l'intermédiaire d'une multiplication avec une fonction f(k), dans laquelle k représente l'avance.
  14. Procédé selon la revendication 13, caractérisé en ce que l'on calcule l'avance k(g(t)), quant à elle, en fonction de la valeur g(t) qui représente la vitesse de la matière en forme de bande (200).
  15. Procédé selon la revendication 13, caractérisé en ce que l'on prédéfinit l'avance à titre de constante.
  16. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on procure, en variante ou en outre par rapport au signal de réglage S(t), également un signal de dérivation sous la forme dS(t)/dt qui représente une correction de l'accélération de l'entraînement en rotation, à titre de signal d'entrée pour l'entraînement en rotation (140).
  17. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le signal de sortie du dispositif de commande R(t) représente une modification de la vitesse de rotation pour l'entraînement en rotation (140).
  18. Procédé selon la revendication 1, caractérisé en ce que,
    à la première cage de laminoir dans la direction de laminage, fait suite un réglage de l'épaisseur ; et
    à la deuxième cage de laminoir monté à la suite dans la direction de laminage on prévoit l'entraînement rotation (140) pour au moins un des cylindres de la deuxième cage de laminoir et on l'entraîne ; et en ce que l'on règle la tension de la matière en forme de bande (200) enserrée entre la première et la deuxième cage de laminoir conformément au procédé selon l'une quelconque des revendications précédentes, par l'intermédiaire d'une commande de l'entraînement en rotation (140) de la deuxième cage de laminoir à l'intervention du signal de réglage S(t).
  19. Procédé selon la revendication 18, caractérisé en ce que, d'une part, le signal de sortie du dispositif de commande R(t) représente une modification de la diminution de l'épaisseur de la matière en forme de bande (200) à l'endroit occupé par la première cage de laminoir à titre d'endroit de serrage et fait office de signal de réglage pour la réduction de l'épaisseur à l'endroit occupé par la première cage de laminoir et, d'autre part, le signal de sortie du dispositif de commande R(t) est transformé de manière simultanée en conformité avec la première ou la deuxième variante pour obtenir le signal de réglage qui est destiné à l'entraînement en rotation (140) ; dans lequel la transformation inclut également une conversion de la modification de la réduction de l'épaisseur en une modification de la vitesse de rotation pour l'entraînement en rotation.
  20. Procédé selon la revendication 1, caractérisé en ce que, en ce qui concerne la paire de rouleaux, il s'agit d'une paire de rouleaux d'entraînement ou d'une paire de cylindres de travail dans la première cage de laminoir.
EP18700485.8A 2017-01-16 2018-01-12 Procédé destiné à une régulation de traction Active EP3568243B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017200560.2A DE102017200560A1 (de) 2017-01-16 2017-01-16 Verfahren für eine Zugregelung
PCT/EP2018/050720 WO2018130636A1 (fr) 2017-01-16 2018-01-12 Procédé destiné à une régulation de traction

Publications (2)

Publication Number Publication Date
EP3568243A1 EP3568243A1 (fr) 2019-11-20
EP3568243B1 true EP3568243B1 (fr) 2021-03-10

Family

ID=60990811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18700485.8A Active EP3568243B1 (fr) 2017-01-16 2018-01-12 Procédé destiné à une régulation de traction

Country Status (5)

Country Link
US (1) US11426778B2 (fr)
EP (1) EP3568243B1 (fr)
DE (1) DE102017200560A1 (fr)
RU (1) RU2732460C1 (fr)
WO (1) WO2018130636A1 (fr)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH353436A (de) 1955-05-12 1961-04-15 Bbc Brown Boveri & Cie Verfahren und Einrichtung zur Konstanthaltung des Bandzuges bei Bandwalzwerken
AU475854B2 (en) 1972-09-06 1976-09-02 Mitsubishi Electric Corporation System for controlling rolling mills
US3848443A (en) * 1973-05-31 1974-11-19 Westinghouse Electric Corp Automatic control method and apparatus for a rolling mill
US4132095A (en) * 1977-08-04 1979-01-02 United States Steel Corporation Automatic gauge control method and apparatus for tandem strip mills
US4307591A (en) * 1980-03-31 1981-12-29 Westinghouse Electric Corp. Rolling mill looper control system
US4662202A (en) * 1985-07-23 1987-05-05 Cargill, Incorporated Low tension cascade mill speed control by current measurement with temperature compensation
US5012660A (en) * 1989-11-29 1991-05-07 Aeg Westinghouse Industrial Automation Corporation Control system and method for compensating for speed effect in a tandem cold mill
US4998427A (en) * 1989-11-29 1991-03-12 Aeg Westinghouse Industrial Automation Corporation Method for rolling on-gauge head and tail ends of a workpiece
SU1738400A1 (ru) * 1990-04-02 1992-06-07 Кузнецкий металлургический комбинат им.В.И.Ленина Способ регулировани межклетевого нат жени и устройство дл его осуществлени
GB9007854D0 (en) 1990-04-06 1990-06-06 Emhart Ind Take out device
US5103662A (en) * 1990-05-01 1992-04-14 Allegheny Ludlum Corporation Tandem rolling mill tension control with speed ratio error discrimination
FR2735046B1 (fr) * 1995-06-08 1997-07-11 Lorraine Laminage Procede de laminage a froid avec compensation d'ovalisation des cylindres de laminage.
RU2268800C2 (ru) * 2002-12-19 2006-01-27 Закрытое акционерное общество "Ново-Краматорский машиностроительный завод" Способ регулирования натяжения полосы в процессе прокатки между клетями многоклетьевого стана с печными моталками
DE102006048421B4 (de) 2006-10-12 2012-08-30 Siemens Ag Verfahren zum Regeln eines Istzuges auf einen Sollzug mittels eines mittels eines Modells der Zugregelstrecke adaptierten Zugreglers
EP2277639A1 (fr) 2009-07-15 2011-01-26 Siemens Aktiengesellschaft Réglage du feuillard et des nýuds
RU147042U1 (ru) * 2014-07-01 2014-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Магнитогорский государственный технический университет им. Г.И. Носова" Устройство автоматического регулирования натяжения металла в двух межклетевых промежутках черновой группы стана горячей прокатки

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2018130636A1 (fr) 2018-07-19
EP3568243A1 (fr) 2019-11-20
RU2732460C1 (ru) 2020-09-16
US11426778B2 (en) 2022-08-30
US20190366403A1 (en) 2019-12-05
DE102017200560A1 (de) 2018-07-19

Similar Documents

Publication Publication Date Title
DE112006003736T5 (de) Motorsteuereinheit und Motorsteuerverfahren
EP1732716B1 (fr) Procede pour produire un metal
DE102010013387A1 (de) Steuervorrichtung und -verfahren für ein Walzwerk
DE10133756A1 (de) Kaltwalzwerk sowie Verfahren zum Kaltwalzen von metallischem Band
DE602004003734T2 (de) Verfahren und Vorrichtung zur Dickenregelung eines gewalzten Produktes
EP2195127A1 (fr) Procédé d&#39;exploitation permettant d&#39;introduire un produit à laminer dans une cage d&#39;un laminoir, dispositif de commande, support de données et laminoir conçu pour laminer un produit à laminer en forme de bande
EP2790846B1 (fr) Procédé de traitement de produits laminés dans un laminoir
EP3544751B1 (fr) Réglage de position de bande consistant à positionner des guides latéraux sur la bande métallique, avec limitation de force
EP2125258B1 (fr) Dispositif de réglage pour une cage de laminoir et objets correspondants à cet effet
WO2016045847A1 (fr) Procédé et installation de laminage de coulée pour couler et laminer un produit de coulée continue
EP2293889B1 (fr) Train de laminage continental doté d&#39;intégrations et/ou de détachements de cages de laminoir en fonctionnement continu
WO2013167366A1 (fr) Procédé d&#39;usinage d&#39;un produit à laminer et laminoir
EP2621645B1 (fr) Procédé de commande d&#39;un train de laminoir tandem, dispositif de commande et/ou de régulation pour un train de laminoir tandem, code de programme lisible par machine, support de stockage et train de laminoir tandem
EP2741870B1 (fr) Installation de laminage et procédé de laminage
EP3568243B1 (fr) Procédé destiné à une régulation de traction
WO2016041746A1 (fr) Réglage de la largeur dans un train finisseur
EP3231522B1 (fr) Controle robuste de tension de bande
WO1999024183A1 (fr) Procede et dispositif permettant de laminer une bande d&#39;epaisseur variable
AT518461A1 (de) Gießspiegelregelung mit Störgrößenkompensation
EP3798750A1 (fr) Procédé de surveillance et de commande d&#39;une installation de laminage de produits métalliques
AT408035B (de) Verfahren zur aktiven kompensation periodischer störungen
DE2440235C2 (fr)
EP3890900B1 (fr) Procédé servant à faire fonctionner une cage de laminoir de laminage à gradins
EP3795267B1 (fr) Procédé de fonctionnement d&#39;une cage de laminoir
EP2861360B1 (fr) Procédé de traitement de produits laminés dans un laminoir

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200828

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1369255

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004246

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210611

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210610

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210710

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018004246

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

26N No opposition filed

Effective date: 20211213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220112

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220112

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220112

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240122

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240129

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310