EP3565677B1 - Method for producing sheet metal components and device therefor - Google Patents

Method for producing sheet metal components and device therefor Download PDF

Info

Publication number
EP3565677B1
EP3565677B1 EP18700043.5A EP18700043A EP3565677B1 EP 3565677 B1 EP3565677 B1 EP 3565677B1 EP 18700043 A EP18700043 A EP 18700043A EP 3565677 B1 EP3565677 B1 EP 3565677B1
Authority
EP
European Patent Office
Prior art keywords
sheet metal
preform
tool
metal preform
preforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18700043.5A
Other languages
German (de)
French (fr)
Other versions
EP3565677A1 (en
EP3565677C0 (en
Inventor
Thomas Flehmig
Martin Kibben
Daniel Nierhoff
Arndt MARX
Daniel CASPARY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3565677A1 publication Critical patent/EP3565677A1/en
Application granted granted Critical
Publication of EP3565677B1 publication Critical patent/EP3565677B1/en
Publication of EP3565677C0 publication Critical patent/EP3565677C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/22Deep-drawing with devices for holding the edge of the blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/30Deep-drawing to finish articles formed by deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/04Blank holders; Mounting means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/16Additional equipment in association with the tools, e.g. for shearing, for trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides

Definitions

  • the invention relates to a method and a device for producing sheet metal components.
  • Deep drawing is usually used as a proven forming process for producing sheet metal components with complex geometries.
  • a preferably flat blank is clamped between a blank holder or sheet holder and a drawing ring or die support surface and then drawn into a die via a punch.
  • the device is used in single-acting or multiple-acting presses.
  • the edge of the component usually has a smaller circumference than the blank used.
  • the friction between the sheet and the blank holder is adjusted using a coordinated blank holder force or other measures such as drawing beads or similar so that the necessary areas of the component are stretched out as far as possible and no cracks or wrinkles occur. Compressive stresses initiated by the excess material in the circumferential direction are thus superimposed with tensile stresses, thus largely preventing local thickening of the material.
  • Deep drawing also has the advantage that the greatest possible material strength can be achieved due to the large plastic strains that occur during the process and the associated hardening of the material used (steel sheets, aluminum sheets or other metallic materials).
  • the main disadvantages of conventional deep drawing are the tendency of the component to spring back due to the inhomogeneous stress state after drawing and its sensitivity to batch fluctuations.
  • the expected spring back is already taken into account when designing the forming tools by incorporating the expected spring back values in the opposite direction into the tool using classic compensation measures such as the so-called "Forward Springback Compensation” in order to obtain a component that is as dimensionally accurate as possible after the load is released despite the inhomogeneous stress state. Since these measures are not sufficient, especially for high-strength materials and especially in combination with low sheet thicknesses, straightening and/or calibration processes are often required in subsequent operations to achieve the required dimensional accuracy.
  • Another problem is that after a change of material batch, for example when changing the coil, the dimensional accuracy of the components can no longer be maintained. This means that complex measures have to be taken to readjust the straightening and/or calibration processes and/or the deep-drawing process, in particular the hold-down force, has to be individually adjusted to the new batch. A lack of consistency in the tribological conditions in the tool also leads to undesirable deviations from the target geometry of the finished component.
  • the so-called drawn edges usually have to be cut off after the forming process for components manufactured in this way.
  • This trimming usually represents one or more separate operations that require their own tool technology and logistics system.
  • the edge trimming often means that the material is not used as effectively as possible, which results in additional costs.
  • flange trimming can be integrated into the last deep-drawing operation. This can result in cost savings, but there are still some disadvantages, such as the generation of waste, the creation of complex tools, a complex tryout, unwanted springback effects, limited dimensional accuracy and susceptibility to process disruptions.
  • a preform is produced which is as geometrically close as possible to the finished shape of the component, but which, in contrast to the latter, contains no or only partial material allowances for edge trimming and instead has a defined excess material in typical part sections such as the base area, frame area and/or if present in the flange area, which is used in a second process step to set the desired dimensional accuracy of the component including the edge contour without further cutting operations by means of special upsetting and/or calibration of essentially the entire component.
  • Preforms produced in this way do correspond to the required geometry, but their edge contours can vary in such a way, particularly in the case of complex component geometries and also in connection with low component thicknesses, that the length of the cross-sectional development due to fluctuations from a batch change and/or wear of the preforming tools and/or the tribological properties of tools and material, that the preforms produced in this way cannot be processed in the subsequent upsetting and/or calibration die or can only be processed to a limited extent.
  • the process and the device can be further optimized with regard to process reliability.
  • the EN 10 2008 037612 A1 describes a method for producing a sheet metal component, the method comprising the following steps:Preforming a sheet metal in at least one preforming tool to form a sheet metal preform having at least one base region, a frame region, a transition area between the base and frame area, a flange area and a transition area between the frame and flange area, removing the sheet metal preform from the preforming tool and placing it in at least one trimming tool for at least partially trimming the sheet metal preform to form a trimmed sheet metal preform with a sheet metal preform edge and removing the trimmed sheet metal preform from the trimming tool and placing it in at least one calibration tool for upsetting and/or calibrating the at least partially trimmed sheet metal preform to form a substantially fully formed sheet metal component.
  • the EN 10 2008 037612 A1 also describes a device for producing a dimensionally accurate component, with at least one preforming tool for preforming a sheet metal to form a sheet metal preform having at least one base region, a frame region, a transition region between the base and frame regions, a flange region and a transition region between the frame and flange regions, with at least one trimming tool for at least partially trimming the sheet metal preform to form a trimmed sheet metal preform with a sheet metal preform edge and with at least one upsetting/calibrating tool for upsetting and/or calibrating the at least partially trimmed sheet metal preform to form a substantially fully formed sheet metal component, wherein the preforming tool, the trimming tool and the upsetting/calibrating tool are separate tools from one another.
  • the invention is therefore based on the object of providing a generic method and a generic device with which manufactured sheet metal preforms can be processed reliably, in particular without final edge trimming, regardless of batch and/or tribology, in particular with a repeatable geometry of the sheet metal preform in the upsetting and/or calibrating die.
  • the region immediately adjacent to the sheet metal preform edge of the sheet metal preform trimmed at least in regions has, at least in regions in cross-section, a positive dimensional deviation in relation to the developed length of the corresponding region of the finished sheet metal component for upsetting and/or calibrating.
  • the sheet metal preform can be manufactured using any combination of forming processes in one or more steps.
  • the preforming can, for example, include a deep-drawing-like forming step.
  • multi-stage forming can also be carried out, including, for example, embossing the base area to be created and raising the frame area to be created or, optionally, setting down the flange area to be created. Any combination of folding and/or bending and/or embossing in one or more subsequent operations is also conceivable.
  • the deep drawing carried out for preforming for example, is carried out in one or more stages.
  • the sheet metal preform obtained by preforming can in particular be viewed as a sheet metal component that is as close to its final shape as possible and which corresponds as closely as possible to the intended finished part geometry, taking into account given boundary conditions such as springback and formability of the material used.
  • the deviation of the edge contour of the sheet metal preform from its finished sheet metal component shape is preferably positive (with more material).
  • the absolute deviation of the edge contour of the component preform from the edge contour of the finished component should be as small as possible by means of a suitable method design, but this is often not possible in practice.
  • the focus of the method design is rather to keep the absolute deviation of the edge contour of the component preform from each other as small as possible during the process.
  • Upsetting/calibrating can be understood in particular as a final forming or final shaping of the trimmed sheet metal preform, which can be achieved, for example, by one or more pressing processes.
  • the essentially fully formed sheet metal component can therefore be understood as a final formed sheet metal component.
  • the essentially fully formed sheet metal component can be subjected to further processing steps that modify the component, such as the introduction of connection holes, the setting of end flanges, the introduction of collars and/or partial edge trimming.
  • the aim is to design the calibration form in such a way that essentially no further forming steps are necessary.
  • the initially produced sheet metal preform, as well as the trimmed sheet metal preform and ultimately the finished sheet metal component essentially have a longitudinal extension and a transverse extension.
  • Cross section means a cut through the transverse extension of the sheet metal preform / the trimmed sheet metal preform / the finished sheet metal component.
  • the flange area means at least one side of the finished sheet metal component with a flange section provided at least in part on at least one side in the longitudinal and/or transverse extension, in particular on both sides of the finished sheet metal component, which serves, for example, to connect to other components and is also referred to as a joining flange.
  • the frame area is provided on at least one side of the finished sheet metal component in the longitudinal extension, in particular on two opposite sides of the finished sheet metal component, wherein the finished sheet metal component has, for example, a substantially hat-shaped cross-section, with a frame area on each side, wherein the frame areas can be identical but also have a different height.
  • An optional one-piece transition area is provided between the optional flange area and the frame area.
  • the base area is formed in one piece with the frame area(s) over a further transition area and, depending on the complexity of the sheet metal component to be produced, does not have to be limited to one level, but can also be provided in different areas along the length.
  • the transitions between the individual levels in the base area can be stepped or curved, in particular a so-called cranked design can be used.
  • the finished sheet metal component can also have shapes other than longitudinal or longitudinal-axial shapes, for example it can be curved, C-shaped or L-shaped.
  • the trimmed sheet metal preform has, at least in some areas, a developed length in the cross-section that is between 0.5% and 4% longer in relation to the developed length of the finished sheet metal component.
  • the developed length of the cross sections of the trimmed sheet metal preform considered in this way is preferably between 0.7% and 3.3% longer than that of the finished sheet metal component in some sections or as a whole. If the developed length of the cross sections varies too much as a result of the process control during the manufacture of the trimmed sheet metal preform, then if the developed length is too short, there would not be enough excess material available for the subsequent upsetting/calibrating step, which would impair the dimensional accuracy of the component. If, however, the developed length of the cross-section of the trimmed sheet metal preform is too large, the oversized excess material would collapse into waves during the subsequent calibration process, which could result in an optical and/or dimensional defect.
  • the material flow is controlled in a targeted manner at least in some areas during the preforming of the sheet metal into the sheet metal preform.
  • a force-loaded sheet metal or hold-down device when producing the sheet metal preform for certain sheet metal components, in particular to slow it down, in order to prevent undesirable wrinkles.
  • the material flow can be controlled in a favorable manner via drawing beads and/or drawing stages arranged at least in some areas during the production of the sheet metal preform, so that the manufacturability of certain component geometries can be improved.
  • material reserves are provided or created as excess material at least in some areas.
  • the material reserves are preferably introduced in a bead-like, wave-like and/or slightly folded manner.
  • the material reserves can be introduced or provided in the base area, in the frame area, optionally in the flange area, in the transition area between the base and frame area and/or optionally in the transition area between the frame and flange area.
  • the material reserves are introduced or provided in a targeted manner via at least one preform tool. This advantageously makes it possible to reliably produce a preform that has a greater tendency to form folds due to its geometric shape.
  • the above-mentioned task is solved in a generic device in that the trimming tool is set up in such a way that in the area of the at least partially trimmed sheet metal preform immediately adjacent to the sheet metal preform edge, at least in some areas in the cross-section, a positive dimensional deviation remains in relation to the developed length of the corresponding area of the finished sheet metal component for upsetting and/or calibrating.
  • a repeatable geometry can be ensured, in particular with regard to the position of the component edges of the trimmed sheet metal preform and thus of the sheet metal preform edge that is essential for the subsequent upsetting/calibrating.
  • the device comprises a preforming tool with, for example, a preforming punch, a preforming die and a sheet metal holder.
  • the base area of the preforming die can, if required, be detached from the rest of the preforming die and movable at least in sections, for example to form an (inner) hold-down device.
  • a sheet metal holder can also be used.
  • the sheet metal preform can preferably be produced by conventional deep drawing.
  • the preforming die can have at least one drawing bead and/or drawing step, at least in some areas, which positively supports the ironing during deep drawing to form the sheet metal preform and to ensure sufficient development in the transverse and/or longitudinal extent of the sheet metal preform.
  • the sheet metal preform can be produced in two or more stages or preforming tools.
  • the at least one preforming tool is designed to provide material reserves during the preforming of the sheet metal into the sheet metal preform, for example by deep drawing.
  • the device comprises a trimming tool, in particular for a trimming to be carried out on the sheet metal preform in certain areas, with a holding-down device and a die.
  • the holding-down device and the die are preferably designed to hold the sheet metal preform between them in a clamping manner, in particular without further plastic shaping, in particular apart from the intended trimming.
  • smaller forming operations can also be integrated in certain areas.
  • the contour of the hold-down device and the die which at least partially contacts the base area and the frame area of the sheet metal preform, essentially the contour of the desired sheet metal preform. This ensures that the measures implemented in the sheet metal preform for upsetting/calibrating are not compensated for in the trimming tool.
  • the trimming tool can comprise cutting elements that are movable relative to the punch and/or die, in particular in the form of a cutting punch and counterholder.
  • a laser can also be used for trimming (laser cutting).
  • the device comprises a calibration tool with a calibration stamp, a calibration die and a shut-off element.
  • the contour of the calibration stamp and the calibration die essentially corresponds to the base area, frame area and optionally flange area, in particular the target geometry of the sheet metal component to be finished.
  • the shut-off element serves as an abutment during the upsetting/calibration, in particular of the sheet metal edges in the flange area of the sheet metal component to be finished, and thus blocks a material flow away from the sheet metal component, so that directed stresses are established in the sheet metal component to be finished in order to produce a sheet metal component with particularly high dimension stability.
  • shut-off elements as part(s) of the calibration tool, can be movable relative to the calibration stamp and/or calibration die, either movable coaxially to both or movable in and out at an angle.
  • the shut-off element can be designed as a single piece in the calibration die, particularly as a step and/or projection, which can reduce the number of parts in the calibration tool.
  • the compression/calibration can also be carried out in two or more steps or calibration tools.
  • the device is integrated in a progressive composite press.
  • a progressive composite press In particular in the manufacture of mass products, for example for products in the automotive industry, products such as sheet metal components are manufactured particularly economically in a progressive composite press.
  • a flat sheet (1) is shown in cross-section, which is unwound from a coil (not shown) and cut to length, and in particular is made available for the further process as a defined blank.
  • the sheet (1) is preferably made from a steel material, preferably from a high-strength steel material. Alternatively, aluminum materials or other metals can also be used.
  • the sheet can also be provided as a tailored product.
  • the sheet metal (1) is first formed using conventional methods in such a way that the geometry of the sheet metal preform (2) is provided with a surplus of material, for example in the form of at least one material reserve (4) in the base area (2.1) for the further processes.
  • the surplus of material can also be provided alternatively or cumulatively in the frame area (2.2), in the flange area (2.3) and/or in the transition areas (2.4, 2.5) between the base area (2.1), frame area (2.2) and flange area (2.3), not shown here.
  • the sheet metal preform (2) can preferably be produced by classic deep drawing.
  • the sheet metal preform (2) is produced, for example, in a preforming tool (5), whereby the flat sheet metal (1) is inserted into the open preforming tool (5) using suitable means not shown here, and then a preforming punch (5.1), a preforming die (5.2) and at least one sheet metal holder (5.3) act on the sheet metal (1).
  • a preforming punch (5.1), a preforming die (5.2) and at least one sheet metal holder (5.3) act on the sheet metal (1).
  • the movement and/or method of travel of the components of the preforming tool (5) is shown symbolically by the double arrows shown (5.11, 5.31).
  • the sheet metal holder (5.3) clamps the sheet metal (1).
  • the preforming punch (5.1) is then moved in the direction of the bottom dead center and forms the sheet metal (1) into a sheet metal preform (2).
  • the sheet metal holder (5.3) can be spaced or subjected to a force.
  • the preform die (5.2) can have at least one drawing bead and/or drawing step (5.4) at least in some areas, which positively supports in particular the ironing during deep drawing to form the sheet metal preform (2) and ensures sufficient development in the transverse extension (Q") and/or longitudinal extension (A") on the sheet metal preform (2), as well as avoiding undesirable wrinkles.
  • the preforming punch (5.1) is designed to introduce material supply (4) during the preforming of the sheet metal (1) to form the sheet metal preform (2).
  • the excess material required for upsetting/calibrating can also be taken into account in the form of material supply (4) in the preforming tool (5).
  • the production of the sheet metal preform (2) is not limited to one preforming tool (5), but can take place in two or more stages or preforming tools depending on the complexity of the sheet metal component (3) to be produced (not shown here).
  • Figure 2a shows the preforming tool (5) in the so-called bottom dead center.
  • the sheet metal preform (2) is removed from the preforming tool (5), which exhibits a springback as a result of an unavoidable inhomogeneous stress state introduced into the sheet metal preform (2) ( Figure 2b ).
  • compensation measures can already be taken in order to obtain a sheet metal preform (2) that corresponds as closely as possible to the final geometry. Fluctuations in the springback are compensated for in the upsetting/calibration process, so that no complex correction loops are required. The same applies to fluctuations that can result from batch changes and/or wear of the preforming tools and/or the tribological properties of tools and material.
  • the sheet metal preform (2) for example, has a transverse extension (Q") and a longitudinal extension (A"), whereby the longitudinal extension (A") is, for example, many times higher than the transverse extension (Q") and is shown symbolically in the direction of the image plane.
  • the removed sheet metal preform (2) is placed in a trimming tool (6) which comprises a hold-down device (6.1) and a die (6.2).
  • the hold-down device (6.1) and the die (6.2) are preferably designed to hold the sheet metal preform (2) between them in a clamping or fixing manner and in particular without further plastic shaping.
  • the contour of the hold-down device (6.1) and the die (6.2), which at least partially contact the base area (2.1) and the frame area (2.2) of the sheet metal preform (2), essentially correspond to the contour of the preform punch (5.1) and the preform die (5.2). This ensures that the measures implemented in the sheet metal preform (2) for upsetting/calibrating are not negatively influenced in the trimming tool.
  • the trimming tool (6) comprises cutting elements (6.3, 6.4, 6.5, 6.6) that are movable relative to the hold-down device (6.1) and/or die (6.2).
  • the movement and/or method of movement of the components of the trimming tool (6) is shown symbolically by the double arrows shown (6.11, 6.31, 6.41, 6.51, 6.61).
  • the sheet metal preform (2) is trimmed in such a way that the unrolled length (L) of the trimmed sheet metal preform (2') in cross-section is between 0.5% and 4% longer in relation to the unrolled length (L') of the finished sheet metal component (3).
  • the trimmed sheet metal preform (2') has a longer flange area (2'.3, M) in relation to the flange area (3.3, M') of the finished sheet metal component (3).
  • the flange area (2'.3) is then cut off at least in sections in a cutting or punching process in order to produce a repeatable cross-sectional development or a sheet metal preform edge (2'.31) for the subsequent upsetting/calibrating process.
  • Four movable cutting elements (6.3, 6.4, 6.5, 6.6) are shown, which can be designed individually as cutting knives (6.3, 6.5) and movable counterholders (6.4, 6.6).
  • the number of cutting elements is not fixed at four, but rather only one cutting element can be provided per side, which can cut the flange area (2.5) of the sheet metal preform (2) from above or from below.
  • the trimmed sheet metal preform (2') has a cross-section with a transverse extension (Q) and possibly a longitudinal extension (A) that is smaller than the transverse extension (Q") and possibly the longitudinal extension (A") of the sheet metal preform (2).
  • the trimmed sheet metal preform (2') removed from the trimming tool (6) still has a springback as before insertion and is inserted into a calibration tool (7) which comprises a calibration punch (7.1) and a calibration die (7.2).
  • Figure 4a shows the calibration tool (7) at bottom dead center.
  • the calibration tool (7) comprises in particular a shut-off element (7.3) which acts as an abutment on the peripheral edge (2 ⁇ .31) of the trimmed sheet metal preform (2') in order to achieve the final, near-net-shape geometry of the finished sheet metal component ( Figure 4b ).
  • the movement and/or method of travel of the components of the calibration tool (7) is shown symbolically by the double arrows (7.11, 7.21, 7.31).
  • a highly dimensionally accurate, flanged sheet metal component (5) is produced in the calibration tool (7) from the trimmed sheet metal preform (2'), which in cross-section has a developed length (L) between 0.5% and 4% longer than the developed length (L') of the finished sheet metal component (5) and the trimmed sheet metal preform (2') has a longer flange area (2'.3, M) in relation to the flange area (3.3, M') of the finished sheet metal component (5).
  • cranked sheet metal components (3 ⁇ ) can also be formed with a base area (3 ⁇ .1) in different levels and with different heights (T, T 1 , T 2 ) of the frame areas (3.2, 3'.2), in particular in the longitudinal extension (A') on both sides ( Figure 5 ).
  • Other shapes, for example C-shaped sheet metal components (3") in their longitudinal extension (A') can be manufactured dimensionally accurate, in particular with a flange area (3.3) ( Fig.6 ).
  • the invention provides that the region (2.2, 2.5, 2.3) immediately adjacent to the sheet metal preform edge (2 ⁇ .31) of the sheet metal preform (2') trimmed at least in regions has a positive dimensional deviation (M) at least in regions in cross-section in relation to the developed length (M') of the corresponding region (3.2, 3.5, 3.3) of the finished sheet metal component (3, 3', 3") for upsetting and/or calibrating.
  • M positive dimensional deviation
  • the positive dimensional deviation (M) in the above embodiments corresponds, for example, in cross-section (Q) to a longer flange region (2 ⁇ .3) of the trimmed sheet metal preform (2') in relation to the developed length (M') of the flange region (3.3) of the finished sheet metal component (3, 3', 3").
  • the invention is not limited to the embodiments shown. Other component shapes are also possible and require correspondingly adapted tool contours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Forging (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

Technisches GebietTechnical area

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung von Blechbauteilen.The invention relates to a method and a device for producing sheet metal components.

Technischer HintergrundTechnical background

Zur Herstellung von Blechbauteilen mit komplexer Geometrie kommt üblicherweise das Tiefziehen als bewährtes Umformverfahren zum Einsatz. Eine vorzugsweise ebene Platine wird dabei zwischen Niederhalter bzw. Blechhalter und Ziehring bzw. Gesenkauflagefläche geklemmt und dann über einen Stempel in eine Matrize gezogen. Die Vorrichtung wird dazu in ein- oder auch mehrfach wirkenden Pressen eingesetzt.Deep drawing is usually used as a proven forming process for producing sheet metal components with complex geometries. A preferably flat blank is clamped between a blank holder or sheet holder and a drawing ring or die support surface and then drawn into a die via a punch. The device is used in single-acting or multiple-acting presses.

Üblicherweise hat die Berandung des Bauteils nach dem Tiefziehen einen kleineren Umfang als die eingesetzte Platine. Um zu verhindern, dass der beim Umformen vorliegende Materialüberschuss zu Faltenbildung und/oder Blechdickenzunahme führt, wird die Reibung zwischen Blech und Niederhalter über eine abgestimmte Niederhalterkraft oder andere Maßnahmen wie zum Beispiel Ziehsicken o. ä. so eingestellt, dass notwendige Bereiche des Bauteils möglichst maximal ausgestreckt werden und keine Risse oder Falten entstehen. Über den Materialüberschuss in Umfangsrichtung initiierte Druckspannungen werden dadurch mit Zugspannungen überlagert und so lokale Aufdickungen des Materials größtenteils verhindert. Zusätzlich hat das Tiefziehen den Vorteil, dass sich durch die verfahrensbedingt auftretenden, großen plastischen Dehnungen und die damit einhergehende Verfestigung des eingesetzten Materials (Stahlbleche, Aluminiumbleche oder andere metallische Werkstoffe) größtmögliche Materialfestigkeiten erzielen lassen.After deep drawing, the edge of the component usually has a smaller circumference than the blank used. In order to prevent the excess material during forming from causing wrinkles and/or an increase in sheet thickness, the friction between the sheet and the blank holder is adjusted using a coordinated blank holder force or other measures such as drawing beads or similar so that the necessary areas of the component are stretched out as far as possible and no cracks or wrinkles occur. Compressive stresses initiated by the excess material in the circumferential direction are thus superimposed with tensile stresses, thus largely preventing local thickening of the material. Deep drawing also has the advantage that the greatest possible material strength can be achieved due to the large plastic strains that occur during the process and the associated hardening of the material used (steel sheets, aluminum sheets or other metallic materials).

Nachteilig sind beim konventionellen Tiefziehen insbesondere die Neigung des Bauteils zur Rückfederung infolge des inhomogenen Spannungszustands nach dem Ziehen und seine Empfindlichkeit gegenüber Chargenschwankungen. Bereits bei der Auslegung der Umformwerkzeuge wird der zu erwartenden Rückfederung Rechnung getragen, indem über klassische Kompensationsmaßnahmen wie zum Beispiel die sogenannte "Forward Springback Compensation" die erwarteten Rückfederungswerte in entgegengesetzter Richtung in das Werkzeug eingearbeitet werden, um so nach Entlastung trotz des inhomogenen Spannungszustandes ein möglichst maßgenaues Bauteil zu erhalten. Da diese Maßnahmen insbesondere bei hochfesten Werkstoffen und insbesondere in Kombination mit geringen Blechdicken nicht genügen, sind oftmals Richt- und/oder Kalibrierprozesse zur Erreichung der geforderten Maßhaltigkeit in weiteren Folgeoperationen erforderlich.The main disadvantages of conventional deep drawing are the tendency of the component to spring back due to the inhomogeneous stress state after drawing and its sensitivity to batch fluctuations. The expected spring back is already taken into account when designing the forming tools by incorporating the expected spring back values in the opposite direction into the tool using classic compensation measures such as the so-called "Forward Springback Compensation" in order to obtain a component that is as dimensionally accurate as possible after the load is released despite the inhomogeneous stress state. Since these measures are not sufficient, especially for high-strength materials and especially in combination with low sheet thicknesses, straightening and/or calibration processes are often required in subsequent operations to achieve the required dimensional accuracy.

Auch ist es unter Anderem problematisch, dass nach einem Wechsel der Materialcharge, beispielsweise beim Wechsel des Coils, die Maßhaltigkeit der Bauteile nicht mehr eingehalten werden kann. Das hat zur Folge, dass aufwändige Maßnahmen zur Nachjustage der Richt- und/oder Kalibrierprozesse getroffen werden müssen und/oder der Tiefziehprozess, hier insbesondere die Niederhalterkraft, individuell auf die neue Charge abgestimmt werden muss. Auch eine fehlende Konstanz der tribologischen Verhältnisse im Werkzeug führt zu unerwünschten Abweichungen von der Sollgeometrie des fertigen Bauteils.Another problem is that after a change of material batch, for example when changing the coil, the dimensional accuracy of the components can no longer be maintained. This means that complex measures have to be taken to readjust the straightening and/or calibration processes and/or the deep-drawing process, in particular the hold-down force, has to be individually adjusted to the new batch. A lack of consistency in the tribological conditions in the tool also leads to undesirable deviations from the target geometry of the finished component.

Neben den oben beschriebenen Vor- und Nachteilen des konventionellen Tiefziehverfahrens müssen bei derart hergestellten Bauteilen im Anschluss an die Umformung üblicherweise noch die sogenannten Ziehränder abgeschnitten werden. Dieser Beschnitt stellt meistens eine oder mehrere separate Operationen dar, die eine eigene Werkzeugtechnik und ein eigenes Logistiksystem benötigen. Außerdem ist durch die Randbeschnitte die Materialausnutzung häufig ungünstig, sodass weitere Kosten entstehen.In addition to the advantages and disadvantages of the conventional deep-drawing process described above, the so-called drawn edges usually have to be cut off after the forming process for components manufactured in this way. This trimming usually represents one or more separate operations that require their own tool technology and logistics system. In addition, the edge trimming often means that the material is not used as effectively as possible, which results in additional costs.

Um die Prozesskette trotzdem kurz zu halten, kann der Flanschbeschnitt mit in die letzte Tiefziehoperation integriert werden. Damit lassen sich zwar Kosteneinsparungen erzielen, jedoch verbleiben einige Nachteile, wie das Anfallen von Verschnitt, die Erstellung aufwändiger Werkzeuge, ein aufwändiges Tryout, ungewollte Rückfederungseffekte, eingeschränkte Maßhaltigkeit und die Anfälligkeit gegenüber Prozessstörungen.In order to keep the process chain short, flange trimming can be integrated into the last deep-drawing operation. This can result in cost savings, but there are still some disadvantages, such as the generation of waste, the creation of complex tools, a complex tryout, unwanted springback effects, limited dimensional accuracy and susceptibility to process disruptions.

Im Stand der Technik sind Verfahren und Vorrichtungen bekannt, wie der Randbeschnitt von U-förmigen oder hutprofilartigen Bauteilen eingespart bzw. stark reduziert werden kann, siehe beispielsweise die Lehren in den Offenlegungsschriften DE 10 2007 059 251 A1 , DE 10 2008 037 612 A1 , DE 10 2009 059 197 A1 , DE 10 2013 103 612 A1 , DE 10 2013 103 751 A1 . Die Lehren haben gemeinsam, dass in einem ersten Verfahrensschritt eine Vorform erzeugt wird, die der Fertigform des Bauteils geometrisch möglichst nahe kommt, welche jedoch im Unterschied zu dieser keine oder nur abschnittsweise Materialzugaben für einen Randbeschnitt enthält und dafür in typischen Teileabschnitten wie Bodenbereich, Zargenbereich und/oder falls vorhanden im Flanschbereich einen definierten Materialüberschuss aufweist, der in einem zweiten Verfahrensschritt genutzt wird, um durch ein spezielles Stauchen und/oder Kalibrieren des im Wesentlichen gesamten Bauteiles die gewünschte Maßhaltigkeit des Bauteils inklusive der Randkontur ohne weitere Schneideoperationen einzustellen. Dieses bekannte Verfahren beseitigt zwar die oben genannten Nachteile der unerwünschten Rückfederung und der Randbeschnitte, kann aber selbst einige eigene, unerwünschte Nebeneffekte haben. Derart hergestellte Vorformen entsprechen zwar der geforderten Geometrie, können jedoch in ihrer Randkontur insbesondere bei komplexer Bauteilgeometrie und auch in Zusammenhang mit geringen Bauteildicken die Länge der Querschnittsabwicklungen aufgrund von Schwankungen aus einem Chargenwechsel und/oder Abnutzung der Vorformwerkzeuge und/oder den tribologischen Eigenschaften von Werkzeugen und Material heraus derart variieren, dass die so hergestellten Vorformen im nachfolgenden Stauch- und/oder Kalibriergesenk nicht oder nur eingeschränkt verarbeitet werden können. Hinsichtlich der Prozesssicherheit kann das Verfahren und die Vorrichtung weiter optimiert werden.In the state of the art, methods and devices are known for how the edge trimming of U-shaped or hat-shaped components can be saved or greatly reduced, see for example the teachings in the published patent applications EN 10 2007 059 251 A1 , EN 10 2008 037 612 A1 , EN 10 2009 059 197 A1 , EN 10 2013 103 612 A1 , EN 10 2013 103 751 A1 . What the teachings have in common is that in a first process step a preform is produced which is as geometrically close as possible to the finished shape of the component, but which, in contrast to the latter, contains no or only partial material allowances for edge trimming and instead has a defined excess material in typical part sections such as the base area, frame area and/or if present in the flange area, which is used in a second process step to set the desired dimensional accuracy of the component including the edge contour without further cutting operations by means of special upsetting and/or calibration of essentially the entire component. Although this known process eliminates the disadvantages of undesirable springback and edge trimming mentioned above, it can itself have some undesirable side effects of its own. Preforms produced in this way do correspond to the required geometry, but their edge contours can vary in such a way, particularly in the case of complex component geometries and also in connection with low component thicknesses, that the length of the cross-sectional development due to fluctuations from a batch change and/or wear of the preforming tools and/or the tribological properties of tools and material, that the preforms produced in this way cannot be processed in the subsequent upsetting and/or calibration die or can only be processed to a limited extent. The process and the device can be further optimized with regard to process reliability.

Die DE 10 2008 037612 A1 beschreibt ein Verfahren zur Herstellung eines Blechbauteils, wobei das Verfahren folgende Schritte umfasst:Vorformen eines Blechs in mindestens einem Vorform-Werkzeug zu einer Blechvorform aufweisend mindestens einen Bodenbereich, einen Zargenbereich, einen Übergangsbereich zwischen Boden- und Zargenbereich, einen Flanschbereich und einen Übergangsbereich zwischen Zargen- und Flanschbereich, Entnehmen der Blechvorform aus dem Vorform-Werkzeug und Einlegen in mindestens ein Beschnitt-Werkzeug zum zumindest bereichsweisen Beschneiden der Blechvorform zu einer beschnittenen Blechvorform mit einer Blechvorformkante und Entnehmen der beschnittenen Blechvorform aus dem Beschnitt-Werkzeug und Einlegen in mindestens ein Kalibrier-Werkzeug zum Stauchen und/oder Kalibrieren der zumindest bereichsweise beschnittenen Blechvorform zu einem im Wesentlichen fertiggeformten Blechbauteil.The EN 10 2008 037612 A1 describes a method for producing a sheet metal component, the method comprising the following steps:Preforming a sheet metal in at least one preforming tool to form a sheet metal preform having at least one base region, a frame region, a transition area between the base and frame area, a flange area and a transition area between the frame and flange area, removing the sheet metal preform from the preforming tool and placing it in at least one trimming tool for at least partially trimming the sheet metal preform to form a trimmed sheet metal preform with a sheet metal preform edge and removing the trimmed sheet metal preform from the trimming tool and placing it in at least one calibration tool for upsetting and/or calibrating the at least partially trimmed sheet metal preform to form a substantially fully formed sheet metal component.

Die DE 10 2008 037612 A1 beschreibt ebenfalls eine Vorrichtung zur Herstellung eines maßhaltigen Bauteils, mit mindestens einem Vorform-Werkzeug zum Vorformen eines Blechs zu einer Blechvorform aufweisend mindestens einen Bodenbereich, einen Zargenbereich, einen Übergangsbereich zwischen Boden- und Zargenbereich, einen Flanschbereich und einen Übergangsbereich zwischen Zargen- und Flanschbereich, mit mindestens einem Beschnitt-Werkzeug zum zumindest bereichsweise Beschneiden der Blechvorform zu einer beschnittenen Blechvorform mit einer Blechvorformkante und mit mindestens einem Stauch/Kalibrier-Werkzeug zum Stauchen und/oder Kalibrieren der zumindest bereichsweise beschnittenen Blechvorform zu einem im Wesentlichen fertiggeformten Blechbauteil, wobei das Vorform-Werkzeug, das Beschnitt-Werkzeug und das Stauch/Kalibrier-Werkzeug voneinander getrennte Werkzeuge sind.The EN 10 2008 037612 A1 also describes a device for producing a dimensionally accurate component, with at least one preforming tool for preforming a sheet metal to form a sheet metal preform having at least one base region, a frame region, a transition region between the base and frame regions, a flange region and a transition region between the frame and flange regions, with at least one trimming tool for at least partially trimming the sheet metal preform to form a trimmed sheet metal preform with a sheet metal preform edge and with at least one upsetting/calibrating tool for upsetting and/or calibrating the at least partially trimmed sheet metal preform to form a substantially fully formed sheet metal component, wherein the preforming tool, the trimming tool and the upsetting/calibrating tool are separate tools from one another.

Zusammenfassung der ErfindungSummary of the invention

Der Erfindung liegt somit die Aufgabe zu Grunde, ein gattungsgemäßes Verfahren und eine gattungsgemäße Vorrichtung bereitzustellen, mit welchem bzw. welcher gefertigte Blechvorformen unabhängig von Charge und/oder Tribologie, insbesondere mit einer wiederholgenauen Geometrie der Blechvorform im Stauch- und/oder Kalibriergesenk prozesssicher, insbesondere ohne abschließenden Randbeschnitt verarbeitet werden können.The invention is therefore based on the object of providing a generic method and a generic device with which manufactured sheet metal preforms can be processed reliably, in particular without final edge trimming, regardless of batch and/or tribology, in particular with a repeatable geometry of the sheet metal preform in the upsetting and/or calibrating die.

Gelöst wird diese Aufgabe durch ein gattungsgemäßes Verfahren mit den Merkmalen des Patentanspruchs 1.This problem is solved by a generic method with the features of patent claim 1.

Erfindungsgemäß ist vorgesehen, dass der an die Blechvorformkante der zumindest bereichsweise beschnittenen Blechvorform unmittelbar angrenzende Bereich zumindest bereichsweise im Querschnitt eine positive Maßabweichung in Bezug auf die abgewickelte Länge des entsprechenden Bereichs des fertiggeformten Blechbauteils für das Stauchen und/oder Kalibrieren aufweist.According to the invention, it is provided that the region immediately adjacent to the sheet metal preform edge of the sheet metal preform trimmed at least in regions has, at least in regions in cross-section, a positive dimensional deviation in relation to the developed length of the corresponding region of the finished sheet metal component for upsetting and/or calibrating.

Es wurde festgestellt, dass insbesondere zur Herstellung der beschnittenen Blechvorform Maßnahmen erforderlich sind, mit denen eine wiederholgenaue Geometrie, insbesondere betreffend die Lage der Bauteilränder der beschnittenen Blechvorform und damit der für das anschließende Stauchen/Kalibrieren wesentlichen Blechvorformkante gewährleistet wird. Mit der Sicherstellung einer wiederholgenauen Geometrie, insbesondere betreffend die räumliche Lage der Kante der hergestellten beschnittenen Blechvorform wird im Grunde erreicht, dass in möglichst jedem Querschnitt der Blechvorform respektive der beschnittenen Blechvorform im Wesentlichen nur der notwendige Materialüberschuss für den nachfolgenden Stauch-/ Kalibrierschritt vorliegt.It was determined that, in particular, for the production of the trimmed sheet metal preform, measures are required to ensure a repeatable geometry, in particular with regard to the position of the component edges of the trimmed sheet metal preform and thus the sheet metal preform edge, which is essential for the subsequent upsetting/calibration. By ensuring a repeatable geometry, in particular with regard to the spatial position of the edge of the produced trimmed sheet metal preform, it is basically achieved that in as many cross sections of the sheet metal preform or the trimmed sheet metal preform as possible, essentially only the necessary excess material is present for the subsequent upsetting/calibration step.

Die Fertigung der Blechvorform kann dabei mittels beliebig kombinierbaren Formgebungsverfahren in einem oder mehreren Schritten hergestellt werden. Das Vorformen kann beispielsweise einen tiefziehartigen Formgebungsschritt umfassen. Insbesondere kann auch eine mehrstufige Formgebung umfassend beispielsweise ein Prägen des zu erstellenden Bodenbereichs und Hochstellen des zu erstellenden Zargenenbereichs bzw. optional Abstellen des zu erstellenden Flanschbereichs erfolgen. Denkbar sind auch beliebige Kombinationen aus Abkanten und/oder Biegen und/oder (Ver-)Prägen in einer oder in mehreren folgenden Operationen. Das zum Vorformen beispielsweise durchgeführte Tiefziehen wird beispielsweise einstufig oder mehrstufig ausgeführt. Die durch das Vorformen erhaltene Blechvorform kann insbesondere als ein möglichst endformnahes Blechbauteil angesehen werden, welches der beabsichtigten Fertigteilgeometrie unter Berücksichtigung gegebener Randbedingungen wie Rückfederung und Umformvermögen des verwendeten Werkstoffes möglichst gut entspricht. Im Ergebnis des Vorformprozesses ist zumindest abschnittsweise insbesondere die Abweichung der Randkontur der Blechvorform von ihrer Blechbauteilfertigform vorzugsweise positiv (mit mehr Material).The sheet metal preform can be manufactured using any combination of forming processes in one or more steps. The preforming can, for example, include a deep-drawing-like forming step. In particular, multi-stage forming can also be carried out, including, for example, embossing the base area to be created and raising the frame area to be created or, optionally, setting down the flange area to be created. Any combination of folding and/or bending and/or embossing in one or more subsequent operations is also conceivable. The deep drawing carried out for preforming, for example, is carried out in one or more stages. The sheet metal preform obtained by preforming can in particular be viewed as a sheet metal component that is as close to its final shape as possible and which corresponds as closely as possible to the intended finished part geometry, taking into account given boundary conditions such as springback and formability of the material used. As a result of the preforming process, at least in sections, the deviation of the edge contour of the sheet metal preform from its finished sheet metal component shape is preferably positive (with more material).

Die absolute Abweichung der Randkontur der Bauteilvorform zur Randkontur der Bauteilfertigform soll im Rahmen der technischen Möglichkeiten durch eine geeignete Methodenauslegung zwar gering sein, dies ist jedoch in der Praxis oft nicht möglich. Der Fokus der Methodenauslegung liegt vielmehr darin, die absolute Abweichung der Randkontur der Bauteilvorform untereinander im Prozessverlauf möglichst gering zu halten.The absolute deviation of the edge contour of the component preform from the edge contour of the finished component should be as small as possible by means of a suitable method design, but this is often not possible in practice. The focus of the method design is rather to keep the absolute deviation of the edge contour of the component preform from each other as small as possible during the process.

Unter dem Stauchen/Kalibrieren kann insbesondere ein Fertigformen oder Endformen der beschnittenen Blechvorform verstanden werden, welches beispielsweise durch einen oder mehrere Pressvorgänge erreicht werden kann. Das daraus im Wesentlichen fertiggeformte Blechbauteil kann insofern als endgeformtes Blechbauteil verstanden werden. Allerdings ist es möglich, dass das im Wesentlichen fertiggeformte Blechbauteil noch weiteren, das Bauteil modifizierenden Verarbeitungsschritten unterzogen werden kann, wie etwa einem Einbringen von Anbindungslöchern, dem Abstellen von Stirnflanschen, dem Einbringen von Kragen und/oder einem bereichsweisen Randbeschnitt. Allerdings wird angestrebt, die Kalibrierform derart zu gestalten, dass im Wesentlichen keine weiteren Umformungsschritte mehr notwendig sind.Upsetting/calibrating can be understood in particular as a final forming or final shaping of the trimmed sheet metal preform, which can be achieved, for example, by one or more pressing processes. The essentially fully formed sheet metal component can therefore be understood as a final formed sheet metal component. However, it is possible that the essentially fully formed sheet metal component can be subjected to further processing steps that modify the component, such as the introduction of connection holes, the setting of end flanges, the introduction of collars and/or partial edge trimming. However, the aim is to design the calibration form in such a way that essentially no further forming steps are necessary.

Die zunächst erzeugte Blechvorform, wie auch die beschnittene Blechvorform und letztendlich das fertiggeformte Blechbauteil haben im Wesentlichen eine Längserstreckung und eine Quererstreckung. So bedeutet Querschnitt ein Schnitt durch die Quererstreckung der Blechvorform / die beschnittene Blechvorform / das fertiggeformte Blechbauteil.The initially produced sheet metal preform, as well as the trimmed sheet metal preform and ultimately the finished sheet metal component essentially have a longitudinal extension and a transverse extension. Cross section means a cut through the transverse extension of the sheet metal preform / the trimmed sheet metal preform / the finished sheet metal component.

Unter Flanschbereich, falls das Blechbauteil nicht flanschlos ausgeführt ist, ist mindestens auf einer Seite des fertiggeformten Blechbauteils ein zumindest bereichsweise vorgesehener Flanschabschnitt mindestens auf einer Seite in Längserstreckung und/oder Quererstreckung vorgesehen, insbesondere auf beiden Seiten des fertiggeformten Blechbauteils, welcher beispielsweise zur Anbindung mit weiteren Bauteilen dient und auch als Fügeflansch bezeichnet wird. Der Zargenbereich ist mindestens auf einer Seite des fertiggeformten Blechbauteils in Längserstreckung vorgesehen, insbesondere auf zwei gegenüberliegenden Seiten des fertiggeformten Blechbauteils, wobei das fertiggeformte Blechbauteil ein beispielsweise im Wesentlichen hutprofilartigen Querschnitt aufweist, mit jeweils einem Zargenbereich auf beiden Seiten, wobei die Zargenbereiche identisch aber auch mit einer unterschiedlichen Höhe ausgeführt sein können. Zwischen optionalem Flanschbereich und Zargenbereich ist optional einstückig ein Übergangsbereich vorhanden. Der Bodenbereich ist einstückig mit dem Zargenbereich(en) über einen weiteren Übergangsbereich ausgebildet und muss je nach Komplexität des zu erzeugenden Blechbauteils nicht auf eine Ebene beschränkt sein, sondern kann in Längserstreckung auch bereichsweise auf unterschiedlichen Ebenen vorgesehen sein. Die Übergänge zwischen den einzelnen Ebenen im Bodenbereich können stufenweise oder geschwungen ausgeführt sein, insbesondere kann von einer sogenannten gekröpften Ausführung gesprochen werden. Das fertiggeformte Blechbauteil kann auch andere als in Längserstreckung bzw. längsaxiale Formen aufweisen, beispielsweise kann es bogenförmig, C-, L-förmig ausgebildet sein.If the sheet metal component is not flangeless, the flange area means at least one side of the finished sheet metal component with a flange section provided at least in part on at least one side in the longitudinal and/or transverse extension, in particular on both sides of the finished sheet metal component, which serves, for example, to connect to other components and is also referred to as a joining flange. The frame area is provided on at least one side of the finished sheet metal component in the longitudinal extension, in particular on two opposite sides of the finished sheet metal component, wherein the finished sheet metal component has, for example, a substantially hat-shaped cross-section, with a frame area on each side, wherein the frame areas can be identical but also have a different height. An optional one-piece transition area is provided between the optional flange area and the frame area. The base area is formed in one piece with the frame area(s) over a further transition area and, depending on the complexity of the sheet metal component to be produced, does not have to be limited to one level, but can also be provided in different areas along the length. The transitions between the individual levels in the base area can be stepped or curved, in particular a so-called cranked design can be used. The finished sheet metal component can also have shapes other than longitudinal or longitudinal-axial shapes, for example it can be curved, C-shaped or L-shaped.

Gemäß einer Ausführung des Verfahrens weist die beschnittene Blechvorform zumindest bereichsweise im Querschnitt eine abgewickelte Länge auf, die zwischen 0,5% bis 4% länger ist in Bezug auf die abgewickelte Länge des fertiggeformten Blechbauteils. Die abgewickelte Länge der so betrachteten Querschnitte der beschnittenen Blechvorform ist dabei abschnittsweise oder im Ganzen vorzugsweise zwischen 0,7% bis 3,3% länger als die des fertiggeformten Blechbauteils. Sollte infolge der Prozessführung bei der Herstellung der beschnittenen Blechvorform die abgewickelte Länge der Querschnitte zu stark variieren, so würde bei einer zu kurzen abgewickelten Länge nicht genügend Materialüberschuss für den nachfolgenden Stauch-/Kalibrierschritt bereitstehen, womit die Maßhaltigkeit des Bauteils beeinträchtigt werden würde. Sollte die abgewickelte Länge des betrachteten Querschnitts der beschnittenen Blechvorform dagegen zu groß sein, so würde während des nachfolgenden Kalibrierprozesses der damit überdimensionierte Materialüberschuss zu Wellen kollabieren, was einen optischen und/oder maßlichen Mangel bedeuten kann.According to one embodiment of the method, the trimmed sheet metal preform has, at least in some areas, a developed length in the cross-section that is between 0.5% and 4% longer in relation to the developed length of the finished sheet metal component. The developed length of the cross sections of the trimmed sheet metal preform considered in this way is preferably between 0.7% and 3.3% longer than that of the finished sheet metal component in some sections or as a whole. If the developed length of the cross sections varies too much as a result of the process control during the manufacture of the trimmed sheet metal preform, then if the developed length is too short, there would not be enough excess material available for the subsequent upsetting/calibrating step, which would impair the dimensional accuracy of the component. If, however, the developed length of the cross-section of the trimmed sheet metal preform is too large, the oversized excess material would collapse into waves during the subsequent calibration process, which could result in an optical and/or dimensional defect.

Gemäß einer Ausführung des Verfahrens wird der Materialfluss während des Vorformens des Blechs zu der Blechvorform zumindest bereichsweise gezielt gesteuert. Nach zahlreichen Untersuchungen und Simulationen hat sich gezeigt, dass es vorteilhaft ist, bei der Erzeugung der Blechvorform für bestimmte Blechbauteile bedingt durch ihre Geometrie den Materialfluss zumindest bereichsweise mit einem kraftbeaufschlagten Blech- bzw. Niederhalter gezielt zu steuern, insbesondere abzubremsen, um dadurch unerwünschte Faltenbildung zu verhindern. Alternativ oder kumulativ kann der Materialfluss über zumindest bereichsweise angeordnete Ziehsicken und/oder Ziehstufen während der Erzeugung der Blechvorform auf eine günstige Weise gesteuert werden, so dass die Herstellbarkeit bestimmter Bauteilgeometrie verbessert werden kann.According to one embodiment of the method, the material flow is controlled in a targeted manner at least in some areas during the preforming of the sheet metal into the sheet metal preform. After numerous investigations and simulations, it has been shown that it is advantageous to specifically control the material flow in some areas at least with a force-loaded sheet metal or hold-down device when producing the sheet metal preform for certain sheet metal components, in particular to slow it down, in order to prevent undesirable wrinkles. Alternatively or cumulatively, the material flow can be controlled in a favorable manner via drawing beads and/or drawing stages arranged at least in some areas during the production of the sheet metal preform, so that the manufacturability of certain component geometries can be improved.

Gemäß einer Ausführung des Verfahrens werden nach Abschluss des Vorformens des Blechs zu der Blechvorform zumindest bereichsweise Materialbevorratungen als überschüssiges Material bereitgestellt bzw. erzeugt. Vorzugsweise wird bei der Herstellung der Blechvorform die Materialbevorratung wulstartig, wellenförmig und/oder leicht faltenförmig eingebracht. Beispielsweise können die Materialbevorratung im Bodenbereich, im Zargenbereich, optional im Flanschbereich, im Übergangsbereich zwischen Boden- und Zargenbereich und/oder optional im Übergangsbereich zwischen Zargen- und Flanschbereich eingebracht bzw. bereitgestellt werden.According to one embodiment of the method, after the preforming of the sheet metal into the sheet metal preform has been completed, material reserves are provided or created as excess material at least in some areas. During the production of the sheet metal preform, the material reserves are preferably introduced in a bead-like, wave-like and/or slightly folded manner. For example, the material reserves can be introduced or provided in the base area, in the frame area, optionally in the flange area, in the transition area between the base and frame area and/or optionally in the transition area between the frame and flange area.

Gemäß einer Ausführung des Verfahrens werden die Materialbevorratungen gezielt über mindestens ein Vorform-Werkzeug eingebracht oder bereitgestellt. Damit ist es vorteilhaft möglich, auch eine Vorform prozesssicher herzustellen, die bedingt durch ihre geometrische Gestalt verstärkt zur Faltenbildung neigt.According to one embodiment of the method, the material reserves are introduced or provided in a targeted manner via at least one preform tool. This advantageously makes it possible to reliably produce a preform that has a greater tendency to form folds due to its geometric shape.

Über gezielt eingebrachte Materialerhebungen werden damit auch solche, zum Faltenwerfen neigende Bauteile dem erfindungsgemäßen Verfahren zugänglich gemacht.By means of specifically introduced material elevations, even components that tend to wrinkle are made accessible to the method according to the invention.

Die eingangs genannte Aufgabe wird bei einer gattungsgemäßen Vorrichtung dadurch gelöst, dass das Beschnitt-Werkzeug derart eingerichtet ist, dass im unmittelbar an der Blechvorformkante angrenzende Bereich der zumindest bereichsweisebeschnittenen Blechvorform zumindest bereichsweise im Querschnitt eine positive Maßabweichung in Bezug auf die abgewickelte Länge des entsprechenden Bereichs des fertiggeformten Blechbauteils für das Stauchen und/oder Kalibrieren verbleibt. Wie bereits erwähnt, kann bei der Herstellung der beschnittenen Blechvorform eine wiederholgenaue Geometrie, insbesondere betreffend die Lage der Bauteilränder der beschnittenen Blechvorform und damit der für das anschließende Stauchen/Kalibrieren wesentlichen Blechvorformkante sichergestellt werden. Damit wird erreicht, dass in möglichst jedem Querschnitt der beschnittenen Blechvorform der notwendige Materialüberschuss für den nachfolgenden Stauch-/Kalibrierschritt vorliegt und dadurch auch Schwankungen, die sich aus Chargenwechsel und/oder Abnutzung der Vorformwerkzeuge und/oder den tribologischen Eigenschaften von Werkzeugen und Material ergeben, ausgeglichen werden können.The above-mentioned task is solved in a generic device in that the trimming tool is set up in such a way that in the area of the at least partially trimmed sheet metal preform immediately adjacent to the sheet metal preform edge, at least in some areas in the cross-section, a positive dimensional deviation remains in relation to the developed length of the corresponding area of the finished sheet metal component for upsetting and/or calibrating. As already mentioned, when producing the trimmed sheet metal preform, a repeatable geometry can be ensured, in particular with regard to the position of the component edges of the trimmed sheet metal preform and thus of the sheet metal preform edge that is essential for the subsequent upsetting/calibrating. This ensures that the necessary excess material for the subsequent upsetting/calibrating step is present in as many cross-sections of the trimmed sheet metal preform as possible, and fluctuations resulting from batch changes and/or wear of the preforming tools and/or the tribological properties of tools and material can therefore also be compensated for.

Gemäß einer Ausgestaltung der Vorrichtung umfasst die Vorrichtung ein Vorform-Werkzeug mit beispielsweise einem Vorform-Stempel, einem Vorform-Gesenk und einem Blechhalter. Der Bodenbereich des Vorform-Gesenks kann bei Bedarf zumindest abschnittsweise vom Rest des Vorform-Gesenks losgelöst und beweglich sein, um so beispielsweise einen (inneren) Niederhalter zu bilden. Zusätzlich zum Niederhalter kann auch ein Blechhalter verwendet werden. Die Herstellung der Blechvorform kann vorzugsweise durch ein klassisches Tiefziehen erfolgen. Das Vorform-Gesenk kann zumindest bereichsweise mindestens eine Ziehsicke und/oder Ziehstufe aufweisen, welche positiv insbesondere die Abstreckung während des Tiefziehens zur Blechvorform unterstützt und um eine ausreichende Abwicklung in Quererstreckung und/oder Längserstreckung an der Blechvorform sicherzustellen. Die Herstellung zur Blechvorform kann je nach Komplexität des zu erzeugenden Blechbauteils in zwei oder mehreren Stufen respektive Vorform-Werkzeugen erfolgen.According to one embodiment of the device, the device comprises a preforming tool with, for example, a preforming punch, a preforming die and a sheet metal holder. The base area of the preforming die can, if required, be detached from the rest of the preforming die and movable at least in sections, for example to form an (inner) hold-down device. In addition to the hold-down device, a sheet metal holder can also be used. The sheet metal preform can preferably be produced by conventional deep drawing. The preforming die can have at least one drawing bead and/or drawing step, at least in some areas, which positively supports the ironing during deep drawing to form the sheet metal preform and to ensure sufficient development in the transverse and/or longitudinal extent of the sheet metal preform. Depending on the complexity of the sheet metal component to be produced, the sheet metal preform can be produced in two or more stages or preforming tools.

Zur kontrollierten Ausbildung der Materialbevorratungen ist gemäß einer Ausgestaltung der Vorrichtung das mindestens eine Vorform-Werkzeug dazu ausgebildet, während des Vorformens des Blechs zu der Blechvorform, beispielsweise durch Tiefziehen, Materialbevorratungen bereitzustellen.For the controlled formation of the material reserves, according to one embodiment of the device, the at least one preforming tool is designed to provide material reserves during the preforming of the sheet metal into the sheet metal preform, for example by deep drawing.

Gemäß einer Ausgestaltung der Vorrichtung umfasst die Vorrichtung ein Beschnitt-Werkzeug, insbesondere für einen bereichsweise durchzuführenden Beschnitt an der Blechvorform, mit einem Niederhalter und einem Gesenk. Der Niederhalter und das Gesenk sind vorzugsweise dazu ausgebildet, die Blechvorform klemmend zwischen sich, insbesondere ohne weitere, insbesondere vom beabsichtigten Beschnitt abgesehen, plastische Formgebung, aufzunehmen. Optional und alternativ können auch bereichsweise kleinere Umformungen integriert werden. Mit anderen Worten entspricht insbesondere die Kontur des Niederhalters und des Gesenks, die zumindest bereichsweise den Bodenbereich und den Zargenbereich der Blechvorform kontaktiert, im Wesentlichen der Kontur der gewünschten Blechvorform. Dadurch kann sichergestellt werden, dass die Maßnahmen, die in der Blechvorform für das Stauchen/Kalibrieren umgesetzt wurden, nicht im Beschnitt-Werkzeug wieder kompensiert werden. Des Weiteren kann das Beschnitte-Werkzeug relativ zum Stempel und/oder Gesenk bewegliche Schneidelemente, insbesondere in Form von Schneidstempel und Gegenhalter, umfassen. Alternativ zu den Schneidelementen kann auch ein Laser zum Beschneiden (Laserschneiden) verwendet werden.According to one embodiment of the device, the device comprises a trimming tool, in particular for a trimming to be carried out on the sheet metal preform in certain areas, with a holding-down device and a die. The holding-down device and the die are preferably designed to hold the sheet metal preform between them in a clamping manner, in particular without further plastic shaping, in particular apart from the intended trimming. Optionally and alternatively, smaller forming operations can also be integrated in certain areas. In other words, in particular the contour of the hold-down device and the die, which at least partially contacts the base area and the frame area of the sheet metal preform, essentially the contour of the desired sheet metal preform. This ensures that the measures implemented in the sheet metal preform for upsetting/calibrating are not compensated for in the trimming tool. Furthermore, the trimming tool can comprise cutting elements that are movable relative to the punch and/or die, in particular in the form of a cutting punch and counterholder. As an alternative to the cutting elements, a laser can also be used for trimming (laser cutting).

Gemäß einer Ausgestaltung der Vorrichtung umfasst die Vorrichtung ein Kalibrier-Werkzeug mit einem Kalibrier-Stempel, einem Kalibrier-Gesenk und einem Absperrelement. Die Kontur des Kalibrier-Stempels und des Kalibrier-Gesenks entspricht im Wesentlichen dem Bodenbereich, Zargenbereich und optional Flanschbereich insbesondere der Sollgeometrie des fertigzustellenden Blechbauteils. Das Absperrelement dient als Widerlager während des Stauchens/Kalibrierens insbesondere der Blechkanten im Flanschbereich des fertigzustellenden Blechbauteils und sperrt somit einen Materialfluss weg von dem Blechbauteil ab, sodass sich gerichtete Spannungen im fertigzustellenden Blechbauteil einstellen, um ein insbesondere hoch maßhaltiges Blechbauteil zu erzeugen. Die Absperrelemente, als Teil(e) des Kalibrier-Werkzeugs können relativ zu dem Kalibrier-Stempel und/oder Kalibrier-Gesenk beweglich sein, entweder koaxial zu beiden verfahrbar oder winklig zu- und wegfahrbar sein. Alternativ kann das Absperrelement einstückig im Kalibrier-Gesenk insbesondere als Stufe und/oder Vorsprung ausgeführt sein, wodurch die Teilezahl des Kalibrier-Werkzeugs reduziert werden kann. Das Stauchen/Kalibrieren kann auch in zwei oder mehreren Stufen respektive Kalibrier-Werkzeugen erfolgen.According to one embodiment of the device, the device comprises a calibration tool with a calibration stamp, a calibration die and a shut-off element. The contour of the calibration stamp and the calibration die essentially corresponds to the base area, frame area and optionally flange area, in particular the target geometry of the sheet metal component to be finished. The shut-off element serves as an abutment during the upsetting/calibration, in particular of the sheet metal edges in the flange area of the sheet metal component to be finished, and thus blocks a material flow away from the sheet metal component, so that directed stresses are established in the sheet metal component to be finished in order to produce a sheet metal component with particularly high dimension stability. The shut-off elements, as part(s) of the calibration tool, can be movable relative to the calibration stamp and/or calibration die, either movable coaxially to both or movable in and out at an angle. Alternatively, the shut-off element can be designed as a single piece in the calibration die, particularly as a step and/or projection, which can reduce the number of parts in the calibration tool. The compression/calibration can also be carried out in two or more steps or calibration tools.

Gemäß einer Ausgestaltung der Vorrichtung ist die Vorrichtung in einer Folgeverbund-Presse integriert. Insbesondere bei der Herstellung von Massenprodukten, beispielsweise für Produkte in der Fahrzeugindustrie, werden Produkte wie Blechbauteile insbesondere wirtschaftlich in Folgeverbund-Presse hergestellt.According to one embodiment of the device, the device is integrated in a progressive composite press. In particular in the manufacture of mass products, for example for products in the automotive industry, products such as sheet metal components are manufactured particularly economically in a progressive composite press.

Kurze Beschreibung der ZeichnungenShort description of the drawings

Im Folgenden wird die Erfindung anhand von Zeichnungen näher erläutert. Gleiche Teile sind mit gleichen Bezugszeichen versehen. Im Einzelnen zeigen:

Fig. 1
einen Querschnitt durch ein ebenes Blech,
Fig. 2a, b
ein Ausführungsbeispiel eines erfindungsgemäßen Vorform-Werkzeugs zur Durchführung eines Ausführungsbeispiels einer erfindungsgemäßen Blechvorform;
Fig. 3a, b
ein Ausführungsbeispiel eines erfindungsgemäßen Beschnitt-Werkzeugs zur Durchführung eines Ausführungsbeispiels einer erfindungsgemäßen beschnittenen Blechvorform;
Fig. 4a, b
ein Ausführungsbeispiel eines erfindungsgemäßen Kalibrier-Werkzeugs zur Durchführung eines Ausführungsbeispiels eines erfindungsgemäßen Kalibrierens;
Fig. 5
ein Ausführungsbeispiel eines ersten fertiggestellten Blechbauteils und
Fig. 6
ein Ausführungsbeispiel eines zweiten fertiggestellten Blechbauteils.
The invention is explained in more detail below with reference to drawings. Identical parts are provided with the same reference numerals. In detail:
Fig.1
a cross-section through a flat sheet,
Fig. 2a, b
an embodiment of a preforming tool according to the invention for carrying out an embodiment of a sheet metal preform according to the invention;
Fig. 3a, b
an embodiment of a trimming tool according to the invention for carrying out an embodiment of a trimmed sheet metal preform according to the invention;
Fig. 4a, b
an embodiment of a calibration tool according to the invention for carrying out an embodiment of a calibration according to the invention;
Fig.5
an embodiment of a first finished sheet metal component and
Fig.6
an embodiment of a second finished sheet metal component.

Beschreibung der bevorzugten AusführungsformenDescription of the preferred embodiments

In Figur 1 ist beispielsweise ein ebenes Blech (1) im Querschnitt dargestellt, welches von einem nicht dargestellten Coil abgewickelt und abgelängt, und insbesondere als definierter Platinenzuschnitt dem weiteren Verfahren zur Verfügung gestellt wird. Bevorzugt ist das Blech (1) aus einem Stahlwerkstoff hergestellt, vorzugsweise aus einem höherfesten Stahlwerkstoff. Alternativ können auch Aluminiumwerkstoffe oder andere Metalle verwendet werden. Das Blech kann auch als Tailored Product bereitgestellt sein.In Figure 1 For example, a flat sheet (1) is shown in cross-section, which is unwound from a coil (not shown) and cut to length, and in particular is made available for the further process as a defined blank. The sheet (1) is preferably made from a steel material, preferably from a high-strength steel material. Alternatively, aluminum materials or other metals can also be used. The sheet can also be provided as a tailored product.

Erfindungsgemäß ist vorgesehen, dass das Blech (1) mit gängigen Verfahren zuerst derart umgeformt wird, dass die Geometrie der Blechvorform (2) mit einem Materialüberschuss, beispielsweise in Form mindestens einer Materialbevorratung (4) im Bodenbereich (2.1) für die weiteren Prozesse bereitgestellt wird. Der Materialüberschuss kann auch alternativ oder kumulativ im Zargenbereich (2.2), im Flanschbereich (2.3) und/oder in den Übergangsbereichen (2.4, 2.5) zwischen Bodenbereich (2.1), Zargenbereich (2.2) und Flanschbereich (2.3), hier nicht dargestellt, bereitgestellt werden. Die Blechvorform (2) kann vorzugsweise durch ein klassisches Tiefziehen hergestellt werden. Die Blechvorform (2) wird beispielsweise in einem Vorform-Werkzeug (5) hergestellt, wobei das ebene Blech (1) in das geöffnete Vorform-Werkzeug (5) mit geeigneten und hier nicht dargestellten Mitteln eingelegt wird, und anschließend ein Vorform-Stempel (5.1), ein Vorform-Gesenk (5.2) und mindestens ein Blechhalter (5.3) auf das Blech (1) einwirken. Die Bewegung und/oder Verfahrweise der Komponenten des Vorform-Werkzeugs (5) ist symbolisch durch die dargestellten Doppelpfeile (5.11, 5.31) gezeigt. Nach dem Einlegen des Blechs (1) klemmt der Blechhalter (5.3) das Blech (1) ein. Anschließend wird der Vorform-Stempel (5.1) in Richtung UT gefahren und formt das Blech (1) zu einer Blechvorform (2) um. Der Blechhalter (5.3) kann distanziert oder aber mit einer Kraft beaufschlagt werden. Das Vorform-Gesenk (5.2) kann zumindest bereichsweise mindestens eine Ziehsicke und/oder Ziehstufe (5.4) aufweisen, welche positiv insbesondere die Abstreckung während des Tiefziehens zur Blechvorform (2) unterstützt und stellt eine ausreichende Abwicklung in Quererstreckung (Q") und/oder Längserstreckung (A") an der Blechvorform (2), sowie eine Vermeidung unerwünschter Falten sicher.According to the invention, the sheet metal (1) is first formed using conventional methods in such a way that the geometry of the sheet metal preform (2) is provided with a surplus of material, for example in the form of at least one material reserve (4) in the base area (2.1) for the further processes. The surplus of material can also be provided alternatively or cumulatively in the frame area (2.2), in the flange area (2.3) and/or in the transition areas (2.4, 2.5) between the base area (2.1), frame area (2.2) and flange area (2.3), not shown here. The sheet metal preform (2) can preferably be produced by classic deep drawing. The sheet metal preform (2) is produced, for example, in a preforming tool (5), whereby the flat sheet metal (1) is inserted into the open preforming tool (5) using suitable means not shown here, and then a preforming punch (5.1), a preforming die (5.2) and at least one sheet metal holder (5.3) act on the sheet metal (1). The movement and/or method of travel of the components of the preforming tool (5) is shown symbolically by the double arrows shown (5.11, 5.31). After the sheet metal (1) has been inserted, the sheet metal holder (5.3) clamps the sheet metal (1). The preforming punch (5.1) is then moved in the direction of the bottom dead center and forms the sheet metal (1) into a sheet metal preform (2). The sheet metal holder (5.3) can be spaced or subjected to a force. The preform die (5.2) can have at least one drawing bead and/or drawing step (5.4) at least in some areas, which positively supports in particular the ironing during deep drawing to form the sheet metal preform (2) and ensures sufficient development in the transverse extension (Q") and/or longitudinal extension (A") on the sheet metal preform (2), as well as avoiding undesirable wrinkles.

Zur kontrollierten Ausbildung der Materialbevorratung (4) ist beispielsweise der Vorform-Stempel (5.1), gegebenenfalls in Kombination mit einem inneren Niederhalter (hier nicht dargestellt), dazu ausgebildet, dass während des Vorformens des Blechs (1) zu der Blechvorform (2) Materialbevorratung (4) eingebracht werden. Durch das Einbringen oder Bereitstellen der Ausbildung der Materialbevorratung (4) während der Herstellung der Blechvorform (2) kann neben der Überdimensionierung der Blechvorform (2) auch der für das Stauchen/Kalibrieren notwendige Materialüberschuss in Form von Materialbevorratungen (4) in dem Vorform-Werkzeug (5) berücksichtigt werden. Die Herstellung der Blechvorform (2) ist nicht auf ein Vorform-Werkzeug (5) beschränkt, sondern kann je nach Komplexität des zu erzeugenden Blechbauteils (3) in zwei oder mehreren Stufen respektive Vorform-Werkzeugen erfolgen (hier nicht dargestellt). Figur 2a) zeigt das Vorform-Werkzeug (5) im sogenannten unteren Totpunkt. Nach der Formgebung wird die Blechvorform (2) aus dem Vorform-Werkzeug (5) entnommen, welche eine Rückfederung infolge eines unvermeidbaren inhomogenen, eingebrachten Spannungszustandes in der Blechvorform (2) aufweist (Figur 2b). Bei der Gestaltung des Vorform-Werkzeugs (5) können bereits Kompensationsmaßnahmen getroffen werden, um eine Blechvorform (2) zu erhalten, die der Endgeometrie möglichst gut entspricht. Schwankungen in der Rückfederung werden im Stauch-/ Kalibrierprozess ausgeglichen, so dass hier keine aufwändigen Korrekturschleifen erforderlich sind. Gleiches gilt für Schwankungen, die sich aus Chargenwechsel und/oder Abnutzung der Vorformwerkzeuge und/oder den tribologischen Eigenschaften von Werkzeugen und Material ergeben können. Die Blechvorform (2) hat beispielsweise eine Quererstreckung (Q") und eine Längserstreckung (A"), wobei die Längserstreckung (A") beispielsweise um ein Vielfaches höher ist als die Quererstreckung (Q") und in Richtung Bildebene symbolisiert dargestellt ist.For the controlled formation of the material supply (4), for example, the preforming punch (5.1), optionally in combination with an internal hold-down device (not shown here), is designed to introduce material supply (4) during the preforming of the sheet metal (1) to form the sheet metal preform (2). By introducing or providing the formation of the material supply (4) during the production of the sheet metal preform (2), in addition to the over-dimensioning of the sheet metal preform (2), the excess material required for upsetting/calibrating can also be taken into account in the form of material supply (4) in the preforming tool (5). The production of the sheet metal preform (2) is not limited to one preforming tool (5), but can take place in two or more stages or preforming tools depending on the complexity of the sheet metal component (3) to be produced (not shown here). Figure 2a ) shows the preforming tool (5) in the so-called bottom dead center. After forming, the sheet metal preform (2) is removed from the preforming tool (5), which exhibits a springback as a result of an unavoidable inhomogeneous stress state introduced into the sheet metal preform (2) ( Figure 2b ). When designing the preforming tool (5), compensation measures can already be taken in order to obtain a sheet metal preform (2) that corresponds as closely as possible to the final geometry. Fluctuations in the springback are compensated for in the upsetting/calibration process, so that no complex correction loops are required. The same applies to fluctuations that can result from batch changes and/or wear of the preforming tools and/or the tribological properties of tools and material. The sheet metal preform (2), for example, has a transverse extension (Q") and a longitudinal extension (A"), whereby the longitudinal extension (A") is, for example, many times higher than the transverse extension (Q") and is shown symbolically in the direction of the image plane.

Die entnommene Blechvorform (2) wird in ein Beschnitt-Werkzeug (6) eingelegt, welches einen Niederhalter (6.1) und ein Gesenk (6.2) umfasst. Der Niederhalter (6.1) und das Gesenk (6.2) sind vorzugsweise dazu ausgebildet, die Blechvorform (2) klemmend bzw. fixierend zwischen sich und insbesondere ohne weitere plastische Formgebung aufzunehmen. Die Kontur des Niederhalters (6.1) und des Gesenks (6.2), die zumindest bereichsweise den Bodenbereich (2.1) und Zargenbereich (2.2) der Blechvorform (2) kontaktieren, entsprechen im Wesentlichen der Kontur des Vorform-Stempels (5.1) und des Vorform-Gesenks (5.2). Dadurch kann sichergestellt werden, dass die Maßnahmen, die in der Blechvorform (2) für das Stauchen/Kalibrieren umgesetzt wurden, nicht im Beschnitt-Werkzeug in negativer Weise beeinflusst werden. Alternativ können auch über entsprechende Maßnahmen zusätzliche, plastische Formgebungen, wie zum Beispiel Verprägungen etc., im Beschnitt-Werkzeug integriert werden. Des Weiteren umfasst das Beschnitt-Werkzeug (6) relativ zum Niederhalter (6.1) und/oder Gesenk (6.2) bewegliche Schneidelemente (6.3, 6.4, 6.5, 6.6). Die Bewegung und/oder Verfahrweise der Komponenten des Beschnitt-Werkzeugs (6) ist symbolisch durch die dargestellten Doppelpfeile (6.11, 6.31, 6.41, 6.51, 6.61) gezeigt. Die Blechvorform (2) wird derart beschnitten, dass die abgewickelte Länge (L) der beschnittenen Blechvorform (2') im Querschnitt zwischen 0,5 % bis 4 % länger ist in Bezug auf die abgewickelte Länge (L') des fertiggeformten Blechbauteils (3). Insbesondere weist die beschnittene Blechvorform (2') einen längeren Flanschbereich (2'.3, M) in Bezug auf den Flanschbereich (3.3, M') des fertiggeformten Blechbauteils (3) auf. In dem Beschnitt-Werkzeug (6) wird dann zumindest abschnittsweise der Flanschbereich (2`.3) in einem Schneid- oder Stanzprozess abgeschnitten, um so eine wiederholgenaue Querschnittsabwicklung respektive eine Blechvorformkante (2'.31) für den anschließenden Stauch-/Kalibrierprozess herzustellen. Es sind vier bewegliche Schneidelemente (6.3, 6.4, 6.5, 6.6) dargestellt, die individuell als Schneidmesser (6.3, 6.5) und bewegliche Gegenhalter (6.4, 6.6) ausgebildet sein können. Die Zahl der Schneidelemente ist nicht auf vier festgelegt, vielmehr kann pro Seite auch jeweils nur ein Schneidelement vorgesehen sein, welches von oben oder von unten auf den Flanschbereich (2.5) der Blechvorform (2) schneidend einwirken kann. Die beschnittene Blechvorform (2') hat im Querschnitt eine Quererstreckung (Q) und ggf. eine Längserstreckung (A), die im Vergleich zur Quererstreckung (Q") und ggf. zur Längserstreckung (A") der Blechvorform (2) kleiner ist.The removed sheet metal preform (2) is placed in a trimming tool (6) which comprises a hold-down device (6.1) and a die (6.2). The hold-down device (6.1) and the die (6.2) are preferably designed to hold the sheet metal preform (2) between them in a clamping or fixing manner and in particular without further plastic shaping. The contour of the hold-down device (6.1) and the die (6.2), which at least partially contact the base area (2.1) and the frame area (2.2) of the sheet metal preform (2), essentially correspond to the contour of the preform punch (5.1) and the preform die (5.2). This ensures that the measures implemented in the sheet metal preform (2) for upsetting/calibrating are not negatively influenced in the trimming tool. Alternatively, additional plastic shapes, such as embossing, etc., can be integrated into the trimming tool using appropriate measures. Furthermore, the trimming tool (6) comprises cutting elements (6.3, 6.4, 6.5, 6.6) that are movable relative to the hold-down device (6.1) and/or die (6.2). The movement and/or method of movement of the components of the trimming tool (6) is shown symbolically by the double arrows shown (6.11, 6.31, 6.41, 6.51, 6.61). The sheet metal preform (2) is trimmed in such a way that the unrolled length (L) of the trimmed sheet metal preform (2') in cross-section is between 0.5% and 4% longer in relation to the unrolled length (L') of the finished sheet metal component (3). In particular, the trimmed sheet metal preform (2') has a longer flange area (2'.3, M) in relation to the flange area (3.3, M') of the finished sheet metal component (3). In the trimming tool (6), the flange area (2'.3) is then cut off at least in sections in a cutting or punching process in order to produce a repeatable cross-sectional development or a sheet metal preform edge (2'.31) for the subsequent upsetting/calibrating process. Four movable cutting elements (6.3, 6.4, 6.5, 6.6) are shown, which can be designed individually as cutting knives (6.3, 6.5) and movable counterholders (6.4, 6.6). The number of cutting elements is not fixed at four, but rather only one cutting element can be provided per side, which can cut the flange area (2.5) of the sheet metal preform (2) from above or from below. The trimmed sheet metal preform (2') has a cross-section with a transverse extension (Q) and possibly a longitudinal extension (A) that is smaller than the transverse extension (Q") and possibly the longitudinal extension (A") of the sheet metal preform (2).

Die aus dem Beschnitt-Werkzeug (6) entnommene, beschnittene Blechvorform (2') weist immer noch eine Rückfederung wie vor dem Einlegen auf und wird in ein Kalibrier-Werkzeug (7) eingelegt, welches einen Kalibrier-Stempel (7.1) und ein Kalibrier-Gesenk (7.2) umfasst. Figur 4a) zeigt das Kalibrier-Werkzeug (7) im unteren Totpunkt. Des Weiteren umfasst das Kalibrier-Werkzeug (7) insbesondere ein Absperrelement (7.3), welches als Widerlager auf die umlaufende Kante (2`.31) der beschnittenen Blechvorform (2') einwirkt, um während des Stauchens/Kalibrierens mittels Druckspannungsüberlagerung die finale, endformnahe Geometrie des fertiggestellten Blechbauteils (Figur 4b) zu bewirken. Die Bewegung und/oder Verfahrweise der Komponenten des Kalibrier-Werkzeugs (7) ist symbolisch durch die dargestellten Doppelpfeile (7.11, 7.21, 7.31) gezeigt. Aus der beschnittenen Blechvorform (2'), die im Querschnitt eine abgewickelte Länge (L) zwischen 0,5 % bis 4 % länger als in Bezug auf die abgewickelte Länge (L') des fertiggeformten Blechbauteils (5) ist und die beschnittene Blechvorform (2') einen längeren Flanschbereich (2'.3, M) in Bezug auf den Flanschbereich (3.3, M') des fertiggeformten Blechbauteils (5) aufweist, wird im Kalibrier-Werkzeug (7) ein hoch maßhaltiges, flanschbehaftetes Blechbauteil (5) erzeugt.The trimmed sheet metal preform (2') removed from the trimming tool (6) still has a springback as before insertion and is inserted into a calibration tool (7) which comprises a calibration punch (7.1) and a calibration die (7.2). Figure 4a ) shows the calibration tool (7) at bottom dead center. Furthermore, the calibration tool (7) comprises in particular a shut-off element (7.3) which acts as an abutment on the peripheral edge (2`.31) of the trimmed sheet metal preform (2') in order to achieve the final, near-net-shape geometry of the finished sheet metal component ( Figure 4b ). The movement and/or method of travel of the components of the calibration tool (7) is shown symbolically by the double arrows (7.11, 7.21, 7.31). A highly dimensionally accurate, flanged sheet metal component (5) is produced in the calibration tool (7) from the trimmed sheet metal preform (2'), which in cross-section has a developed length (L) between 0.5% and 4% longer than the developed length (L') of the finished sheet metal component (5) and the trimmed sheet metal preform (2') has a longer flange area (2'.3, M) in relation to the flange area (3.3, M') of the finished sheet metal component (5).

Neben den in Längserstreckung (A') und Quererstreckung (Q'), welche beispielsweise um ein Vielfaches kleiner als die Längserstreckung (A') ist, mit einem im Wesentlichen in einer Ebene ausgebildeten Bodenbereich (3.1) und einem Zargenbereich (3.2), der auf beiden Seiten im Wesentlichen die gleiche Höhe (T) aufweist (Figur 4b), können auch gekröpfte Blechbauteile (3`) mit einem Bodenbereich (3`.1) in unterschiedlichen Ebenen und mit unterschiedlichen Höhen (T, T1, T2) der Zargenbereiche (3.2, 3'.2), insbesondere in Längserstreckung (A') auf beiden Seiten ausgebildet sein (Figur 5). Auch andere Formen, beispielsweise C-förmige Blechbauteile (3") in ihrer Längserstreckung (A') sind maßhaltig insbesondere mit einem Flanschbereich (3.3) herstellbar (Fig. 6).In addition to the longitudinal extension (A') and transverse extension (Q'), which is, for example, several times smaller than the longitudinal extension (A'), with a base area (3.1) formed essentially in one plane and a frame area (3.2) which has essentially the same height (T) on both sides ( Figure 4b ), cranked sheet metal components (3`) can also be formed with a base area (3`.1) in different levels and with different heights (T, T 1 , T 2 ) of the frame areas (3.2, 3'.2), in particular in the longitudinal extension (A') on both sides ( Figure 5 ). Other shapes, for example C-shaped sheet metal components (3") in their longitudinal extension (A') can be manufactured dimensionally accurate, in particular with a flange area (3.3) ( Fig.6 ).

Bei allen Ausführungen ist erfindungsgemäß, dass der an die Blechvorformkante (2`.31) der zumindest bereichsweise beschnittenen Blechvorform (2') unmittelbar angrenzende Bereich (2.2, 2.5, 2.3) zumindest bereichsweise im Querschnitt eine positive Maßabweichung (M) in Bezug auf die abgewickelte Länge (M') des entsprechenden Bereichs (3.2, 3.5, 3.3) des fertiggeformten Blechbauteils (3, 3', 3") für das Stauchen und/oder Kalibrieren aufweist. Insbesondere entspricht die positive Maßabweisung (M) in den obigen Ausführungen beispielhaft im Querschnitt (Q) einem längeren Flanschbereich (2`.3) der beschnittenen Blechvorform (2') in Bezug auf die abgewickelte Länge (M') des Flanschbereichs (3.3) des fertiggeformten Blechbauteils (3, 3', 3").In all embodiments, the invention provides that the region (2.2, 2.5, 2.3) immediately adjacent to the sheet metal preform edge (2`.31) of the sheet metal preform (2') trimmed at least in regions has a positive dimensional deviation (M) at least in regions in cross-section in relation to the developed length (M') of the corresponding region (3.2, 3.5, 3.3) of the finished sheet metal component (3, 3', 3") for upsetting and/or calibrating. In particular, the positive dimensional deviation (M) in the above embodiments corresponds, for example, in cross-section (Q) to a longer flange region (2`.3) of the trimmed sheet metal preform (2') in relation to the developed length (M') of the flange region (3.3) of the finished sheet metal component (3, 3', 3").

Die Erfindung ist nicht auf die gezeigten Ausführungen eingeschränkt. Andere Bauteilformen sind ebenfalls möglich und benötigen entsprechend angepasste Werkzeugkonturen.The invention is not limited to the embodiments shown. Other component shapes are also possible and require correspondingly adapted tool contours.

BezugszeichenlisteList of reference symbols

11
ebenes Blechflat sheet
22
BlechvorformSheet metal preform
2.12.1
Bodenbereich der Blechvorform und der beschnittenen BlechvorformBottom area of the sheet metal preform and the trimmed sheet metal preform
2.22.2
Zargenbereich der Blechvorform und der beschnittenen BlechvorformFrame area of the sheet metal preform and the trimmed sheet metal preform
2.32.3
Flanschbereich der BlechvorformFlange area of the sheet metal preform
2.42.4
Übergangsbereich zwischen Bodenbereich und Zargenbereich der Blechvorform und der beschnittenen BlechvorformTransition area between the base area and the frame area of the sheet metal preform and the trimmed sheet metal preform
2.52.5
Übergangsbereich zwischen Zargenbereich und Flanschbereich der Blechvorform und der beschnittenen BlechvorformTransition area between the frame area and flange area of the sheet metal preform and the trimmed sheet metal preform
2'2'
beschnittene Blechvorformtrimmed sheet metal preform
2`.32`.3
beschnittener Flanschbereichtrimmed flange area
2'.312'.31
Blechvorformkante der beschnittenen BlechvorformSheet metal preform edge of the trimmed sheet metal preform
3, 3', 3"3, 3', 3"
fertiggeformtes Blechbauteilfinished sheet metal component
3.13.1
Bodenbereich des fertiggeformten BlechbauteilsBottom area of the finished sheet metal component
3`.13`.1
gekröpfter Bodenbereich des fertiggeformten Blechbauteilscranked bottom area of the finished sheet metal component
3.23.2
Zargenbereich des fertiggeformten BlechbauteilsFrame area of the finished sheet metal component
3.33.3
Flanschbereich des fertiggeformten BlechbauteilsFlange area of the finished sheet metal component
3.43.4
Übergangsbereich zwischen Bodenbereich und Zargenbereich des fertiggeformten BlechbauteilsTransition area between the base area and the frame area of the finished sheet metal component
3.53.5
Übergangsbereich zwischen Zargenbereich und Flanschbereich des fertiggeformten BlechbauteilsTransition area between the frame area and the flange area of the finished sheet metal component
44
Materialbevorratung als StauchzugabeMaterial storage as compression allowance
55
Vorform-WerkzeugPreform tool
5.15.1
Vorform-StempelPreform stamp
5.115.11
Bewegungsrichtung des Vorform-StempelsDirection of movement of the preform punch
5.25.2
Vorform-GesenkPreform die
5.55.5
BlechhalterSheet metal holder
5.315.31
Bewegungsrichtung des BlechhaltersDirection of movement of the sheet metal holder
5.45.4
Bremssicke/Bremswulst am Vorform-GesenkBrake bead/brake bead on the preform die
66
Beschnitt-WerkzeugCrop tool
6.16.1
NiederhalterHold-down clamp
6.116.11
Bewegungsrichtung des NiederhaltersDirection of movement of the hold-down device
6.26.2
GesenkDie
6.3-6.66.3-6.6
Schneidelemente, Schneidmesser und GegenhalterCutting elements, cutting knives and counterholders
6.31-6.616.31-6.61
Bewegungsrichtung der SchneidelementeDirection of movement of the cutting elements
77
Kalibrier-WerkzeugCalibration tool
7.17.1
Kalibrier-StempelCalibration stamp
7.117.11
Bewegungsrichtung des Kalibrier-StempelsDirection of movement of the calibration stamp
7.27.2
Kalibrier-GesenkCalibration die
7.217.21
Bewegungsrichtung des Kalibrier-GesenksDirection of movement of the calibration die
7.37.3
AbsperrelementShut-off element
7.317.31
Bewegungsrichtung des AbsperrelementsDirection of movement of the shut-off element
AA
Längserstreckung der beschnittenen BlechvorformLongitudinal extension of the trimmed sheet preform
A'A'
Längserstreckung des fertiggeformten BlechbauteilsLongitudinal extension of the finished sheet metal component
A""
Längserstreckung der BlechvorformLongitudinal extension of the sheet metal preform
LL
abgewickelte Länge im Querschnitt der beschnittenen Blechvorformdeveloped length in the cross section of the trimmed sheet preform
L'The
abgewickelte Länge im Querschnitt des fertiggeformten Blechbauteilsdeveloped length in the cross section of the finished sheet metal component
MM
positive Maßabweichung im Flanschbereich der beschnittenen Blechvorformpositive dimensional deviation in the flange area of the trimmed sheet metal preform
M'M'
gestauchter/kalibrierter Flanschbereichcompressed/calibrated flange area
QQ
Quererstreckung der beschnittenen BlechvorformTransverse extension of the trimmed sheet preform
Q'Q'
Quererstreckung des fertiggeformten BlechbauteilsTransverse extension of the finished sheet metal component
Q"Q"
Quererstreckung der BlechvorformTransverse extension of the sheet metal preform
T, T1, T2T, T1, T2
Höhe des ZargenbereichsHeight of the frame area

Claims (11)

  1. A method of manufacturing a sheet metal component (3, 3', 3"), the method comprising the following steps:
    Preforming a sheet metal (1) in at least one preforming tool (5) to form a sheet metal preform (2) having at least one base region (2.1), a frame region (2.2), a transition region (2.4) between the base and frame regions, a flange region (2.3) and a transition region (2.5) between the frame and flange regions, at least one of the regions (2.1, 2.2, 2.5, 2.4, 2.5) having excess material (4, M) at least in some areas;
    Removal of the sheet metal preform (2) from the preforming tool (5) and insertion into at least one trimming tool (6) for trimming the sheet metal preform (2) at least in certain areas to form a trimmed sheet metal preform (2') with a sheet metal preform edge (2'.31), wherein the area (2.2, 2.5, 2.3) immediately adjacent to the sheet metal preform edge (2'.31) of the sheet metal preform (2'), which is trimmed at least in some areas, has a positive dimensional deviation (M) in cross-section, at least in some areas, with respect to the unwound length (M') of the corresponding area (3.2, 3.5, 3.3) of the finished sheet metal component (3, 3', 3") for upsetting and/or calibrating; and
    Removal of the trimmed sheet metal preform (2') from the trimming tool (6) and insertion into at least one calibrating tool (7) for upsetting and/or calibrating the at least partially trimmed sheet metal preform (2') to form a substantially finished sheet metal component (3, 3', 3"), wherein the trimmed sheet metal preform (2') has a longer flange region (2'.3, M) in relation to the flange area (3.3, M') of the finished sheet metal component (3, 3', 3").
  2. Method according to claim 1, characterized in that the trimmed sheet metal preform (2') has, at least in some areas, a cross-sectional unwound length (L) which is between 0.5% and 4% longer in relation to the unwound length (L') of the finished sheet metal component (3, 3', 3").
  3. Method according to claim 1 or 2, characterized in that during the preforming of the sheet metal (1) into the sheet metal preform (2), the material flow is controlled in a targeted manner, at least in certain areas.
  4. Method according to one of claims 1 to 3, characterized in that after completion of the preforming of the sheet metal (1) into the sheet metal preform (2), material stocks (4) are provided as excess material at least in certain areas.
  5. Method according to one of claims 1 to 4, characterized in that the material elevations (4) are introduced in a targeted manner via at least one preforming tool (5).
  6. Device for producing a dimensionally stable component (3, 3', 3") for carrying out a method according to one of claims 1 to 5,
    with at least one preforming tool (5) for preforming a sheet metal (1) into a sheet metal preform (2), comprising at least one base region (2.1), a frame region (2.2), a transition region (2.4) between the base and frame regions, a flange region (2.3) and a transition region (2.5) between the frame and flange regions, wherein at least one of the regions (2.1, 2.2, 2.5, 2.4, 2.5) has excess material at least in some areas (4, M);
    with at least one trimming tool (6) for trimming the sheet metal preform (2) at least in some areas to form a trimmed sheet metal preform (2') with a sheet metal preform edge (2'.31), the trimming tool (6) being set up in such a way that in the area (2.2, 2.5, 2.3) of the sheet metal preform (2'), which has been trimmed at least in some areas, a positive dimensional deviation (M) remains at least in some areas in the cross-section with respect to the unwound length (M') of the corresponding area (3.2, 3.5, 3.3) of the finished sheet metal component (3, 3', 3") for upsetting and/or calibrating; and
    with at least one upsetting/calibrating tool (7) for upsetting and/or calibrating the sheet metal preform (2'), which has been trimmed at least in some areas, to form a substantially finished sheet metal component (3, 3', 3"), wherein the preform tool (5), the trimming tool (6) and the calibrating tool (7) are separate tools (5, 6, 7), wherein a trimmed sheet metal preform (2') with a longer flange area (2'.3, M) can be produced in the trimming tool (6) in relation to the flange area (3.3, M') of the finished sheet metal component (3, 3', 3") produced in the upsetting/calibrating tool (7).
  7. Device according to claim 6, characterized in that the preforming tool (5) comprises a preforming punch (5.1), a preforming die (5.2) and at least one sheet holder (5.3), in particular the preforming die (5.2) has at least one drawing bead and/or drawing step (5.4) at least in certain areas.
  8. Device according to claim 6 or 7, characterized in that the preforming tool (5) is designed to provide material supplies (4) after the sheet metal (1) has been preformed into the sheet metal preform (2).
  9. Device according to one of claims 6 to 8, characterized in that the trimming tool (6) comprises a blank holder (6.1) and a die (6.2), the blank holder (6.1) and die (6.2) being designed to clampingly receive the sheet metal preform (2) between them, in particular without further plastic shaping, and comprising cutting elements (6.3, 6.4, 6.5, 6.6) movable relative thereto, in particular in the form of a cutting blade and counterholder.
  10. Device according to one of claims 6 to 9, characterized in that the calibration tool (7) comprises a calibration punch (7.1), a calibration die (7.2) and a blocking element (7.3).
  11. Device according to one of claims 6 to 10, characterized in that the device is integrated in a progressive press.
EP18700043.5A 2017-01-05 2018-01-02 Method for producing sheet metal components and device therefor Active EP3565677B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017200115.1A DE102017200115A1 (en) 2017-01-05 2017-01-05 Method for producing sheet metal components and device therefor
PCT/EP2018/050039 WO2018127480A1 (en) 2017-01-05 2018-01-02 Method for producing sheet metal components and device therefor

Publications (3)

Publication Number Publication Date
EP3565677A1 EP3565677A1 (en) 2019-11-13
EP3565677B1 true EP3565677B1 (en) 2024-07-24
EP3565677C0 EP3565677C0 (en) 2024-07-24

Family

ID=60935875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18700043.5A Active EP3565677B1 (en) 2017-01-05 2018-01-02 Method for producing sheet metal components and device therefor

Country Status (6)

Country Link
US (1) US11267032B2 (en)
EP (1) EP3565677B1 (en)
CN (1) CN110167690A (en)
DE (1) DE102017200115A1 (en)
MX (1) MX2019008069A (en)
WO (1) WO2018127480A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6708182B2 (en) * 2017-08-07 2020-06-10 Jfeスチール株式会社 Method for manufacturing press-formed products
CN113874134B (en) * 2019-05-20 2023-08-29 杰富意钢铁株式会社 Method for manufacturing press member and die for shape correction
CN114505432B (en) * 2022-02-24 2024-05-14 漳州锐腾电器有限公司 Pier extrusion die capable of changing section width of stamping part and pier extrusion precision cutting process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037612A1 (en) * 2008-11-28 2010-06-02 Thyssenkrupp Steel Europe Ag Method and device for producing highly dimensionally stable flange-shaped half-shells

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190556A (en) * 1997-09-25 1999-04-06 Matsushita Electric Works Ltd Blanking method
DE102007059251A1 (en) 2007-12-07 2009-06-10 Thyssenkrupp Steel Ag Production method of high dimensional half shells
DE102008034996B4 (en) * 2008-07-25 2010-11-18 Benteler Automobiltechnik Gmbh Apparatus for thermoforming, press hardening and cutting of a semifinished product of hardenable steel
DE102009059197A1 (en) * 2009-12-17 2011-06-22 ThyssenKrupp Steel Europe AG, 47166 Method and device for producing a half-shell part
DE102013103612B8 (en) * 2013-04-10 2023-12-28 Thyssenkrupp Steel Europe Ag Process and compression tool for producing highly dimensionally stable half-shells
DE102013103751A1 (en) 2013-04-15 2014-10-16 Thyssenkrupp Steel Europe Ag Process for the production of high-volume half-shells and apparatus for producing a half-shell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037612A1 (en) * 2008-11-28 2010-06-02 Thyssenkrupp Steel Europe Ag Method and device for producing highly dimensionally stable flange-shaped half-shells

Also Published As

Publication number Publication date
WO2018127480A9 (en) 2019-05-09
US20200384522A1 (en) 2020-12-10
EP3565677A1 (en) 2019-11-13
US11267032B2 (en) 2022-03-08
CN110167690A (en) 2019-08-23
EP3565677C0 (en) 2024-07-24
MX2019008069A (en) 2019-08-29
DE102017200115A1 (en) 2018-07-05
WO2018127480A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
EP2512702B1 (en) Method and device for producing a half-shell part
EP2701861B1 (en) Method and device for producing flangeless drawn parts
EP2701862B1 (en) Method and device for producing flanged drawn parts with simultaneous trimming
DE102016125671A1 (en) Method and device for producing sheet metal components
DE102013019634A1 (en) Production of a sheet metal part with local electromagnetic forming of the sheet material for producing a sheet metal molding edge
EP3565677B1 (en) Method for producing sheet metal components and device therefor
DE19842750B4 (en) Method and production of deep-drawn hollow parts and drawing tool
WO2018060360A1 (en) Method and device for producing components having an adjusted bottom region
DE102009005261A1 (en) Process for producing a complex sheet metal part
EP3509772A1 (en) Method and device for producing formed, in particular flanged, sheet metal components
EP3691807A1 (en) Method and device for producing shaped sheet-metal components by means of preshaped components
DE102009053534A1 (en) Device for transforming or tempering of sheet metal components, comprises forming tool, which is formed for transforming or tempering of transient area, which has molding surface
EP3509771B1 (en) Method and tool for producing sheet metal components
DE102016118418A1 (en) Method for producing a molded component with a dimensionally stable frame area
DE102016205492A1 (en) Method and device for forming a semifinished product
DE102021121616B3 (en) Process for the production of sheet metal components and device therefor
DE102021133789A1 (en) Process for the production of sheet metal components and device therefor
WO2023131493A1 (en) Method for the production of sheet metal components and device therefor
DE102005037424B4 (en) Apparatus and method for processing a sheet metal part having a flange portion
WO2015193494A1 (en) Rolling piston for an air spring
DE102018114653A1 (en) Process for manufacturing load-optimized sheet metal components
DE102015008260A1 (en) Method for forming a solid workpiece
DE102015113256A1 (en) Method and device for producing improved component edges

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240320

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP STEEL EUROPE AG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CASPARY, DANIEL

Inventor name: MARX, ARNDT

Inventor name: NIERHOFF, DANIEL

Inventor name: KIBBEN, MARTIN

Inventor name: FLEHMIG, THOMAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018014892

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240724

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240731

U79 Intention to license declared [unitary effect]

Effective date: 20240731