EP3565677B1 - Procédé de fabrication de pièces métalliques en feuille et dispositif associé - Google Patents

Procédé de fabrication de pièces métalliques en feuille et dispositif associé Download PDF

Info

Publication number
EP3565677B1
EP3565677B1 EP18700043.5A EP18700043A EP3565677B1 EP 3565677 B1 EP3565677 B1 EP 3565677B1 EP 18700043 A EP18700043 A EP 18700043A EP 3565677 B1 EP3565677 B1 EP 3565677B1
Authority
EP
European Patent Office
Prior art keywords
sheet metal
preform
tool
metal preform
preforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18700043.5A
Other languages
German (de)
English (en)
Other versions
EP3565677A1 (fr
Inventor
Thomas Flehmig
Martin Kibben
Daniel Nierhoff
Arndt MARX
Daniel CASPARY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3565677A1 publication Critical patent/EP3565677A1/fr
Application granted granted Critical
Publication of EP3565677B1 publication Critical patent/EP3565677B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/22Deep-drawing with devices for holding the edge of the blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/30Deep-drawing to finish articles formed by deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/04Blank holders; Mounting means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/16Additional equipment in association with the tools, e.g. for shearing, for trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides

Definitions

  • the invention relates to a method and a device for producing sheet metal components.
  • Deep drawing is usually used as a proven forming process for producing sheet metal components with complex geometries.
  • a preferably flat blank is clamped between a blank holder or sheet holder and a drawing ring or die support surface and then drawn into a die via a punch.
  • the device is used in single-acting or multiple-acting presses.
  • the edge of the component usually has a smaller circumference than the blank used.
  • the friction between the sheet and the blank holder is adjusted using a coordinated blank holder force or other measures such as drawing beads or similar so that the necessary areas of the component are stretched out as far as possible and no cracks or wrinkles occur. Compressive stresses initiated by the excess material in the circumferential direction are thus superimposed with tensile stresses, thus largely preventing local thickening of the material.
  • Deep drawing also has the advantage that the greatest possible material strength can be achieved due to the large plastic strains that occur during the process and the associated hardening of the material used (steel sheets, aluminum sheets or other metallic materials).
  • the main disadvantages of conventional deep drawing are the tendency of the component to spring back due to the inhomogeneous stress state after drawing and its sensitivity to batch fluctuations.
  • the expected spring back is already taken into account when designing the forming tools by incorporating the expected spring back values in the opposite direction into the tool using classic compensation measures such as the so-called "Forward Springback Compensation” in order to obtain a component that is as dimensionally accurate as possible after the load is released despite the inhomogeneous stress state. Since these measures are not sufficient, especially for high-strength materials and especially in combination with low sheet thicknesses, straightening and/or calibration processes are often required in subsequent operations to achieve the required dimensional accuracy.
  • Another problem is that after a change of material batch, for example when changing the coil, the dimensional accuracy of the components can no longer be maintained. This means that complex measures have to be taken to readjust the straightening and/or calibration processes and/or the deep-drawing process, in particular the hold-down force, has to be individually adjusted to the new batch. A lack of consistency in the tribological conditions in the tool also leads to undesirable deviations from the target geometry of the finished component.
  • the so-called drawn edges usually have to be cut off after the forming process for components manufactured in this way.
  • This trimming usually represents one or more separate operations that require their own tool technology and logistics system.
  • the edge trimming often means that the material is not used as effectively as possible, which results in additional costs.
  • flange trimming can be integrated into the last deep-drawing operation. This can result in cost savings, but there are still some disadvantages, such as the generation of waste, the creation of complex tools, a complex tryout, unwanted springback effects, limited dimensional accuracy and susceptibility to process disruptions.
  • a preform is produced which is as geometrically close as possible to the finished shape of the component, but which, in contrast to the latter, contains no or only partial material allowances for edge trimming and instead has a defined excess material in typical part sections such as the base area, frame area and/or if present in the flange area, which is used in a second process step to set the desired dimensional accuracy of the component including the edge contour without further cutting operations by means of special upsetting and/or calibration of essentially the entire component.
  • Preforms produced in this way do correspond to the required geometry, but their edge contours can vary in such a way, particularly in the case of complex component geometries and also in connection with low component thicknesses, that the length of the cross-sectional development due to fluctuations from a batch change and/or wear of the preforming tools and/or the tribological properties of tools and material, that the preforms produced in this way cannot be processed in the subsequent upsetting and/or calibration die or can only be processed to a limited extent.
  • the process and the device can be further optimized with regard to process reliability.
  • the EN 10 2008 037612 A1 describes a method for producing a sheet metal component, the method comprising the following steps:Preforming a sheet metal in at least one preforming tool to form a sheet metal preform having at least one base region, a frame region, a transition area between the base and frame area, a flange area and a transition area between the frame and flange area, removing the sheet metal preform from the preforming tool and placing it in at least one trimming tool for at least partially trimming the sheet metal preform to form a trimmed sheet metal preform with a sheet metal preform edge and removing the trimmed sheet metal preform from the trimming tool and placing it in at least one calibration tool for upsetting and/or calibrating the at least partially trimmed sheet metal preform to form a substantially fully formed sheet metal component.
  • the EN 10 2008 037612 A1 also describes a device for producing a dimensionally accurate component, with at least one preforming tool for preforming a sheet metal to form a sheet metal preform having at least one base region, a frame region, a transition region between the base and frame regions, a flange region and a transition region between the frame and flange regions, with at least one trimming tool for at least partially trimming the sheet metal preform to form a trimmed sheet metal preform with a sheet metal preform edge and with at least one upsetting/calibrating tool for upsetting and/or calibrating the at least partially trimmed sheet metal preform to form a substantially fully formed sheet metal component, wherein the preforming tool, the trimming tool and the upsetting/calibrating tool are separate tools from one another.
  • the invention is therefore based on the object of providing a generic method and a generic device with which manufactured sheet metal preforms can be processed reliably, in particular without final edge trimming, regardless of batch and/or tribology, in particular with a repeatable geometry of the sheet metal preform in the upsetting and/or calibrating die.
  • the region immediately adjacent to the sheet metal preform edge of the sheet metal preform trimmed at least in regions has, at least in regions in cross-section, a positive dimensional deviation in relation to the developed length of the corresponding region of the finished sheet metal component for upsetting and/or calibrating.
  • the sheet metal preform can be manufactured using any combination of forming processes in one or more steps.
  • the preforming can, for example, include a deep-drawing-like forming step.
  • multi-stage forming can also be carried out, including, for example, embossing the base area to be created and raising the frame area to be created or, optionally, setting down the flange area to be created. Any combination of folding and/or bending and/or embossing in one or more subsequent operations is also conceivable.
  • the deep drawing carried out for preforming for example, is carried out in one or more stages.
  • the sheet metal preform obtained by preforming can in particular be viewed as a sheet metal component that is as close to its final shape as possible and which corresponds as closely as possible to the intended finished part geometry, taking into account given boundary conditions such as springback and formability of the material used.
  • the deviation of the edge contour of the sheet metal preform from its finished sheet metal component shape is preferably positive (with more material).
  • the absolute deviation of the edge contour of the component preform from the edge contour of the finished component should be as small as possible by means of a suitable method design, but this is often not possible in practice.
  • the focus of the method design is rather to keep the absolute deviation of the edge contour of the component preform from each other as small as possible during the process.
  • Upsetting/calibrating can be understood in particular as a final forming or final shaping of the trimmed sheet metal preform, which can be achieved, for example, by one or more pressing processes.
  • the essentially fully formed sheet metal component can therefore be understood as a final formed sheet metal component.
  • the essentially fully formed sheet metal component can be subjected to further processing steps that modify the component, such as the introduction of connection holes, the setting of end flanges, the introduction of collars and/or partial edge trimming.
  • the aim is to design the calibration form in such a way that essentially no further forming steps are necessary.
  • the initially produced sheet metal preform, as well as the trimmed sheet metal preform and ultimately the finished sheet metal component essentially have a longitudinal extension and a transverse extension.
  • Cross section means a cut through the transverse extension of the sheet metal preform / the trimmed sheet metal preform / the finished sheet metal component.
  • the flange area means at least one side of the finished sheet metal component with a flange section provided at least in part on at least one side in the longitudinal and/or transverse extension, in particular on both sides of the finished sheet metal component, which serves, for example, to connect to other components and is also referred to as a joining flange.
  • the frame area is provided on at least one side of the finished sheet metal component in the longitudinal extension, in particular on two opposite sides of the finished sheet metal component, wherein the finished sheet metal component has, for example, a substantially hat-shaped cross-section, with a frame area on each side, wherein the frame areas can be identical but also have a different height.
  • An optional one-piece transition area is provided between the optional flange area and the frame area.
  • the base area is formed in one piece with the frame area(s) over a further transition area and, depending on the complexity of the sheet metal component to be produced, does not have to be limited to one level, but can also be provided in different areas along the length.
  • the transitions between the individual levels in the base area can be stepped or curved, in particular a so-called cranked design can be used.
  • the finished sheet metal component can also have shapes other than longitudinal or longitudinal-axial shapes, for example it can be curved, C-shaped or L-shaped.
  • the trimmed sheet metal preform has, at least in some areas, a developed length in the cross-section that is between 0.5% and 4% longer in relation to the developed length of the finished sheet metal component.
  • the developed length of the cross sections of the trimmed sheet metal preform considered in this way is preferably between 0.7% and 3.3% longer than that of the finished sheet metal component in some sections or as a whole. If the developed length of the cross sections varies too much as a result of the process control during the manufacture of the trimmed sheet metal preform, then if the developed length is too short, there would not be enough excess material available for the subsequent upsetting/calibrating step, which would impair the dimensional accuracy of the component. If, however, the developed length of the cross-section of the trimmed sheet metal preform is too large, the oversized excess material would collapse into waves during the subsequent calibration process, which could result in an optical and/or dimensional defect.
  • the material flow is controlled in a targeted manner at least in some areas during the preforming of the sheet metal into the sheet metal preform.
  • a force-loaded sheet metal or hold-down device when producing the sheet metal preform for certain sheet metal components, in particular to slow it down, in order to prevent undesirable wrinkles.
  • the material flow can be controlled in a favorable manner via drawing beads and/or drawing stages arranged at least in some areas during the production of the sheet metal preform, so that the manufacturability of certain component geometries can be improved.
  • material reserves are provided or created as excess material at least in some areas.
  • the material reserves are preferably introduced in a bead-like, wave-like and/or slightly folded manner.
  • the material reserves can be introduced or provided in the base area, in the frame area, optionally in the flange area, in the transition area between the base and frame area and/or optionally in the transition area between the frame and flange area.
  • the material reserves are introduced or provided in a targeted manner via at least one preform tool. This advantageously makes it possible to reliably produce a preform that has a greater tendency to form folds due to its geometric shape.
  • the above-mentioned task is solved in a generic device in that the trimming tool is set up in such a way that in the area of the at least partially trimmed sheet metal preform immediately adjacent to the sheet metal preform edge, at least in some areas in the cross-section, a positive dimensional deviation remains in relation to the developed length of the corresponding area of the finished sheet metal component for upsetting and/or calibrating.
  • a repeatable geometry can be ensured, in particular with regard to the position of the component edges of the trimmed sheet metal preform and thus of the sheet metal preform edge that is essential for the subsequent upsetting/calibrating.
  • the device comprises a preforming tool with, for example, a preforming punch, a preforming die and a sheet metal holder.
  • the base area of the preforming die can, if required, be detached from the rest of the preforming die and movable at least in sections, for example to form an (inner) hold-down device.
  • a sheet metal holder can also be used.
  • the sheet metal preform can preferably be produced by conventional deep drawing.
  • the preforming die can have at least one drawing bead and/or drawing step, at least in some areas, which positively supports the ironing during deep drawing to form the sheet metal preform and to ensure sufficient development in the transverse and/or longitudinal extent of the sheet metal preform.
  • the sheet metal preform can be produced in two or more stages or preforming tools.
  • the at least one preforming tool is designed to provide material reserves during the preforming of the sheet metal into the sheet metal preform, for example by deep drawing.
  • the device comprises a trimming tool, in particular for a trimming to be carried out on the sheet metal preform in certain areas, with a holding-down device and a die.
  • the holding-down device and the die are preferably designed to hold the sheet metal preform between them in a clamping manner, in particular without further plastic shaping, in particular apart from the intended trimming.
  • smaller forming operations can also be integrated in certain areas.
  • the contour of the hold-down device and the die which at least partially contacts the base area and the frame area of the sheet metal preform, essentially the contour of the desired sheet metal preform. This ensures that the measures implemented in the sheet metal preform for upsetting/calibrating are not compensated for in the trimming tool.
  • the trimming tool can comprise cutting elements that are movable relative to the punch and/or die, in particular in the form of a cutting punch and counterholder.
  • a laser can also be used for trimming (laser cutting).
  • the device comprises a calibration tool with a calibration stamp, a calibration die and a shut-off element.
  • the contour of the calibration stamp and the calibration die essentially corresponds to the base area, frame area and optionally flange area, in particular the target geometry of the sheet metal component to be finished.
  • the shut-off element serves as an abutment during the upsetting/calibration, in particular of the sheet metal edges in the flange area of the sheet metal component to be finished, and thus blocks a material flow away from the sheet metal component, so that directed stresses are established in the sheet metal component to be finished in order to produce a sheet metal component with particularly high dimension stability.
  • shut-off elements as part(s) of the calibration tool, can be movable relative to the calibration stamp and/or calibration die, either movable coaxially to both or movable in and out at an angle.
  • the shut-off element can be designed as a single piece in the calibration die, particularly as a step and/or projection, which can reduce the number of parts in the calibration tool.
  • the compression/calibration can also be carried out in two or more steps or calibration tools.
  • the device is integrated in a progressive composite press.
  • a progressive composite press In particular in the manufacture of mass products, for example for products in the automotive industry, products such as sheet metal components are manufactured particularly economically in a progressive composite press.
  • a flat sheet (1) is shown in cross-section, which is unwound from a coil (not shown) and cut to length, and in particular is made available for the further process as a defined blank.
  • the sheet (1) is preferably made from a steel material, preferably from a high-strength steel material. Alternatively, aluminum materials or other metals can also be used.
  • the sheet can also be provided as a tailored product.
  • the sheet metal (1) is first formed using conventional methods in such a way that the geometry of the sheet metal preform (2) is provided with a surplus of material, for example in the form of at least one material reserve (4) in the base area (2.1) for the further processes.
  • the surplus of material can also be provided alternatively or cumulatively in the frame area (2.2), in the flange area (2.3) and/or in the transition areas (2.4, 2.5) between the base area (2.1), frame area (2.2) and flange area (2.3), not shown here.
  • the sheet metal preform (2) can preferably be produced by classic deep drawing.
  • the sheet metal preform (2) is produced, for example, in a preforming tool (5), whereby the flat sheet metal (1) is inserted into the open preforming tool (5) using suitable means not shown here, and then a preforming punch (5.1), a preforming die (5.2) and at least one sheet metal holder (5.3) act on the sheet metal (1).
  • a preforming punch (5.1), a preforming die (5.2) and at least one sheet metal holder (5.3) act on the sheet metal (1).
  • the movement and/or method of travel of the components of the preforming tool (5) is shown symbolically by the double arrows shown (5.11, 5.31).
  • the sheet metal holder (5.3) clamps the sheet metal (1).
  • the preforming punch (5.1) is then moved in the direction of the bottom dead center and forms the sheet metal (1) into a sheet metal preform (2).
  • the sheet metal holder (5.3) can be spaced or subjected to a force.
  • the preform die (5.2) can have at least one drawing bead and/or drawing step (5.4) at least in some areas, which positively supports in particular the ironing during deep drawing to form the sheet metal preform (2) and ensures sufficient development in the transverse extension (Q") and/or longitudinal extension (A") on the sheet metal preform (2), as well as avoiding undesirable wrinkles.
  • the preforming punch (5.1) is designed to introduce material supply (4) during the preforming of the sheet metal (1) to form the sheet metal preform (2).
  • the excess material required for upsetting/calibrating can also be taken into account in the form of material supply (4) in the preforming tool (5).
  • the production of the sheet metal preform (2) is not limited to one preforming tool (5), but can take place in two or more stages or preforming tools depending on the complexity of the sheet metal component (3) to be produced (not shown here).
  • Figure 2a shows the preforming tool (5) in the so-called bottom dead center.
  • the sheet metal preform (2) is removed from the preforming tool (5), which exhibits a springback as a result of an unavoidable inhomogeneous stress state introduced into the sheet metal preform (2) ( Figure 2b ).
  • compensation measures can already be taken in order to obtain a sheet metal preform (2) that corresponds as closely as possible to the final geometry. Fluctuations in the springback are compensated for in the upsetting/calibration process, so that no complex correction loops are required. The same applies to fluctuations that can result from batch changes and/or wear of the preforming tools and/or the tribological properties of tools and material.
  • the sheet metal preform (2) for example, has a transverse extension (Q") and a longitudinal extension (A"), whereby the longitudinal extension (A") is, for example, many times higher than the transverse extension (Q") and is shown symbolically in the direction of the image plane.
  • the removed sheet metal preform (2) is placed in a trimming tool (6) which comprises a hold-down device (6.1) and a die (6.2).
  • the hold-down device (6.1) and the die (6.2) are preferably designed to hold the sheet metal preform (2) between them in a clamping or fixing manner and in particular without further plastic shaping.
  • the contour of the hold-down device (6.1) and the die (6.2), which at least partially contact the base area (2.1) and the frame area (2.2) of the sheet metal preform (2), essentially correspond to the contour of the preform punch (5.1) and the preform die (5.2). This ensures that the measures implemented in the sheet metal preform (2) for upsetting/calibrating are not negatively influenced in the trimming tool.
  • the trimming tool (6) comprises cutting elements (6.3, 6.4, 6.5, 6.6) that are movable relative to the hold-down device (6.1) and/or die (6.2).
  • the movement and/or method of movement of the components of the trimming tool (6) is shown symbolically by the double arrows shown (6.11, 6.31, 6.41, 6.51, 6.61).
  • the sheet metal preform (2) is trimmed in such a way that the unrolled length (L) of the trimmed sheet metal preform (2') in cross-section is between 0.5% and 4% longer in relation to the unrolled length (L') of the finished sheet metal component (3).
  • the trimmed sheet metal preform (2') has a longer flange area (2'.3, M) in relation to the flange area (3.3, M') of the finished sheet metal component (3).
  • the flange area (2'.3) is then cut off at least in sections in a cutting or punching process in order to produce a repeatable cross-sectional development or a sheet metal preform edge (2'.31) for the subsequent upsetting/calibrating process.
  • Four movable cutting elements (6.3, 6.4, 6.5, 6.6) are shown, which can be designed individually as cutting knives (6.3, 6.5) and movable counterholders (6.4, 6.6).
  • the number of cutting elements is not fixed at four, but rather only one cutting element can be provided per side, which can cut the flange area (2.5) of the sheet metal preform (2) from above or from below.
  • the trimmed sheet metal preform (2') has a cross-section with a transverse extension (Q) and possibly a longitudinal extension (A) that is smaller than the transverse extension (Q") and possibly the longitudinal extension (A") of the sheet metal preform (2).
  • the trimmed sheet metal preform (2') removed from the trimming tool (6) still has a springback as before insertion and is inserted into a calibration tool (7) which comprises a calibration punch (7.1) and a calibration die (7.2).
  • Figure 4a shows the calibration tool (7) at bottom dead center.
  • the calibration tool (7) comprises in particular a shut-off element (7.3) which acts as an abutment on the peripheral edge (2 ⁇ .31) of the trimmed sheet metal preform (2') in order to achieve the final, near-net-shape geometry of the finished sheet metal component ( Figure 4b ).
  • the movement and/or method of travel of the components of the calibration tool (7) is shown symbolically by the double arrows (7.11, 7.21, 7.31).
  • a highly dimensionally accurate, flanged sheet metal component (5) is produced in the calibration tool (7) from the trimmed sheet metal preform (2'), which in cross-section has a developed length (L) between 0.5% and 4% longer than the developed length (L') of the finished sheet metal component (5) and the trimmed sheet metal preform (2') has a longer flange area (2'.3, M) in relation to the flange area (3.3, M') of the finished sheet metal component (5).
  • cranked sheet metal components (3 ⁇ ) can also be formed with a base area (3 ⁇ .1) in different levels and with different heights (T, T 1 , T 2 ) of the frame areas (3.2, 3'.2), in particular in the longitudinal extension (A') on both sides ( Figure 5 ).
  • Other shapes, for example C-shaped sheet metal components (3") in their longitudinal extension (A') can be manufactured dimensionally accurate, in particular with a flange area (3.3) ( Fig.6 ).
  • the invention provides that the region (2.2, 2.5, 2.3) immediately adjacent to the sheet metal preform edge (2 ⁇ .31) of the sheet metal preform (2') trimmed at least in regions has a positive dimensional deviation (M) at least in regions in cross-section in relation to the developed length (M') of the corresponding region (3.2, 3.5, 3.3) of the finished sheet metal component (3, 3', 3") for upsetting and/or calibrating.
  • M positive dimensional deviation
  • the positive dimensional deviation (M) in the above embodiments corresponds, for example, in cross-section (Q) to a longer flange region (2 ⁇ .3) of the trimmed sheet metal preform (2') in relation to the developed length (M') of the flange region (3.3) of the finished sheet metal component (3, 3', 3").
  • the invention is not limited to the embodiments shown. Other component shapes are also possible and require correspondingly adapted tool contours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Forging (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Claims (11)

  1. Procédé de fabrication d'un élément de construction en tôle (5, 5', 5"), le procédé comprenant les étapes suivantes:
    Préformage d'une tôle (1) dans au moins un outil de préformage (5) en une préforme de tôle (2) présentant au moins une zone de fond (2.1), une zone de châssis (2.2), une zone de transition (2.4) entre la zone de fond et la zone de châssis, une zone de flanc (2.3) et une zone de transition (2.5) entre la zone de châssis et la zone de flanc, au moins une des zones (2.1, 2.2, 2.5, 2.4, 2.5) présentant au moins par endroits du matériau en excès (4, M);
    Prélèvement de la préforme de tôle (2) hors de l'outil de préformage (5) et insertion dans au moins un outil de découpage (6) pour découper au moins par zones la préforme de tôle (2) en une préforme de tôle découpée (2') avec une arête de préforme de tôle (2'.31), la partie de la préforme de tôle adjacente à l'arête de préforme de tôle (2'.31) de la préforme de tôle découpée (2') au moins par zones directement adjacente présente, au moins par zones, en section transversale, un écart dimensionnel positif (M) par rapport à la longueur développée (M') de la zone correspondante (3.2, 3.5, 3.3) de la pièce en tôle (3, 3', 3") formée finie pour le refoulement et/ou le calibrage; et
    Prélèvement de la préforme de tôle (2') rognée de l'outil de découpage (6) et mise en place dans au moins un outil de calibrage (7) pour refouler et/ou calibrer la préforme de tôle (2') rognée au moins par zones en un composant de tôle (3, 3', 3") essentiellement formé à l'état fini, la préforme de tôle découpée (2') présentant une zone de flanc (2'.3, M) par rapport à la zone de bride (3.3, M') de la pièce en tôle (3, 3', 3") dont le formage est terminé.
  2. Procédé selon la revendication 1, caractérisé en ce que la préforme en tôle découpée (2') présente, au moins par zones, en section transversale, une longueur développée (L) qui est plus longue de 0,5% à 4% par rapport à la longueur développée (L') de la pièce en tôle formée finie (3, 3', 3").
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que pendant le préformage de la tôle (1) en la préforme de tôle (2), le flux de matériau est commandé de manière ciblée au moins par zones.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'à la fin du préformage de la tôle (1) en la préforme de tôle (2), des réserves de matériau (4) sont mises à disposition au moins par zones en tant que matériau excédentaire.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que les élévations de matière (4) sont introduites de manière ciblée par l'intermédiaire d'au moins un outil de préformage (5).
  6. Dispositif de fabrication d'un élément de construction (3, 3', 3") aux dimensions exactes pour la mise en oeuvre d'un procédé selon l'une des revendications 1 à 5, avec au moins un outil de préformage (5) pour le préformage d'une tôle (1) en une préforme de tôle (2) présentant au moins une zone de fond (2.1), une zone de châssis (2.2), une zone de transition (2.4) entre la zone de fond et la zone de châssis, une zone de flanc (2.3) et une zone de transition (2.5) entre la zone de châssis et la zone de flanc, au moins l'une des zones (2.1, 2.2, 2.5, 2.4, 2.5) contenant au moins par endroits du matériau en excès,
    avec au moins un outil de découpage (6) pour découper au moins par zones la préforme de tôle (2) en une préforme de tôle découpée (2') avec une arête de préforme de tôle (2'.31), l'outil de découpage (6) étant aménagé de telle sorte que dans la zone (2.2, 2.5, 2.3) directement adjacente à l'arête de préforme de tôle (2'.31), il subsiste au moins par zones en section transversale un écart dimensionnel positif (M) par rapport à la longueur développée (M') de la zone correspondante (3.2, 3.5, 3.3) de la pièce en tôle (3, 3', 3") de forme finie pour le refoulement et/ou le calibrage; et
    avec au moins un outil de refoulement/calibrage (7) pour refouler et/ou calibrer la préforme en tôle découpée (2') au moins par zones en un composant en tôle (3, 3', 3") formé pour l'essentiel de façon finie, l'outil de préforme (5), l'outil de découpage (6) et l'outil de refoulement/calibrage (7) sont des outils (5, 6, 7) séparés l'un de l'autre, une ébauche de tôle découpée (2') avec une zone de flanc (2'.3, M) plus longue par rapport à la zone de flanc (3.3, M') produite dans l'outil de refoulement/calibrage (7) de la pièce en tôle (3, 3', 3") de forme finie pouvant être fabriquée dans l'outil de découpage (6).
  7. Dispositif selon la revendication 6, caractérisé en ce que l'outil de préformage (5) comprend un poinçon de préformage (5.1), une matrice de préformage (5.2) et au moins un support de tôle (5.3), en particulier la matrice de préformage (5.2) présente au moins par zones au moins une moulure d'emboutissage et/ou un étage d'emboutissage (5.4).
  8. Dispositif selon la revendication 6 ou 7, caractérisé en ce que l'outil de préformage (5) est conçu pour fournir des réserves de matériau (4) après le préformage de la tôle (1) en la préforme de tôle (2).
  9. Dispositif selon l'une des revendications 6 à 8, caractérisé en ce que l'outil de découpage (6) comprend un serre-flan (6.1) et une matrice (6.2), le serre-flan (6.1) et la matrice (6.2) étant conçus pour recevoir la préforme de tôle (2) en la serrant entre eux et en particulier sans autre formage plastique, et comprenant des éléments de coupe (6.3, 6.4, 6.5, 6.6) mobiles par rapport à ceux-ci, en particulier sous la forme de lame de coupe et de contre-support.
  10. Dispositif selon l'une des revendications 6 à 9, caractérisé en ce que l'outil de calibrage (7) comprend un poinçon de calibrage (7.1), une matrice de calibrage (7.2) et un élément de blocage (7.3).
  11. Dispositif selon l'une des revendications 6 à 10, caractérisé en ce que le dispositif est intégré dans une presse à suivre.
EP18700043.5A 2017-01-05 2018-01-02 Procédé de fabrication de pièces métalliques en feuille et dispositif associé Active EP3565677B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017200115.1A DE102017200115A1 (de) 2017-01-05 2017-01-05 Verfahren zum Herstellen von Blechbauteilen und Vorrichtung hierfür
PCT/EP2018/050039 WO2018127480A1 (fr) 2017-01-05 2018-01-02 Procédé de fabrication de pièces métalliques en feuille et dispositif associé

Publications (2)

Publication Number Publication Date
EP3565677A1 EP3565677A1 (fr) 2019-11-13
EP3565677B1 true EP3565677B1 (fr) 2024-07-24

Family

ID=60935875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18700043.5A Active EP3565677B1 (fr) 2017-01-05 2018-01-02 Procédé de fabrication de pièces métalliques en feuille et dispositif associé

Country Status (6)

Country Link
US (1) US11267032B2 (fr)
EP (1) EP3565677B1 (fr)
CN (1) CN110167690A (fr)
DE (1) DE102017200115A1 (fr)
MX (1) MX2019008069A (fr)
WO (1) WO2018127480A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6708182B2 (ja) * 2017-08-07 2020-06-10 Jfeスチール株式会社 プレス成形品の製造方法
MX2021013873A (es) * 2019-05-20 2022-03-22 Jfe Steel Corp Metodo de fabricacion de un componente prensado y un troquel de correccion de forma.
CN114505432B (zh) * 2022-02-24 2024-05-14 漳州锐腾电器有限公司 一种改变冲压件截面宽度的墩挤模具及墩挤精切工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037612A1 (de) * 2008-11-28 2010-06-02 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zum Herstellen hoch maßhaltiger flanschbehafteter Halbschalen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190556A (ja) 1997-09-25 1999-04-06 Matsushita Electric Works Ltd 打ち抜き加工方法
DE102007059251A1 (de) 2007-12-07 2009-06-10 Thyssenkrupp Steel Ag Herstellverfahren hoch maßhaltiger Halbschalen
DE102008034996B4 (de) * 2008-07-25 2010-11-18 Benteler Automobiltechnik Gmbh Vorrichtung zum Warmformen, Presshärten und Schneiden eines Halbzeugs aus härtbarem Stahl
DE102009059197A1 (de) 2009-12-17 2011-06-22 ThyssenKrupp Steel Europe AG, 47166 Verfahren und Vorrichtung zur Herstellung eines Halbschalenteils
DE102013103612B8 (de) 2013-04-10 2023-12-28 Thyssenkrupp Steel Europe Ag Verfahren und Stauchwerkzeug zur Herstellung von hoch maßhaltigen Halbschalen
DE102013103751A1 (de) 2013-04-15 2014-10-16 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung von hochmaßhaltigen Halbschalen und Vorrichtung zur Herstellung einer Halbschale

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037612A1 (de) * 2008-11-28 2010-06-02 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zum Herstellen hoch maßhaltiger flanschbehafteter Halbschalen

Also Published As

Publication number Publication date
DE102017200115A1 (de) 2018-07-05
US20200384522A1 (en) 2020-12-10
WO2018127480A9 (fr) 2019-05-09
WO2018127480A1 (fr) 2018-07-12
US11267032B2 (en) 2022-03-08
CN110167690A (zh) 2019-08-23
MX2019008069A (es) 2019-08-29
EP3565677A1 (fr) 2019-11-13

Similar Documents

Publication Publication Date Title
EP2512702B1 (fr) Procédé et dispositif de fabrication d'un élément en demi-coque
EP2701861B1 (fr) Procédé et dispositif de fabrication de pièces embouties sans bride
EP1818115B1 (fr) Procédé de fabrication d'un élément structurel ou de châssis pour véhicules automobiles
EP2701862B1 (fr) Procédé et dispositif pour fabriquer de pièces embouties dotées d'une bride en les ébarbant simultanément
EP3565677B1 (fr) Procédé de fabrication de pièces métalliques en feuille et dispositif associé
DE102016125671A1 (de) Verfahren und Vorrichtung zur Herstellung von Blechbauteilen
DE102013019634A1 (de) Herstellung eines Blechformteils mit lokalem elektromagnetischen Umformen des Blechmaterials zur Erzeugung einer Blechformteilkante
EP3519121A1 (fr) Procédé et dispositif de fabrication d'éléments comportant une partie fond adaptée
DE19842750B4 (de) Verfahren und Herstellung von tiefgezogenen Hohlteilen und Ziehwerkzeug
DE102009005261A1 (de) Verfahren zur Herstellung eines komplexen Blechformteils
WO2018046356A1 (fr) Procédé et dispositif de fabrication d'éléments en tôle formés, en particulier d'éléments en tôle à brides
EP3691807A1 (fr) Procédé et dispositif pour la fabrication d'éléments en tôle façonnés au moyen d'éléments préfaçonnés
DE102015108768A1 (de) Verfahren und Vorrichtung zur Erzielung von großen Kragenlängen
DE102009053534A1 (de) Vorrichtung und Verfahren zum Umformen und/oder Vergüten von Blechbauteilen
EP3509771B1 (fr) Procédé et outil pour la fabrication des pièces en tôle
DE102016118418A1 (de) Verfahren zur Herstellung eines geformten Bauteils mit einem maßhaltigen Zargenbereich
DE102016205492A1 (de) Verfahren und Vorrichtung zum Umformen eines Halbzeugs
DE102021121616B3 (de) Verfahren zur Herstellung von Blechbauteilen und Vorrichtung hierfür
DE102021133789A1 (de) Verfahren zur Herstellung von Blechbauteilen und Vorrichtung hierfür
EP3158216A1 (fr) Piston de déroulage pour ressort pneumatique
WO2023131493A1 (fr) Procédé pour la production de pièces chaudronnées e et dispositif associé
DE102005037424B4 (de) Vorrichtung und Verfahren zur Bearbeitung eines Blechformteils mit einem Flanschabschnitt
DE102018114653A1 (de) Verfahren zur Herstellung lastoptimierter Blechbauteile
DE102015008260A1 (de) Verfahren zum Umformen eines massiven Werkstücks
DE102015113256A1 (de) Verfahren und Vorrichtung zur Herstellung verbesserter Bauteilkanten

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240320

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP STEEL EUROPE AG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CASPARY, DANIEL

Inventor name: MARX, ARNDT

Inventor name: NIERHOFF, DANIEL

Inventor name: KIBBEN, MARTIN

Inventor name: FLEHMIG, THOMAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018014892

Country of ref document: DE