EP3563951A1 - Zahn aus verbundwerkstoff mit kegelstumpfförmigem einsatz - Google Patents

Zahn aus verbundwerkstoff mit kegelstumpfförmigem einsatz Download PDF

Info

Publication number
EP3563951A1
EP3563951A1 EP18170766.2A EP18170766A EP3563951A1 EP 3563951 A1 EP3563951 A1 EP 3563951A1 EP 18170766 A EP18170766 A EP 18170766A EP 3563951 A1 EP3563951 A1 EP 3563951A1
Authority
EP
European Patent Office
Prior art keywords
tooth
insert
titanium carbides
micrometric
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18170766.2A
Other languages
English (en)
French (fr)
Inventor
Guy Berton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magotteaux International SA
Original Assignee
Magotteaux International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magotteaux International SA filed Critical Magotteaux International SA
Priority to EP18170766.2A priority Critical patent/EP3563951A1/de
Priority to EP19720596.6A priority patent/EP3787820A1/de
Priority to AU2019263606A priority patent/AU2019263606B2/en
Priority to PCT/EP2019/061021 priority patent/WO2019211268A1/fr
Priority to MX2020011682A priority patent/MX2020011682A/es
Priority to BR112020022315-8A priority patent/BR112020022315A2/pt
Priority to US17/051,152 priority patent/US20210131076A1/en
Priority to CA3098478A priority patent/CA3098478A1/fr
Priority to CN201980028893.1A priority patent/CN112203786B/zh
Publication of EP3563951A1 publication Critical patent/EP3563951A1/de
Priority to ZA2020/06519A priority patent/ZA202006519B/en
Priority to CL2020002817A priority patent/CL2020002817A1/es
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/02Casting in, on, or around objects which form part of the product for making reinforced articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • C22C1/055Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1057Reactive infiltration
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • E02F9/285Teeth characterised by the material used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/066Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the present invention relates to a composite tooth intended to equip a machine for working the soil or rocks. It relates in particular to a tooth made in a foundry comprising a metal matrix reinforced by a substantially frustoconical or pyramidal insert comprising particles of titanium carbides formed during an in situ reaction at the time of casting of the cast iron.
  • teeth is to be interpreted broadly and includes any element of any size, having a pointed or flattened shape, intended in particular for working the soil, the bottom of rivers or seas, rocks, on the surface or in the mines.
  • the document WO2010031660 discloses a composite tooth for tillage or rock, made in the foundry and comprising a ferrous alloy reinforced at least in part with titanium carbide formed in situ according to a defined geometry.
  • the reinforced part of the tooth comprises an alternating macro-microstructure of millimetric zones concentrated in micrometric globular particles of titanium carbides separated by millimetric zones globally free of micrometric globular particles of titanium carbides. Concentrated areas of micrometric globular particles of titanium carbides form a microstructure in which the micrometric interstices between the globular particles are also occupied by said ferrous alloy.
  • the present invention aims to improve the performance of composite teeth of the prior art, it aims to provide improved resistance against wear while maintaining good impact resistance.
  • This property is obtained by a reinforcing insert specifically designed for this application, insert comprising a structure alternating on a millimetric scale dense areas micrometric globular fine particles of metal carbides formed in situ with areas that are practically free within of the metal matrix of the tooth, the macro-microstructure of the insert having a substantially frustoconical flattened shape or a pyramid shape, preferably truncated with a rectangular or square base, said shape being hollow.
  • the recess of the insert allows a faster "filling" of the titanium carbide insert in situ formation during casting.
  • the present invention also provides a method for obtaining said reinforcing structure.
  • the present invention discloses a composite tooth for working the soil or rocks, said tooth comprising a ferrous alloy reinforced at least in part by an insert in which said reinforced part by the insert allows, after in situ reaction, to obtain an alternating macro-microstructure of millimetric zones concentrated in micrometric globular particles of titanium carbides separated by millimetric zones substantially free of micrometric globular particles of titanium carbides, said zones concentrated in micrometric globular particles of titanium carbides forming a microstructure in which the micrometric interstices between said globular particles are also occupied by said ferrous alloy and wherein said macro-microstructure generated by the insert is spaced a few millimeters from the distal surface of the tooth, preferably at least 2 to 3 mm, and especially pr 4, 5 or even 6 mm from the distal surface of the tooth. It is essential that the reinforced portion does not scratch the surface of said tooth.
  • the present invention also discloses a method of manufacturing the composite tooth according to any one of claims 1 to 7.
  • the present invention also discloses a composite tooth obtained according to the method of the invention.
  • the SHS or " s elf-propagating h igh temperature s ynthesis" reaction is a self-propagating, high-temperature synthesis reaction in which reaction temperatures are generally greater than 1500 ° C or even 2000. ° C.
  • reaction temperatures are generally greater than 1500 ° C or even 2000. ° C.
  • the reaction between titanium powder and carbon powder to obtain titanium carbide TiC is highly exothermic. Only a little energy is needed to initiate the reaction locally. Then, the reaction will spontaneously propagate to the entire mixture of reagents thanks to the high temperatures reached. After initiation of the reaction, there is a reaction front which propagates spontaneously (self-propagated) and which makes it possible to obtain titanium carbide from titanium and carbon.
  • the titanium carbide thus obtained is said to be "obtained in situ" because it does not come from the cast ferrous alloy and has not been added in the form of milled ICT in the mold.
  • the reactant powder mixtures comprise carbon powder and titanium powder and are compressed into plates and then crushed to obtain granules ranging in size from 1 to 12 mm, preferably from 1 to 6 mm. These granules are not 100% compacted. They are generally compressed between 55 and 95% of the theoretical density. These granules allow easy use / manipulation (see Fig. 2a-2h ).
  • millimetric granules of mixed carbon and titanium powders obtained according to the diagrams of figure 2a-2h are the precursors of the titanium carbide to be created.
  • the composite tooth for working the soil or rocks comprises a frustoconical or pyramidal type insert preferably truncated rectangular or square base, preferably of the hollow type, made in grains by a mixture of carbon powders and titanium and allowing, after SHS reaction, obtaining a macro-microstructure, that is to say a reinforcement network that can also be called a three-dimensional alternating structure of zones concentrated in micrometric globular particles of titanium carbides separated by areas that are practically free.
  • a reinforcement network that can also be called a three-dimensional alternating structure of zones concentrated in micrometric globular particles of titanium carbides separated by areas that are practically free.
  • Such a structure is obtained by the reaction in the mold of the granules comprising a mixture of carbon powders and titanium and having been previously shaped either by clogging grains with glue in a mold or simply in a perforated metal enclosure which will at least partially melt during casting.
  • the SHS reaction is initiated by the heat of casting of the cast iron or steel used to pour the whole piece of the tooth and thus both the unreinforced and the reinforced part (see Fig. 2nd ).
  • the casting thus triggers an exothermic reaction of self-propagating synthesis at high temperature of the mixture of powders of carbon and titanium compacted in the form of granules (self-propagating high-temperature synthesis - SHS), previously agglomerated as a frustoconical insert, preferably at least partially hollow and placed in the mold 15.
  • the reaction then has the distinction of continuing to spread as soon as it is initiated.
  • This high temperature synthesis allows easy infiltration of all millimetric and micrometric interstices, by casting or casting steel ( Fig. 2g & 2h ). By increasing the wettability, the infiltration can be done on any thickness or depth of reinforcement of the tooth. It advantageously makes it possible to create, after SHS reaction and infiltration by an external casting metal, an insert not flush with the distal end of the tooth and comprising a high concentration of micrometric globular particles of titanium carbides (which could be also called clusters of nodules), which areas having a size of the order of a millimeter or a few millimeters, and which alternate with areas substantially free of globular titanium carbides.
  • the reinforcement zones where these granules were found show a concentrated dispersion of micrometric globular particles 4 of TiC carbides (globules) whose micrometric interstices 3 have also been infiltrated by the casting metal. which is here cast iron or steel. It is important to note that the millimetric and micrometric interstices are infiltrated by the same metallic matrix as that which constitutes the unreinforced part of the tooth; this allows a total freedom of choice of the casting metal.
  • the reinforcement zones with a high concentration of titanium carbides are composed of globular micrometric particles of TiC in significant percentage (between about 35 and about 70% by volume) and ferrous alloy infiltration.
  • Micrometric globular particles are understood to mean globally spheroidal particles having a size ranging from a micrometer to a few tens of micrometers at most, the vast majority of these particles having a size of less than 50 ⁇ m, and even 20 ⁇ m, or even less than 10 ⁇ m.
  • TiC globules This globular form is characteristic of a method for obtaining titanium carbide by self-propagating synthesis SHS (see Fig. 5 ).
  • the process for obtaining the granules is illustrated in figure 2a-2h .
  • the granules of carbon / titanium reagents are obtained by compaction between rollers 10 in order to obtain strips that are then crushed in a crusher 11.
  • the mixture of the powders is made in a mixer 8 consisting of a tank equipped with blades , to promote homogeneity.
  • the mixture then passes into a granulation apparatus through a hopper 9.
  • This machine comprises two rollers 10, through which the material is passed. Pressure is applied to these rollers 10, which compresses the material. A strip of compressed material is obtained at the outlet, which is then crushed in order to obtain the granules.
  • These granules are then sieved to the desired particle size in a sieve 13.
  • the degree of compaction of the bands depends on the applied pressure (in Pa) on the rollers (diameter 200 mm, width 30 mm). For a low level of compaction, of the order of 10 6 Pa, we obtain a density on the bands of the order of 55% of the theoretical density. After passing through the rollers 10 for compressing this material, the apparent density of the granules is 3.75 x 0.55, or 2.06 g / cm 3 .
  • the granules obtained from the raw material Ti + C are porous. This porosity varies from 5% for highly compressed granules, to 45% for slightly compressed granules.
  • the granules obtained generally have a size between 1 and 12 mm, preferably between 1 and 6 mm, and particularly preferably between 1.4 and 4 mm.
  • the granules are made as described above.
  • a mold 7 insert and granules are agglomerated either by means glue, or by any other means such as a perforated metal containment which will melt at least partially during casting.
  • the insert mold is for example an elastomer mold making it possible to give the desired final shape to the insert 5.
  • the insert, of frustoconical shape hollow or not, will be arranged in such a manner in the casting mold not to be flush with the distal surface of the tooth.
  • the distance will vary depending on the size of the tooth. It should be at least 1mm, preferably at least 2 or 3 mm and particularly preferably at least 4 or 5 mm.
  • the bulk density of the stack of Ti + C granules is measured according to ISO 697 and depends on the level of compaction of the bands, the granulometric distribution of the granules and the crushing mode of the bands, which influences the shape of the granules .
  • the bulk density of these Ti + C granules is generally of the order of 0.9 g / cm 3 to 2.5 g / cm 3 depending on the level of compaction of these granules and the density of the stack.
  • the insert is then placed in the mold 15 of the tooth, in the area of the mold where it is desired to reinforce the part.
  • the insert is placed as illustrated by the Figures 7 to 10 so that it does not scratch the surface of the tooth once it is formed. Then, the metal to form the tooth is poured into the mold 15.
  • a powdered ferrous alloy is added to the carbon-titanium mixture to reduce the intensity of the reaction between carbon and titanium. It is intended to produce a tooth whose reinforced zones comprise an overall volume percentage of TiC of approximately 30%.
  • a compaction band is produced at 85% of the theoretical density of a mixture by weight of 15% of C, 63% of Ti and 22% of Fe.
  • the granules are sieved to obtain a granule size between 1.4 and 4 mm.
  • a bulk density of the order of 2 g / cm 3 (45% of space between the granules + 15% of porosity in the granules) is obtained.
  • the present invention makes it possible to reduce the phenomenon of cracking of the tooth, during its manufacture but also in use.
  • the rejection rate is reduced, in particular thanks to hollow frustoconical cones or truncated pyramids. hollow which reduce overall the concentration of ceramics in the room. Too much ceramic presence potentially causes cracking and / or infiltration defects.
  • the wear of the teeth in use is reduced by the inserts of the present invention. Indeed, the cracking of the ceramic is decreased when the insert is not immediately exposed on the surface. The rupture primers that could weaken the tooth in service are thus limited.
  • the cracks generally originate in the most fragile places, which are in this case the TiC particle or the interface between this particle and the infiltration metal alloy. If a crack originates at the interface or in the micrometric particle of TiC, the propagation of this crack is then impeded by the infiltration alloy which surrounds this particle.
  • the toughness of the infiltration alloy is greater than that of the TiC ceramic particle. The crack needs more energy to pass from one particle to another, to cross the micrometric spaces that exist between the particles.
  • the shape and the wall thickness of the frustoconical or pyramidal insert can be varied when the latter is hollow.
  • the expansion coefficient of the TiC reinforcement is lower than that of the ferrous alloy matrix (TiC expansion coefficient: 7.5 ⁇ 10 -6 / K and the ferrous alloy: about 12.0 ⁇ 10 -6 / K).
  • This difference in the expansion coefficients has the consequence of generating tensions in the material during the solidification phase and also during the heat treatment. If these voltages are too great, cracks may appear in the room and lead to scrapping it.
  • the recesses in the insert make it possible to reduce the proportion of TiC reinforcement (less than 45% by volume in the macro-microstructure reinforced), resulting in less tension in the room.
  • the presence of a more ductile matrix between the micrometric globular particles of TiC in alternating zones of low and high concentration makes it possible to better manage any local voltages.
  • the boundary between the insert and the unreinforced portion of the tooth is not abrupt because there is a continuity of the metal matrix between the insert and the unreinforced portion, thanks to the frustoconical inserts and pyramidaux hollow, which allows to protect it against a complete tearing of the insert.
  • the small volume of a frustoconical or hollow pyramidal insert also reduces the overall amount of TiC, decreasing the cost of the workpiece in the same way.
  • the hollows also allow a faster "filling" of the insert during casting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Dental Preparations (AREA)
EP18170766.2A 2018-05-04 2018-05-04 Zahn aus verbundwerkstoff mit kegelstumpfförmigem einsatz Withdrawn EP3563951A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP18170766.2A EP3563951A1 (de) 2018-05-04 2018-05-04 Zahn aus verbundwerkstoff mit kegelstumpfförmigem einsatz
BR112020022315-8A BR112020022315A2 (pt) 2018-05-04 2019-04-30 dente composto, método de fabricação por fundição de um dente composto e dente
AU2019263606A AU2019263606B2 (en) 2018-05-04 2019-04-30 Composite tooth with frustoconical insert
PCT/EP2019/061021 WO2019211268A1 (fr) 2018-05-04 2019-04-30 Dent composite avec insert tronconique
MX2020011682A MX2020011682A (es) 2018-05-04 2019-04-30 Diente compuesto con inserto frustoconico.
EP19720596.6A EP3787820A1 (de) 2018-05-04 2019-04-30 Verbundzahn mit kegelstumpfförmigem einsatz
US17/051,152 US20210131076A1 (en) 2018-05-04 2019-04-30 Composite tooth with frustoconical insert
CA3098478A CA3098478A1 (fr) 2018-05-04 2019-04-30 Dent composite avec insert tronconique
CN201980028893.1A CN112203786B (zh) 2018-05-04 2019-04-30 具有截头圆锥形插入件的复合齿
ZA2020/06519A ZA202006519B (en) 2018-05-04 2020-10-20 Composite tooth with frustoconical insert
CL2020002817A CL2020002817A1 (es) 2018-05-04 2020-10-29 Diente compuesto con inserto frustocónico

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18170766.2A EP3563951A1 (de) 2018-05-04 2018-05-04 Zahn aus verbundwerkstoff mit kegelstumpfförmigem einsatz

Publications (1)

Publication Number Publication Date
EP3563951A1 true EP3563951A1 (de) 2019-11-06

Family

ID=62116341

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18170766.2A Withdrawn EP3563951A1 (de) 2018-05-04 2018-05-04 Zahn aus verbundwerkstoff mit kegelstumpfförmigem einsatz
EP19720596.6A Pending EP3787820A1 (de) 2018-05-04 2019-04-30 Verbundzahn mit kegelstumpfförmigem einsatz

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19720596.6A Pending EP3787820A1 (de) 2018-05-04 2019-04-30 Verbundzahn mit kegelstumpfförmigem einsatz

Country Status (10)

Country Link
US (1) US20210131076A1 (de)
EP (2) EP3563951A1 (de)
CN (1) CN112203786B (de)
AU (1) AU2019263606B2 (de)
BR (1) BR112020022315A2 (de)
CA (1) CA3098478A1 (de)
CL (1) CL2020002817A1 (de)
MX (1) MX2020011682A (de)
WO (1) WO2019211268A1 (de)
ZA (1) ZA202006519B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021168297A1 (en) * 2020-02-19 2021-08-26 Esco Group Llc Wear member
CN115385726A (zh) * 2022-08-29 2022-11-25 广东省科学院新材料研究所 一种纤维表面抗水氧腐蚀涂层及其制备方法与应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021205968A1 (de) * 2020-04-09 2021-10-14
WO2022082253A1 (en) * 2020-10-20 2022-04-28 Bradken Resources Pty Limited Wear assembly
CA3202076A1 (en) 2020-12-10 2022-06-16 Magotteaux International S.A. Hierarchical composite wear part with structural reinforcement
CN113290231B (zh) * 2021-05-31 2022-07-05 华中科技大学 消失模铸造液液复合铝镁双金属的方法及铝镁双金属

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081774A (en) * 1988-12-27 1992-01-21 Sumitomo Heavy Industries Foundry & Forging Co., Ltd. Composite excavating tooth
US5337801A (en) * 1989-03-23 1994-08-16 Kennametal Inc. Wear-resistant steel castings
JP2004092208A (ja) * 2002-08-30 2004-03-25 Komatsu Ltd 耐摩耗複合切刃
WO2010031660A1 (fr) 2008-09-19 2010-03-25 Magotteaux International S.A. Dent composite pour le travail du sol ou des roches
WO2017081665A1 (en) * 2015-11-12 2017-05-18 Innerco Sp. Z O.O. Powder composition for the manufacture of casting inserts, casting insert and method of obtaining local composite zones in castings
US20170233986A1 (en) * 2016-02-15 2017-08-17 Caterpillar Inc. Ground engaging component and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984910A (en) * 1973-12-17 1976-10-12 Caterpillar Tractor Co. Multi-material ripper tip
JP2852867B2 (ja) * 1994-05-13 1999-02-03 株式会社小松製作所 耐摩耗部品の製造方法及びその耐摩耗部品
CN102482862B (zh) * 2009-05-29 2015-03-18 麦塔洛吉尼亚股份有限公司 耐磨性增强的耐磨部件
KR20140145699A (ko) * 2013-06-14 2014-12-24 주식회사 티엠시 광산용 암석 굴삭기 투스 및 그의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081774A (en) * 1988-12-27 1992-01-21 Sumitomo Heavy Industries Foundry & Forging Co., Ltd. Composite excavating tooth
US5337801A (en) * 1989-03-23 1994-08-16 Kennametal Inc. Wear-resistant steel castings
JP2004092208A (ja) * 2002-08-30 2004-03-25 Komatsu Ltd 耐摩耗複合切刃
WO2010031660A1 (fr) 2008-09-19 2010-03-25 Magotteaux International S.A. Dent composite pour le travail du sol ou des roches
WO2017081665A1 (en) * 2015-11-12 2017-05-18 Innerco Sp. Z O.O. Powder composition for the manufacture of casting inserts, casting insert and method of obtaining local composite zones in castings
US20170233986A1 (en) * 2016-02-15 2017-08-17 Caterpillar Inc. Ground engaging component and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021168297A1 (en) * 2020-02-19 2021-08-26 Esco Group Llc Wear member
CN115385726A (zh) * 2022-08-29 2022-11-25 广东省科学院新材料研究所 一种纤维表面抗水氧腐蚀涂层及其制备方法与应用
CN115385726B (zh) * 2022-08-29 2023-08-08 广东省科学院新材料研究所 一种纤维表面抗水氧腐蚀涂层及其制备方法与应用

Also Published As

Publication number Publication date
CL2020002817A1 (es) 2021-02-12
AU2019263606B2 (en) 2024-06-13
ZA202006519B (en) 2022-03-30
CN112203786A (zh) 2021-01-08
AU2019263606A1 (en) 2020-11-26
CN112203786B (zh) 2023-07-04
CA3098478A1 (fr) 2019-11-07
BR112020022315A2 (pt) 2021-03-23
EP3787820A1 (de) 2021-03-10
WO2019211268A1 (fr) 2019-11-07
US20210131076A1 (en) 2021-05-06
MX2020011682A (es) 2020-12-10

Similar Documents

Publication Publication Date Title
EP2329052B1 (de) Verbundwerkstoffzahn zum bearbeiten von boden oder gestein
EP2323770B1 (de) Schlagelement aus verbundmaterial für prallmühle
EP3563951A1 (de) Zahn aus verbundwerkstoff mit kegelstumpfförmigem einsatz
EP2326738B9 (de) Mahlkegel für einen kompressionsbrecher
EP2334836B9 (de) Hierarchischer verbundwerkstoff
EP4157569A1 (de) Verschleissteil aus keramik-metall-verbundwerkstoff
FR3011197A1 (fr) Revêtement resistant a l'usure
EP3915684A1 (de) Verschleissteil aus verbundwerkstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603