EP3559966B1 - Electrical switching device - Google Patents

Electrical switching device Download PDF

Info

Publication number
EP3559966B1
EP3559966B1 EP18704417.7A EP18704417A EP3559966B1 EP 3559966 B1 EP3559966 B1 EP 3559966B1 EP 18704417 A EP18704417 A EP 18704417A EP 3559966 B1 EP3559966 B1 EP 3559966B1
Authority
EP
European Patent Office
Prior art keywords
switching
electrical
resistor
point
switching point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18704417.7A
Other languages
German (de)
French (fr)
Other versions
EP3559966A1 (en
EP3559966C0 (en
Inventor
Thomas Chyla
Stefan Giere
Volker Lehmann
Jens Schimmelpfennig
Jörg Teichmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3559966A1 publication Critical patent/EP3559966A1/en
Application granted granted Critical
Publication of EP3559966B1 publication Critical patent/EP3559966B1/en
Publication of EP3559966C0 publication Critical patent/EP3559966C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/16Impedances connected with contacts
    • H01H33/165Details concerning the impedances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/14Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/16Impedances connected with contacts

Definitions

  • the invention relates to an electrical switching device having at least one switching point and at least one switching resistor, which is electrically connected in parallel to the switching point and has a stack of resistance elements.
  • An electrical switching device is known, for example, from the published patent application DE 10 2006 004 811 A1 known.
  • a switching resistor is electrically connected in parallel to a switching point.
  • Electrical switching devices are preferably manufactured in a modular design so that components can be used multiple times in different series. Modular components also make it easier to adapt electrical switching devices to changing requirements.
  • CH 669 863 A5 discloses a high-voltage switch in T or Y design, which has at least one switching point and at least one switching resistor, wherein the at least one switching resistor is electrically connected in parallel to the switching point.
  • the switching resistor has a stack of resistance elements.
  • US 5 629 666 A discloses an electrical switching device according to the preamble of claim 1, having a power resistor having a large heat capacity per unit volume and a suitable and stable electrical resistance.
  • This power resistor comprises a sintered body containing alumina and carbon and a pair of electrodes formed on opposite surfaces of the sintered body.
  • the object is achieved in an electrical switching device of the type mentioned at the outset in that the number of resistance elements which form the stack has a ratio to the electrical resistance of the stack of resistance elements in ohms within the limits of 0.5 to 2, in particular 0.5 to 1.5, and the length of the switching resistor in mm has a ratio of less than or equal to 8, in particular less than or equal to 6, to the electrical resistance of the switching resistor in ohms.
  • An electrical switching device is a device that serves to interrupt or establish a current path.
  • the electrical switching device can interrupt or connect an electrical current by interrupting or establishing a current path.
  • the amount of electrical current to be controlled can vary.
  • an electrical switching device can be designed as a load switching device, i.e. the electrical switching device can handle currents that correspond to its maximum rated value.
  • the electrical switching device is designed as a so-called isolating switching device, i.e. apart from negligible charging and discharging currents, the electrical switching device is designed not to control any electrical current.
  • An electrical switching device can also be designed as a so-called power switching device, i.e.
  • the electrical switching device also serves to control currents that are above its rated current. For example, it is possible for a power switching device to control short-circuit currents that are a multiple of the rated current.
  • electrical switching devices can be used at different points in electrical power transmission networks. Electrical switching devices can be used in low, medium, high and extra-high voltage ranges. It is advantageous if one switching point of the switching device is a mechanical switching point. At a mechanical switching point, the impedance of the switching point is changed by switching contact pieces that can be moved relative to one another. Alternatively, however, a switching point can be designed on a semiconductor basis, for example, whereby the impedance of the switching point can vary due to external wiring.
  • a switching resistor is arranged parallel to the switching point.
  • a switching resistor supports the function of the switching point. For example, if a phase conductor is interrupted and an electrical current is interrupted as a result, this can have a negative effect on the switching point. For example, pendulum movements or oscillations of energy flows can occur in electrical energy transmission networks, which lead to a voltage increase across the switching point.
  • a switching resistor can be used to limit so-called recovery voltages, which supports the safe and rapid establishment of a high-impedance state of the switching point. For example, oscillations can occur in alternating voltage networks, which lead to voltage increases across a switching point that are greater than the rated voltage for which the electrical switching point is designed.
  • the electrical switching device is used in a direct voltage system, where an oscillation of the direct current can be forced to interrupt a phase conductor, for example by a current zero crossing through an external circuit, in order to simplify the interruption of a phase conductor and thus possibly an interruption of the direct current.
  • the switching resistor it can advantageously be provided that it is composed of several resistance elements, so that the desired resistance value of the switching resistor is achieved in the sum of the resistance elements combined with one another.
  • the resistance elements can, for example, be assembled in the manner of a stack.
  • the resistance elements can, for example, each have a cylindrical shape, in particular with a circular cylindrical or hollow cylindrical cross-section.
  • the end faces of several resistance elements can be arranged next to one another and form a stack.
  • an arrangement of contacting elements can also be provided between the resistance elements.
  • the stack of resistance elements can be assembled to form an angularly rigid composite.
  • the resistance elements can be pressed against one another by applying an external force.
  • the stack of resistance elements can also be surrounded by a casing which serves to axially guide the stack of resistance elements.
  • the casing should have an electrically insulating effect.
  • the stack of resistance elements can be positioned inside a tube made of electrically insulating material, whereby the tube can be used to apply contact forces to the resistance stack.
  • the electrically insulating tube it is possible for the electrically insulating tube to accommodate the stack of resistance elements and for contact points to be arranged at the end of the insulating tube for electrically connecting the switching resistor in parallel to a switching point.
  • the contact points can also serve to hold and position the switching resistor.
  • the number of resistance elements forming a stack is in a ratio of 0.5 to 2, in particular 0.5 to 1.5, to the electrical resistance of the stack of resistance elements in ohms.
  • a ratio of the number of resistance elements in the stack to the electrical resistance of less than or equal to 2, in particular less than or equal to 1.5 according to the invention, a favorable release of heat from the stack of resistance elements is possible. Furthermore, the length of the stack of resistance elements is limited in such a way that electrical parallel connection to the switching point is made easier.
  • the design of the individual resistance element is defined in relation to the partial resistance that the resistance element contributes to the total resistance of the stack. Furthermore, the mass of the stack of resistance elements is limited. It has proven to be particularly advantageous if the ratio of the number of resistance elements to the electrical resistance of the stack in ohms is within the limits of approximately 0.5 ... 0.7 to approximately 1.0 ... 2.
  • the dimensioning regulations allow the resistance elements to be manufactured inexpensively, for example using sintering processes, in particular of ceramics or similar.
  • the invention provides that the length of the switching resistor in mm to the electrical resistance of the switching resistor in ohms has a ratio of less than or equal to 8, in particular less than or equal to 6.
  • the switching resistor can be formed, for example, from one or more stacks of resistance elements.
  • the load capacity of the switching resistors can be improved by connecting several columns in parallel.
  • the switching resistor has only one stack of resistance elements, whereby even in such an embodiment the ratio of length to resistance in ohms of the on-resistance, in particular of the stack of resistance elements, corresponds to the dimensioning specification. It has proven advantageous to set the ratio of length of the switching resistor to the amount of the switching resistance in ohms in a range from 3 ... 4 to 6 ... 8.
  • the electrical switching device has a multiple-interrupting switching path with a first switching point and a second switching point, which are electrically contacted with one another, wherein between connection points of the multiple-interrupting switching path there is a distance in mm which is a maximum of 30 times, in particular a maximum of 25 times the amount of the switching resistance in ohms.
  • an electrical switching device serves to switch a current path or to switch an electrical current. If several switching points are used which together serve to switch a current path/electrical current, an electrical switching device with a switching path that interrupts several times is formed.
  • the switching points are preferably electrically connected in series with one another, so that the switching path has connection points of the electrical switching device at the end points of the interconnected switching points, between which a phase conductor (current path) or an electrical current is switched.
  • a contact element can be used to connect the first and the second switching point to one another, for example, which the two switching points are spaced apart from one another.
  • This contact element is preferably designed to be electrically conductive, so that an electrically conductive connection between the first and second switching points is made via the contact element.
  • Gear elements such as a gear head
  • the switching points can project from the contacting element.
  • the switching points can be arranged on opposite sides of the contacting element.
  • the switching points can project from the contacting element in opposite directions to one another, essentially in alignment.
  • the connection points of the multiple interruption switching path can be located at the ends of the two switching points facing away from the contacting element. It is thus possible, for example, to design an outdoor switching device in a live tank design, which can, for example, have several encapsulated housings in a T shape projecting from an electrically insulating support device.
  • a first switching resistor can be electrically connected in parallel to the first switching point.
  • a second switching resistor can be electrically connected in parallel to the second switching point. It can be provided that a switching resistor is assigned to both the first and the second switching point. However, it can also be provided that a switching resistor is assigned electrically in parallel to only the first switching point or only the second switching point. By electrically connecting switching resistors in parallel, the switching point to which the switching resistor is electrically connected in parallel is bridged by the switching resistor. In other words, in addition to the impedance-variable switching point, a parallel current path is set up via the switching resistor.
  • the switching resistance has such a high value that in the high-impedance state of the switching point only a negligible leakage current can flow across the switching resistor.
  • a temporary separation of the parallel current path created across the respective switching resistor must also be provided.
  • Such a separation of the parallel current path can preferably take place after a phase conductor has been interrupted and after the switching point has been successfully solidified.
  • solidification of the switching point is necessary in order to remove foreign substances in the area of the switching point, such as burn-off products or other interfering particles from the switching point.
  • the use of several switching points also offers the advantage of keeping an electrical voltage to be separated across the switching path distributed over several switching points, so that each of the switching points only needs to take on a portion of the voltage to be controlled between the contact points of the switching path.
  • encapsulation housing essentially electrically insulating tubular structures can be used, which are provided with fittings at the end openings.
  • the fittings can be designed to be electrically conductive, whereby the fittings can also be used to electrically contact the first or second switching point, which are arranged inside the respective encapsulation housing.
  • the switching resistors can also be electrically connected in parallel to the first or second switching point via the fittings.
  • the fittings can also serve as holding elements for supporting or carrying switching resistors. This can be particularly advantageous if the switching resistors are arranged outside the encapsulation housing.
  • a switching resistor can also be arranged inside an encapsulation housing.
  • a further advantageous embodiment can provide that the first or the second switching point is surrounded by an encapsulating housing, wherein a switching resistor is arranged outside the encapsulating housing.
  • An environment of a switching point with an encapsulated housing has the advantage that the switching point can be protected from external influences.
  • An encapsulated housing can, for example, be designed in the form of an electrically insulating tubular body, in the recess of which a switching point is arranged. The tubular body can be provided with fittings at the end to enable electrical contact to be made with the switching point located inside the encapsulated housing. If a switching resistor is arranged outside such an encapsulated housing, the encapsulated housing can be designed with its cross-section to match the dimensions of the respective switching point. If necessary, a switching resistor can then be arranged outside the encapsulated housing. This further supports a modular design of an electrical switching device in that the switching resistor is only arranged outside the encapsulated housing when required, whereby the dimensions of the encapsulated housing itself can be optimized for the switching point.
  • a further advantageous embodiment can provide that the first and the second switching point are each surrounded by an encapsulating housing, wherein a switching resistor is arranged outside an encapsulating housing.
  • both the first switching point and the second switching point are equipped with an encapsulating housing, it is possible to install each of the switching points in a protected space, whereby a switching resistor can be assigned to both switching points or just to one switching point.
  • Arranging the switching resistor outside the encapsulating housing enables the encapsulating housing and switching resistor to be aligned essentially parallel to one another.
  • the switching resistor can be connected in parallel via electrically conductive bodies (fittings) located at the end of the encapsulating housing, which contact the first and second switching points respectively.
  • the switching resistor can be supported on the respective encapsulating housing.
  • a further advantageous embodiment can provide that the first or the second switching point is surrounded by an encapsulating housing, wherein a switching resistor is arranged within an encapsulating housing.
  • An arrangement within the encapsulating housing, which surrounds the first or second switching point, has the advantage that the switching resistor can benefit from the mechanical protective effect of the encapsulating housing and does not itself require a separate casing. This enables electrical contact between the switching resistor and the respective switching point to be made in a simplified manner.
  • a further advantageous embodiment can provide that the first and the second switching point are each surrounded by an encapsulating housing, wherein a switching resistor is arranged within an encapsulating housing.
  • Equipping the first and second switching points with a respective encapsulation housing makes it possible to equip the first or second switching point or both switching points with a switching resistor,
  • the switching resistor is arranged in the respective encapsulation housing of the respective switching point.
  • the protective effect of the respective encapsulation housing can be extended to the switching resistor.
  • An advantageous embodiment can provide that an encapsulation housing is a pressure vessel.
  • an encapsulation housing is filled with an electrically insulating fluid.
  • an encapsulation housing as a pressure vessel makes it possible to fill the interior of the encapsulation housing with an electrically insulating fluid and to pressurize this electrically insulating fluid so that the interior of the encapsulation housing has a different pressure than the surroundings of the encapsulation housing.
  • the pressure vessel is designed in such a way that it can withstand a differential pressure. This makes it possible to enclose a suitable fluid within the encapsulation housing.
  • the encapsulation housing can be filled with an electrically insulating oil or an electrically insulating gas.
  • Gases or liquids with fluorine components have proven particularly advantageous, as they have a high electrically insulating effect on the one hand, but also a good arc-extinguishing effect on the other.
  • sulfur hexafluoride, fluoroketones, fluoronitriles can be used.
  • other electrically insulating fluids such as nitrogen, oxygen, etc. can also be used.
  • the electrical switching device is designed as an outdoor circuit breaker in live tank construction in the high voltage range, in particular for voltages above 800,000 volts.
  • the electrical switching device has a support frame 1, which is generally made of electrically conductive material and which carries earth potential.
  • a drive device 2 is positioned on the support frame 1.
  • the drive device 2 is also generally arranged at earth potential.
  • the drive device 2 enables the electrical switching device to be actuated, i.e. a current path to be separated or established.
  • the drive device 2 provides the energy required for this, in this case the necessary kinetic energy.
  • An electrically insulating section of a support column 3 is arranged on the support frame 1.
  • the support column 3 is in this case composed of a first and a second electrically insulating section, wherein the electrically insulating sections are essentially tubular and closed off at the ends with fittings. Facing sides of the electrically insulating sections of the support column 3 are screwed together so that an extended tubular support column 3 is formed.
  • the support column 3 is positioned on the support frame 1 with one of its front ends.
  • the electrically insulating sections of the support column 3 are hollow and provided with ribbing on the outer casing. The ribbing provides improved outdoor resistance by extending creepage paths on the surface of the support column 3 and forming drip noses on the support column 3.
  • a gear head 4 is arranged at the end of the support column 3 facing away from the support frame 1.
  • the gear head 4 closes off the support column 3 and is connected to the support column 3 at a rigid angle.
  • a first switching point 5 and a second switching point 6 are mounted on the gear head 4 in the transverse direction to the axial course of the support column 3.
  • the first and the second switching points are enclosed by a first encapsulation housing 7. or a second encapsulation housing 8.
  • the two encapsulation housings 7, 8 are designed to resemble an electrically insulating section of the support column 3. This means that the two encapsulation housings 7, 8 are essentially hollow-cylindrical, electrically insulating, tubular, with a fitting arranged at the end of the encapsulation housings 7, 8 to close off the encapsulation housings 7, 8.
  • the two encapsulation housings 7, 8 are arranged on opposite sides of the gear head 4 and protrude from the gear head 4 in opposite directions.
  • the ends of the two encapsulation housings 7, 8 facing the gear head 4 are mechanically connected to the gear head 4 via the fittings on the encapsulation housings 7, 8 there, so that the encapsulation housings 7, 8 are supported on the support column 3 via the gear head 4.
  • the housing of the gear head 4 is made of a conductive material, wherein an electrical contact of the fittings, which are connected to the gear head 4, is provided via the gear head 4.
  • the first and second switching points 5, 6 are arranged inside the encapsulation housings 7, 8.
  • the first and second switching points 5, 6 each have switching contact pieces that can be moved relative to one another.
  • the relatively movable switching contact pieces are designed in such a way that they can contact one another or can be separated from one another.
  • a kinematic chain for example in the form of an axially displaceable switching rod, is arranged inside the support column 3, which preferably has an electrically insulating effect. This makes it possible to transport a movement that is emitted by the drive device 2 on the support frame 1 within the support column 3 to the gear head 4.
  • the movement can be distributed into the two encapsulation housings 7, 8, so that a relative movement of the switching contact pieces of the first or second switching point 5, 6 can be carried out.
  • the switching points 5, 6 are arranged in such a way that the switching points are electrically contacted with the fitting of the respective encapsulation housing 7, 8, which is attached to the gear head 4.
  • the switching points are thus electrically connected in series with one another via the fittings which are connected to the gear head 4, via the gear head 4, so that a multiple-interruption switching path is formed.
  • the two switching points 5, 6 are electrically connected on their other side to a fitting which closes off the respective encapsulation housing 7, 8 at the free end.
  • connection points 9, 10 for the multiple (double) interruption switching path of the electrical switching device.
  • a distance D extends between the connection points 9, 10, which includes the length of the electrically insulating sections of the encapsulation housings 7, 8 as well as the electrically conductive contacting element, which serves to contact the two switching points 5, 6.
  • a switching resistor 11a, 11b is assigned to both the first switching point 5 and the second switching point 6.
  • the two switching resistors 11a, 11b are each electrically connected in parallel to the first switching point 5 and the second switching point 6, respectively.
  • the switching resistors 11a, 11b are each electrically connected to the fittings that limit the end of the encapsulation housing 7, 8 of the respective switching point 5, 6.
  • the switching resistors 11a, 11b are also mechanically held or supported via the fittings and thus via the encapsulation housing 7, 8.
  • the switching resistors 11a, 11b are each constructed in the same way.
  • the switching resistors 11a, 11b each have a stack of n-resistance elements.
  • the resistance elements are each arranged in a tubular electrically insulating cylinder, which on the one hand has a mechanical protection for the respective stack of resistance elements.
  • the cylinder also serves to apply force to the resistance elements located inside the switching resistor.
  • the number of switching resistors can vary depending on the dimensions of the respective encapsulation housing 7, 8 or the gear head 4. A stack of resistance elements therefore has n-resistance elements.
  • the encapsulation housings 7, 8, the support column 3 and the gear head 4 are each designed as pressure vessels, so that the interior of the encapsulation housings 7, 8, the support column 3 and the gear head 4 can be filled with an electrically insulating fluid that is encapsulated. Electrically insulating fluids that promote the insulation strength inside the support column 3 or inside the encapsulation housings 7, 8 are particularly advantageous.
  • the electrically insulating fluid inside the encapsulation housings 7, 8 can preferably be pressurized so that a differential pressure can act on the encapsulation housing 7, 8 or also on the support column 3 or the gear head 4. In this case, the encapsulation housings 7, 8 are to be designed as pressure vessels.

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Thermistors And Varistors (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Adjustable Resistors (AREA)

Description

Die Erfindung betrifft eine elektrische Schalteinrichtung zumindest eine Schaltstelle sowie zumindest einen Schaltwiderstand aufweisend, welcher elektrisch parallel zur Schaltstelle geschaltet ist und einen Stapel aus Widerstandselementen aufweist.The invention relates to an electrical switching device having at least one switching point and at least one switching resistor, which is electrically connected in parallel to the switching point and has a stack of resistance elements.

Eine elektrische Schalteinrichtung ist beispielsweise aus der Offenlegungsschrift DE 10 2006 004 811 A1 bekannt. Zur Potentialsteuerung ist zu einer Schaltstelle ein Schaltwiderstand elektrisch parallel geschaltet. Elektrische Schaltgeräte werden bevorzugt in modularer Bauweise hergestellt, so dass Baugruppen mehrfach in verschiedenen Serien verwendbar sind. Weiter sind durch modulare Baugruppen elektrische Schaltgeräte vereinfacht an veränderte Anforderungen anpassbar.An electrical switching device is known, for example, from the published patent application DE 10 2006 004 811 A1 known. For potential control, a switching resistor is electrically connected in parallel to a switching point. Electrical switching devices are preferably manufactured in a modular design so that components can be used multiple times in different series. Modular components also make it easier to adapt electrical switching devices to changing requirements.

CH 669 863 A5 offenbart einen Hochspannungsschalter in T- oder Y-Bauweise, welcher zumindest eine Schaltstelle sowie zumindest einen Schaltwiderstand aufweist, wobei der zumindest eine Schaltwiderstand elektrisch parallel zur Schaltstelle geschaltet ist. Der Schaltwiderstand weist einen Stapel aus Widerstandselementen auf. CH 669 863 A5 discloses a high-voltage switch in T or Y design, which has at least one switching point and at least one switching resistor, wherein the at least one switching resistor is electrically connected in parallel to the switching point. The switching resistor has a stack of resistance elements.

Aus der SE 357 094 geht ein elektrischer Widerstand hervor, der schaltbar ist.From the SE 357 094 An electrical resistance is created that can be switched.

US 5 629 666 A offenbart eine elektrische Schalteinrichtung gemäß dem Oberbegriff des Anspruchs 1, mit einem Leistungswiderstand, der eine große Wärmekapazität pro Volumeneinheit und einen geeigneten und stabilen elektrischen Widerstand hat. Dieser Leistungswiderstand umfasst einen Sinterkörper, der Aluminiumoxid und Kohlenstoff enthält, und ein Paar Elektroden, die auf sich gegenüberliegenden Oberflächen des Sinterkörpers ausgebildet sind. US 5 629 666 A discloses an electrical switching device according to the preamble of claim 1, having a power resistor having a large heat capacity per unit volume and a suitable and stable electrical resistance. This power resistor comprises a sintered body containing alumina and carbon and a pair of electrodes formed on opposite surfaces of the sintered body.

Es ergibt sich als Aufgabe der Erfindung eine Schalteinrichtung derart fortzubilden, dass diese variabel ausgestattet werden kann, wobei eine günstige Abgabe von Wärme auf eine einfache und kostengünstige Weise ermöglicht wird.It is an object of the invention to develop a switching device in such a way that it can be equipped variably, whereby a favorable release of heat is made possible in a simple and cost-effective manner.

Erfindungsgemäß wird die Aufgabe bei einer elektrischen Schalteinrichtung der eingangs genannten Art dadurch gelöst, dass die Anzahl der Widerstandelemente, die den Stapel bilden, zum elektrischen Widerstand des Stapels aus Widerstandselementen in Ohm in einem Verhältnis in den Grenzen von 0,5 bis 2, insbesondere von 0,5 bis 1,5, steht und die Länge des Schaltwiderstandes in mm zum elektrischen Widerstand des Schaltwiderstandes in Ohm ein Verhältnis von kleiner gleich 8, insbesondere kleiner gleich 6 aufweist.According to the invention, the object is achieved in an electrical switching device of the type mentioned at the outset in that the number of resistance elements which form the stack has a ratio to the electrical resistance of the stack of resistance elements in ohms within the limits of 0.5 to 2, in particular 0.5 to 1.5, and the length of the switching resistor in mm has a ratio of less than or equal to 8, in particular less than or equal to 6, to the electrical resistance of the switching resistor in ohms.

Eine elektrische Schalteinrichtung ist eine Einrichtung, welche zum Unterbrechen bzw. zum Herstellen eines Strompfades dient. Dabei kann die elektrische Schalteinrichtung mit einem Unterbrechen bzw. einem Herstellen eines Strompfades einen elektrischen Strom unterbrechen bzw. einen elektrischen Strom zuschalten. Je nach Ausgestaltung der elektrischen Schalteinrichtung kann der Betrag des zu beherrschenden elektrischen Stromes variieren. Beispielsweise kann eine elektrische Schalteinrichtung als Lastschalteinrichtung ausgebildet werden, d. h. die elektrische Schalteinrichtung beherrscht Ströme, die maximal ihrer Bemessungsgröße entsprechen. Es kann jedoch auch vorgesehen sein, dass die elektrische Schalteinrichtung als sogenannte Trennschalteinrichtung ausgebildet ist, d. h. bis auf zu vernachlässigende Lade- und Entladungsströme ist die elektrische Schalteinrichtung dazu eingerichtet, keinen elektrischen Strom zu beherrschen. Eine elektrische Schalteinrichtung kann auch als sogenannte Leistungsschalteinrichtung ausgebildet sein, d. h. die elektrische Schalteinrichtung dient auch einem Beherrschen von Strömen, die oberhalb ihres Bemessungsstromes liegen. So ist es beispielsweise möglich, dass eine Leistungsschalteinrichtung Kurzströme beherrscht, welche ein Vielfaches des Bemessungsstromes betragen. Elektrische Schalteinrichtungen können je nach ihrer Bauart an verschiedenen Stellen von Elektroenergieübertragungsnetzen eingesetzt werden. Elektrische Schalteinrichtungen können dabei in Nieder-, Mittel-, Hoch- und Höchstspannungsbereich Verwendung finden. Vorteilhaft ist, wenn es sich bei einer Schaltstelle der Schalteinrichtung um eine mechanische Schaltstelle handelt. An einer mechanischen Schaltstelle wird durch relativ zueinander bewegbare Schaltkontaktstücke eine Impedanz der Schaltstelle verändert. Alternativ kann eine Schaltstelle jedoch beispielsweise auf Halbleiterbasis ausgebildet sein, wobei aufgrund einer äußeren Beschaltung die Impedanz der Schaltstelle variieren kann.An electrical switching device is a device that serves to interrupt or establish a current path. The electrical switching device can interrupt or connect an electrical current by interrupting or establishing a current path. Depending on the design of the electrical switching device, the amount of electrical current to be controlled can vary. For example, an electrical switching device can be designed as a load switching device, i.e. the electrical switching device can handle currents that correspond to its maximum rated value. However, it can also be provided that the electrical switching device is designed as a so-called isolating switching device, i.e. apart from negligible charging and discharging currents, the electrical switching device is designed not to control any electrical current. An electrical switching device can also be designed as a so-called power switching device, i.e. the electrical switching device also serves to control currents that are above its rated current. For example, it is possible for a power switching device to control short-circuit currents that are a multiple of the rated current. Depending on their design, electrical switching devices can be used at different points in electrical power transmission networks. Electrical switching devices can be used in low, medium, high and extra-high voltage ranges. It is advantageous if one switching point of the switching device is a mechanical switching point. At a mechanical switching point, the impedance of the switching point is changed by switching contact pieces that can be moved relative to one another. Alternatively, however, a switching point can be designed on a semiconductor basis, for example, whereby the impedance of the switching point can vary due to external wiring.

Unabhängig von der Gestaltung der Schaltstelle kann vorgesehen sein, dass parallel zur Schaltstelle ein Schaltwiderstand angeordnet ist. Ein Schaltwiderstand unterstützt die Funktion der Schaltstelle. Beispielsweise können bei einem Unterbrechen eines Phasenleiterzuges und einem gegebenenfalls damit verbundenen Unterbrechen eines elektrischen Stromes Rückwirkungen auf die Schaltstelle erfolgen. Beispielsweise können in Elektroenergieübertragungsnetzen Pendelbewegungen oder Schwingungen von Energieflüssen auftreten, welche zu einer Spannungsüberhöhung über der Schaltstelle führen. Mittels eines Schaltwiderstandes können sogenannte Wiederkehrspannungen begrenzt werden, wodurch ein sicheres und schnelles Herstellen eines hochimpedanten Zustandes der Schaltstelle unterstützt wird. Beispielsweise können in Wechselspannungsnetzen Schwingungsvorgänge auftreten, die über einer Schaltstelle zu Spannungsüberhöhungen führen, welche größer sind als die Bemessungsspannung, für welche die elektrische Schaltstelle ausgelegt ist. Es kann jedoch auch vorgesehen sein, dass die elektrische Schalteinrichtung in einem Gleichspannungssystem eingesetzt wird, wobei dort zum Unterbrechen eines Phasenleiterzuges ein Schwingen des Gleichstromes, beispielsweise durch einen Stromnulldurchgang durch eine äußere Beschaltung, erzwungen werden kann, um eine vereinfachte Unterbrechung eines Phasenleiterzuges und damit gegebenenfalls ein Unterbrechen des Gleichstromes zu erzwingen.Regardless of the design of the switching point, it can be provided that a switching resistor is arranged parallel to the switching point. A switching resistor supports the function of the switching point. For example, if a phase conductor is interrupted and an electrical current is interrupted as a result, this can have a negative effect on the switching point. For example, pendulum movements or oscillations of energy flows can occur in electrical energy transmission networks, which lead to a voltage increase across the switching point. A switching resistor can be used to limit so-called recovery voltages, which supports the safe and rapid establishment of a high-impedance state of the switching point. For example, oscillations can occur in alternating voltage networks, which lead to voltage increases across a switching point that are greater than the rated voltage for which the electrical switching point is designed. However, it can also be provided that the electrical switching device is used in a direct voltage system, where an oscillation of the direct current can be forced to interrupt a phase conductor, for example by a current zero crossing through an external circuit, in order to simplify the interruption of a phase conductor and thus possibly an interruption of the direct current.

Zur Ausgestaltung des Schaltwiderstandes kann vorteilhaft vorgesehen sein, dass dieser aus mehreren Widerstandselementen zusammengesetzt ist, so dass in Summe der miteinander kombinierten Widerstandselemente der erwünschte Widerstandsbetrag des Schaltwiderstandes erzielt wird. Die Widerstandselemente können beispielsweise nach Art eines Stapels zusammengefügt werden. Die Widerstandselemente können beispielsweise jeweils eine Zylinderform aufweisen, insbesondere mit einem kreiszylindrischen oder hohlzylindrischen Querschnitt. Die Stirnseiten mehrerer Widerstandselemente können aneinander liegend angeordnet sein und einen Stapel bilden. Zur Verbesserung der elektrischen Kontaktierung kann auch eine Anordnung von Kontaktierungselementen zwischen den Widerstandselementen vorgesehen sein. Der Stapel von Widerstandselementen kann zu einem winkelstarren Verbund zusammengefügt sein. Zur Ausbildung eines winkelstarren Verbundes und zur Vermeidung eines Auseinanderfallens eines Stapels von Widerstandselementen können die Widerstandselemente gegeneinander durch Aufbringen einer äußeren Kraft miteinander verpresst sein. Alternativ oder ergänzend kann der Stapel von Widerstandselementen auch von einer Umhüllung umgeben sein, welche einer axialen Führung des Stapels aus Widerstandselementen dient.To design the switching resistor, it can advantageously be provided that it is composed of several resistance elements, so that the desired resistance value of the switching resistor is achieved in the sum of the resistance elements combined with one another. The resistance elements can, for example, be assembled in the manner of a stack. The resistance elements can, for example, each have a cylindrical shape, in particular with a circular cylindrical or hollow cylindrical cross-section. The end faces of several resistance elements can be arranged next to one another and form a stack. To improve the electrical contact, an arrangement of contacting elements can also be provided between the resistance elements. The stack of resistance elements can be assembled to form an angularly rigid composite. To form an angularly rigid composite and to prevent a stack of resistance elements from falling apart, the resistance elements can be pressed against one another by applying an external force. Alternatively or additionally, the stack of resistance elements can also be surrounded by a casing which serves to axially guide the stack of resistance elements.

Die Umhüllung sollte dabei elektrisch isolierend wirken. Beispielsweise kann der Stapel von Widerstandselementen innerhalb einer Röhre, aus elektrisch isolierendem Material positioniert werden, wobei die Röhre einem Aufbringen von Anpresskräften des Widerstandsstapels dienen kann. So ist es beispielsweise möglich, dass die elektrisch isolierende Röhre den Stapel von Widerstandselementen aufnimmt und endseitig an der isolierenden Röhre Kontaktierungspunkte zum elektrischen Parallelschalten des Schaltwiderstandes zu einer Schaltstelle angeordnet sein. Beispielsweise können die Kontaktierungspunkte auch einem Halten und Positionieren des Schaltwiderstandes dienen.The casing should have an electrically insulating effect. For example, the stack of resistance elements can be positioned inside a tube made of electrically insulating material, whereby the tube can be used to apply contact forces to the resistance stack. For example, it is possible for the electrically insulating tube to accommodate the stack of resistance elements and for contact points to be arranged at the end of the insulating tube for electrically connecting the switching resistor in parallel to a switching point. For example, the contact points can also serve to hold and position the switching resistor.

Erfindungsgemäß ist es vorgesehen, dass die Anzahl der Widerstandselemente, welche einen Stapel bilden, zum elektrischen Widerstand des Stapels aus Widerstandselementen in Ohm in einem Verhältnis in den Grenzen von 0,5 bis 2, insbesondere von 0,5 bis 1,5 steht.According to the invention, the number of resistance elements forming a stack is in a ratio of 0.5 to 2, in particular 0.5 to 1.5, to the electrical resistance of the stack of resistance elements in ohms.

Bei einem erfindungsgemäßen Verhältnis der Anzahl der Widerstandselemente des Stapels zum elektrischen Widerstand von kleiner gleich 2, insbesondere kleiner gleich 1,5, ist eine günstige Abgabe von Wärme aus dem Stapel von Widerstandselementen ermöglicht. Weiterhin ist die Länge des Stapels von Widerstandselementen derart begrenzt, dass ein elektrisches Parallelschalten zur Schaltstelle vereinfacht ermöglicht ist. Durch eine Festlegung der Anzahl der Widerstandselemente zum elektrischen Widerstand des Stapels ist die Auslegung des einzelnen Widerstandselementes in Bezug auf den Teilwiderstand, welcher das Widerstandselement zum Gesamtwiderstand des Stapels beiträgt, definiert. Weiterhin ist die Masse des Stapels von Widerstandselementen begrenzt. Als besonders vorteilhaft hat sich herausgestellt, wenn das Verhältnis der Anzahl der Widerstandselemente zum elektrischen Widerstand des Stapels in Ohm sich den Grenzen von ca. 0,5 ... 0,7 bis ca. 1,0 ... 2 bewegt. Durch die Dimensionierungsvorschriften können die Widerstandselemente beispielsweise unter Nutzung von Sinterverfahren, insbesondere von Keramiken oder ähnlichem, kostengünstig gefertigt werden.With a ratio of the number of resistance elements in the stack to the electrical resistance of less than or equal to 2, in particular less than or equal to 1.5, according to the invention, a favorable release of heat from the stack of resistance elements is possible. Furthermore, the length of the stack of resistance elements is limited in such a way that electrical parallel connection to the switching point is made easier. By specifying the number of resistance elements to the electrical resistance of the stack, the design of the individual resistance element is defined in relation to the partial resistance that the resistance element contributes to the total resistance of the stack. Furthermore, the mass of the stack of resistance elements is limited. It has proven to be particularly advantageous if the ratio of the number of resistance elements to the electrical resistance of the stack in ohms is within the limits of approximately 0.5 ... 0.7 to approximately 1.0 ... 2. The dimensioning regulations allow the resistance elements to be manufactured inexpensively, for example using sintering processes, in particular of ceramics or similar.

Weiter ist erfindungsgemäß vorgesehen, dass die Länge des Schaltwiderstandes in mm zum elektrischen Widerstand des Schaltwiderstandes in Ohm ein Verhältnis von kleiner gleich 8, insbesondere kleiner gleich 6 aufweist.Furthermore, the invention provides that the length of the switching resistor in mm to the electrical resistance of the switching resistor in ohms has a ratio of less than or equal to 8, in particular less than or equal to 6.

Bei diesem Verhältnis der Länge eines Schaltwiderstandes zum elektrischen Widerstand in Ohm ist die Möglichkeit gegeben, den Schaltwiderstand beispielsweise aus einem oder mehreren Stapeln von Widerstandselementen zu bilden. Dabei kann die Belastbarkeit der Schaltwiderstände durch eine Parallelschaltung mehrerer Säulen verbessert werden. Es kann jedoch auch vorgesehen sein, dass der Schaltwiderstand lediglich einen Stapel von Widerstandselementen aufweist, wobei auch bei einer derartigen Ausführung das Verhältnis von Länge zum Widerstand in Ohm des Einschaltwiderstandes, insbesondere des Stapels von Widerstandselementen, der Dimensionierungsvorschrift entspricht. Dabei hat sich als vorteilhaft erwiesen, das Verhältnis von Länge des Schaltwiderstandes zum Betrag des Schaltwiderstandes in Ohm in einem Bereich von 3 ... 4 bis 6 ... 8 festzulegen.With this ratio of the length of a switching resistor to the electrical resistance in Ohms, it is possible to the switching resistor can be formed, for example, from one or more stacks of resistance elements. The load capacity of the switching resistors can be improved by connecting several columns in parallel. However, it can also be provided that the switching resistor has only one stack of resistance elements, whereby even in such an embodiment the ratio of length to resistance in ohms of the on-resistance, in particular of the stack of resistance elements, corresponds to the dimensioning specification. It has proven advantageous to set the ratio of length of the switching resistor to the amount of the switching resistance in ohms in a range from 3 ... 4 to 6 ... 8.

Vorteilhafterweise kann weiter vorgesehen sein, dass die elektrische Schalteinrichtung eine mehrfachunterbrechende Schaltstrecke mit einer ersten Schaltstelle und mit einer zweiten Schaltstelle aufweist, welche miteinander elektrisch kontaktiert sind, wobei zwischen Anschlusspunkten der mehrfachunterbrechenden Schaltstrecke eine Distanz in mm liegt, welche maximal das 30-fache, insbesondere maximal das 25-fache des Betrages des Schaltwiderstandes in Ohm beträgt.Advantageously, it can further be provided that the electrical switching device has a multiple-interrupting switching path with a first switching point and a second switching point, which are electrically contacted with one another, wherein between connection points of the multiple-interrupting switching path there is a distance in mm which is a maximum of 30 times, in particular a maximum of 25 times the amount of the switching resistance in ohms.

Eine elektrische Schalteinrichtung dient wie eingangs beschrieben einem Schalten eines Strompfades bzw. einem Schalten eines elektrischen Stromes. Nutzt man nunmehr mehrere Schaltstellen, die gemeinsam einem Schalten eines Strompfades/elektrischen Stromes dienen, so ist eine elektrische Schalteinrichtung mit mehrfach unterbrechender Schaltstrecke gebildet. Die Schaltstellen sind dabei bevorzugt elektrisch in Reihe miteinander verschaltet, so dass die Schaltstrecke an den Endpunkten der miteinander verbundenen Schaltstellen Anschlusspunkte der elektrischen Schalteinrichtung aufweisen, zwischen welchen ein Schalten eines Phasenleiterzuges (Strompfades) bzw. eines elektrischen Stromes vorgenommen wird. Zur Verbindung der ersten sowie der zweiten Schaltstelle miteinander kann beispielsweise ein Kontaktelement dienen, welches die beiden Schaltstellen voneinander beabstandet. Dieses Kontaktelement ist bevorzugt elektrisch leitend auszubilden, so dass eine elektrisch leitende Verbindung von erster und zweiter Schaltstelle über das Kontaktelement erfolgt. Als Kontaktelement können beispielsweise Getriebeelemente, wie z. B. ein Getriebekopf, dienen, welcher einer Einkoppelung einer Bewegung zur ersten bzw. zur zweiten Schaltstelle dient. Die Schaltstellen können dabei von dem Kontaktierungselement fortragen. Insbesondere können die Schaltstellen an entgegensetzten Seiten des Kontaktierungselementes angeordnet sein. Vorteilhaft können die Schaltstellen mit entgegengesetztem Richtungssinn zueinander im Wesentlichen fluchtend von dem Kontaktierungselement fortragen. An den von dem Kontaktierungselement abgewandten Enden der beiden Schaltstellen können die Anschlusspunkte der mehrfach unterbrechenden Schaltstrecke liegen. Somit ist es beispielsweise möglich, eine Freiluftschalteinrichtung in live tank Bauweise auszubilden, die beispielsweise mehrere Kapselungsgehäuse in T-Form von einer elektrisch isolierenden Stützeinrichtung fortragend aufweisen kann.As described at the beginning, an electrical switching device serves to switch a current path or to switch an electrical current. If several switching points are used which together serve to switch a current path/electrical current, an electrical switching device with a switching path that interrupts several times is formed. The switching points are preferably electrically connected in series with one another, so that the switching path has connection points of the electrical switching device at the end points of the interconnected switching points, between which a phase conductor (current path) or an electrical current is switched. A contact element can be used to connect the first and the second switching point to one another, for example, which the two switching points are spaced apart from one another. This contact element is preferably designed to be electrically conductive, so that an electrically conductive connection between the first and second switching points is made via the contact element. Gear elements, such as a gear head, can serve as a contact element, for example, which serves to couple a movement to the first or second switching point. The switching points can project from the contacting element. In particular, the switching points can be arranged on opposite sides of the contacting element. Advantageously, the switching points can project from the contacting element in opposite directions to one another, essentially in alignment. The connection points of the multiple interruption switching path can be located at the ends of the two switching points facing away from the contacting element. It is thus possible, for example, to design an outdoor switching device in a live tank design, which can, for example, have several encapsulated housings in a T shape projecting from an electrically insulating support device.

Zur ersten Schaltstelle kann ein erster Schaltwiderstand elektrisch parallel geschaltet sein. Zur zweiten Schaltstelle kann ein zweiter Schaltwiderstand elektrisch parallel geschaltet sein. Dabei kann vorgesehen sein, dass sowohl der ersten als auch der zweiten Schaltstelle jeweils ein Schaltwiderstand zugeordnet ist. Es kann jedoch auch vorgesehen sein, dass lediglich der ersten Schaltstelle oder lediglich der zweiten Schaltstelle ein Schaltwiderstand elektrisch parallel geschaltet zugeordnet ist. Durch eine elektrisch parallele Schaltung von Schaltwiderständen wird die Schaltstelle, zu welcher der Schaltwiderstand elektrisch parallel geschaltet ist, von dem Schaltwiderstand überbrückt. Mit anderen Worten, neben der impedanzveränderlichen Schaltstelle wird ein Parallelstrompfad über den Schaltwiderstand aufgebaut. Dabei weist der Schaltwiderstand jedoch einen derart hohen Betrag auf, dass im hochimpedanten Zustand der Schaltstelle über den Schaltwiderstand lediglich ein zu vernachlässigender Leckagestrom fließen kann. Gegebenenfalls ist zur Vermeidung eines Leckagestromes zusätzlich ein temporäres Auftrennen des über den jeweiligen Schaltwiderstand hergestellten Parallelstrompfades vorzusehen. Ein derartiges Auftrennen des Parallelstrompfades kann bevorzugt nach einem erfolgten Unterbrechen eines Phasenleiterzuges und nach erfolgreicher Verfestigung der Schaltstelle erfolgen. Insbesondere bei einer mechanischen Schaltstelle ist eine Verfestigung der Schaltstelle notwendig, um beispielsweise im Bereich der Schaltstelle befindliche Fremdstoffe wie Abrandprodukte oder andere Störpartikel aus der Schaltstelle zu entfernen. Durch die Nutzung mehrerer Schaltstellen ist weiterhin ein Vorteil gegeben, eine über der Schaltstrecke zu separierende elektrische Spannung auf mehreren Schaltstellen verteilt zu halten, so dass jede der Schaltstellen lediglich eine Teilgröße der zwischen den Kontaktierungspunkten der Schaltstrecke zu beherrschenden Spannung zu übernehmen braucht.A first switching resistor can be electrically connected in parallel to the first switching point. A second switching resistor can be electrically connected in parallel to the second switching point. It can be provided that a switching resistor is assigned to both the first and the second switching point. However, it can also be provided that a switching resistor is assigned electrically in parallel to only the first switching point or only the second switching point. By electrically connecting switching resistors in parallel, the switching point to which the switching resistor is electrically connected in parallel is bridged by the switching resistor. In other words, in addition to the impedance-variable switching point, a parallel current path is set up via the switching resistor. However, the switching resistance has such a high value that in the high-impedance state of the switching point only a negligible leakage current can flow across the switching resistor. If necessary, to avoid a leakage current, a temporary separation of the parallel current path created across the respective switching resistor must also be provided. Such a separation of the parallel current path can preferably take place after a phase conductor has been interrupted and after the switching point has been successfully solidified. In the case of a mechanical switching point in particular, solidification of the switching point is necessary in order to remove foreign substances in the area of the switching point, such as burn-off products or other interfering particles from the switching point. The use of several switching points also offers the advantage of keeping an electrical voltage to be separated across the switching path distributed over several switching points, so that each of the switching points only needs to take on a portion of the voltage to be controlled between the contact points of the switching path.

Zur Ausbildung eines Kapselungsgehäuses können im Wesentlichen elektrisch isolierende rohrförmige Strukturen Verwendung finden, welche an den endseitigen Öffnungen mit Armaturen versehen sind. Die Armaturen können dabei elektrisch leitfähig ausgebildet sein, wobei die Armaturen auch zur elektrischen Kontaktierung der ersten bzw. der zweiten Schaltstelle, welche im Innern des jeweiligen Kapselungsgehäuses angeordnet sind, dienen können. Weiterhin können über die Armaturen auch die Schaltwiderstände elektrisch parallel zur ersten bzw. zur zweiten Schaltstelle verschaltet werden. Darüber hinaus können die Armaturen auch als Halteelemente zum Abstützen bzw. Tragen von Schaltwiderständen dienen. Dies kann insbesondere dann vorteilhaft sein, wenn die Schaltwiderstände außerhalb des Kapselungsgehäuses angeordnet sind. Ein Schaltwiderstand kann auch innerhalb eines Kapselungsgehäuses angeordnet sein.To form an encapsulation housing, essentially electrically insulating tubular structures can be used, which are provided with fittings at the end openings. The fittings can be designed to be electrically conductive, whereby the fittings can also be used to electrically contact the first or second switching point, which are arranged inside the respective encapsulation housing. Furthermore, the switching resistors can also be electrically connected in parallel to the first or second switching point via the fittings. In addition, the fittings can also serve as holding elements for supporting or carrying switching resistors. This can be particularly advantageous if the switching resistors are arranged outside the encapsulation housing. A switching resistor can also be arranged inside an encapsulation housing.

Die vorstehenden Ausführungen hinsichtlich der Möglichkeit der Anordnung bzw. Ausführung eines Kapselungsgehäuses und einer sich daraus ergebenden Konstruktion für eine elektrische Schalteinrichtung sind unabhängig von der Anzahl der Schaltstellen, unabhängig von der Lage und der Position der Schaltstellen sowie unabhängig von der Ausbildung bzw. Lage der Schaltwiderstände auch für die folgend beschriebenen Ausführungsvarianten in analoger Weise anwendbar.The above statements regarding the possibility of arranging or designing an encapsulating housing and a resulting construction for an electrical switching device are also applicable in an analogous manner to the design variants described below, regardless of the number of switching points, regardless of the location and position of the switching points and regardless of the design or location of the switching resistors.

Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass die erste oder die zweite Schaltstelle von einem Kapselungsgehäuse umgeben ist, wobei ein Schaltwiderstand außerhalb des Kapselungsgehäuses angeordnet ist.A further advantageous embodiment can provide that the first or the second switching point is surrounded by an encapsulating housing, wherein a switching resistor is arranged outside the encapsulating housing.

Eine Umgebung einer Schaltstelle mit einem Kapselungsgehäuse weist den Vorteil auf, dass die Schaltstelle vor äußeren Einflüssen geschützt werden kann. Ein Kapselungsgehäuse kann beispielsweise in Form eines elektrisch isolierenden Rohrkörpers ausgebildet sein, in dessen Ausnehmung eine Schaltstelle angeordnet ist. Endseitig kann der Rohrkörper mit Armaturen versehen sein, um eine elektrische Kontaktierung der im Innern des Kapselungsgehäuses befindlichen Schaltstelle zu ermöglichen. Bei einer Anordnung eines Schaltwiderstandes außerhalb eines derartigen Kapselungsgehäuses kann das Kapselungsgehäuse mit seinem Querschnitt auf die Dimension der jeweiligen Schaltstelle ausgelegt werden. Bedarfsweise kann dann außerhalb des Kapselungsgehäuses ein Schaltwiderstand angeordnet werden. Dadurch wird ein modularer Aufbau eines elektrischen Schaltgerätes weiterhin unterstützt, in dem der Schaltwiderstand lediglich bei Bedarf außerhalb am Kapselungsgehäuse angeordnet wird, wobei das Kapselungsgehäuse selbst in seinen Dimensionen auf die Schaltstelle hin optimiert werden kann.An environment of a switching point with an encapsulated housing has the advantage that the switching point can be protected from external influences. An encapsulated housing can, for example, be designed in the form of an electrically insulating tubular body, in the recess of which a switching point is arranged. The tubular body can be provided with fittings at the end to enable electrical contact to be made with the switching point located inside the encapsulated housing. If a switching resistor is arranged outside such an encapsulated housing, the encapsulated housing can be designed with its cross-section to match the dimensions of the respective switching point. If necessary, a switching resistor can then be arranged outside the encapsulated housing. This further supports a modular design of an electrical switching device in that the switching resistor is only arranged outside the encapsulated housing when required, whereby the dimensions of the encapsulated housing itself can be optimized for the switching point.

Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass die erste und die zweite Schaltstelle jeweils von einem Kapselungsgehäuse umgeben sind, wobei ein Schaltwiderstand außerhalb eines Kapselungsgehäuses angeordnet ist.A further advantageous embodiment can provide that the first and the second switching point are each surrounded by an encapsulating housing, wherein a switching resistor is arranged outside an encapsulating housing.

Bei einer Ausstattung sowohl der ersten Schaltstelle als auch der zweiten Schaltstelle mit einem Kapselungsgehäuse ist die Möglichkeit gegeben, jede der Schaltstellen in einem geschützten Raum anzubringen, wobei sowohl beiden Schaltstellen als auch nur einer Schaltstelle ein Schaltwiderstand zugeordnet werden kann. Eine Anordnung des Schaltwiderstandes außerhalb des Kapselungsgehäuses ermöglicht eine im Wesentlichen parallele Ausrichtung von Kapselungsgehäuse und Schaltwiderstand zueinander. Beispielsweise kann der Schaltwiderstand über endseitig am Kapselungsgehäuse befindlichen elektrisch leitenden Körpern (Armaturen), die jeweils die erste bzw. die zweite Schaltstelle kontaktieren, eine elektrische Parallelschaltung erfahren. Dabei kann sich der Schaltwiderstand am jeweiligen Kapselungsgehäuse abstützen.If both the first switching point and the second switching point are equipped with an encapsulating housing, it is possible to install each of the switching points in a protected space, whereby a switching resistor can be assigned to both switching points or just to one switching point. Arranging the switching resistor outside the encapsulating housing enables the encapsulating housing and switching resistor to be aligned essentially parallel to one another. For example, the switching resistor can be connected in parallel via electrically conductive bodies (fittings) located at the end of the encapsulating housing, which contact the first and second switching points respectively. The switching resistor can be supported on the respective encapsulating housing.

Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass die erste oder die zweite Schaltstelle von einem Kapselungsgehäuse umgeben ist, wobei ein Schaltwiderstand innerhalb eines Kapselungsgehäuses angeordnet ist.A further advantageous embodiment can provide that the first or the second switching point is surrounded by an encapsulating housing, wherein a switching resistor is arranged within an encapsulating housing.

Eine Anordnung innerhalb des Kapselungsgehäuses, welches die erste oder die zweite Schaltstelle umgibt, weist den Vorteil auf, dass der Schaltwiderstand von der mechanischen Schutzwirkung des Kapselungsgehäuses profitieren kann und selbst keine separate Umhüllung benötigt. Dadurch ist in vereinfachter Weise eine elektrische Kontaktierung des Schaltwiderstandes mit der jeweiligen Schaltstelle ermöglicht.An arrangement within the encapsulating housing, which surrounds the first or second switching point, has the advantage that the switching resistor can benefit from the mechanical protective effect of the encapsulating housing and does not itself require a separate casing. This enables electrical contact between the switching resistor and the respective switching point to be made in a simplified manner.

Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass die erste und die zweite Schaltstelle jeweils von einem Kapselungsgehäuse umgeben sind, wobei ein Schaltwiderstand innerhalb eines Kapselungsgehäuses angeordnet ist.A further advantageous embodiment can provide that the first and the second switching point are each surrounded by an encapsulating housing, wherein a switching resistor is arranged within an encapsulating housing.

Eine Ausstattung der ersten als auch der zweiten Schaltstelle mit einem jeweiligen Kapselungsgehäuse ermöglicht es, auch die erste oder die zweite Schaltstelle oder auch beide Schaltstellen jeweils mit einem Schaltwiderstand auszustatten, wobei der Schaltwiderstand in dem jeweiligen Kapselungsgehäuse der jeweiligen Schaltstelle Anordnung findet. Auch hier ist eine Schutzwirkung des jeweiligen Kapselungsgehäuses auf den Schaltwiderstand ausdehnbar.Equipping the first and second switching points with a respective encapsulation housing makes it possible to equip the first or second switching point or both switching points with a switching resistor, The switching resistor is arranged in the respective encapsulation housing of the respective switching point. Here, too, the protective effect of the respective encapsulation housing can be extended to the switching resistor.

Eine vorteilhafte Ausgestaltung kann vorsehen, dass ein Kapselungsgehäuse ein Druckbehälter ist.An advantageous embodiment can provide that an encapsulation housing is a pressure vessel.

Vorteilhaft kann vorgesehen sein, dass ein Kapselungsgehäuse mit einem elektrisch isolierenden Fluid befüllt ist.Advantageously, it can be provided that an encapsulation housing is filled with an electrically insulating fluid.

Eine Ausgestaltung eines Kapselungsgehäuses als Druckbehälter ermöglicht es, das Innere des Kapselungsgehäuses mit einem elektrisch isolierenden Fluid zu befüllen und dieses elektrisch isolierende Fluid unter Druck zu setzen, so dass das Innere des Kapselungsgehäuses gegenüber der Umgebung des Kapselungsgehäuses einem abweichenden Druck aufweist. Der Druckbehälter ist dabei derart ausgelegt, dass dieser einem Differenzdruck standhält. Dies ermöglicht es, innerhalb des Kapselungsgehäuses ein geeignetes Fluid einzuschließen. Beispielsweise kann das Kapselungsgehäuse mit einem elektrisch isolierenden Öl oder einem elektrisch isolierenden Gas befüllt werden. Als vorteilhaft haben sich insbesondere Gase bzw. Flüssigkeiten mit Fluorkomponenten erwiesen, die einerseits eine hohe elektrisch isolierende Wirkung, andererseits aber auch eine gute lichtbogenlöschende Wirkung aufweisen. So können beispielsweise Schwefelhexafluorid, Fluorketone, Fluornitrile zum Einsatz gelangen. Weiter sind jedoch auch andere elektrisch isolierende Fluide wie Stickstoff, Sauerstoff usw. nutzbar.Designing an encapsulation housing as a pressure vessel makes it possible to fill the interior of the encapsulation housing with an electrically insulating fluid and to pressurize this electrically insulating fluid so that the interior of the encapsulation housing has a different pressure than the surroundings of the encapsulation housing. The pressure vessel is designed in such a way that it can withstand a differential pressure. This makes it possible to enclose a suitable fluid within the encapsulation housing. For example, the encapsulation housing can be filled with an electrically insulating oil or an electrically insulating gas. Gases or liquids with fluorine components have proven particularly advantageous, as they have a high electrically insulating effect on the one hand, but also a good arc-extinguishing effect on the other. For example, sulfur hexafluoride, fluoroketones, fluoronitriles can be used. However, other electrically insulating fluids such as nitrogen, oxygen, etc. can also be used.

Im Folgenden wird ein Ausführungsbeispiel der Erfindung schematisch in einer Zeichnung gezeigt und nachfolgend näher beschrieben. Dabei zeigt die

Figur
eine Seitenansicht einer elektrischen Schalteinrichtung.
In the following, an embodiment of the invention is shown schematically in a drawing and described in more detail below. The
figure
a side view of an electrical switching device.

Die elektrische Schalteinrichtung gemäß Figur ist als Freiluftleistungsschalter in live tank Bauweise im Hochspannungsbereich, insbesondere für Spannungen oberhalb von 800.000 Volt ausgelegt. Die elektrische Schalteinrichtung weist ein Traggestell 1 auf, welches im Allgemeinen aus elektrisch leitfähigem Material gebildet ist und welches Erdpotential führt. Am Traggestell 1 ist eine Antriebseinrichtung 2 positioniert. Die Antriebseinrichtung 2 ist ebenfalls im Allgemeinen auf Erdpotential liegend angeordnet. Mittels der Antriebseinrichtung 2 ist ein Betätigen der elektrischen Schalteinrichtung, d. h. ein Auftrennen bzw. Herstellen eines Strompfades ermöglicht. Die Antriebseinrichtung 2 stellt die dazu notwendige Energie, hier die notwendige Bewegungsenergie, bereit. Auf dem Traggestell 1 ist ein elektrisch isolierender Abschnitt einer Tragsäule 3 angeordnet. Die Tragsäule 3 ist vorliegend aus einem ersten sowie einem zweiten elektrisch isolierenden Abschnitt zusammengesetzt, wobei die elektrisch isolierenden Abschnitte im Wesentlichen rohrförmig ausgebildet und endseitig mit Armaturen abgeschlossen sind. Einander zugewandte Seiten der elektrisch isolierenden Abschnitte der Tragsäule 3 sind miteinander verschraubt, so dass eine verlängerte rohrförmige Tragsäule 3 gebildet ist. Mit ihrem einen stirnseitigen Ende ist die Tragsäule 3 an dem Traggestell 1 positioniert. Die elektrisch isolierenden Abschnitte der Tragsäule 3 sind hohl ausgebildet und außenmantelseitig mit einer Verrippung versehen. Durch die Verrippung ist eine verbesserte Freiluftfestigkeit gegeben, indem Kriechwege auf der Oberfläche der Tragsäule 3 verlängert werden und Tropfnasen an der Tragsäule 3 gebildet sind. Am von dem Traggestell 1 abgewandten Ende der Tragsäule 3 ist ein Getriebekopf 4 angeordnet. Der Getriebekopf 4 schließt die Tragsäule 3 ab und ist winkelstarr mit der Tragsäule 3 verbunden. In Querrichtung zum axialen Verlauf der Tragsäule 3 sind eine erste Schaltstelle 5 sowie eine zweite Schaltstelle 6 am Getriebekopf 4 gelagert. Die erste sowie die zweite Schaltstelle sind dazu von einem ersten Kapselungsgehäuse 7 bzw. einem zweiten Kapselungsgehäuse 8 umgeben. Die beiden Kapselungsgehäuse 7, 8 sind einem elektrisch isolierenden Abschnitt der Tragsäule 3 ähnelnd ausgebildet. Das heißt, die beiden Kapselungsgehäuse 7, 8 sind im Wesentlichen hohlzylindrisch, elektrisch isolierend in Rohrform ausgeformt, wobei endseitig an den Kapselungsgehäusen 7, 8 jeweils eine Armatur zum Abschluss der Kapselungsgehäuse 7, 8 angeordnet ist. Bezüglich des Getriebekopfes 4 sind die beiden Kapselungsgehäuse 7, 8 an entgegengesetzten Seiten des Getriebekopfes 4 angeordnet und ragen mit entgegengesetztem Richtungssinn von dem Getriebekopf 4 fort. Die dem Getriebekopf 4 zugewandten Enden der beiden Kapselungsgehäuse 7, 8 sind über die dortigen Armaturen der Kapselungsgehäuse 7, 8 mit dem Getriebekopf 4 mechanisch verbunden, so dass die Kapselungsgehäuse 7, 8 über den Getriebekopf 4 auf der Tragsäule 3 abgestützt sind. Das Gehäuse des Getriebekopfes 4 ist dabei aus einem leitfähigen Material gebildet, wobei eine elektrische Kontaktierung der Armaturen, welche mit dem Getriebekopf 4 verbunden sind, über den Getriebekopf 4 gegeben ist.The electrical switching device according to the figure is designed as an outdoor circuit breaker in live tank construction in the high voltage range, in particular for voltages above 800,000 volts. The electrical switching device has a support frame 1, which is generally made of electrically conductive material and which carries earth potential. A drive device 2 is positioned on the support frame 1. The drive device 2 is also generally arranged at earth potential. The drive device 2 enables the electrical switching device to be actuated, i.e. a current path to be separated or established. The drive device 2 provides the energy required for this, in this case the necessary kinetic energy. An electrically insulating section of a support column 3 is arranged on the support frame 1. The support column 3 is in this case composed of a first and a second electrically insulating section, wherein the electrically insulating sections are essentially tubular and closed off at the ends with fittings. Facing sides of the electrically insulating sections of the support column 3 are screwed together so that an extended tubular support column 3 is formed. The support column 3 is positioned on the support frame 1 with one of its front ends. The electrically insulating sections of the support column 3 are hollow and provided with ribbing on the outer casing. The ribbing provides improved outdoor resistance by extending creepage paths on the surface of the support column 3 and forming drip noses on the support column 3. A gear head 4 is arranged at the end of the support column 3 facing away from the support frame 1. The gear head 4 closes off the support column 3 and is connected to the support column 3 at a rigid angle. A first switching point 5 and a second switching point 6 are mounted on the gear head 4 in the transverse direction to the axial course of the support column 3. The first and the second switching points are enclosed by a first encapsulation housing 7. or a second encapsulation housing 8. The two encapsulation housings 7, 8 are designed to resemble an electrically insulating section of the support column 3. This means that the two encapsulation housings 7, 8 are essentially hollow-cylindrical, electrically insulating, tubular, with a fitting arranged at the end of the encapsulation housings 7, 8 to close off the encapsulation housings 7, 8. With regard to the gear head 4, the two encapsulation housings 7, 8 are arranged on opposite sides of the gear head 4 and protrude from the gear head 4 in opposite directions. The ends of the two encapsulation housings 7, 8 facing the gear head 4 are mechanically connected to the gear head 4 via the fittings on the encapsulation housings 7, 8 there, so that the encapsulation housings 7, 8 are supported on the support column 3 via the gear head 4. The housing of the gear head 4 is made of a conductive material, wherein an electrical contact of the fittings, which are connected to the gear head 4, is provided via the gear head 4.

Im Innern der Kapselungsgehäuse 7, 8 sind die erste sowie die zweite Schaltstelle 5, 6 angeordnet. Die erste sowie die zweite Schaltstelle 5, 6 weisen jeweils relativ zueinander bewegbare Schaltkontaktstücke auf. Dabei sind die relativ bewegbaren Schaltkontaktstücke derart ausgebildet, dass diese einander kontaktieren können oder voneinander getrennt werden können. Zur Bewirkung einer Änderung des Zustandes der ersten bzw. der zweiten Schaltstelle 5, 6 ist im Innern der Tragsäule 3 eine kinematische Kette, beispielsweise in Form einer axialen verschiebbaren Schaltstange angeordnet, welche bevorzugt elektrisch isolierend wirkt. So ist es möglich, eine Bewegung, welche von der Antriebseinrichtung 2 am Traggestell 1 abgegeben wird, innerhalb der Tragsäule 3 bis zum Getriebekopf 4 zu transportieren. Im Getriebekopf 4 kann eine Verteilung der Bewegung in die beiden Kapselungsgehäuse 7, 8 hinein erfolgen, so dass eine Relativbewegung der Schaltkontaktstücke der ersten bzw. der zweiten Schaltstelle 5, 6 vorgenommen werden kann. Die Schaltstellen 5, 6 sind dabei derart angeordnet, dass die Schaltstellen mit der Armatur des jeweiligen Kapselungsgehäuses 7, 8 elektrisch kontaktiert sind, welche an dem Getriebekopf 4 angeschlagen sind. Somit sind die Schaltstellen über die Armaturen, welche mit dem Getriebekopf 4 verbunden sind, über den Getriebekopf 4 miteinander elektrisch in Reihe verschaltet, so dass eine mehrfach unterbrechende Schaltstrecke gebildet ist. Die beiden Schaltstellen 5, 6 sind mit ihrer jeweils anderen Seite elektrisch leitend mit einer Armatur verbunden, welche am freien Ende des jeweiligen Kapselungsgehäuses 7, 8 das jeweilige Kapselungsgehäuse 7, 8 abschließt. Die dort positionierten Armaturen bilden Anschlusspunkte 9, 10 für die mehrfach (zweifach) unterbrechende Schaltstrecke der elektrischen Schalteinrichtung. Zwischen den Anschlusspunkten 9, 10 erstreckt sich somit eine Distanz D, welche die Länge der elektrisch isolierenden Abschnitte der Kapselungsgehäuse 7, 8 sowie des elektrisch leitfähigen Kontaktierungselementes, welches einer Kontaktierung der beiden Schaltstellen 5, 6 dient, umfasst.The first and second switching points 5, 6 are arranged inside the encapsulation housings 7, 8. The first and second switching points 5, 6 each have switching contact pieces that can be moved relative to one another. The relatively movable switching contact pieces are designed in such a way that they can contact one another or can be separated from one another. To effect a change in the state of the first or second switching point 5, 6, a kinematic chain, for example in the form of an axially displaceable switching rod, is arranged inside the support column 3, which preferably has an electrically insulating effect. This makes it possible to transport a movement that is emitted by the drive device 2 on the support frame 1 within the support column 3 to the gear head 4. In the gear head 4, the movement can be distributed into the two encapsulation housings 7, 8, so that a relative movement of the switching contact pieces of the first or second switching point 5, 6 can be carried out. can be. The switching points 5, 6 are arranged in such a way that the switching points are electrically contacted with the fitting of the respective encapsulation housing 7, 8, which is attached to the gear head 4. The switching points are thus electrically connected in series with one another via the fittings which are connected to the gear head 4, via the gear head 4, so that a multiple-interruption switching path is formed. The two switching points 5, 6 are electrically connected on their other side to a fitting which closes off the respective encapsulation housing 7, 8 at the free end. The fittings positioned there form connection points 9, 10 for the multiple (double) interruption switching path of the electrical switching device. Thus, a distance D extends between the connection points 9, 10, which includes the length of the electrically insulating sections of the encapsulation housings 7, 8 as well as the electrically conductive contacting element, which serves to contact the two switching points 5, 6.

Sowohl der ersten Schaltstelle 5 als auch der zweiten Schaltstelle 6 ist jeweils ein Schaltwiderstand 11a, 11b zugeordnet. Die beiden Schaltwiderstände 11a, 11b sind jeweils elektrisch parallel zur ersten Schaltstelle 5 bzw. zur zweiten Schaltstelle 6 verschaltet. Dazu sind die Schaltwiderstände 11a, 11b jeweils mit den Armaturen, welche das Kapselungsgehäuse 7, 8 der jeweiligen Schaltstelle 5, 6 endseitig begrenzen, elektrisch leitend verbunden. Neben einer elektrischen Kontaktierung der Schaltwiderstände 11a, 11b über die Armaturen der Kapselungsgehäuse 7, 8 ist auch ein mechanisches Halten bzw. Tragen der Schaltwiderstände 11a, 11b über die Armaturen und damit über die Kapselungsgehäuse 7, 8 gegeben. Die Schaltwiderstände 11a, 11b sind jeweils gleichartig aufgebaut. Die Schaltwiderstände 11a, 11b weisen jeweils einen Stapel aus n-Widerstandselementen auf. Die Widerstandselemente sind dabei jeweils in einem rohrförmigen elektrisch isolierenden Zylinder angeordnet, welcher einerseits einem mechanischen Schutz für den jeweiligen Stapel aus Widerstandselementen bildet. Andererseits dient der Zylinder auch einer Kraftbeaufschlagung der im Innern des Schaltwiderstandes befindlichen Widerstandselemente. Die Anzahl der Schaltwiderstände kann je nach Dimension der jeweiligen Kapselungsgehäuse 7, 8 bzw. des Getriebekopfes 4 variieren. Somit weist ein Stapel von Widerstandselementen n-Widerstandselemente auf.A switching resistor 11a, 11b is assigned to both the first switching point 5 and the second switching point 6. The two switching resistors 11a, 11b are each electrically connected in parallel to the first switching point 5 and the second switching point 6, respectively. For this purpose, the switching resistors 11a, 11b are each electrically connected to the fittings that limit the end of the encapsulation housing 7, 8 of the respective switching point 5, 6. In addition to electrical contact of the switching resistors 11a, 11b via the fittings of the encapsulation housing 7, 8, the switching resistors 11a, 11b are also mechanically held or supported via the fittings and thus via the encapsulation housing 7, 8. The switching resistors 11a, 11b are each constructed in the same way. The switching resistors 11a, 11b each have a stack of n-resistance elements. The resistance elements are each arranged in a tubular electrically insulating cylinder, which on the one hand has a mechanical protection for the respective stack of resistance elements. On the other hand, the cylinder also serves to apply force to the resistance elements located inside the switching resistor. The number of switching resistors can vary depending on the dimensions of the respective encapsulation housing 7, 8 or the gear head 4. A stack of resistance elements therefore has n-resistance elements.

Die Kapselungsgehäuse 7, 8, die Tragsäule 3 sowie der Getriebekopf 4 sind jeweils als Druckbehälter ausgeführt, so dass das Innere der Kapselungsgehäuse 7, 8, der Tragsäule 3 sowie des Getriebekopfes 4 mit einem elektrisch isolierenden Fluid befüllt werden kann, welches eingekapselt ist. Dabei sind vor allem elektrisch isolierende Fluide von Vorteil, welche die Isolationsfestigkeit im Innern der Tragsäule 3 bzw. im Innern der Kapselungsgehäuse 7, 8 befördern. Bevorzugt kann das elektrisch isolierende Fluid im Innern der Kapselungsgehäuse 7, 8 unter Überdruck gesetzt werden, so dass ein Differenzdruck auf dem Kapselungsgehäuse 7, 8 bzw. auch auf der Tragsäule 3 bzw. dem Getriebekopf 4 lasten kann. In diesem Falle sind die Kapselungsgehäuse 7, 8 als Druckbehälter auszuführen. The encapsulation housings 7, 8, the support column 3 and the gear head 4 are each designed as pressure vessels, so that the interior of the encapsulation housings 7, 8, the support column 3 and the gear head 4 can be filled with an electrically insulating fluid that is encapsulated. Electrically insulating fluids that promote the insulation strength inside the support column 3 or inside the encapsulation housings 7, 8 are particularly advantageous. The electrically insulating fluid inside the encapsulation housings 7, 8 can preferably be pressurized so that a differential pressure can act on the encapsulation housing 7, 8 or also on the support column 3 or the gear head 4. In this case, the encapsulation housings 7, 8 are to be designed as pressure vessels.

Claims (9)

  1. Electrical switching device comprising at least one switching point (5, 6) and at least one switching resistor (11a, 11b) which is electrically connected in parallel with the switching point and comprises a stack of resistance elements (n), wherein a ratio of the length of the switching resistor (11a, 11b) in mm to the electrical resistance of the switching resistor (11a, 11b) in ohms is less than or equal to 8, in particular less than or equal to 6,
    characterized in that
    a ratio of the number of resistance elements (n) forming a stack to the electrical resistance of the stack of resistance elements (n) in ohms is between the limits of from 0.5 to 2, in particular from 0.5 to 1.5.
  2. Electrical switching device according to Claim 1,
    characterized in that
    the electrical switching device comprises a multiply interrupting switching gap having a first switching point (5) and having a second switching point (6), which are electrically contacted with one another, wherein between connection points (9, 10) of the multiply interrupting switching gap there is a distance (D) in mm which is a maximum of 30 times, in particular a maximum of 25 times, the absolute value of the switching resistor (11a, 11b) in ohms.
  3. Electrical switching device according to Claim 2,
    characterized in that
    a first switching resistor (11a) is electrically connected in parallel with the first switching point (5) and/or in that a second switching resistor (11b) is electrically connected in parallel with the second switching point (6).
  4. Electrical switching device according to Claim 2 or 3,
    characterized in that
    the first or the second switching point (5, 6) is surrounded by an encapsulation housing, wherein a switching resistor is arranged outside the encapsulation housing.
  5. Electrical switching device according to Claim 2 or 3,
    characterized in that
    the first and second switching points (5, 6) are respectively surrounded by an encapsulation housing (7, 8), wherein a switching resistor (11a, 11b) is arranged outside an encapsulation housing.
  6. Electrical switching device according to Claim 2 or 3,
    characterized in that
    the first or the second switching point (5, 6) is surrounded by an encapsulation housing (7, 8), wherein a switching resistor (11a, 11b) is arranged within the encapsulation housing (7, 8).
  7. Electrical switching device according to Claim 2 or 3,
    characterized in that
    the first and second switching points (5, 6) are respectively surrounded by an encapsulation housing (7, 8), wherein a switching resistor (11a, 11b) is arranged within an encapsulation housing (7, 8).
  8. Electrical switching device according to any of Claims 4 to 7,
    characterized in that
    an encapsulation housing (7, 8) is a pressure vessel.
  9. Electrical switching device according to any of Claims 4 to 8,
    characterized in that
    an encapsulation housing (7, 8) is filled with an electrically insulating fluid.
EP18704417.7A 2017-02-21 2018-01-22 Electrical switching device Active EP3559966B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017202739.8A DE102017202739A1 (en) 2017-02-21 2017-02-21 Electrical switching device
PCT/EP2018/051377 WO2018153582A1 (en) 2017-02-21 2018-01-22 Electrical switching device

Publications (3)

Publication Number Publication Date
EP3559966A1 EP3559966A1 (en) 2019-10-30
EP3559966B1 true EP3559966B1 (en) 2024-11-27
EP3559966C0 EP3559966C0 (en) 2024-11-27

Family

ID=61192855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18704417.7A Active EP3559966B1 (en) 2017-02-21 2018-01-22 Electrical switching device

Country Status (5)

Country Link
EP (1) EP3559966B1 (en)
CN (1) CN110313046B (en)
BR (1) BR112019015398B1 (en)
DE (1) DE102017202739A1 (en)
WO (1) WO2018153582A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE357094B (en) * 1971-09-27 1973-06-12 Asea Ab
US5629666A (en) * 1994-05-23 1997-05-13 Kabushiki Kaisha Toshiba Power resistor, method of manufacturing the same, and power circuit breaker

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3103373A1 (en) * 1981-01-27 1982-08-26 Ernst Prof. Dr.techn.habil. 1000 Berlin Slamecka High-voltage switch
CH669863A5 (en) * 1986-05-20 1989-04-14 Sprecher Energie Ag High voltage with right angle drive - has resistive arms, each with springs inwardly compressing ends of stacked resistive discs
US5245145A (en) 1991-07-23 1993-09-14 Abb Power T&D Company Inc. Modular closing resistor
JP2679499B2 (en) * 1991-12-27 1997-11-19 三菱電機株式会社 Circuit breaker and switch operating mechanism
EP0579243B1 (en) * 1992-07-17 1997-03-05 Kabushiki Kaisha Toshiba Resistor-provided UHV breaker
JPH07320611A (en) * 1994-05-23 1995-12-08 Hitachi Ltd Gas insulated switchgear
DE102006004811A1 (en) 2006-01-26 2007-08-09 Siemens Ag Electrical switching device with potential control
DE102006050732A1 (en) * 2006-10-20 2008-04-24 Siemens Ag Electrical switchgear arrangement for use in e.g. direct current line voltage network, has impedance units including current path with ohmic resistance unit and another current path with capactive unit
WO2016070907A1 (en) * 2014-11-04 2016-05-12 Siemens Aktiengesellschaft Impendance arrangement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE357094B (en) * 1971-09-27 1973-06-12 Asea Ab
US5629666A (en) * 1994-05-23 1997-05-13 Kabushiki Kaisha Toshiba Power resistor, method of manufacturing the same, and power circuit breaker

Also Published As

Publication number Publication date
DE102017202739A1 (en) 2018-08-23
WO2018153582A1 (en) 2018-08-30
BR112019015398B1 (en) 2024-01-16
CN110313046B (en) 2021-07-23
EP3559966A1 (en) 2019-10-30
EP3559966C0 (en) 2024-11-27
BR112019015398A2 (en) 2020-03-31
CN110313046A (en) 2019-10-08

Similar Documents

Publication Publication Date Title
EP2059935B1 (en) Vacuum circuit breaker
EP2702597B1 (en) Surge arrestor
EP2885789B1 (en) Surge arrester
EP2984669B1 (en) Electric switching device
DE102012202406B4 (en) Switchgear arrangement
DE102012211376A1 (en) switching arrangement
DE3318226A1 (en) Vacuum switch with double interruption
EP3001430A1 (en) Surge absorber device
WO2019063421A1 (en) ARRANGEMENT WITH A GAS INSULATED SWITCH
EP3559966B1 (en) Electrical switching device
EP3559967B1 (en) Electric switching device
EP1881510A1 (en) Vacuum switch tube
EP3309810A1 (en) Switching assembly
EP3698387B1 (en) Arrangement and method for switching high voltages having a switching device and precisely one resistor stack
WO2016120022A1 (en) Gas-insulated metal-encapsulated conductor rail with expansion equalizer
DE3540474C2 (en)
DE102013223632A1 (en) Switching arrangement and method for mounting a switching arrangement
WO2016070907A1 (en) Impendance arrangement
WO2024083488A1 (en) Base module for high-voltage switching devices having vacuum interrupters, and high-voltage switching device having the base module
DE102009018170A1 (en) Multiphase switching device arrangement
EP3363027B1 (en) Self-commutated power converter with an assembly comprising an electric resistor and a bypass device
DE102013225112B4 (en) Electrical switchgear
DE2403354C3 (en) Current limiting device
WO2019052778A1 (en) ARRANGEMENT AND METHOD FOR SWITCHING HIGH CURRENTS IN HIGH, MEDIUM AND / OR LOW VOLTAGE ENGINEERING
CH354141A (en) Switching unit for encapsulated high-voltage switchgear

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201021

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240626

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018015355

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20241127

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT RO SE SI

Effective date: 20241203

U20 Renewal fee for the european patent with unitary effect paid

Year of fee payment: 8

Effective date: 20250127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241127

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20250120

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20250201

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20241127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20250227

26N No opposition filed

Effective date: 20250828