EP3559367A1 - Systeme d'isolation thermique par l'exterieur constitue d'un mortier projete fortement isolant et procede de fabrication du systeme - Google Patents

Systeme d'isolation thermique par l'exterieur constitue d'un mortier projete fortement isolant et procede de fabrication du systeme

Info

Publication number
EP3559367A1
EP3559367A1 EP17832268.1A EP17832268A EP3559367A1 EP 3559367 A1 EP3559367 A1 EP 3559367A1 EP 17832268 A EP17832268 A EP 17832268A EP 3559367 A1 EP3559367 A1 EP 3559367A1
Authority
EP
European Patent Office
Prior art keywords
mortar
wall
reinforcing element
layer
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17832268.1A
Other languages
German (de)
English (en)
Inventor
Michaël PERRAT-DIT-GENTON
Daniel Comoy
Antoine GIRET
Xavier AUFFRET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Weber SA
Original Assignee
Saint Gobain Weber SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Weber SA filed Critical Saint Gobain Weber SA
Publication of EP3559367A1 publication Critical patent/EP3559367A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/02Coverings or linings, e.g. for walls or ceilings of plastic materials hardening after applying, e.g. plaster
    • E04F13/04Bases for plaster
    • E04F13/047Plaster carrying meshes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to an external thermal insulation system (ITE) implementing a highly insulating mortar filling a mechanical reinforcement grid.
  • ITE external thermal insulation system
  • ETICS Extra Thermal Insulating Composite System
  • Their advantage is in particular to offer a wide range of accessible thermal performance since the thermal conductivities of the insulating panels spread out at 12 mW / m. K for vacuum insulation panels at 130 mW / m. K. for some OSB (Oriented Strand Board) chipboard.
  • Panels based on expanded polystyrene or based on mineral wool conventionally have a thermal conductivity of the order of 35 mW / m. K.
  • these rigid panels, once glued on the support have the advantage of being mechanically strong enough to support the weight of undercoated as well as finishing coatings or paint.
  • the addition of heavy facings such as ceramic tiles, carved stones or glass panels is strictly regulated in terms of the limit weight per square meter and in terms of height of building structures.
  • the present invention provides a thermal insulation system of a wall in which the mechanical reinforcement and the thermal properties are provided by two different elements associated with each other.
  • the present invention also provides a method of manufacturing said insulating system.
  • An object of the invention relates to a thermal insulation system of a wall which comprises:
  • At least one non-metallic three-dimensional structural reinforcing element formed of cells or empty spaces and of a part fixed on the wall to be isolated
  • At least one layer of thermally insulating mortar filling all the cells or voids of the reinforcing element and
  • the reinforcing element makes it possible to obtain the mechanical strength
  • the mortar layer makes it possible to obtain the expected thermal insulation performance. It thus becomes possible, thanks to the structural reinforcement element, to use mortars, in particular inorganic mortars, having very low density, and consequently very low thermal conductivity.
  • mortars in particular inorganic mortars, having very low density, and consequently very low thermal conductivity.
  • the thermal insulation system according to the present invention is fixed directly on the wall or the support to be insulated.
  • the part of the structural element fixed on the wall is positioned either by being pressed against the wall or positioned a few centimeters (between 1 and 5 cm) thereof.
  • the wall may be vertical, interior or exterior wall type, or a horizontal wall type ceiling or floor.
  • the wall to be coated can be of any type: concrete, bricks, wood, etc.
  • the support on which the insulating system is fixed may be a new support or a support to be renovated.
  • the addition of any other insulation such as insulating panels commonly used in ETICS systems such as EPS-based panels or mineral wool for example, is required in the thermal insulation system according to the present invention.
  • the system which is placed on the support to be insulated therefore consists of the mechanical reinforcing element, the insulating mortar layer and the finishing elements.
  • the three-dimensional structural reinforcement element is formed of cells or voids filled with a layer of thermally insulating mortar, and on which are disposed finishing elements.
  • the finishing elements are, for example, an undercoat layer and a topcoat layer, to ensure the impermeability and aesthetics of the coated wall.
  • the thicknesses of the different layers of the elements of finishes are identical to those existing in conventional ITE systems currently used.
  • the undercoat layer has for example a thickness of 3 to 12 mm and the topcoat layer has a lower thickness, for example of the order of 1 to 6 mm).
  • the finishing elements may also include facing plates, attached directly to the three-dimensional structural reinforcing element filled with the mortar layer. In this case, these facing plates replace the layers of under-coating and finishing plaster.
  • the facing plates are fixed to the reinforcing element by bonding with a suitable adhesive mortar and also with the aid of a mechanical fastening for optimum reinforcement of the facing, in particular against the actions of the wind.
  • the insulation system according to the present invention allows in particular a gain in terms of speed of application on the wall to be isolated compared to conventional ITE systems existing on the market. It is no longer necessary to plan layouts and stick or fix on the wall insulating plates. It is also no longer necessary to rectify the flatness of the surface of the wall, especially in the case of the substrates to be renovated as it is often necessary to do when it is desired to glue or fix the insulating panel. It also limits the amount of material to be brought to the site itself.
  • the insulation boards used in conventional ITE systems represent a significant amount of space, the means of transport required to transport them to the site are a source of significant cost.
  • the reinforcing element used in the insulating system of the present invention is three-dimensional and has a depth of several centimeters. Preferably, the depth of the reinforcing element is at least 40 mm and at most 300 mm.
  • the three-dimensional structural element forms a three-dimensional network of cells or voids filled by the thermally insulating mortar. The depth of the three-dimensional structural element and the thickness of the thermally insulating mortar layer are related. In order to obtain a system having the desired mechanical strength, the reinforcing element has a depth minimum corresponding to the thickness of the mortar layer. All of the voids of the reinforcing element are filled by the mortar layer.
  • the choice of the reinforcing element and in particular its depth is adapted according to the thermally insulating mortar. If the insulating performance of the mortar is very good, the depth of the reinforcing element can be relatively low. On the other hand, if the insulating performance of the insulating mortar is lower, it may be necessary for the thickness of the insulating mortar layer to be greater, and in this case the depth of the reinforcing element is also greater. In general, the greater the depth of the reinforcing element, the greater the thickness of the insulating mortar and the better the thermal insulation performance of the system according to the present invention, the maximum depth being 300 mm. and advantageously 250 mm.
  • the reinforcing member may be in a variety of forms from the moment it includes cavities or voids that can be filled by the thermally insulating mortar.
  • the structural reinforcement element has a honeycomb structure, a pleated two-dimensional structure or an accordion structure, an embossed structure, a structure corresponding to the superposition of at least two two-dimensional grids connected to each other, and / or a structure comprising rigid peaks placed perpendicular to the portion fixed on the wall to be insulated. It may also comprise additional reinforcing means such as peaks perpendicular to the plane formed by the part fixed on the wall to be insulated, and / or one or more two-dimensional meshes.
  • the cells or voids in the reinforcing element can thus have different shapes: square, rectangular, triangular, round, conical, hexagonal, etc.
  • the reinforcing member may be an association of different shapes with each other.
  • the reinforcing element comprises a folded two-dimensional structure, possibly positioned between two two-dimensional meshes, the assembly being secured to placed peaks. perpendicular to the part fixed on the wall to be insulated. Such a three-dimensional structure has in particular a very good rigidity.
  • the reinforcing member is made of a non-metallic material to limit thermal conduction through the insulating mortar layer.
  • the material used is preferably selected from glass fiber, polypropylene fiber, plastic fiber, nylon fiber, polyamide fiber, natural fiber such as linen or hemp.
  • the reinforcing member may comprise different types of non-metallic materials.
  • a portion of the reinforcing member may be fiberglass and another portion, such as stiffer peaks, may be plastic. These materials have sufficient rigidity to maintain the reinforcing element in the form of a three-dimensional structure.
  • the reinforcing element is easily compactable, or even rollable, which makes it easy to store and transport it on the site of use.
  • the system according to the present invention may comprise a reinforcement weft, also called a sail.
  • This frame is of the same type as that used in conventional ITE systems.
  • This is a two-dimensional fiber grid such as, for example, that described in patent application US2010 / 0000665.
  • the weft may be integral with the structural reinforcement element and may be considered as part of this element. It can also be added later and fixed on the reinforcing element once the mortar layer has been applied, then being considered as part of the finishing elements.
  • the insulating system according to the present invention comprises at least one layer of thermally insulating mortar filling the empty spaces of the reinforcing element.
  • the mortar layer is a lightened mortar layer, of low density and characterized by good properties in terms of thermal insulation, obtained by mixing different constituents or fillers with water (mixing water) and then hardening it. mixed.
  • Several types of compositions are usable in the system according to the present invention.
  • the mortar layer used in the system according to the present invention is characterized, after drying, by a low thermal conductivity.
  • the thermal conductivity of the mortar is between 25 mW / m. K and 50 mW / mK.
  • the insulating mortar has a thermal conductivity of less than 35 mW / m.
  • thermal conductivity values correspond to mortars whose apparent density is between 100 and 500 kg / m 3 . These thermal conductivity values also depend on the porosity of the different charges and how the air is confined in the material. Indeed, at the same density, for charges of different porosity, the thermal conductivity is likely to be different depending on the constituents of the mortar used.
  • the compressive strength of the mortar layer as determined according to EN998-1 is not a limiting criterion in the choice of the mortar composition since only the mechanical strength of the complete system (structural reinforcement element and thermal insulating mortar ) is to be considered.
  • the mortar layer is obtained by mixing with water a pulverulent composition comprising at least one hydraulic binder and organic and / or mineral leaching fillers, optionally aggregates, fillers and / or other additives, then by hardening said mixture.
  • the mortar layer is a mineral mortar layer, it has the advantage of not using toxic organic substances and having, in addition to these thermal insulation performance, good fire resistance.
  • a mortar is in particular based on mineral lightening fillers such as expanded perlite, expanded vermiculite, expanded glass beads, hollow glass microspheres, cenospheres, expanded clays, expanded shales, pumice stones, silicates expanded and / or aerogels.
  • the mortar layer may also comprise synthetic organic leaching fillers such as microspheres based on thermoplastic polymers or copolymers such as expanded or extruded polystyrene, polyethylene, polyethylene terephthalate, polyurethane.
  • synthetic organic leaching fillers such as microspheres based on thermoplastic polymers or copolymers such as expanded or extruded polystyrene, polyethylene, polyethylene terephthalate, polyurethane.
  • the mortar layer used in the insulating system according to the present invention may also comprise a mixture of different mineral-type lightening fillers associated with various organic-type lightening fillers.
  • mortar formulations comprising both perlite and aerogels.
  • the patent application EP 2597072 A2 describes in particular insulating mortar formulations comprising mixtures of aerogels of silica and expanded polystyrene or extruded polystyrene.
  • the patent application WO 2014/090790 describes blends of leaching charges silica airgel type with pumice stone.
  • the binder which ensures cohesion between the various constituents of the mortar may be a hydraulic binder selected from Portland cements, mixing cements comprising fly ash, slags, natural or calcined pozzolans, aluminous cements, sulfoaluminous cements, belitic cements and / or hydraulic lime.
  • the binder may also comprise, in addition to the hydraulic binder, other mineral binders based on plaster or on the basis of silicates, aerial lime, or organic binders, for example based on resins.
  • the binder may also be a phosphate binder resulting from an acid-base reaction generally between a metal salt, such as, for example, a magnesium salt, a calcium salt, an aluminum salt, or a zinc salt and a derivative or a salt of phosphoric acid.
  • a metal salt such as, for example, a magnesium salt, a calcium salt, an aluminum salt, or a zinc salt and a derivative or a salt of phosphoric acid.
  • the mortar layer is obtained by curing a mixture in the form of paste or foam.
  • the foam can be obtained either by incorporating a pre-formed aqueous foam during the preparation of the mortar, or by adding in the composition foaming agents and / or air entraining agents which make it possible to form the foam in situ during preparation of the mortar.
  • a layer of mortar in the form of a foam has the advantage of providing additional relief.
  • An example of a preformed aqueous foam added to the various constituents of the mortar is described in the patent application WO 201 1/095718.
  • a In-situ foaming process is described for example in the application WO 2013/121 143. It is advantageous to use a mortar composition in the form of foam and comprising mineral and / or organic lightening fillers. Mention may be made, for example, of mortars obtained by mixing silica foam with perlite, as described in patent application WO 2013/150148. These foams are known to be very stable and to have very low thermal conductivities.
  • the mortar compositions used to form the mortar layer may also include aggregates or sands, varying in the rheology, thickness, hardness, final appearance and permeability of the mortar layer. They are generally formed of siliceous, calcareous and / or silico-calcareous sands and have a particle size of between 100 ⁇ and 5 mm.
  • An example of a lightened insulating mortar composition having good thermal insulation performance comprises a binder consisting of 20 and 60% of cement, 20 and 40% of lime and 5 to 25% of pozzolanic agent, such as metakaolin. , blast furnace slags, sticky ashes or silica fumes, mixed with a significant amount (at least 70% by volume) of expanded polystyrene beads.
  • Another example of a lightened insulating mortar composition may comprise up to 40% by weight of lightening mineral filler, a mineral binder, an air entraining agent and a viscosing agent, while being free of aggregates having a particle size greater than 100 m. .
  • the set of mortar compositions that can be used in the system according to the invention has the characteristic of being projectable by a projection machine usually used in the field of facade cladding. They can also be applied by machine casting or by manual application.
  • the present invention also relates to a method of manufacturing a thermal insulation system of a wall or support which comprises the steps of: attaching to said wall, or at a distance of 1 to 5 cm from it, a three-dimensional non-metallic structural reinforcement element formed of cavities or voids,
  • the reinforcing element is fixed against the wall to be insulated, either by being directly plated on the wall, or by being held at a distance. Fixing is carried out by fixing means whose dimensions are such that they do not exceed the reinforcing element.
  • the reinforcing element can be fixed on the wall by means of fixing rails placed at different heights. These rails can be equipped with hooks for fixing the reinforcing element. Fastening means such as screws, for example with a circular head, inserted in pins placed in the wall to be insulated or staples can also be envisaged.
  • the reinforcing element is fixed on the wall to be insulated with pins consisting of at least two different parts: a first threaded portion and provided with a fixing head, for fixing the part of the element reinforcement which is positioned directly against the wall to be insulated and a second portion constituting the body of the dowel whose length corresponds to the depth of the structural reinforcement element, and intended to be inserted into the first part of the dowel.
  • the opposite end of the body of the peg that is to say the "free" end that does not penetrate into the first part may be provided with a hole, possibly tapped, for receiving a closure means.
  • the orifice located at the end opposite to that of the wall to be insulated is concealed by a closure means so as to prevent the orifice from becoming blocked. fill with mortar.
  • the closure means may advantageously be equipped with a flexible part which can be easily identified, even after the mortar layer has been sprayed or poured, and it is possible to add a possible fastening means for a reinforcement frame, for example.
  • This additional fixing means can be fixed by clipping in the orifice of the second part of the dowel or by screwing in the case of a tapped hole.
  • the weft attachment means may be equipped with a spacer means allowing a gap between the weft and the peg to be left, in particular allowing the undercoat layer to cover the entire reinforcing weft. before laying the finishing plaster.
  • This type of peg whose length can be variable is particularly advantageously for fixing the system according to the present invention.
  • the fastening means used to fasten the reinforcing element and in particular an ankle-type means such as that described above advantageously make it possible to provide additional reinforcement to the system.
  • the number of fastening means used to fasten the system is adapted according to the type of structural element implemented.
  • fastening means such as staples may also allow to directly attach the portion of the reinforcing element which is directly in contact with the wall to be insulated.
  • This type of fastening means is particularly suitable when the structural reinforcement element has sufficient rigidity and does not require additional reinforcement. This is particularly the case when the structural reinforcement element is composed of a combination of different shapes together, such as accordion shapes coupled to peaks perpendicular to the support.
  • the reinforcing elements are positioned on the wall to be insulated next to each other. Areas of overlap between two successive reinforcing elements are conceivable.
  • the insulating system is manufactured in-situ directly on the wall to be insulated.
  • the insulating mortar layer is projected or poured into the empty spaces of the reinforcing element, preferably the mortar layer.
  • the mixing of the dry mortar composition is carried out in the projection machine.
  • the wet mortar composition at the exit of the projection lance fills the cells or voids of the structural reinforcement element.
  • the projection can be carried out in several successive passages so as to fill all the empty spaces of the structural reinforcement element. The different passages can be made directly one after the other, without waiting for the drying of the first layer projected.
  • the projection techniques used are the usual techniques used by façadiers. The presence of the reinforcing element does not disturb the projection step of the mortar.
  • the step of drying and hardening of the mortar layer cast or cast in the structural reinforcement element is necessary in order to be able to carry out the step of placing the finishing elements.
  • the duration of this drying and curing step may vary depending on the projected mortar composition and the depth of the structural reinforcement element. Classically, the recommended duration is one day per centimeter of thickness. This duration may be reduced or lengthened depending on the climatic conditions.
  • This last step may comprise a step of applying a layer of under-coating and a finishing coating.
  • the sub-coating makes it possible in particular to increase the surface hardness and to ensure the protection, especially the waterproofing, of the facade.
  • the finishing coating provides the decoration function (colors, texture ). It may be advantageous to fix a reinforcement weft before or during the step of applying a sub-plaster layer, especially if the structural reinforcement element does not have an already integrated reinforcing ply.
  • the finishing system chosen may consist of positioning other elements decorative such as for example ceramic tiles, cut stones, natural or artificial, on the structural reinforcement element.
  • These decorative elements can be glued and / or mechanically fixed, either directly on said element, or on a sub-plaster layer previously applied to said element, possibly comprising a reinforcement weft.
  • the step of placing the fastening elements may also consist of fixing facing plates on the structural reinforcement element filled with the layer of insulating mortar.
  • FIG 1 is a schematic representation of a first type of structural reinforcement element consisting of a multitude of rigid peaks positioned perpendicular to the portion of the element attached to the wall to be isolated,
  • FIG. 2 is a schematic representation of a second type of structural reinforcement element having a two-dimensional pleated structure or in the form of an accordion,
  • FIG. 3 is a schematic representation of a third type of structural reinforcement element consisting of an accordion structure reinforced by rigid peaks perpendicular to the portion fixed on the wall to be isolated,
  • FIG. 4 is a schematic representation of a fourth type of structural reinforcement element consisting of a rigid honeycomb structure, reinforced by rigid peaks placed perpendicularly to the part fixed on the wall to be insulated,
  • FIG. 5 is a schematic representation of a fifth type of structural reinforcing element consisting of two two-dimensional grids joined together by rigid peaks placed perpendicularly to the portion fixed on the wall to be insulated, and fixed against the wall by a ankle and screw system with a circular head,
  • FIGS. 6a to 6d are diagrammatic representations of a fastening means used in the context of the present invention
  • FIG. 7a is a schematic representation of the profile of the grid represented in FIG. 3
  • FIGS. 7b to 7d are schematic representations of the same grid during folding (FIGS. 7b and 7c) and once compacted (FIG. ).
  • FIG. 8 gives the curve of variation of the stress as a function of the deformation during the mechanical compressive strength tests carried out in Example 2 below.
  • FIG. 1 is a schematic representation of a structural reinforcing element (E) comprising a structure (1) on which are positioned additional reinforcing means such as equally rigid peaks (2) perpendicular to the rigid part (1) positioned against the wall to be insulated.
  • the reinforcing element is fixed to the wall by hooking points (3) in which fastening means such as screws can be easily inserted.
  • the structure and the peaks are for example plastic, which gives a good rigidity to the reinforcing element.
  • the spaces between the peaks form empty spaces which are then filled by the insulating mortar.
  • the length of the peaks is variable and varies between 40 and 300 mm: it is determined according to the thickness of the desired insulating mortar layer.
  • the insulating mortar layer is thus easily sprayable into the structural reinforcement element, the rigid peaks making it possible to provide the necessary mechanical strength.
  • FIG. 2 is a schematic representation on a vertical plane of a structural reinforcing element (E) consisting of a network of glass fiber strands having an accordion shape (4).
  • This structural reinforcing element is obtained in particular by weaving, that is to say by crossing in the same plane of threads arranged in a direction in the direction of the warp (warp threads) and son arranged in another direction in the direction of the weft (weft threads), especially perpendicular to the warp threads.
  • These threads are rigid enough that once woven, it is possible to constrain them to obtain a structure in the form of an accordion.
  • the resolution of the mesh is 25 mm.
  • the structural reinforcement element is fixed on the wall to be insulated by hooked points (3) at its ends.
  • Holding elements (5) of the structure in accordion form are arranged over the entire height of the structural reinforcement element (E).
  • This type of structural element has the advantage of being foldable and therefore compactable and easily transportable to the site.
  • the operator unfolds the reinforcing element and fixed on the wall to be insulated, for example by placing screws to the hook points (3) and also at the level of the holding elements (5).
  • the mortar layer can then be projected or cast in the voids or cavities of the reinforcing element to a thickness defined by the depth of the reinforcing element.
  • FIG. 3 is a diagrammatic representation on a vertical plane of a structural reinforcing element (E) associating a structure consisting of a network of glass fiber strands having an accordion shape (4), reinforced by means of additional reinforcement such as rigid peaks (2) perpendicular to the portion positioned against the wall to be insulated and also with two-dimensional meshes (6a, 6b) placed in two parallel planes and for reinforcing the accordion-shaped structure.
  • one of the two-dimensional meshes (6a) is placed directly against the wall to be insulated and keeps the lower parts of the accordion structure (which are also the parts of the concertina structure placed against the wall) integral with one another.
  • the other mesh (6b) makes it possible to keep the upper parts of the accordion structure (that is to say the parts that are farthest from the wall to be insulated) integral.
  • the meshes 6a and 6b may be of different size.
  • the yarns used to make the two-dimensional meshes may be identical or different from those used to make the accordion structure.
  • the fastening means may be screw / dowel systems or staples placed at the two-dimensional mesh positioned against the wall to be insulated.
  • the rigid peaks (2), distinct from the fastening means of the reinforcing element, make it possible to maintain the entire accordion structure and the two-dimensional meshes together and also to provide additional rigidity to the element of the reinforcement element. structural reinforcement.
  • Peaks can be of varying size and shape. The entire structure therefore reveals cavities or voids which will be filled by the insulating mortar.
  • FIG. 4 is a diagrammatic representation on a horizontal plane of a structural reinforcement element (E) consisting of a grid of honeycomb-shaped three-dimensional glass fiber strands, reinforced by rigid perpendicular peaks (2). at the part positioned against the wall to be insulated.
  • the cells are, in this figure, of hexagonal shape, but they can be of different shape, for example square. The depth of the cells corresponds to the thickness of the mortar layer that is projected.
  • Figure 5 is a schematic representation of a structural reinforcement element placed on a vertical wall to be insulated.
  • the structural reinforcement element shown consists of two grids or two-dimensional meshes (6a, 6b) of the same dimension secured to each other by rigid peaks (2) placed perpendicular to the two-dimensional grids.
  • the length of the rigid peaks (2) defines the depth of the sprayable mortar layer.
  • a fastening system of the structural anchoring element of the plug / screw type with circular head (7) is shown in this figure. This fixing system makes it possible to fix the element on the support and also contributes to its rigidity, since the dowels reinforce the maintenance of the structure ensured by the rigid peaks (2).
  • FIGS. 6a to 6d are a diagrammatic representation, in profile view, of a fixing means of the structural reinforcement element making it possible to fix both said element and also a reinforcement weft forming part of the finishing elements.
  • the structural reinforcement element shown here comprises an accordion type structure (4) associated with two two-dimensional meshes (6a) and (6b), the mesh (6a) being that positioned against the wall to be insulated.
  • the first part (9a) of the ankle is that which allows the fixation of the structural reinforcement element on the wall to be isolated, via a flat and circular dowel head (10).
  • This part of the ankle may be placed at a defined distance from the support to be insulated, which allows in particular to leave a space between the part of the structural element fixed against the wall and the wall itself.
  • This embodiment advantageously makes it possible to correct any lack of flatness that may exist on the wall to be insulated (renovation project).
  • the alignment of all the pins placed at a distance can for example be achieved by a laser system.
  • a second portion (9b) of the dowel whose length corresponds to the depth of the structural reinforcement element is inserted by depression or screwing into the first portion (9a) as shown in Figure 6b.
  • the opposite end of the second portion (9b) of the ankle is provided with an orifice (1 1).
  • a closure means (12) equipped with a flexible and flexible portion (13) is placed in the orifice (1 1) during the step of projecting the mortar layer into the cells or voids of the element of structural reinforcement.
  • the flexible part advantageously makes it possible to locate the location of the ankle, after projection of the mortar layer, and in particular during the smoothing step.
  • Figure 6d gives a schematic representation of the attachment of a reinforcing frame (14) directly in the body of the pin (9b), in the orifice (1 1) provided for this purpose.
  • a spacing means (15) is also shown in this figure: it allows a sufficient space, for example a few millimeters, between the mortar layer (or the structural reinforcement element) and the reinforcement weft (1). ) to apply a layer of undercoat.
  • the fastening means of the reinforcing frame (14) is here a screw (16).
  • FIGS. 7a to 7d are diagrammatic representations in profile of a structural reinforcement element such as that described in FIG. 3 in its form. unfolded ( Figure 7a) and in its folded forms more or less compact ( Figures 7b to 7d).
  • the structural reinforcement element comprises two two-dimensional grids or meshes (6a, 6b), rigid peaks (2) perpendicular to the portion positioned against the wall to be insulated and a wire network forming an accordion structure (4).
  • Such a reinforcing element may be folded back on itself so that the rigid peaks (2) are gathered against each other.
  • the two-dimensional meshes and the accordion structure also fold easily.
  • the set of structural reinforcement elements described above can be used in combination with an insulating mortar composition.
  • the thickness of the mortar layer is adjusted according to the properties of the insulating mortar and the clean structure of the reinforcing element.
  • a structural reinforcing element associating an accordion-like structure, rigid peaks 14 cm long and a two-dimensional mesh, identical to that described in FIG. 3, is fixed by a system of screws and dowels to its lower and upper ends on the wall to be isolated
  • a mixture is prepared by mixing with water a composition of dry mortar with perlite base and sulfoaluminous cement comprising:
  • the apparent density of the pulp in the mixing tank is about 340 kg / m 3 .
  • the wet mortar composition thus formed is projected by a discontinuous machine of Putzmeister SP1 type 1, through reinforcement element in one pass. Training with the ruler was then performed immediately after the wet mortar was sprayed. After drying (28 days), the apparent density of the insulating mortar is about 180 kg / m 3 .
  • the thermal conductivity is about 49 mW / m. K.
  • the mortar layer is applied in a single pass over a thickness of 140 mm so as to fill the entire structural reinforcement element.
  • a finishing element that is an underlay mineral aerial lime, conventionally used in the current systems of thermal insulation from the outside (Weber.therm XM): two 3 mm passes of this sub-plaster were made successively to the notched trowel, a finishing frame having shifted during the first pass. The total thickness of the applied sub-plaster is between 5 and 6 mm.
  • a silicate-based facing plaster (Weber maxilin sil T) was then applied to the trowel over the undercoat layer. After drying the assembly, a hard body impact test was carried out by a pendulum drop system, using a steel ball with a diameter of 50 mm and a mass of 500 gr for the test releasing an energy of 3 Joules.
  • the steel ball is attached to the end of a rope 2 m long and is dropped against the wall from a drop height of 0.61 m (angle between the rope and the vertical plane of 46 °).
  • the impact resistance tests are described in particular in document ETAG004, 2013 according to the ISO 7892. The results obtained have shown that no imprint or crack is visible during the impact test on the wall comprising the insulating system. according to the present invention, which reflects a good mechanical strength of the system.
  • test piece corresponding to a system according to the present invention was prepared using a reinforcement system such as that described in FIG. 3 (accordion-shaped structure, peaks 14 cm long rigid and a two-dimensional mesh) in which a mix identical to that described in Example 1 was projected.
  • the tests consist in applying a displacement on a specimen in the form of a rectangular prism, placed between two horizontal plates indeformable, and thus to cause crushing thereof.
  • the displacement and the force applied during the test are simultaneously measured.
  • a constant compression rate of 8 mm / min is applied.
  • the curve obtained is given in FIG. 7.
  • the thickness of the test piece is 105 mm in the case of the system according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Building Environments (AREA)

Abstract

La présente invention porte sur un système d'isolation thermique par l'extérieur d'une paroi qui comprend: -au moins un élément de renforcement structurel tridimensionnel non- métallique formé d'alvéoles ou espaces vides et d'une partie fixée sur la paroi à isoler, -au moins une couche de mortier thermiquement isolant remplissant l'ensemble des alvéoles ou espaces vides de l'élément de renforcement et -au moins des éléments de finition.

Description

SYSTEME D'ISOLATION THERMIQUE PAR L'EXTERIEUR CONSTITUE D'UN MORTIER PROJETE FORTEMENT ISOLANT ET PROCEDE DE FABRICATION DU SYSTEME
La présente invention porte sur un système d'Isolation Thermique par l'Extérieur (ITE) mettant en œuvre un mortier fortement isolant remplissant une grille de renforcement mécanique.
L'isolation thermique par l'extérieur est une solution actuellement très utilisée dans le domaine de la construction aussi bien en rénovation qu'en construction neuve. Il existe plusieurs types d'isolation thermique par l'extérieur. Les systèmes les plus répandus aujourd'hui sur le marché utilisent des panneaux rigides isolants collés sur le support en respectant un plan de calepinage réglementé. Ces panneaux sont à base de polystyrène expansé, éventuellement avec adjonction de graphite, à base de mousse phénolique ou polyuréthane, à base de laine minérale comme la laine de verre ou la laine de roche, ou à base de liège ou de tout autre matériau connu pour ses propriétés d'isolant. Sur ces panneaux isolants, il est nécessaire d'appliquer un enduit de base (ou enduit d'armature) armé d'une grille ou treillis sur lequel on applique ensuite un enduit de finition pour assurer la protection nécessaire et l'aspect esthétique. Ces systèmes sont complexes et sont connus sous le terme d'ETICS (External Thermal Insulating Composite System). Leur avantage est notamment d'offrir une large gamme de performances thermiques accessibles puisque les conductivités thermiques des panneaux isolants s'étalent de 12 mW/m. K pour les panneaux isolants sous vide à 130 mW/m. K. pour certains panneaux d'agglomérés type OSB (Oriented Strand Board). Les panneaux à base de polystyrène expansé ou à base de laine minérale ont classiquement une conductivité thermique de l'ordre de 35 mW/m. K. D'autre part, ces panneaux, de nature rigides, une fois collés sur le support présentent l'avantage d'être suffisamment résistants mécaniquement pour supporter le poids de sous-enduits ainsi que des enduits de finition ou de peinture. Cependant, l'adjonction de parements lourds tels que des carreaux de céramique, des pierres taillées ou des panneaux de verre est strictement réglementée en termes de poids surfacique limite au mètre carré et en terme de hauteur de structures de bâtiments.
Plus récemment, d'autres types de système d'isolation par l'extérieur à base de mortiers projetés se sont développés. Ces mortiers sont à base de charges allégeantes comme par exemple des billes de polystyrène expansé, des billes de perlite, des billes de verre expansé ou des aérogels. Ils sont projetés sur le support à revêtir, avec des machines de projection spécifiques. Ces types de systèmes permettent d'éviter la phase de tracé du plan de calepinage, la phase de rectification de la planéité du support, notamment des vieux supports en cas de rénovation, et également la phase de collage du panneau isolant. Cependant, les performances thermiques des mortiers projetés dépendent sévèrement de leur densité. Pour abaisser la valeur de la conductivité thermique d'un mortier projeté, il faut abaisser sa densité et par conséquent utiliser des quantités importantes de charges allégeantes, et également des agents moussants et/ou entraîneurs d'air. La baisse de la densité entraîne une diminution drastique des performances mécaniques de ces produits, et donc une capacité portante moindre vis-à-vis des parements de finition.
On cherche par conséquent une solution qui combine à la fois les performances en termes d'isolation thermique et de résistance mécanique. C'est dans ce cadre que s'inscrit la présente invention qui propose un système d'isolation thermique d'une paroi dans lequel le renfort mécanique et les propriétés thermiques sont apportés par deux éléments différents associés l'un avec l'autre. La présente invention propose également un procédé de fabrication dudit système isolant.
Un objet de l'invention porte sur un système d'isolation thermique d'une paroi qui comprend :
- au moins un élément de renforcement structurel tridimensionnel non- métallique formé d'alvéoles ou espaces vides et d'une partie fixée sur la paroi à isoler,
- au moins une couche de mortier thermiquement isolant remplissant l'ensemble des alvéoles ou espaces vides de l'élément de renforcement et
- au moins des éléments de finition. Ainsi, l'élément de renforcement permet d'obtenir la résistance mécanique et la couche de mortier permet d'obtenir les performances d'isolation thermique attendues. Il devient ainsi possible, grâce à l'élément de renforcement structurel d'utiliser des mortiers notamment minéraux présentant de très faible densité, et par conséquent de très faible conductivité thermique. Lorsqu'on parle de mortiers minéraux, on comprend les mélanges de liants tels les ciments et la chaux, extraits de matériaux naturels, de charges silico-calcaires et pigments inertes, d'additifs et adjuvants. Ces mélanges sont fabriqués en usine et sont conditionnés en sacs ou en silos, sous forme d'une poudre homogène, prête au mélange sur chantier avec de l'eau (gâchage). Ces mortiers sont notamment décrits dans la norme NF EN 998-1 . Ils présentent en particulier l'avantage d'avoir une très bonne résistance au feu.
Le système d'isolation thermique selon la présente invention est fixé directement sur la paroi ou le support à isoler. La partie de l'élément structurel fixée sur la paroi est positionnée soit en étant plaquée contre la paroi, soit positionnée à quelques centimètres (entre 1 et 5 cm) de celle-ci. La paroi peut être verticale, intérieure ou extérieure, type mur, ou une paroi horizontale, type plafond ou sol. La paroi à revêtir peut être de tout type : béton, briques, bois, etc .. Le support sur lequel le système isolant est fixé peut être un support neuf ou un support à rénover. L'ajout d'aucun autre isolant tel que des panneaux isolants habituellement utilisés dans les systèmes ETICS comme les panneaux à base d' EPS ou de laine minérale par exemple, n'est nécessaire dans le système d'isolation thermique selon la présente invention. Le système qui est placé sur le support à isoler est donc constitué de l'élément de renforcement mécanique, de la couche de mortier isolante et des éléments de finition.
L'élément de renforcement structurel tridimensionnel est formé d'alvéoles ou espaces vides sont remplis d'une couche de mortier thermiquement isolant, et sur lequel sont disposés des éléments de finition.
Les éléments de finition sont par exemple une couche de sous-enduit et une couche d'enduit de finition, pour assurer l'imperméabilité et l'esthétique de la paroi revêtue. Les épaisseurs des différentes couches des éléments de finition sont identiques à celles existant dans les systèmes d'ITE classiques utilisés actuellement. La couche de sous-enduit a par exemple une épaisseur de 3 à 12 mm et la couche d'enduit de finition a une épaisseur inférieure, par exemple de l'ordre de 1 à 6 mm). Les éléments de finition peuvent également comprendre des plaques de parement, fixées directement sur l'élément de renforcement structurel tridimensionnel rempli de la couche de mortier. Dans ce cas, ces plaques de parement remplacent les couches de sous-enduits et d'enduit de finition. Les plaques de parement sont fixées sur l'élément de renforcement par collage par un mortier-colle adéquat et également à l'aide d'une fixation mécanique pour un renforcement optimum du parement, notamment contre les actions du vent.
Le système d'isolation selon la présente invention permet en particulier un gain en termes de rapidité d'application sur la paroi à isoler par rapport aux systèmes ITE classiques existant sur le marché. Il n'est plus nécessaire de réaliser des plans de calepinage et de coller ou fixer sur la paroi des plaques d'isolant. Il n'est également plus nécessaire de rectifier la planéité de la surface de la paroi, notamment dans le cas des supports à rénover comme il est souvent nécessaire de le faire lorsqu'on souhaite coller ou fixer le panneau isolant. Il permet également de limiter la quantité de matériau à apporter sur le chantier lui-même. Les plaques d'isolants utilisées dans les systèmes ITE classiques représentant un encombrement important, les moyens de transport nécessaire pour les acheminer sur le chantier sont une source de coût non négligeable. L'élément de renforcement utilisé dans le système isolant de la présente invention est tridimensionnel et a une profondeur de plusieurs centimètres. De préférence, la profondeur de l'élément de renforcement est d'au moins 40 mm et au maximum de 300 mm. L'élément structurel tridimensionnel forme un réseau en trois dimensions d'alvéoles ou d'espaces vides remplis par le mortier isolant thermiquement. La profondeur de l'élément tridimensionnel structurel et l'épaisseur de la couche de mortier thermiquement isolant sont liées. Afin d'obtenir un système possédant la résistance mécanique souhaitée, l'élément de renforcement a une profondeur minimale correspondant à l'épaisseur de la couche de mortier. La totalité des espaces vides de l'élément de renforcement est remplie par la couche de mortier. Le choix de l'élément de renforcement et notamment de sa profondeur est adapté en fonction du mortier thermiquement isolant. Si les performances isolantes du mortier sont très bonnes, la profondeur de l'élément de renforcement peut être relativement faible. En revanche, si les performances isolantes du mortier isolant sont moindres, il peut être nécessaire que l'épaisseur de la couche de mortier isolant soit plus importante et dans ce cas, la profondeur de l'élément de renforcement est également plus importante. De façon générale, plus la profondeur de l'élément de renforcement est importante, plus l'épaisseur de mortier isolant est importante et meilleures sont les performances en terme d'isolation thermique du système selon la présente invention, la profondeur maximale étant de 300 mm et avantageusement de 250 mm.
L'élément de renforcement peut se présenter sous différentes formes, à partir du moment où il comprend des alvéoles ou espaces vides qui peuvent être remplis par le mortier isolant thermiquement. L'élément de renforcement structurel a une structure en nids d'abeille, une structure bidimensionnelle plissée ou structure en accordéon, une structure gaufrée, une structure correspondant à la superposition d'au moins deux grilles bidimensionnelles reliées les unes aux autres, et/ou une structure comprenant des pics rigides placés perpendiculairement à la partie fixée sur la paroi à isoler. Il peut également comprendre des moyens de renforcement supplémentaires tels que des pics perpendiculaires au plan formé par la partie fixée sur la paroi à isoler, et/ ou un ou plusieurs maillages bidimensionnels.
Les alvéoles, ou espaces vides situés dans l'élément de renforcement peuvent ainsi avoir des formes différentes : carrées, rectangulaires, triangulaires, rondes, coniques, hexagonales, etc. L'élément de renforcement peut être une association de différentes formes entre elles. De façon préférée, l'élément de renforcement comprend une structure bidimensionnelle plissée, éventuellement positionnée entre deux maillages bidimensionnels, l'ensemble étant solidarisé avec des pics placés perpendiculairement à la partie fixée sur la paroi à isoler. Une telle structure tridimensionnelle présente en particulier une très bonne rigidité.
L'élément de renforcement est fait dans un matériau non métallique pour limiter les conductions thermiques au travers de la couche de mortier isolant. Le matériau utilisé est préférentiellement choisi parmi la fibre de verre, la fibre de polypropylène, la fibre de plastique, la fibre de nylon, la fibre de polyamide, la fibre naturelle telle que le lin ou le chanvre. L'élément de renforcement peut comprendre différents type de matériaux non métalliques. Par exemple, une partie de l'élément de renforcement peut être en fibres de verre et une autre partie, comme des pics plus rigides, peuvent être en plastique. Ces matériaux ont une rigidité suffisante pour maintenir l'élément de renforcement sous la forme d'une structure tridimensionnelle. Avantageusement, l'élément de renforcement est aisément compactable, voire enroulable, ce qui permet de le stocker et de le transporter facilement sur le site d'utilisation.
Le système selon la présente invention peut comprendre une trame de renforcement, appelée également voile. Cette trame est du même type que celle utilisée dans les systèmes ITE classiques. Il s'agit d'une grille de fibres en deux dimensions telle que, par exemple, celle décrite dans la demande de brevet US2010/0000665. La trame peut être solidaire de l'élément de renforcement structurel et peut être considérée comme faisant partie de cet élément. Elle peut également être ajoutée ultérieurement et fixée sur l'élément de renforcement une fois que la couche de mortier a été appliquée, étant alors considérée comme faisant partie des éléments de finition.
Le système isolant selon la présente invention comprend au moins une couche de mortier thermiquement isolant remplissant les espaces vides de l'élément de renforcement. La couche de mortier est une couche de mortier allégé, de faible densité et caractérisée par de bonnes propriétés en terme d'isolation thermique, obtenu par mélange de différents constituants ou charges avec de l'eau (eau de gâchage) puis par durcissement de ce mélange. Plusieurs types de compositions sont utilisables dans le système selon la présente invention. La couche de mortier utilisée dans le système selon la présente invention est caractérisée, après séchage, par une faible conductivité thermique. Avantageusement, la conductivité thermique du mortier est comprise entre 25 mW/m. K et 50 mW/mK. De façon préférée, le mortier isolant a une conductivité thermique inférieure à 35 mW/m. K et encore plus préférentiellement inférieure à 30 mW/ mK. En termes de densité, ces valeurs de conductivités thermiques correspondent à des mortiers dont la masse volumique apparente est comprise entre 100 et 500 kg/m3. Ces valeurs de conductivité thermique dépendent également de la porosité des différentes charges et de la façon dont l'air est confiné dans le matériau. En effet, à même densité, pour des charges de porosité différente, la conductivité thermique est susceptible d'être différente en fonction des constituants du mortier utilisés. La résistance en compression de la couche de mortier telle que déterminée selon la norme EN998-1 n'est pas un critère limitant dans le choix de la composition de mortier puisque seule la résistance mécanique du système complet (élément de renforcement structurel et mortier isolant thermique) est à considérer.
La couche de mortier est obtenue par mélange avec de l'eau d'une composition pulvérulente comprenant au moins un liant hydraulique et des charges allégeantes organiques et/ou minérales, éventuellement des granulats, des fillers et/ou d'autres additifs, puis par durcissement dudit mélange.
Si la couche de mortier est une couche de mortier minéral, elle présente l'avantage de ne pas utiliser de substances organiques toxiques et d'avoir, en plus de ces performances d'isolant thermique, une bonne résistance au feu. Un tel mortier est notamment à base de charges allégeantes minérales telles que la perlite expansée, la vermiculite expansée, les billes de verre expansé, les microsphères creuses de verre, les cénosphères, les argiles expansées, les schistes expansés, les pierres ponces, les silicates expansés et/ou les aérogels.
La couche de mortier peut également comprendre des charges allégeantes organiques synthétiques telles que les microsphères à base de polymères ou copolymères thermoplastiques comme le polystyrène expansé ou extrudé, le polyéthylène, le polyéthylène téréphtalate, le polyuréthane.
La couche de mortier utilisée dans le système isolant selon la présente invention peut également comprendre un mélange de différentes charges allégeantes de type minéral, associées avec différentes charges allégeantes de type organique. On peut, par exemple, citer des formulations de mortier comprenant à la fois de la perlite et des aérogels. La demande de brevet EP 2597072 A2 décrit notamment des formulations de mortiers isolants comprenant des mélanges d'aérogels de silice et de polystyrène expansé ou de polystyrène extrudé. La demande de brevet WO 2014/090790 décrit des mélanges de charges allégeantes de type aérogels de silice avec de la pierre ponce.
Le liant, qui permet d'assurer la cohésion entre les différents constituants du mortier peut être un liant hydraulique choisi parmi les ciments Portland, les ciments de mélange comprenant des cendres volantes, des laitiers, des pouzzolanes naturelles ou calcinées, les ciments alumineux, les ciments sulfoalumineux, les ciments belitiques et/ou la chaux hydraulique. Le liant peut également comprendre, en plus du liant hydraulique d'autres liants minéraux à base de plâtre ou à base de silicates, de la chaux aérienne, ou des liants organiques par exemple à base de résines. Le liant peut également être un liant de type phosphate résultant d'une réaction acido- basique généralement entre un sel métallique, comme par exemple un sel de magnésium, un sel de calcium, un sel d'aluminium, ou un sel de zinc et un dérivé ou un sel de l'acide phosphorique.
La couche de mortier est obtenue par durcissement d'un mélange se présentant sous forme de pâte ou de mousse. La mousse peut être obtenue soit par incorporation d'une mousse aqueuse pré-formée pendant la préparation du mortier, soit par ajout dans la composition d'agents moussants et/ou entraîneurs d'air qui permettent de former la mousse in-situ pendant la préparation du mortier. Une couche de mortier se présentant sous la forme d'une mousse présente l'avantage d'apporter un allégement supplémentaire. Un exemple de mousse aqueuse préformée ajoutée aux différents constituants du mortier est décrit dans la demande de brevet WO 201 1 /095718. Un procédé de moussage in-situ est décrit par exemple dans la demande WO 2013/ 121 143. Il est avantageux d'utiliser une composition de mortier se présentant sous forme de mousse et comprenant des charges allégeantes minérales et/ou organiques. On peut par exemple citer des mortiers obtenus par mélange de mousse de silice avec de la perlite, comme décrits dans la demande de brevet WO 2013/ 150148. Ces mousses sont connues pour être très stables et pour présenter de très faibles conductivités thermiques.
Les compositions de mortier utilisées pour former la couche de mortier peuvent également comprendre des granulats ou sables, jouant sur la rhéologie, l'épaisseur, la dureté, l'aspect final et la perméabilité de la couche de mortier. Ils sont généralement formés de sables siliceux, calcaires et/ou silico-calcaires et présentent une granulométrie comprise entre 100 μητι et 5 mm.
Un exemple de composition de mortier isolant allégé possédant de bonnes performances d'isolation thermique comprend un liant constitué de 20 et 60% de ciment, de 20 et 40% de chaux et de 5 à 25% d'agent pouzzolanique, tel que le métakaolin, les laitiers de hauts fourneaux, les cendres collantes ou les fumées de silice, mélangé avec une quantité importante (au moins 70% en volume) de billes de polystyrène expansé.
Un autre exemple de composition de mortier isolant allégé peut comprendre jusqu'à 40% en poids de charge minérales allégeantes, un liant minéral, un agent entraîneur d'air et un agent viscosant, tout en étant exempte de granulats de granulométrie supérieure à 100 m.
L'ensemble des compositions de mortier utilisables dans le système selon l'invention présente la caractéristique d'être projetable par une machine de projection usuellement utilisée dans le domaine du revêtement de façade. Elles peuvent également être appliquées par coulage par machine ou par application manuelle. La présente invention porte également sur un procédé de fabrication d'un système d'isolation thermique d'une paroi ou support qui comprend les étapes de : -fixation contre ladite paroi, ou à une distance de 1 à 5 cm de celle-ci, d'un élément de renforcement structurel non-métallique tridimensionnel formé d'alvéoles ou espaces vides,
-projection ou coulage d'une couche de mortier isolant thermiquement dans ledit élément de renforcement structurel de façon à remplir l'ensemble des espaces vides ou alvéoles,
-lissage de la couche de mortier projetée une fois que la totalité de la profondeur de l'élément de renforcement est remplie,
-séchage et durcissement de la couche de mortier, puis
-mise en place des éléments de finition.
L'élément de renforcement est fixé contre la paroi à isoler, soit en étant directement plaquée sur la paroi, soit en étant maintenu à une certaine distance. La fixation est réalisée par des moyens de fixation dont les dimensions sont telles qu'ils ne dépassent pas de l'élément de renforcement. L'élément de renforcement peut être fixé sur la paroi par l'intermédiaire de rails de fixation placés à différentes hauteurs. Ces rails peuvent être équipés de crochets permettant la fixation de l'élément de renforcement. Des moyens de fixation tels que des vis, par exemple à tête circulaire, insérées dans des chevilles placées dans la paroi à isoler ou des agrafes peuvent également être envisagés.
De façon avantageuse, l'élément de renforcement est fixé sur la paroi à isoler avec des chevilles constituées d'au moins deux parties différentes : une première partie filetée et munie d'une tête de fixation, permettant de fixer la partie de l'élément de renforcement qui est positionnée directement contre la paroi à isoler et une seconde partie constituant le corps de la cheville dont la longueur correspond à la profondeur de l'élément de renforcement structurel, et destinée à être insérée dans la première partie de la cheville. L'extrémité opposée du corps de la cheville, c'est-à-dire l'extrémité « libre » qui ne pénètre pas dans la première partie peut être munie d'un orifice, éventuellement taraudé, destiné à recevoir un moyen de bouchage. Lors de l'étape de projection ou de coulage de la couche de mortier isolant, l'orifice situé à l'extrémité opposée à celle de la paroi à isoler est occulté par un moyen de bouchage de façon à éviter que l'orifice se remplisse de mortier. Le moyen de bouchage peut être avantageusement équipé d'une partie souple qui peut être facilement repérable, même après projection ou coulage de la couche de mortier et permettre d'ajouter un éventuel moyen de fixation pour une trame de renforcement par exemple. Ce moyen de fixation supplémentaire peut être fixé par clipsage dans l'orifice de la deuxième partie de la cheville ou par vissage dans le cas d'un orifice taraudé. De façon avantageuse, le moyen de fixation de la trame peut être équipé d'un moyen d'écartement permettant de laisser un espace vide entre la trame et la cheville permettant notamment que la couche de sous-enduit recouvre la totalité de la trame de renforcement avant la pose de l'enduit de finition. Ce type de cheville dont la longueur peut être variable est particulièrement avantageusement pour la fixation du système selon la présente invention.
Les moyens de fixation utilisés pour fixer l'élément de renforcement et notamment un moyen de type cheville tel que celui décrit précédemment permettent avantageusement d'apporter un renforcement supplémentaire au système. Le nombre de moyens de fixation utilisés pour fixer le système est adapté en fonction du type d'élément structurel mis en œuvre.
D'autres moyens de fixation, comme des agrafes peuvent également permettre de fixer directement la partie de l'élément de renforcement qui est directement en contact avec la paroi à isoler. Ce type de moyen de fixation est particulièrement adapté lorsque l'élément de renforcement structurel a suffisamment de rigidité et ne nécessite pas de renforcement supplémentaire. C'est en particulier le cas lorsque l'élément de renforcement structurel est composé d'une association de différentes formes entre elles, comme des formes en accordéon couplées à des pics perpendiculaires au support.
Les éléments de renforcement sont positionnés sur la paroi à isoler les uns à côté des autres. Des zones de recouvrement entre deux éléments de renforcement successifs sont envisageables.
Ainsi, le système isolant est fabriqué in-situ directement sur la paroi à isoler La couche de mortier isolant est projetée ou coulée dans les espaces vides de l'élément de renforcement de façon préférée, la couche de mortier est projetée à l'aide des machines pour la projection de mortiers utilisées classiquement. En fonction de la composition et des propriétés du mortier à appliquer, ces machines de projection peuvent fonctionner selon un mode continu ou un mode discontinu. Le gâchage de la composition de mortier sèche est effectué dans la machine de projection. La composition de mortier humide en sortie de lance de projection remplit les alvéoles ou espaces vides de l'élément de renforcement structurel. La projection peut être effectuée en plusieurs passages successifs de façon à remplir la totalité des espaces vides de l'élément de renforcement structurel. Les différents passages peuvent être réalisés directement les uns après les autres, sans attendre le séchage de la première couche projetée. Les techniques de projection utilisées sont les techniques habituelles utilisées par les façadiers. La présence de l'élément de renforcement ne perturbe pas l'étape de projection du mortier.
L'étape de séchage et de durcissement de la couche de mortier projetée ou coulée dans l'élément de renforcement structurel est nécessaire afin de pouvoir réaliser l'étape de mise en place des éléments de finition. La durée de cette étape de séchage et de durcissement peut varier en fonction de la composition de mortier projetée et en fonction de la profondeur de l'élément de renforcement structurel. Classiquement, la durée préconisée est de un jour par centimètre d'épaisseur. Cette durée peut être amenée à diminuer ou à se rallonger selon les conditions climatiques.
La mise en œuvre de l'étape de mise en place des éléments de finition dépend du type de systèmes de finition choisis et du type d'élément de renforcement structurel utilisé. Cette dernière étape peut comprendre une étape d'application d'une couche de sous-enduit et d'un enduit de finition. Le sous-enduit permet notamment d'augmenter la dureté de surface et d'assurer la protection, notamment l'imperméabilisation, de la façade. L'enduit de finition assure la fonction de décoration (couleurs, texture...). Il peut être avantageux de fixer une trame de renforcement préalablement ou pendant l'étape d'application d'une couche de sous-enduit, notamment si l'élément de renforcement structurel n'a pas de trame de renforcement déjà intégrée. Le système de finition choisi peut consister à positionner d'autres éléments décoratifs tels que par exemple des carreaux de céramique, des pierres taillées, naturelles ou artificielles, sur l'élément de renforcement structurel. Ces éléments décoratifs peuvent être collés et/ou fixés mécaniquement, soit directement sur ledit élément, soit sur une couche de sous-enduit appliquée au préalable sur ledit élément, comprenant éventuellement une trame de renforcement. L'étape de mise en place des éléments de fixations peut également consister à fixer des plaques de parement sur l'élément de renforcement structurel rempli de la couche de mortier isolant.
L'invention sera mieux comprise à la lumière des dessins annexés dans lesquels :
-la figure 1 est une représentation schématique d'un premier type d'élément de renforcement structurel constitué d'une multitude de pics rigides positionnés perpendiculairement à la partie de l'élément fixée sur la paroi à isoler,
-la figure 2 est une représentation schématique d'un deuxième type d'élément de renforcement structurel ayant une structure bidimensionnelle plissée ou sous la forme d'un accordéon,
-la figure 3 est une représentation schématique d'un troisième type d'élément de renforcement structurel constitué d'une structure en accordéon renforcée par des pics rigides perpendiculaires à la partie fixée sur la paroi à isoler,
-la figure 4 est une représentation schématique d'un quatrième type d'élément de renforcement structurel constitué d'une structure rigide en nids d'abeille, renforcée par des pics rigides placés perpendiculairement à la partie fixée sur la paroi à isoler,
-la figure 5 est une représentation schématique d'un cinquième type d'élément de renforcement structurel constitué de deux grilles bidimensionnelles solidarisées entre elles par des pics rigides placés perpendiculairement à la partie fixée sur la paroi à isoler, et fixé contre la paroi par un système de chevilles et de vis à tête circulaire,
-les figures 6a à 6d sont des représentations schématiques d'un moyen de fixation utilisé dans le cadre de la présente invention, -la figure 7a est une représentation schématique du profil de la grille représentée à la figure 3 et les figures 7b à 7d sont des représentations schématiques de la même grille en cours de pliage (figures 7 b et 7c) et une fois compactée (figure 7d).
-la figure 8 donne la courbe de variation de la contrainte en fonction de la déformation lors des essais de résistance mécaniques en compression effectués dans l'exemple 2 ci-après.
La figure 1 est une représentation schématique d'un élément de renforcement structurel (E) comprenant une structure (1 ) sur laquelle sont positionnés des moyens de renforcement supplémentaires tels que des pics également rigides (2) perpendiculaires à la partie rigide (1 ) positionnée contre la paroi à isoler. L'élément de renforcement est fixé sur la paroi par des points d'accroché (3) dans lesquels des moyens de fixation tels que des vis peuvent être facilement insérées. La structure et les pics sont par exemple en plastique, ce qui donne une bonne rigidité à l'élément de renforcement. Les espaces entre les pics forment des espaces vides qui sont ensuite remplis par le mortier isolant. La longueur des pics est variable et varie entre 40 et 300 mm : elle est déterminée en fonction de l'épaisseur de la couche de mortier isolant souhaitée. La couche de mortier isolant est ainsi facilement projetable dans l'élément de renforcement structurel, les pics rigides permettant d'apporter la résistance mécanique nécessaire.
La figure 2 est une représentation schématique sur un plan vertical d'un élément de renforcement structurel (E) constitué d'un réseau de fils en fibres de verre ayant une forme d'accordéon (4). Cet élément de renforcement structurel est notamment obtenu par tissage, c'est-à-dire par entrecroisement dans un même plan de fils disposés dans une direction dans le sens de la chaîne (fils de chaîne) et de fils disposés dans une autre direction dans le sens de la trame (fils de trame), notamment perpendiculaire aux fils de chaîne. Ces fils sont suffisamment rigides pour qu'une fois tissés, il soit possible de les contraindre pour obtenir une structure ayant la forme d'un accordéon. A titre d'exemple, la résolution du maillage est de 25 mm. L'élément de renforcement structurel est fixé sur la paroi à isoler par des points d'accroché (3) situés à ses extrémités. Des éléments de maintien (5) de la structure sous la forme d'accordéon sont disposés sur la totalité de la hauteur de l'élément de renforcement structurel (E). Ce type d'élément structurel présente l'avantage d'être pliable et donc compactable et facilement transportable jusqu'au lieu du chantier. Une fois sur le chantier, l'opérateur déplie l'élément de renforcement et le fixe sur la paroi à isoler, par exemple en plaçant des vis aux points d'accroché (3) et également au niveau des éléments de maintien (5). La couche de mortier peut ainsi être ensuite projetée ou coulée dans les espaces vides ou alvéoles de l'élément de renforcement sur une épaisseur définie par la profondeur de l'élément de renforcement.
La figure 3 est une représentation schématique sur un plan vertical d'un élément de renforcement structurel (E) associant une structure constituée d'un réseau de fils en fibres de verre ayant une forme d'accordéon (4), renforcée par des moyens de renforcement supplémentaires tels que des pics rigides (2) perpendiculaires à la partie positionnée contre la paroi à isoler et également avec des maillages bidimensionnels (6a, 6b) placés dans deux plans parallèles et permettant de renforcer la structure en forme d'accordéon. Ainsi, un des maillages bidimensionnels (6a) est placé directement contre la paroi à isoler et permet de maintenir solidaires les parties inférieures de la structure en accordéon (qui sont également les parties de la structure en accordéon placées contre la paroi). L'autre maillage (6b) permet de maintenir solidaire les parties supérieures de la structure en accordéon (c'est-à-dire les parties qui sont les plus éloignées de la paroi à isoler). Les maillages 6a et 6b peuvent être de dimension différente. Les fils utilisés pour réaliser les maillages bidimensionnels peuvent être identiques ou différents de ceux utilisés pour réaliser la structure en accordéon. Les moyens de fixation, non représentés sur la figure, peuvent être des systèmes de vis/chevilles ou des agrafes placés au niveau du maillage bidimensionnel positionné contre la paroi à isoler. Les pics rigides (2), distincts des moyens de fixation de l'élément de renforcement, permettent de maintenir solidaire l'ensemble de la structure en accordéon et les maillages bidimensionnels et également d'apporter de la rigidité supplémentaire à l'élément de renforcement structurel. Les pics peuvent être de taille et de forme variable. L'ensemble de la structure fait donc apparaître des alvéoles ou espaces vides qui seront remplis par le mortier isolant. La hauteur de la structure en accordéon par rapport au plan du support, ainsi que la hauteur des pics rigides (2) permettent de déterminer l'épaisseur de la couche de mortier isolant à projeter. Ce type d'élément de renforcement structurel permet notamment de projeter des couches de mortier épaisses.
La figure 4 est une représentation schématique sur un plan horizontal d'un élément de renforcement structurel (E) constitué d'un maillage de fils de fibres de verre tridimensionnel en forme de nids d'abeille, renforcé par des pics rigides (2) perpendiculaires à la partie positionnée contre la paroi à isoler. Les alvéoles sont, sur cette figure, de forme hexagonale, mais elles peuvent être de forme différente, par exemple carrée. La profondeur des alvéoles correspond à l'épaisseur de la couche de mortier qui est projetée.
La figure 5 est une représentation schématique d'un élément de renforcement structurel placé sur une paroi verticale à isoler. L'élément de renforcement structurel représenté est constitué de deux grilles ou maillages bidimensionnels (6a, 6b) de même dimension solidarisées entre eux par des pics rigides (2) placés perpendiculairement aux grilles bidimensionnelles. La longueur des pics rigides (2) définit la profondeur de la couche de mortier projetable. Un système de fixation de l'élément de renforcement structurel de type chevilles/vis à tête circulaire (7) est représenté sur cette figure. Ce système de fixation permet de fixer l'élément sur le support et contribue également à sa rigidité, puisque les chevilles renforcent le maintien de la structure assurée par les pics rigides (2).
Les figures 6a à 6d sont une représentation schématique, en vue de profil, d'un moyen de fixation de l'élément de renforcement structurel permettant de fixer à la fois ledit élément et également une trame de renforcement faisant partie des éléments de finition. L'élément de renforcement structurel représenté ici comprend une structure de type accordéon (4) associée à deux maillages bidimensionnels (6a) et (6b), le maillage (6a) étant celui positionné contre la paroi à isoler. Une cheville (9), comprenant deux parties distinctes (9a) et (9b), est placée dans la paroi (8) à isoler. La première partie (9a) de la cheville est celle qui permet la fixation de l'élément de renforcement structurel sur la paroi à isoler, par l'intermédiaire d'une tête de cheville plate et circulaire (10). Cette partie de la cheville peut être placée à une distance définie du support à isoler, ce qui permet notamment de laisser un espace entre la partie de l'élément structurel fixée contre la paroi et la paroi elle-même. Ce mode de réalisation permet avantageusement de corriger tout défaut de planéité susceptible d'exister sur la paroi à isoler (chantier de rénovation). L'alignement de l'ensemble des chevilles placées à distance peut par exemple être réalisé par un système laser. Une seconde partie (9b) de la cheville dont la longueur correspond à la profondeur de l'élément de renforcement structurel vient s'insérer par enfoncement ou vissage dans la première partie (9a) comme représenté sur la figure 6b. L'extrémité opposée de la seconde partie (9b) de la cheville est munie d'un orifice (1 1 ). Un moyen de bouchage (12) équipé d'une partie souple et flexible (13) est placé dans l'orifice (1 1 ) pendant l'étape de projection de la couche de mortier dans les alvéoles ou espaces vides de l'élément de renforcement structurel. La partie flexible permet avantageusement de repérer l'emplacement de la cheville, après projection de la couche de mortier, et notamment lors de l'étape de lissage. La figure 6d donne une représentation schématique de la fixation d'une trame de renforcement (14) directement dans le corps de la cheville (9b), dans l'orifice (1 1 ) prévu à cet effet. Un moyen d'espacement (15) est également représenté sur cette figure : il permet de laisser un espace suffisant, par exemple de quelques millimètres, entre la couche de mortier (ou l'élément de renforcement structurel) et la trame de renforcement (1 ) pour appliquer une couche de sous-enduit. Le moyen de fixation de la trame de renforcement (14) est ici une vis (16).
Il est avantageux d'utiliser un élément de renforcement structurel qui soit pliable et compactable pour faciliter son transport jusqu'à la zone de chantier. Parmi les différents éléments décrits ci-avant, ceux se présentant sous forme d'un accordéon présentent en particulier cet avantage. Les figures 7a à 7d sont des représentations schématiques en vue de profil d'un élément de renforcement structurel tel que celui décrit à la figure 3 dans sa forme dépliée (figure 7a) et dans ses formes pliées de façon plus ou moins compacte (figures 7b à 7d). L'élément de renforcement structurel comprend deux grilles ou maillages bidimensionnels (6a, 6b), des pics rigides (2) perpendiculaires à la partie positionnée contre la paroi à isoler et un réseau de fils formant une structure en accordéon (4). Un tel élément de renforcement peut être replié sur lui-même de sorte à ce que les pics rigides (2) soient rassemblés les uns contre les autres. Les maillages bidimensionnels et la structure en accordéon se replient également facilement.
L'ensemble des éléments de renforcement structurels décrits ci-avant peut être utilisé en association avec une composition de mortier isolante. L'épaisseur de la couche de mortier est ajustée en fonction des propriétés du mortier isolant et de la structure propre de l'élément de renforcement.
Les exemples ci-après illustrent l'invention sans en limiter la portée.
Exemple 1
Des essais de choc de corps dur sur une paroi revêtue d'un système isolant selon la présente invention ont été réalisés.
Un élément de renforcement structurel associant une structure en forme d'accordéon, des pics rigides d'une longueur de 14 cm et un maillage bidimensionnel, identique à celui décrit à la figure 3, est fixé par un système de vis et de chevilles à ses extrémités inférieure et supérieure sur le mur à isoler Une gâchée est préparée en mélangeant avec de l'eau une composition de mortier sèche à base perlite et de ciment sulfoalumineux comprenant :
- 70 % de perlite de type Silcel 42/ 18,
- 23,7 % de ciment sulfoalumineux,
- 5% de poudre de polymères redispersibles,
- 0,6% d'éther de cellulose,
- 0,6% d'agent entraîneur d'air, et
- 0, 1 % d'agent accélérateur de prise.
La masse volumique apparente de la pâte dans la cuve de malaxage est d'environ 340 kg/m3. La composition de mortier humide ainsi formée est projetée par une machine discontinue de type Putzmeister SP1 1 , au travers de l'élément de renforcement, en une seule passe. Un dressage à la règle crantée a été ensuite effectué immédiatement après projection du mortier humide. Après séchage (28 jours), la masse volumique apparente du mortier isolant est d'environ 180 kg/m3. La conductivité thermique est d'environ 49 mW/m. K. La couche de mortier est appliquée en une seule passe sur une épaisseur de 140 mm de façon à remplir la totalité de l'élément de renforcement structurel.
Une fois que la couche de mortier est sèche, on applique un élément de finition qui est un sous-enduit minéral à la chaux aérienne, utilisé classiquement dans les systèmes actuels d'isolation thermique par l'extérieur (Weber.therm XM) : deux passes de 3 mm de ce sous-enduit ont été effectuées successivement à la taloche crantée, une trame de finition ayant marouflée lors de la première passe. L'épaisseur totale du sous-enduit appliqué est comprise entre 5 et 6 mm. Un enduit de parement à base de silicate (Weber. maxilin sil T) a ensuite été appliqué à la taloche sur la couche de sous-enduit. Après séchage de l'ensemble, un test de chocs de corps dur a été réalisé, par un système de chute pendulaire, en utilisant une bille d'acier de diamètre 50 mm et de masse de 500 gr pour l'essai libérant une énergie de 3 Joules. La bille en acier est fixée au bout d'une corde de 2 m de long et est lâchée contre la paroi depuis une hauteur de chute de 0,61 m (angle entre la corde et le plan vertical de 46° ). Les tests de résistances aux chocs sont notamment décrits dans le document ETAG004, 2013 selon la norme ISO 7892. Les résultats obtenus ont montré qu'aucune empreinte ni fissure n'est visible lors de l'essai de choc sur la paroi comprenant le système isolant selon la présente invention, ce qui traduit une bonne résistance mécanique du système.
Exemple 2 : Essais mécaniques en compression simple et comparaison avec la laine de roche
Des tests mécaniques en compression ont été réalisés avec une machine de traction/compression. Une éprouvette correspondant à un système selon la présente invention a été préparée en utilisant un système de renforcement tel que celui décrit à la figure 3 (structure en forme d'accordéon, des pics rigides d'une longueur de 14 cm et un maillage bidimensionnel) dans lequel on a projeté une gâchée identique à celle décrite dans l'exemple 1 .
Les essais réalisés consistent à appliquer un déplacement sur une éprouvette se présentant sous la forme d'un prisme rectangulaire, placée entre deux plateaux horizontaux indéformables, et ainsi à provoquer un écrasement de celle-ci. On mesure simultanément le déplacement et la force appliquée au cours de l'essai. On applique une vitesse de compression constante de 8 mm/min. On exprime ainsi la contrainte en kPa (calculée à partir de la force appliquée mesurée en Newtons et divisée par la surface sur laquelle la force est appliquée) en fonction de la déformation qui correspond à la variation de longueur ΔΙ_=Ι_-Ι_0 rapportée à la longueur initiale de l'éprouvette (AL/LO). La courbe obtenue est donnée sur la figure 7. L'épaisseur de l'éprouvette vaut 105mm dans le cas du système selon la présente invention.
A titre de comparaison des tests similaires ont été réalisés en remplaçant le système selon la présente invention par de la laine de roche d'une épaisseur de 80 mm, usuellement utilisée dans les systèmes d'isolation par l'extérieur. Deux tests ont été effectués, le premier utilisant une laine de roche de densité 1 30 kg/m3 (échantillon 1 ) et le second une laine de roche de densité 125 kg/m3 (échantillon 2). La comparaison entre les différents échantillons testés montre que le système selon la présente invention a un comportement mécanique tout à fait comparable à ce que l'on obtient avec de la laine de roche.

Claims

REVENDICATIONS
1 . Système d'isolation thermique par l'extérieur d'une paroi qui comprend - au moins un élément de renforcement structurel (E) tridimensionnel non-métallique formé d'alvéoles ou espaces vides et d'une partie fixée sur la paroi (8) à isoler,
- au moins une couche de mortier thermiquement isolant remplissant l'ensemble des alvéoles ou espaces vides de l'élément de renforcement et
- au moins des éléments de finition.
2. Système selon la revendication 1 caractérisé en ce que l'élément de renforcement structurel (E) a une profondeur d'au moins 40 mm et d'au plus 300 mm.
3. Système selon l'une des revendications précédentes caractérisé en ce que l'élément de renforcement structurel (E) a une structure en nids d'abeille, une structure bidimensionnelle plissée ou structure en accordéon (4), une structure gaufrée, une structure correspondant à la superposition d'au moins deux grilles bidimensionnelles reliées les unes aux autres, et/ou une structure comprenant des pics rigides (2) placés perpendiculairement à la partie fixée sur la paroi à isoler.
4. Système selon la revendication précédente caractérisé en ce que la structure de l'élément de renforcement (E) comprend des moyens de renforcement supplémentaires tels que des pics (2) perpendiculaires au plan formé par la partie fixée sur la paroi (8) à isoler, et/ou un ou plusieurs maillages bidimensionnels (6a, 6b).
5. Système selon la revendication précédente caractérisé en ce que l'élément de renforcement (E) comprend une structure bidimensionnelle plissée, éventuellement positionnée entre deux maillages bidimensionnels (6a, 6b), l'ensemble étant solidarisé avec des pics rigides (2) placés perpendiculairement à la partie fixée sur la paroi (8) à isoler.
6. Système selon l'une des revendications précédentes caractérisé en ce que l'élément de renforcement structurel est fait dans un ou plusieurs matériaux choisis parmi la fibre de verre, la fibre de polypropylène, la fibre de plastique, la fibre de nylon, la fibre de polyamide, la fibre naturelle telle que le lin ou le chanvre.
7. Système selon l'une des revendications précédentes caractérisé en ce que la couche de mortier est une couche de mortier allégé dont la conductivité thermique est comprise entre 25mW/m. K et 50 mW/m. K, de préférence entre 25 mW et 35 mW/m. K et encore plus préférentiellement entre 25 mW/m. K et 30 mW/m. K.
8. Système selon l'une des revendications précédentes caractérisé en ce que la couche de mortier est obtenue par mélange avec de l'eau d'une composition pulvérulente comprenant au moins un liant hydraulique avec des charges allégeantes organiques et/ou minérales, éventuellement en présence de granulats, fillers et/ou autres additifs puis par durcissement dudit mélange.
9. Système selon la revendication 8 caractérisé en ce que les charges allégeantes minérales sont choisies parmi la perlite expansée, la vermiculite expansée, les billes de verre expansé, les microsphères creuses de verre, les cénosphères, les argiles expansées, les schistes expansés, les pierres ponces, les silicates expansés, et/ou les aérogels.
10. Système selon la revendication 9 caractérisé en ce que les charges allégeantes synthétiques sont choisies parmi les microsphères à base de polymères ou copolymères thermoplastiques comme le polystyrène expansé ou extrudé, le polyéthylène, le polyéthylène téréphtalate, le polyuréthane.
1 1 . Système selon l'une des revendications 9 à 10 caractérisé en ce que le liant est choisi parmi les liants hydrauliques tels que les ciments Portland, les ciments de mélange comprenant des cendres volantes, des laitiers, des pouzzolanes naturelles ou calcinées, les ciments alumineux, les ciments sulfoalumineux, les ciments belitiques et/ou la chaux hydraulique, ou parmi les liants organiques, ou parmi les liants de type phosphate résultant d'une réaction acido-basique entre un sel métallique et un dérivé ou un sel de l'acide phosphorique et/ou parmi les liants minéraux à base de plâtre ou à base de silicates, de la chaux hydraulique ou aérienne.
1 2. Système selon l'une des revendications précédentes caractérisé en ce que la couche de mortier est obtenue après durcissement d'un mélange sous forme de pâte ou de mousse.
1 3. Système selon la revendication précédente caractérisé en ce que la mousse est obtenue par incorporation d'une mousse aqueuse pré-formée pendant la préparation du mortier, ou par ajout dans la composition d'agents moussants et/ou entraîneurs d'air qui permettent de former la mousse in-situ pendant la préparation du mortier.
14. Procédé de fabrication d'un système isolant thermique par l'extérieur d'un support ou paroi caractérisé en ce qu'il comprend les étapes de : -fixation contre ladite paroi (8) ou à une distance de 1 à 5 cm de celle-ci d'un élément de renforcement structurel (E) non-métallique tridimensionnel formé d'alvéoles ou espaces vides,
-projection ou coulage d'une couche de mortier isolant thermiquement dans ledit élément de renforcement structurel (E) de façon à remplir l'ensemble des espaces vides ou alvéoles,
-lissage de la couche de mortier projetée une fois que la totalité de la profondeur de l'élément de renforcement (E) est remplie,
-séchage et durcissement de la couche de mortier, puis
-mise en place des éléments de finition.
15. Procédé selon la revendication 14 caractérisé en ce que la fixation est réalisée par des moyens de fixation (7) dont les dimensions sont telles qu'ils ne dépassent pas de l'élément de renforcement.
16. Procédé selon l'une des revendications 14 ou 15 caractérisé en ce que la fixation est réalisée par des moyens de fixation (7) dont les dimensions sont telles qu'ils permettent de maintenir une distance de 1 à 5 cm entre l'élément structurel et la paroi.
17. Procédé selon l'une des revendications 14 à 16 caractérisé en ce que la projection de la couche de mortier est réalisée par plusieurs passages successifs de sorte à remplir la totalité des alvéoles ou espaces vides de l'élément de renforcement.
18. Procédé selon l'une des revendications 14 à 17 caractérisé en ce que l'étape de mise en place des éléments de finition comprend une étape d'application d'une couche de sous-enduit et d'un enduit de finition.
19. Procédé selon la revendication 18 caractérisé en ce qu'il comprend en outre une étape de fixation d'une trame de renforcement préalablement ou pendant l'application de la couche de sous-enduit.
20. Procédé selon l'une des revendications 14 à 19 caractérisé en ce que des éléments décoratifs sont collés ou fixés mécaniquement sur la couche de mortier durcie, éventuellement revêtue d'un sous-enduit et d'une trame de renforcement.
EP17832268.1A 2016-12-22 2017-12-21 Systeme d'isolation thermique par l'exterieur constitue d'un mortier projete fortement isolant et procede de fabrication du systeme Withdrawn EP3559367A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1663201A FR3061221B1 (fr) 2016-12-22 2016-12-22 Systeme d'isolation thermique par l'exterieur constitue d'un mortier projete fortement isolant
PCT/FR2017/053771 WO2018115766A1 (fr) 2016-12-22 2017-12-21 Systeme d'isolation thermique par l'exterieur constitue d'un mortier projete fortement isolant et procede de fabrication du systeme

Publications (1)

Publication Number Publication Date
EP3559367A1 true EP3559367A1 (fr) 2019-10-30

Family

ID=58547610

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17832268.1A Withdrawn EP3559367A1 (fr) 2016-12-22 2017-12-21 Systeme d'isolation thermique par l'exterieur constitue d'un mortier projete fortement isolant et procede de fabrication du systeme

Country Status (3)

Country Link
EP (1) EP3559367A1 (fr)
FR (1) FR3061221B1 (fr)
WO (1) WO2018115766A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109577609A (zh) * 2018-12-29 2019-04-05 苏州中阑文化科技有限公司 一种亚麻艺术墙面的施工工艺
DE202019103866U1 (de) * 2019-07-12 2020-09-09 Franken Maxit Mauermörtel Gmbh & Co Trockenputzmischung für eine spritzbare Dämmung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021291A (en) * 1958-12-15 1962-02-13 Koppers Co Inc Preparation of concrete containing expanded polymeric particles
FR2261999A1 (en) * 1974-02-26 1975-09-19 Foucault Pierre Light weight construction matl. - comprises cement mortar filled with expanded granules previously made water impermeable
FR2574104B3 (fr) * 1984-11-30 1987-07-17 Damiguet Jean Jacques Procede de protection ou refection de murs exterieurs d'un batiment
AUPR022300A0 (en) * 2000-09-19 2000-10-12 James Hardie International Finance B.V. Cement render system
BE1014205A3 (nl) * 2001-05-31 2003-06-03 Bekaert Sa Nv Wapeningsnet uit gelast gaas.
US7786026B2 (en) 2003-12-19 2010-08-31 Saint-Gobain Technical Fabrics America, Inc. Enhanced thickness fabric and method of making same
FR2955790B1 (fr) 2010-02-03 2012-03-23 Saint Gobain Weber Procede de projection d'un materiau mousse et revetement obtenu a partir d'un tel procede
DE102011084358B8 (de) * 2011-10-12 2013-06-27 Veit Dennert Kg Baustoffbetriebe Armierungsputz und Verfahren zum Auftragen des Armierungsputzes auf Wärmedämmplatten eines Wärmedämm-Verbundsystemes
DE102011119029B4 (de) 2011-11-22 2013-08-22 Sto Ag Verfahren zur Herstellung eines Dämmstoffformteils, Dämmstoffformteil, dessen Verwendung und Dämmelement, hergestellt unter Verwendung des Dämmstoffformteils
FR2986790B1 (fr) 2012-02-15 2020-02-21 Saint-Gobain Weber Procede continu de fabrication d'un materiau a base de liant hydraulique allege par expansion
FR2989083B1 (fr) * 2012-04-06 2014-04-25 Lafarge Sa Mousse minerale isolante
EP2931677B1 (fr) 2012-12-11 2021-06-09 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Mortiers pour enduit à base d'un aérogel thermiquement isolant

Also Published As

Publication number Publication date
FR3061221A1 (fr) 2018-06-29
WO2018115766A1 (fr) 2018-06-28
FR3061221B1 (fr) 2019-05-31

Similar Documents

Publication Publication Date Title
US9097016B2 (en) Building panel system
US9649663B2 (en) Seamless reinforced concrete structural insulated panel
US9032679B2 (en) Roof panel and method of forming a roof
US9970192B2 (en) Multifunctional panel system and attachment means
JP2013517402A (ja) 複合建築及びパネルシステム
US20140083040A1 (en) Insulated wall panel
EP2225426B1 (fr) Systeme d'isolation de bâtiments par l'exterieur
CN103255845A (zh) 一种建筑幕墙用覆膜岩棉板保温系统
CN201190339Y (zh) 建筑外墙保温结构
EP3559367A1 (fr) Systeme d'isolation thermique par l'exterieur constitue d'un mortier projete fortement isolant et procede de fabrication du systeme
EP2525016A1 (fr) Paroi exterieure de bâtiment en laine minerale dense
JP2010196345A (ja) 竹筋入りのコンクリート二次成形品、およびそのコンクリート二次成形品の成形方法
CN208748853U (zh) 一种无机渗透a级保温板薄抹灰外墙外保温系统
ES2561222T3 (es) Sustrato para revestimientos de suelos
CN115516180A (zh) 用于粘附包覆物的系统和方法
JP2016148149A (ja) 構造体およびその製造方法
FR2524921A1 (fr) Nouvelle structure de paroi composite, procedes pour sa mise en oeuvre dans le domaine du batiment et elements de construction ainsi obtenus
DK2796636T3 (en) A process for the preparation of a surface for the purpose of decoration
TW201323692A (zh) 建築嵌板系統
EA040495B1 (ru) Фасадная декоративная теплоизоляционная панель из полистиролбетона и способ ее изготовления (варианты)
WO1998024976A1 (fr) Materiau composite - pierre naturelle, granit ou marbre et beton
EP1663670B1 (fr) Element de modenature, fabrication et methode de pose
FR2847284A1 (fr) Parements murals comportant des elements prefabriques qui comportent des joints creux granules sables, permettant leur finition, apres la pose, avec un mortier de jointement
JP2001105524A (ja) 構築用パネルおよび該構築用パネルを用いた植栽用構造物
US20150111029A1 (en) Construction element for walls and wall lining and production method of the element

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAINT-GOBAIN WEBER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210701