EP3558746A1 - Procédé et système de gestion d'un véhicule électrique ou hybride rechargeable - Google Patents

Procédé et système de gestion d'un véhicule électrique ou hybride rechargeable

Info

Publication number
EP3558746A1
EP3558746A1 EP17828714.0A EP17828714A EP3558746A1 EP 3558746 A1 EP3558746 A1 EP 3558746A1 EP 17828714 A EP17828714 A EP 17828714A EP 3558746 A1 EP3558746 A1 EP 3558746A1
Authority
EP
European Patent Office
Prior art keywords
vehicle
storage module
phase
wintering
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17828714.0A
Other languages
German (de)
English (en)
Inventor
Christophe Bardot
Alain ROCHAIS
Guillaume LESNIK
Laurent Perrier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bluecar SAS
Original Assignee
Bluecar SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bluecar SAS filed Critical Bluecar SAS
Publication of EP3558746A1 publication Critical patent/EP3558746A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a method for managing a rechargeable electric or hybrid vehicle, particularly during a period of prolonged unused use of said vehicle. It also relates to a system and a vehicle, implementing such a method.
  • the field of the invention is the field of electric or hybrid vehicles equipped with rechargeable batteries, and in particular the field of the management of these batteries.
  • Rechargeable hybrid and electric vehicles are provided with modules for storing electrical energy, for example by capacitive technology, which feed the vehicle's power train. These electrical energy storage modules are recharged either by an electric generator within the vehicle or by external charging terminals connected to the electricity distribution network for example.
  • heating electric energy storage modules penalizes the autonomy of the electric or hybrid vehicle, especially when not in use. Moreover, due to the natural electric discharge, or self-discharge, the electrical energy storage modules can empty completely, which can degrade them.
  • An object of the present invention is to overcome the aforementioned drawbacks.
  • Another object of the invention is to provide a method and a management system of an electric or hybrid vehicle decreasing the losses of electrical energy during a period of prolonged use.
  • Yet another object of the invention is to provide a method and a management system of an electric or hybrid vehicle decreasing the risk of degradation of the electrical energy storage modules, which may be caused for a total discharge of said modules.
  • the invention proposes to achieve at least one of the aforementioned objects by a management method of an electric or hybrid vehicle comprising at least one rechargeable electric energy storage module, each storage module being arranged for:
  • said method comprising, before a period of prolonged non-use of said vehicle, a so-called wintering phase, comprising a step of cooling each storage module to reach a predetermined temperature, lower than said operating temperature.
  • the management method according to the invention therefore proposes, for a period of prolonged inoperability of the vehicle, not to maintain the rechargeable storage modules of the vehicle in normal operating condition.
  • the modules can not be used to power the motor (s) electric (s) of the vehicle because their temperature is below the expected operating temperature for said modules.
  • the storage modules are no longer heated. This saves energy and therefore reduces energy losses during a period during which the vehicle will not be used.
  • the fact of reducing the energy losses makes it possible to reduce the risk of degradation of an electrical energy storage module that may be caused for a total discharge of said module. Indeed, the decrease in the discharge of a module, reduces the risk that this module reaches a state of complete discharge.
  • the fact of decreasing the pressure drop of a module increases the duration leading to a complete discharge of said module, when it is not used.
  • the predetermined temperature may preferably be room temperature, or a temperature closer to room temperature than operating temperature, or a temperature slightly above room temperature.
  • each electrical energy storage module may comprise one or more LMP ® batteries.
  • the operating temperature is of the order of 70 ° C, and more generally between 60 ° C and 80 ° C.
  • the term "high voltage” designates a voltage greater than or equal to 60V. According to current standards, such a voltage is called “dangerous voltage”.
  • the high voltage signal provided by the (s) module (s) is a voltage signal between 100V and 650V, preferably of the order of 400V or 600V depending on the applications.
  • cooling step of one, in particular each, storage module can comprise:
  • the electric or hybrid vehicle may comprise at least one low-voltage battery, supplying at least one low-voltage circuit within said vehicle.
  • the at least one low-voltage battery can supply all of the low-voltage components of the vehicle through one or more low-voltage circuits, such as the electronic modules of the vehicle, but also the auxiliary devices within the vehicle. vehicle such as power steering or a user interface.
  • said at least one low-voltage battery can be recharged from a signal provided by the vehicle storage module (s).
  • the wintering phase may further comprise a step of switching off the low voltage supply provided by said low voltage battery.
  • the power failure from said battery can affect all the low voltage components so that no low voltage device is powered by said at least one low voltage battery.
  • an electrical or electronic control unit configured to:
  • this control unit will be fed at any time, for example by said low-voltage battery or a battery dedicated thereto.
  • the cut-off of the low-voltage power supply within the vehicle can be achieved by controlling a breaking device of the electrical connection, for example a relay, connecting said at least one battery to said at least one low voltage circuit.
  • a breaking device of the electrical connection for example a relay
  • Such a member can be positioned closer to said at least one battery and can be controlled by the control unit, itself powered by said at least one battery.
  • the cut-off device can be positioned between, on the one hand, the low-voltage circuit or circuits, and on the other hand, the low-voltage battery and the control unit, the latter being powered. by said battery.
  • the control unit can be a control box (or control) within the vehicle.
  • the step of switching off the low voltage supply can be performed after the cooling step.
  • the step of switching off the low voltage supply can be performed when each module has reached the predetermined temperature.
  • the vehicle is supplied with low voltage during the temperature drop of the storage module or modules, which makes it possible to control said descent in temperature and to ensure that it is correctly carried out for each storage module.
  • the wintering phase can be triggered following a request from a user, for example through a user interface within the vehicle.
  • the user interface may be a touch interface, for example a command on the touch screen of the dashboard, or a physical interface operable mechanically, for example by means of a key or push button, etc.
  • the wintering phase can also be triggered automatically when a predetermined parameter relating to a storage module reaches a predetermined threshold value.
  • the wintering phase can be triggered to prevent said storage module reaches a total discharge. which could be harmful to him.
  • the method according to the invention may comprise a stop and a cancellation of the wintering phase, following a detection, during said winterizing phase, of a high feed signal. voltage of said vehicle provided by an external source.
  • the winterization phase can be canceled.
  • the method according to the invention may comprise a so-called wintering outlet phase, comprising a step of heating each storage module to reach said operating temperature.
  • the wintering out phase may preferentially comprise:
  • a step of charging at least one module, by a load signal, delivered by said external source optionally, a step of charging at least one module, by a load signal, delivered by said external source.
  • the heating signal may have a lower voltage than the charging signal.
  • the heating signal may for example have a voltage of between 90V and 110V, in particular of the order of 100V.
  • the charging signal may for example have a voltage of between 100V and 650V, in particular of the order of 400V or 600V depending on the application.
  • the wintering out phase may include a restoration of the low voltage supply by the at least one low voltage battery.
  • the restoration of the low voltage supply within the vehicle can be achieved by closing the shutdown member by the control unit.
  • the step of restoring the low voltage supply can be carried out before the heating step.
  • the vehicle is supplied with low voltage during the temperature rise of the storage module or modules, which makes it possible to control said rise in temperature and to ensure that it is carried out correctly.
  • the wintering out phase can be triggered by a detection, by an electronic unit connected to a power supply socket of the vehicle, of the presence of a high voltage power supply signal at said plug.
  • This electronic unit can be the control unit, controlling the position of the cut-off member of the low-voltage supply.
  • the control unit detects a high voltage power supply signal at the terminals of the vehicle power socket, it closes the cut-off device of the low voltage supply.
  • the method according to the invention may further comprise, before the wintering output phase, a step of supplying a high voltage power supply signal to the vehicle, by controlling a power supply interface, external to said vehicle, being between a power source and said vehicle.
  • a power supply interface may be a controllable socket on a charging terminal, or controllable socket supplying a charging terminal of said vehicle.
  • Such a power interface can be controlled remotely, for example through an Internet type communication network, wired or wireless.
  • a management system of an electric or hybrid vehicle with a view to a period of prolonged non-use of said vehicle, said vehicle comprising at least one rechargeable electric energy storage module , said system comprising means arranged to implement all the steps of the method according to the invention.
  • the system may in particular comprise one or more modules arranged to control the means (s) for heating the at least one storage module to stop or start the said means (s) heating (s) .
  • the system can further understand
  • At least one electrical link cut-off member such as an electrical relay, disposed as close as possible to the at least one low-voltage battery of the vehicle, and arranged to cut off the low voltage supply supplied by said at least one voltage ;
  • control unit arranged for:
  • an electric or hybrid vehicle comprising:
  • At least one rechargeable electric energy storage module At least one rechargeable electric energy storage module
  • At least one heating means for maintaining said at least one rechargeable electrical energy storage module at a so-called operating temperature higher than the ambient temperature
  • Such a vehicle may be a personal vehicle, or a shared-use vehicle, of the car-sharing vehicle type, or a public transport vehicle of the bus, coach or tram-bus type.
  • trim-bus designates a terrestrial electric public transport vehicle mounted on wheels and which recharges at each station, so as not to require heavy rail-type, catenary-type infrastructures on the road network. .
  • Such an electric vehicle is recharged at each station by means of load elements of the station and a connector connecting said vehicle to said station.
  • FIGURE 1 is a schematic representation of a non-limiting embodiment of a method according to the invention
  • FIG. 2 is a schematic representation of a nonlimiting exemplary embodiment of a system according to the invention.
  • FIGURE 1 is a schematic representation of a non-limiting embodiment of a method according to the invention.
  • the method 100 comprises a step 102 of receiving a request for winterization.
  • a request can be issued by a user through a user interface within the vehicle, or through a physical interface, dedicated to the issuance of such a request and manipulated by a key for example.
  • such a request can be issued in an automated manner by a management unit (or unit), also called BMS (for Battery Management System "in English), of a storage module of electrical energy, depending on a parameter relating to said storage module.
  • a management unit also called BMS (for Battery Management System "in English)
  • BMS Battery Management System "in English
  • the management unit detects that the storage module has a remaining charge level, also called SOC, less than or equal to 1%, it can issue a winterization request to prevent the storage module from discharging itself. totally.
  • the method 100 comprises a phase 104, called wintering of the vehicle.
  • this phase 104 one or more parameters relating to the vehicle are tested during a test step 106.
  • this step 106 ensures that:
  • phase 104 is terminated or the wintering phase does not begin.
  • a step 108 extinguishes the heating means or means of the recharging electric energy storage module or modules of the vehicle.
  • a step 110 the storage modules are left in natural cooling, until reaching the ambient temperature or a predetermined temperature.
  • the evolution of the temperature of each storage module is monitored, for example by the BMS package.
  • a step 112 makes a stop of the low voltage supply of the vehicle components.
  • this step 112 triggers the opening of a cut-off device, such as a relay, of the low-voltage supply of the vehicle from one or more low-voltage batteries.
  • the opening of said relay can be controlled by a control unit (or box).
  • this control unit is powered at any time by a dedicated battery or the (or) low voltage battery (s).
  • a module for example the control unit, can monitor the load socket of the vehicle.
  • the control unit detects the presence of a high-voltage signal at the terminals of the vehicle charging socket, it terminates the winterization phase 104 by sending a request to the storage modules or to a module of the vehicle. management of said vehicle.
  • the vehicle At the end of the step 112 the vehicle is in a wintering configuration in which the losses of electrical energy are decreased in maximum:
  • a step 116 of supplying the vehicle with high voltage from a source external to the vehicle it is possible to put an end to the wintering of the vehicle, by a step 116 of supplying the vehicle with high voltage from a source external to the vehicle.
  • the supply step 116 may be performed by connecting, in particular manually, the vehicle to a charging terminal powered by an external source, such as for example the electrical distribution network.
  • the supply step 116 can also be performed by triggering, locally or remotely, wired or wireless, the power supply of a charging terminal or a charging interface, to which the vehicle is already connected .
  • the vehicle can be connected, directly or indirectly, to a remotely controllable electrical outlet, during wintering 114 and possibly during the wintering phase 104.
  • This plug is not supplied during the winterization and winterization phases 114.
  • the controllable plug can be controlled, for example at through an Internet-type communication network, to let the high-voltage signal to the vehicle.
  • a user can terminate the wintering phase 114 remotely.
  • the step 116 for triggering the high voltage supply of the vehicle is followed by a phase 118, called the wintering output.
  • a step 120 performs a restoration of the low voltage power supply within the vehicle.
  • This step 120 may, for example, be carried out by the control unit which monitors the presence or absence of a high voltage signal at the level of the charge of the vehicle. As soon as the control unit detects the presence of the high voltage signal, then it closes the low voltage power supply relay of the vehicle.
  • the heating means (s) of each storage module is (are) lit to heat each module with a heating signal supplied by the external source by the intermediate interface or a charging terminal or a Wall Box type wall box.
  • each storage module is heated until a predetermined operating temperature is reached.
  • the operating temperature is of the order of 70 ° C, and the heating step 124 can last about 4 hours.
  • the wintering out phase 118 may comprise an optional step 126 of charging at least one storage module.
  • the vehicle After the wintering out phase 118, the vehicle is ready for use.
  • FIG. 2 is a schematic representation of a nonlimiting exemplary embodiment of a system for implementing the method according to the invention, and in particular the method 100 of FIG. 1.
  • the system 200 is implemented for the management of an electric vehicle 202 comprising two rechargeable electric energy storage modules 204 1 and 204 2 .
  • Each storage module 204i-204 2 is associated with a heating means, respectively 206i and 206 2 , for heating and maintaining said storage module at an operating temperature higher than the ambient temperature, such as for example 70 ° C.
  • Each heating means 206 is in the form of a heating plate, for example.
  • the vehicle is provided with a charging socket 208 for receiving a high voltage heating signal and a high voltage charging signal supplied by an external source, such as the electricity distribution network 210, possibly via a charging device, such as a wall box, or Wall Box, 212.
  • an external source such as the electricity distribution network 210
  • a charging device such as a wall box, or Wall Box, 212.
  • the vehicle 202 further comprises a low-voltage battery 214 supplying the various components of the vehicle 202 at low voltage, for example at 12V.
  • the system 200 shown in FIG. 2, comprises one or more electronic boxes 216 configured for:
  • the system 200 further comprises an electronic unit 218, called control unit, powered by the low voltage battery 214, at any time.
  • This control unit 218 is configured to monitor the presence or absence of a high voltage signal at the load tap 208.
  • the system 200 further comprises a cut-off member of an electrical connection, such as a relay 220, arranged downstream of the low battery voltage 214, and in the immediate vicinity of said battery 214, and for switching off the low voltage supply of all the vehicle components, except the control box 218.
  • a cut-off member of an electrical connection such as a relay 220, arranged downstream of the low battery voltage 214, and in the immediate vicinity of said battery 214, and for switching off the low voltage supply of all the vehicle components, except the control box 218.
  • the control unit 218 is configured to control the relay 220 either in an open state or in a closed state.
  • the control unit 218 is configured to control the relay 220:
  • control unit 218 is furthermore configured to terminate a wintering-in phase as soon as a high-voltage signal is detected at the pick-up point. charge 208.
  • the vehicle 202 comprises a user interface 222, for example in the form of a touch screen, for sending a winterizing order.
  • a user interface 222 for example in the form of a touch screen, for sending a winterizing order.
  • the order of winterization can be sent through a physical interface manipulated by a key for example.
  • the system 200 further comprises a plug 224, remotely controllable, through a wireless or wired communication network 226, of the Internet type.
  • a user 228 can control the socket 224 to supply the vehicle 202 with a high voltage signal in order to trigger, at a distance, the wintering output phase of the vehicle 202.
  • the control of the socket 224 can be achieved through a user device of the computer or smartphone type.
  • the low voltage battery can be a 12V, 24V or 48V battery.
  • the vehicle may not be provided with a plug but a cable provided with a plug provided to plug into a socket provided on a charging station or a wall box, for example .
  • the invention is not limited to the examples which have just been described.
  • the vehicle may comprise a different number of storage modules.

Abstract

L'invention concerne un procédé (100) de gestion d'un véhicule électrique ou hybride comprenant au moins un module de stockage d'énergie électrique rechargeable, chaque module de stockage étant agencé pour: -fournir un signal d'alimentation électrique haute tension pour la traction dudit véhicule, et -être maintenu à une température, dite de fonctionnement, par un moyen de chauffage; ledit procédé (100) comprenant, avant une période d'inutilisation prolongée dudit véhicule, une phase (104), dite de mise en hivernage, comprenant une étape (108,110) de refroidissement de chaque module de stockage pour atteindre une température prédéterminée inférieure à ladite température de fonctionnement. Elle concerne également un système et un véhicule mettant en œuvre un tel procédé.

Description

« Procédé et système de gestion d'un véhicule électrique ou hybride rechargeable »
La présente invention concerne un procédé de gestion d'un véhicule électrique ou hybride rechargeable, notamment lors d'une période d'inutilisation prolongée dudit véhicule. Elle concerne également un système et un véhicule, mettant en œuvre un tel procédé.
Le domaine de l'invention est le domaine des véhicules électriques ou hybrides munis de batteries rechargeables, et en particulier le domaine de la gestion de ces batteries.
Etat de la technique
Les véhicules hybrides et électriques rechargeables sont munis de modules de stockage d'énergie électrique, par exemple par technologie capacitive, qui alimentent la chaîne de traction du véhicule. Ces modules de stockage d'énergie électrique sont rechargés soit par un générateur électrique au sein du véhicule, soit grâce à des bornes de charge externes reliées, elles, au réseau de distribution d'électricité par exemple.
On connaît par exemple, les modules de stockage d'énergie électrique de type LMP® (Lithium-Metal-Polymer) fonctionnant à une température supérieure à la température ambiante. Ces modules nécessitent donc d'être chauffés à tout moment. L'utilisation des modules de stockage à une température supérieure à la température ambiante (ou « pack chaud ») se développe également pour d'autres types de technologie de stockage d'énergie électrique.
Or, le fait de chauffer les modules de stockage d'énergie électrique pénalise l'autonomie du véhicule électrique ou hybride, en particulier lorsqu'il n'est pas utilisé. De plus, du fait de la décharge électrique naturelle, ou autodécharge, les modules de stockage d'énergie électrique peuvent se vider complètement, ce qui peut les dégrader.
Un but de la présente invention est de remédier aux inconvénients précités. Un autre but de l'invention est de proposer un procédé et un système de gestion d'un véhicule électrique ou hybride diminuant les pertes d'énergie électrique lors d'une période d'inutilisation prolongée.
Encore un autre but de l'invention est de proposer un procédé et un système de gestion d'un véhicule électrique ou hybride diminuant le risque de dégradation des modules de stockage d'énergie électrique, pouvant être causée pour une décharge totale desdits modules.
Exposé de l'invention
L'invention propose d'atteindre au moins l'un des buts précités par un procédé de gestion d'un véhicule électrique ou hybride comprenant au moins un module de stockage d'énergie électrique rechargeable, chaque module de stockage étant agencé pour :
- fournir un signal d'alimentation électrique haute tension pour la traction dudit véhicule, et
- être maintenu à une température, dite de fonctionnement, par un moyen de chauffage, en particulier dédié ;
ledit procédé comprenant, avant une période d'inutilisation prolongée dudit véhicule, une phase, dite de mise en hivernage, comprenant une étape de refroidissement de chaque module de stockage pour atteindre une température prédéterminée, inférieure à ladite température de fonctionnement.
Le procédé de gestion selon l'invention propose donc, en vue d'une période d'inutilisation prolongée du véhicule, de ne pas maintenir les modules de stockage rechargeable du véhicule en état de fonctionnement normal. Ainsi, les modules ne peuvent pas être utilisés pour alimenter le(s) moteur(s) électrique(s) du véhicule car leur température est inférieure à la température de fonctionnement prévue pour lesdits modules.
Par conséquent, pendant la période d'inutilisation, les modules de stockage ne sont pas plus chauffés. Cela permet de réaliser une économie d'énergie et donc de diminuer les pertes d'énergie pendant une période lors de laquelle le véhicule ne sera pas utilisé. De plus, le fait de diminuer les pertes d'énergie permet de diminuer le risque de dégradation d'un module de stockage d'énergie électrique pouvant être causée pour une décharge totale dudit module. En effet, la diminution de la décharge d'un module, permet de diminuer le risque que ce module atteigne un état de décharge complet. Le fait de diminuer la perte de charge d'un module, augmente la durée conduisant à une décharge complète dudit module, lorsqu'il n'est pas utilisé.
La température prédéterminée peut être de préférence la température ambiante, ou une température plus proche de la température ambiante que de la température de fonctionnement, ou encore une température légèrement supérieure à la température ambiante.
Suivant un exemple de réalisation préféré, chaque module de stockage d'énergie électrique peut comprendre une ou plusieurs batteries LMP®.
Dans ce cas, la température de fonctionnement est de l'ordre de 70°C, et plus généralement comprise entre 60°C et 80°C. Dans la présente demande, l'expression « haute tension » désigne une tension électrique supérieure ou égale à 60V. Selon, les normes actuelles, une telle tension est appelée « tension dangereuse ».
Suivant un exemple de réalisation, le signal haute tension fourni par le(s) module(s) est un signal de tension comprise entre 100V et 650V, préférentiellement de l'ordre de 400V ou 600V selon les applications.
Avantageusement, l'étape de refroidissement d'un, en particulier chaque, module de stockage peut comprendre :
- une extinction du moyen de chauffage dudit module, et
- un refroidissement naturel dudit module de stockage. Ainsi, l'étape de refroidissement dudit module ne consomme d'énergie électrique, et ne diminue pas le niveau de charge dudit module. Le véhicule électrique ou hybride peut comprendre au moins une batterie basse tension, alimentant au moins un circuit basse tension au sein dudit véhicule.
En particulier, l'au moins une batterie basse-tension peut alimenter l'ensemble des organes basse tension du véhicule au travers d'un ou plusieurs circuits basse tension, tels que les modules électroniques du véhicule, mais aussi les dispositifs auxiliaires au sein du véhicule tels que la direction assistée ou une interface utilisateur.
De plus, ladite au moins une batterie basse tension peut être rechargée à partir d'un signal fourni par le(s) module(s) de stockage du véhicule.
Suivant une version particulièrement avantageuse du procédé selon l'invention, la phase de mise en hivernage peut en outre comprendre une étape de coupure de l'alimentation basse tension fournie par ladite batterie basse tension.
Dans ce cas, la coupure de l'alimentation provenant de ladite batterie peut concerner l'ensemble des organes basse tension de sorte qu'aucun organe basse tension n'est alimenté par ladite au moins une batterie basse tension.
Ainsi, la consommation électrique au sein du véhicule est minimisée lors de la phase d'hivernage.
Pour ce faire, il peut être prévu une unité de de commande électrique ou électronique configurée pour :
- couper l'alimentation basse tension avant la période d'inutilisation, et
- remettre ladite alimentation basse tension à la fin de la période d'inutilisation.
Bien entendu, cette unité de commande sera, elle, alimentée à tout moment, par exemple par ladite batterie basse tension ou une batterie qui lui est dédiée.
En particulier, la coupure de l'alimentation basse tension au sein du véhicule peut être réalisé par commande d'un organe de coupure de la liaison électrique, par exemple un relais, reliant ladite au moins une batterie audit au moins un circuit basse tension.
Un tel organe peut être positionné au plus près de ladite au moins une batterie et peut être commandé par l'unité de commande, elle-même alimentée par ladite au moins une batterie.
Suivant un exemple de réalisation, l'organe de coupure peut être positionné entre, d'une part, le ou les circuits basse-tension, et d'autre part, la batterie basse tension et l'unité de commande, cette dernière étant alimentée par ladite batterie.
L'unité de commande peut être un boîtier de commande (ou de contrôle) au sein du véhicule. Préférentiellement, l'étape de coupure de l'alimentation basse tension peut être réalisée après l'étape de refroidissement.
Plus particulièrement, l'étape de coupure de l'alimentation basse tension peut être réalisée lorsque chaque module a atteint la température prédéterminée.
Ainsi, le véhicule est alimenté en basse tension lors de la descente en température du ou des modules de stockage, ce qui permet de contrôler ladite descente en température et de s'assurer qu'elle se réalise correctement pour chaque module de stockage. La phase de mise en hivernage peut être déclenchée suite à une requête d'un utilisateur, par exemple au travers d'une interface utilisateur au sein du véhicule.
L'interface utilisateur peut être une interface tactile, par exemple une commande sur l'écran tactile du tableau de bord, ou une interface physique actionnable mécaniquement, par exemple grâce à une clef ou bouton poussoir, etc. La phase de mise en hivernage peut en outre être déclenchée de manière automatisée lorsqu'un paramètre prédéterminé, relatif à un module de stockage, atteint une valeur seuil prédéterminée.
Par exemple, lorsque l'état de charge (ou SOC pour « State Of Charge » en anglais) atteint une valeur inférieure ou égale 1%, la phase de mise en hivernage peut être déclenchée pour éviter que ledit module de stockage atteigne une décharge totale qui pourrait lui être dommageable.
Suivant un mode de réalisation particulier, le procédé selon l'invention peut comprendre un arrêt et une annulation de la phase de mise en hivernage, suite à une détection, lors de ladite phase de mise en hivernage, d'un signal d'alimentation haute tension dudit véhicule fourni par une source extérieure.
Par exemple, lorsqu'un utilisateur connecte le véhicule à une prise de charge alimentée, alors la phase de mise en hivernage peut être annulée.
Suite à une période prolongée d'inutilisation dudit véhicule, le procédé selon l'invention peut comprendre, une phase, dite de sortie d'hivernage, comprenant une étape de chauffe de chaque module de stockage pour atteindre ladite température de fonctionnement.
Bien entendu, une telle phase de sortie d'hivernage n'est possible que lorsque le véhicule est connecté à une source d'énergie externe, lui fournissant un signal d'alimentation permettant d'abord de chauffer chaque module de stockage, puis éventuellement de le recharger.
La phase de sortie d'hivernage peut préférentiellement comprendre :
- une étape de chauffe de chaque module par un signal de chauffe délivré par la source externe, en vue d'atteindre la température de fonctionnement ;
- et éventuellement, une étape de charge d'au moins un module, par un signal de charge, délivré par ladite source externe.
Suivant un autre mode de réalisation, le signal de chauffe peut présenter une tension inférieure au signal de charge. Le signal de chauffe peut par exemple présenter une tension comprise entre 90V et 110V, en particulier de l'ordre de 100V.
Le signal de charge peut par exemple présenter une tension comprise entre 100V et 650V, en particulier de l'ordre de 400V ou 600V selon les applications.
Lorsque l'alimentation en basse tension du véhicule a été coupée lors de la phase de mise en hivernage, la phase de sortie d'hivernage peut comprendre un rétablissement de l'alimentation basse tension par l'au moins une batterie basse tension.
Le rétablissement de l'alimentation basse tension au sein du véhicule peut être réalisé par une fermeture de l'organe de coupure par l'unité de commande. Préférentiellement, l'étape de rétablissement de l'alimentation basse tension peut être réalisée avant l'étape de chauffe.
Ainsi, le véhicule est alimenté en basse tension lors de la montée en température du ou des modules de stockage, ce qui permet de contrôler ladite montée en température et de s'assurer qu'elle se réalise correctement.
La phase de sortie d'hivernage peut être déclenchée par une détection, par une unité électronique reliée à une prise d'alimentation du véhicule, de la présence d'un signal d'alimentation haute tension au niveau de ladite prise.
Cette unité électronique peut être l'unité de commande, contrôlant la position de l'organe de coupure de l'alimentation basse tension. Ainsi, lorsque l'unité de commande détecte un signal d'alimentation haute tension aux bornes de la prise d'alimentation du véhicule, elle ferme l'organe de coupure de l'alimentation basse tension.
Le procédé selon l'invention peut en outre comprendre, avant la phase de sortie d'hivernage, une étape de fourniture d'un signal d'alimentation haute tension au véhicule, par commande d'une interface d'alimentation, externe audit véhicule, se trouvant entre une source d'alimentation et ledit véhicule.
Une interface d'alimentation peut être une prise commandable se trouvant sur une borne de charge, ou prise commandable alimentant une borne de charge dudit véhicule.
Une telle interface d'alimentation peut être commandée à distance, par exemple au travers d'un réseau de communication de type Internet, de manière filaire ou sans fil.
Suivant un autre aspect de l'invention, il est proposé un système de gestion d'un véhicule électrique ou hybride en vue d'une période d'inutilisation prolongée dudit véhicule, ledit véhicule comprenant au moins un module de stockage d'énergie électrique rechargeable, ledit système comprenant des moyens agencés pour mettre en œuvre toutes les étapes du procédé selon l'invention.
Le système peut en particulier comprendre un ou plusieurs modules agencés pour commander le(s) moyen(s) de chauffage de l'au moins un module de stockage pour arrêter ou démarrer le(s)dit(s) moyen(s) de chauffage.
Le système peut en outre comprendre
- au moins un organe de coupure de liaison électrique, tel qu'un relais électrique, disposé au plus près de l'au moins une batterie basse tension du véhicule, et agencé pour couper l'alimentation basse tension fourni par ladite au moins une tension ; et
- une unité de commande agencée pour :
• commander l'ouverture ou la fermeture dudit organe, et
• éventuellement, détecter la présence d'un signal d'alimentation aux bornes d'une prise de charge dudit véhicule.
Le système selon l'invention peut en outre comprendre une interface électrique, commandable, externe au véhicule et permettant de fournir audit véhicule un signal d'alimentation provenant d'une source externe, telle que le réseau de distribution électrique par exemple. Suivant encore un autre aspect de l'invention, il est proposé un véhicule électrique ou hybride comprenant :
- au moins un module de stockage d'énergie électrique rechargeable ;
- au moins un moyen de chauffage pour maintenir ledit au moins un module de stockage d'énergie électrique rechargeable à une température, dite de fonctionnement, supérieure à la température ambiante ; et
- des moyens agencés pour mettre en œuvre le procédé selon l'invention.
Un tel véhicule peut être un véhicule personnel, ou un véhicule à utilisation partagée, du type véhicule d'auto-partage, ou un véhicule de transport en commun de type bus, car ou tram-bus.
Dans la présente demande, l'expression « tram-bus » désigne un véhicule électrique terrestre de transport en commun monté sur roues et qui se recharge à chaque station, afin de ne pas nécessiter des infrastructures lourdes de type rails, caténaires, sur la voirie. Un tel véhicule électrique se recharge à chaque station au moyen d'éléments de charge de la station et d'un connecteur reliant ledit véhicule à ladite station.
Description des figures et modes de réalisation
D'autres avantages et caractéristiques apparaîtront à l'examen de la description détaillée de modes de réalisation nullement limitatifs, et des dessins annexés sur lesquels :
- la FIGURE 1 est une représentation schématique d'un exemple de réalisation non limitatif d'un procédé selon l'invention ; et - la FIGURE 2 est une représentation schématique d'un exemple de réalisation non limitatif d'un système selon l'invention.
Il est bien entendu que les modes de réalisation qui seront décrits dans la suite ne sont nullement limitatifs. On pourra notamment imaginer des variantes de l'invention ne comprenant qu'une sélection de caractéristiques décrites par la suite, isolées des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à de l'état de la technique antérieur. Cette sélection comprend au moins une caractéristique de préférence fonctionnelle sans détails structurels, ou avec seulement une partie des détails structurels si c'est cette partie qui est uniquement suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique antérieur.
Sur les figures et dans la suite de la description, les éléments communs à plusieurs figures conservent la même référence.
La FIGURE 1 est une représentation schématique d'un exemple de réalisation non limitatif d'un procédé selon l'invention.
Le procédé 100, représenté sur la FIGURE 1, comprend une étape 102 de réception d'une requête de mise en hivernage. Une telle requête peut être émise par un utilisateur au travers d'une interface utilisateur au sein du véhicule, ou grâce à une interface physique, dédiée à l'émission d'une telle requête et manipulée grâce à une clef par exemple.
Alternativement, une telle requête peut être émise de manière automatisée par un boîtier (ou une unité) de gestion, également appelé BMS (pour Battery Management System » en anglais), d'un module de stockage d'énergie électrique, en fonction d'un paramètre relatif audit module de stockage. Par exemple, lorsque le boîtier de gestion détecte que le module de stockage présente un niveau de charge restant, également appelé SOC, inférieur ou égale à 1%, il peut émettre une requête de mise en hivernage pour éviter que le module de stockage se décharge totalement.
Suite à l'étape 102, le procédé 100 comprend une phase 104, dite de mise en hivernage du véhicule.
Lors de cette phase 104, un ou plusieurs paramètres relatifs au véhicule sont testés lors d'une étape de test 106. Par exemple, cette étape 106 s'assure que :
- le véhicule est à l'arrêt ;
- le moteur du véhicule est éteint, - etc.
Si, lors de cette étape 106, il existe une condition qui s'oppose à la mise en hivernage alors, il est mis fin à la phase 104 ou la phase d'hivernage ne débute pas.
Dans le cas contraire, une étape 108 réalise une extinction du ou des moyens de chauffage du ou des modules de stockage d'énergie électrique rechargeables du véhicule.
Puis, lors d'une étape 110 les modules de stockage sont laissés en refroidissement naturel, jusqu'à atteindre la température ambiante ou une température prédéterminée. Lors de cette étape l'évolution de la température de chaque module de stockage est surveillée, par exemple par le boîtier BMS.
Lorsque tous les modules de stockage du véhicule ont atteint la température souhaitée, alors une étape 112 réalise un arrêt de l'alimentation en basse tension des organes du véhicule. En particulier, cette étape 112 déclenche l'ouverture d'un organe de coupure, tel qu'un relais, de l'alimentation en basse tension du véhicule à partir d'une ou plusieurs batteries basse tension. L'ouverture dudit relais peut être commandée par une unité (ou boîtier) de commande.
Bien entendu, cette unité de commande est alimentée à tout moment par une batterie dédiée ou par la (ou les) batterie(s) basse tension.
A tout moment, lors de la phase de mise en hivernage 104, une alimentation du véhicule par un signal haute tension met fin à ladite phase de mise en hivernage 104.
Pour ce faire, un module, par exemple l'unité de commande, peut surveiller la prise de charge du véhicule. Lorsque l'unité de commande détecte la présence d'un signal haute tension aux bornes de la prise de charge du véhicule alors elle met fin à la phase de mise en hivernage 104 en émettant une requête vers les modules de stockage ou vers un module de gestion dudit véhicule.
Il est important de noter que la détection de la présence d'une fiche dans la prise de charge du véhicule, ou la détection d'une connexion mécanique du véhicule à une borne de charge, sans détection de présence d'un signal haute tension ne met pas fin à la phase de mise en hivernage.
A la fin de l'étape 112 le véhicule se trouve dans une configuration d'hivernage dans laquelle, les pertes d'énergie électrique sont diminuées en maximum :
- d'une part au niveau de chaque module de stockage d'énergie électrique fournissant le signal haute tension d'alimentation du moteur électrique du véhicule ; et
- d'autre part au niveau de la ou des batteries basse tension alimentant le véhicule en basse tension.
Dans la configuration d'hivernage tel que décrit dans le présent exemple, seul l'unité de commande du relais d'alimentation en basse tension du véhicule reste alimenté. Tous les autres organes du véhicule sont hors tension.
A tout moment lors de la phase d'hivernage, il est possible de mettre fin à l'hivernage du véhicule, par une étape 116 d'alimentation en haute tension du véhicule par une source externe au véhicule.
L'étape d'alimentation 116 peut être réalisée en connectant, en particulier manuellement, le véhicule à une borne de charge alimentée par une source externe, telle que par exemple le réseau de distribution électrique.
L'étape d'alimentation 116 peut également être réalisée en déclenchant, localement ou à distance, de manière filaire ou sans fil, l'alimentation d'une borne de charge ou d'une interface de charge, à laquelle le véhicule est déjà connecté.
Suivant un exemple de réalisation préféré, le véhicule peut être connecté, directement ou indirectement, à une prise électrique commandable à distance, et ce, pendant l'hivernage 114 et éventuellement pendant la phase de mise en hivernage 104. Cette prise n'est pas alimentée pendant les phases de mise en hivernage 104 et d'hivernage 114. Lors de l'étape 116, la prise commandable peut être commandée, par exemple au travers d'un réseau de communication de type Internet, pour laisser passer le signal haute tension vers le véhicule. Ainsi, un utilisateur peut mettre fin à la phase d'hivernage 114 à distance. L'étape 116 de déclenchement d'alimentation en haute tension du véhicule est suivie d'une phase 118, dite de sortie d'hivernage.
Lors de cette phase 118, une étape 120 réalise un rétablissement de l'alimentation basse tension au sein du véhicule. Cette étape 120 peut, par exemple, être réalisée par l'unité de commande qui surveille la présence ou non d'un signal haute tension au niveau de la prise de charge du véhicule. Dès que l'unité de commande détecte la présence du signal haute tension, alors elle ferme le relais d'alimentation en basse tension du véhicule.
A ce moment, tous les organes basse tension du véhicule sont alimentés.
Puis, lors d'une étape 122, le (ou les) moyen(s) de chauffage de chaque module de stockage est (sont) allumé(s) pour chauffer chaque module avec un signal de chauffe fourni par la source externe par l'intermédiaire de l'interface ou d'une borne de charge ou encore d'un boîtier mural de type « Wall Box ».
Lors d'une étape 124, chaque module de stockage est chauffé jusqu'à atteindre une température de fonctionnement prédéterminée. Dans le cas de modules de stockage LMP®, la température de fonctionnement est de l'ordre de 70°C, et l'étape de chauffe 124 peut durer environ 4 heures.
Lorsque chaque module de stockage a atteint la température de fonctionnement prédéterminée, alors la phase de sortie d'hivernage 118 peut comprendre une étape 126, optionnelle, de charge électrique d'au moins un module de stockage.
Après la phase de sortie d'hivernage 118, le véhicule est prêt à l'utilisation.
Dans l'exemple décrit, un utilisateur peut déclencher la phase de sortie d'hivernage 118 à distance du véhicule, et retrouver son véhicule prêt à l'utilisation à son arrivée. La FIGURE 2 est une représentation schématique d'un exemple de réalisation non limitatif d'un système pour mettre en œuvre le procédé selon l'invention, et en particulier le procédé 100 de la FIGURE 1.
Le système 200, représenté sur la FIGURE 2, est mis en œuvre pour la gestion d'un véhicule électrique 202 comprenant deux modules de stockage d'énergie électrique rechargeables 204i et 2042. A chaque module de stockage 204i-2042 est associé un moyen de chauffage, respectivement 206i et 2062, pour chauffer et maintenir ledit module de stockage à une température de fonctionnement supérieure à la température ambiante, telle que par exemple 70°C.
Chaque moyen de chauffage 206 se présente sous la forme d'une plaque chauffante, par exemple.
Le véhicule est muni d'une prise de charge 208 pour recevoir un signal de chauffe haute tension et un signal de charge haute tension fournis par une source externe, tel que le réseau de distribution d'électricité 210, éventuellement par l'intermédiaire d'un dispositif de charge, tel qu'un boîtier mural, ou Wall Box, 212.
Le véhicule 202 comprend en outre une batterie basse tension 214 alimentant les différents organes du véhicule 202 en basse tension, par exemple en 12V.
Le système 200, représenté sur la FIGURE 2, comprend un ou plusieurs boîtiers électroniques 216 configuré(s) pour :
- commander, directement ou indirectement, les moyens de chauffage 206 des modules de stockage 204 ; et
- surveiller, directement ou indirectement, la température et le niveau de charge de chaque module de stockage 204.
Le système 200 comprend en outre une unité électronique 218, appelée unité de commande, alimentée par la batterie basse tension 214, à tout moment. Cette unité de commande 218 est configurée pour surveiller la présence ou non d'un signal haute tension au niveau de la prise de charge 208.
Le système 200 comprend en outre un organe de coupure d'une liaison électrique, tel qu'un relais 220, disposé en aval de la batterie basse tension 214, et à proximité immédiate de ladite batterie 214, et permettant de couper l'alimentation en basse tension de tous les organes du véhicule, sauf du boîtier de commande 218.
L'unité de commande 218 est configurée pour commander le relais 220 soit dans un état ouvert soit dans un état fermé. En particulier, l'unité de commande 218 est configurée pour commander le relais 220 :
- en position ouverte lorsque la température des modules de stockage 204 atteint la température ambiante ou une température prédéterminée, lors d'une phase d'entrée en hivernage ; et
- en position fermée lorsqu'un signal haute tension est détecté au niveau de la prise de charge 208, pour déclencher une phase de sortie d'hivernage.
De plus, lors d'une phase d'entrée en hivernage, l'unité de commande 218 est en outre configurée pour mettre fin à une phase d'entrée en hivernage dès qu'un signal haute tension est détecté au niveau de la prise de charge 208.
Le véhicule 202 comprend une interface utilisateur 222, par exemple sous la forme d'un écran tactile, pour envoyer un ordre de mise en hivernage. Alternativement, l'ordre de mise en hivernage peut être envoyé au travers d'une interface physique manipulée par une clef par exemple.
Le système 200 comprend en outre une prise 224, commandable à distance, au travers d'un réseau de communication sans fil ou filaire 226, de type Internet.
Ainsi, un utilisateur 228 peut commander la prise 224 pour alimenter le véhicule 202 par un signal haute tension en vue de déclencher, à distance, la phase de sortie d'hivernage du véhicule 202. La commande de la prise 224 peut être réalisée au travers d'un appareil utilisateur de type ordinateur ou Smartphone.
La batterie basse tension peut être une batterie 12V, 24V ou 48V. Alternativement à ce qui est décrit, le véhicule peut ne pas être muni d'une prise mais d'un câble muni d'une fiche électrique prévue pour s'enficher dans une prise prévue sur une borne de charge ou un boîtier mural, par exemple.
Bien entendu, l'invention n'est pas limitée aux exemples qui viennent d'être décrits. Par exemple, le véhicule peut comprendre un nombre différent de modules de stockage.

Claims

REVENDICATIONS
1. Procédé (100) de gestion d'un véhicule électrique ou hybride (202) comprenant au moins un module de stockage d'énergie électrique rechargeable (204), chaque module de stockage (204) comprenant une ou plusieurs batteries lithium-Métal-Polymère et étant agencé pour :
- fournir un signal d'alimentation électrique haute tension pour la traction dudit véhicule (202), et
- être maintenu à une température, dite de fonctionnement, par un moyen de chauffage (206) ;
ledit procédé (100) comprenant :
- avant une période d'inutilisation prolongée dudit véhicule (202), une phase (104), dite de mise en hivernage, comprenant une étape (108, 110) de refroidissement de chaque module de stockage (204) pour atteindre une température prédéterminée, inférieure à ladite température de fonctionnement ; et
- suite à une période d'inutilisation prolongée dudit véhicule (202), une phase (118), dite de sortie d'hivernage, comprenant une étape (124) de chauffe de chaque module de stockage (204) pour atteindre une température de fonctionnement comprise entre 60°C et 80°C.
2. Procédé (100) selon la revendication précédente, caractérisée en ce que l'étape de refroidissement (108, 110) d'un module de stockage (204) comprend :
- une extinction (108) du moyen de chauffage (206) dudit module (204), et
- un refroidissement naturel (110) dudit module de stockage (204).
3. Procédé (100) selon l'une quelconque des revendications précédentes, caractérisé en ce que le véhicule (202) comprend au moins une batterie basse tension (214), alimentant au moins un circuit basse tension au sein dudit véhicule (202), la phase de mise en hivernage (104) comprenant en outre une étape (112) de coupure de l'alimentation basse-tension fournie par ladite au moins une batterie basse tension (214).
4. Procédé (100) selon la revendication précédente, caractérisé en ce que l'étape de coupure de l'alimentation basse tension (112) est réalisée après l'étape de refroidissement (108, 110).
5. Procédé (100) selon l'une quelconque des revendications précédentes, caractérisé en ce que la phase de mise en hivernage (104) est déclenchée suite à une requête d'un utilisateur.
6. Procédé (100) selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la phase de mise en hivernage (104) est déclenchée de manière automatisée lorsqu'un paramètre prédéterminé, relatif à un module de stockage (204), atteint une valeur seuil prédéterminée, en particulier lorsque l'état de charge (« State Of Charge » ou « SOC » en anglais) atteint une valeur inférieure ou égale à 1%.
7. Procédé (100) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un arrêt et une annulation de la phase de mise en hivernage (104), suite à une détection, lors de ladite phase de mise en hivernage (104), d'un signal d'alimentation haute tension dudit véhicule (202) fourni par une source extérieure (210).
8. Procédé (100) selon la revendication 3, caractérisé en ce que la phase de sortie d'hivernage (118) comprend une étape (120) de rétablissement de l'alimentation en basse tension par l'au moins une batterie basse tension (214).
9. Procédé (100) selon la revendication précédente, caractérisé en ce que l'étape (120) de rétablissement de l'alimentation basse tension est réalisée avant l'étape de chauffe (122, 124).
10. Procédé (100) selon l'une quelconque des revendications précédentes, caractérisé en ce que la phase de sortie d'hivernage (118) est déclenchée par une détection (116), par une unité électronique (218) reliée à une prise (208) d'alimentation du véhicule, de la présence d'un signal d'alimentation haute tension au niveau de ladite prise (208).
11. Procédé (100) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend, avant la phase de sortie d'hivernage, une étape de fourniture d'un signal d'alimentation haute tension au véhicule, par commande d'une interface d'alimentation (224), externe audit véhicule (202), se trouvant entre une source d'alimentation (210) et ledit véhicule (202).
12. Procédé (100) selon la revendication précédente, caractérisé en ce que l'interface d'alimentation (224) est commandée à distance, au travers d'un réseau de communication (226), filaire ou sans fil .
13. Système (200) de gestion d'un véhicule électrique ou hybride (202) en vue d'une période d'inutilisation prolongée dudit véhicule (202), ledit véhicule (202) comprenant au moins un module de stockage d'énergie électrique rechargeable (204i-2042) ledit système (200) comprenant des moyens agencés pour mettre en œuvre toutes les étapes du procédé (100) selon l'une quelconque des revendications précédentes.
14. Véhicule électrique ou hybride (202) comprenant :
- au moins un module de stockage d'énergie électrique rechargeable (204i-2042) ;
- au moins un moyen de chauffage (206i-2062) pour maintenir ledit au moins un module de stockage d'énergie électrique rechargeable (204i-2042) à une température, dite de fonctionnement, supérieure à la température ambiante ; et des moyens agencés pour mettre en œuvre le procédé selon l'une quelconque des revendications 1 à 12.
EP17828714.0A 2016-12-21 2017-12-19 Procédé et système de gestion d'un véhicule électrique ou hybride rechargeable Withdrawn EP3558746A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1662971A FR3060484A1 (fr) 2016-12-21 2016-12-21 Procede et systeme de gestion d'un vehicule electrique ou hybride rechargeable
PCT/EP2017/083493 WO2018114916A1 (fr) 2016-12-21 2017-12-19 Procédé et système de gestion d'un véhicule électrique ou hybride rechargeable

Publications (1)

Publication Number Publication Date
EP3558746A1 true EP3558746A1 (fr) 2019-10-30

Family

ID=58609527

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17828714.0A Withdrawn EP3558746A1 (fr) 2016-12-21 2017-12-19 Procédé et système de gestion d'un véhicule électrique ou hybride rechargeable

Country Status (12)

Country Link
US (1) US20190308522A1 (fr)
EP (1) EP3558746A1 (fr)
JP (1) JP2020515227A (fr)
KR (1) KR20190100261A (fr)
CN (1) CN110167789A (fr)
AU (1) AU2017384401A1 (fr)
BR (1) BR112019012971A2 (fr)
CA (1) CA3044731A1 (fr)
FR (1) FR3060484A1 (fr)
IL (1) IL267369A (fr)
RU (1) RU2019122845A (fr)
WO (1) WO2018114916A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130774A1 (fr) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 Dispositif de gestion de batterie, système de batterie, et système d'alimentation électrique de véhicule
CN113054288A (zh) * 2019-12-26 2021-06-29 观致汽车有限公司 车辆及其电池加热方法和系统
DE102021203100A1 (de) 2021-03-29 2022-09-29 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Temperieren eines elektrochemischen Energiespeichers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002240A (en) * 1997-12-12 1999-12-14 Dell Usa, L.P. Self heating of batteries at low temperatures
US7154068B2 (en) * 2004-05-26 2006-12-26 Ford Global Technologies, Llc Method and system for a vehicle battery temperature control
US20060016793A1 (en) * 2004-07-23 2006-01-26 Douglas Zhu Electrical storage device heater for vehicle
FR2912264B1 (fr) * 2007-02-06 2009-04-10 Batscap Sa Module de batterie de puissance, batterie, procede de charge du module, vehicule ayant la batterie
JP5708070B2 (ja) * 2011-03-11 2015-04-30 日産自動車株式会社 バッテリ温度制御装置
CN104393368B (zh) * 2014-09-25 2018-08-21 北京现代汽车有限公司 动力电池加热至可充电温度的剩余加热时间确定方法、装置
CN105789719B (zh) * 2016-05-13 2020-07-31 金龙联合汽车工业(苏州)有限公司 电动汽车动力电池温度管理方法

Also Published As

Publication number Publication date
BR112019012971A2 (pt) 2019-12-31
WO2018114916A1 (fr) 2018-06-28
US20190308522A1 (en) 2019-10-10
AU2017384401A1 (en) 2019-06-27
CA3044731A1 (fr) 2018-06-28
JP2020515227A (ja) 2020-05-21
IL267369A (en) 2019-08-29
RU2019122845A (ru) 2021-01-22
KR20190100261A (ko) 2019-08-28
FR3060484A1 (fr) 2018-06-22
CN110167789A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
EP2715909B1 (fr) Procede de rechargement d'un couple de batteries de vehicule de tensions nominales differentes, et systeme associe
EP2721666B1 (fr) Element de batterie securise
FR2892069A1 (fr) Poste de recharge et vehicule electrique associe
EP3224923B1 (fr) Pack de batteries pour un vehicule automobile
WO2007060348A2 (fr) Dispositif de gestion d'alimentation d'un reseau de consommateurs pour vehicule automobile
EP3558746A1 (fr) Procédé et système de gestion d'un véhicule électrique ou hybride rechargeable
EP2915244B1 (fr) Procede de transfert de charge et dispositif electrique associé
FR3017754A1 (fr) Systeme d'alimentation a tension continue configure pour precharger un condensateur de filtrage avant l'alimentation d'une charge
WO2014118476A1 (fr) Dispositif d'alimentation electrique d'un reseau de bord de vehicule automobile hybride
WO2020244758A1 (fr) Dispositif et systeme rechargeables de stockage d'energie electrique, vehicule et installation munis d'un tel systeme
EP3377362A1 (fr) Procédé et système de consignation d'un véhicule électrique par rapport a un signal électrique dangereux
EP4355605A1 (fr) Gestion d'une batterie électrique d'un véhicule automobile
WO2022200497A1 (fr) Dispositif autonome d'alimentation électrique, notamment pour charger une batterie
FR2849298A1 (fr) Dispositif de controle de l'etat de charge, a tension constante, d'un ensemble de batterie a generateurs electrochimiques secondaires
FR3126664A1 (fr) Contrôle de la recharge en mode 4 d’une batterie de véhicule
FR3125130A1 (fr) Contrôle de la recharge d’une batterie de véhicule en présence de variations de tension
FR3011392A1 (fr) Dispositif pour decharger la batterie haute tension d'un vehicule electrique
FR3133349A1 (fr) Procede de protection contre les anomalies de frequence d’une borne de recharge externe pour un chargeur embarque de vehicule electrifie
FR3126209A1 (fr) Contrôle de l’utilisation de commutateurs de couplage d’une source d’énergie électrique d’un véhicule à un réseau d’alimentation électrique
FR3125930A1 (fr) Procédé de protection contre des sous-tension d'une machine électrique de traction de véhicule automobile
FR3128908A1 (fr) Contrôle de l’alimentation électrique d’un convertisseur alimentant un réseau de bord d’un véhicule
FR3083173A1 (fr) Systeme de stockage d'energie embarque
FR3082068A1 (fr) Dispositif et systeme rechargeables de stockage d'energie electrique, vehicule et installation munis d'un tel systeme
FR2912850A1 (fr) Vehicule de transport en commun, procede d'utilisation et bloc batterie pour ce vehicule
FR3016752A1 (fr) Procede de recharge d'un stockeur d'energie electrique d'un vehicule automobile

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 20210301

18W Application withdrawn

Effective date: 20210308