EP3556478B1 - Vibration driving with a multi-surface cylinder - Google Patents

Vibration driving with a multi-surface cylinder Download PDF

Info

Publication number
EP3556478B1
EP3556478B1 EP19168620.3A EP19168620A EP3556478B1 EP 3556478 B1 EP3556478 B1 EP 3556478B1 EP 19168620 A EP19168620 A EP 19168620A EP 3556478 B1 EP3556478 B1 EP 3556478B1
Authority
EP
European Patent Office
Prior art keywords
piston
cylinder
valve
piston surface
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19168620.3A
Other languages
German (de)
French (fr)
Other versions
EP3556478A1 (en
Inventor
Leopold Sandberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3556478A1 publication Critical patent/EP3556478A1/en
Application granted granted Critical
Publication of EP3556478B1 publication Critical patent/EP3556478B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • F15B11/036Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of servomotors having a plurality of working chambers
    • F15B11/0365Tandem constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1466Hollow piston sliding over a stationary rod inside the cylinder
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/365Directional control combined with flow control and pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50554Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure downstream of the pressure control means, e.g. pressure reducing valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5158Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/526Pressure control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6658Control using different modes, e.g. four-quadrant-operation, working mode and transportation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7055Linear output members having more than two chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7055Linear output members having more than two chambers
    • F15B2211/7056Tandem cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/77Control of direction of movement of the output member
    • F15B2211/7733Control of direction of movement of the output member providing vibrating movement, e.g. dither control for emptying a bucket

Definitions

  • the invention relates to the use of a cylinder for driving vibrations.
  • the invention relates to a fluid circuit for driving vibrations, comprising a cylinder.
  • the invention relates to a driving method for a vibration-driven cylinder.
  • track beds made of ballast or the like are used as a base for sleepers.
  • the ballast is pressed ("tamped") under the sleepers, and the tracks are thus lifted.
  • Tamping units are used, which pierce the ballast with a tamping tool, such as a tamping pick, or a pair of tamping tools, and which then move the ballast under the respective slide threshold.
  • a vibrating or swinging or oscillating tool is of dual benefit in order to facilitate penetration of the tool into the ballast on the one hand and to achieve a solidifying compaction of the ballast on the other hand.
  • a vibration drive such as a fluidic vibration drive, serves to drive at least one tamping tool.
  • the WO 2014 / 127393 A1 states as state of the art mechanically connecting a hydraulic cylinder for an infeed movement and a hydraulic cylinder for a vibration movement in series for tamping tools, with the disadvantage that, in addition to a high level of maintenance, is that an amplitude size cannot be freely adjusted.
  • WO 2014/127393 A1 discloses generically to provide a single hydraulic cylinder, such as a differential cylinder, with a displacement sensor for determining the position of the hydraulic cylinder, the hydraulic cylinder as an auxiliary drive depending on the displacement sensor signal and is controlled as a vibratory drive, with at least one servo or proportional valve preferably being provided for actuation.
  • the WO 2016 / 054667 A1 discloses a track tamping machine with two tamping units that can be displaced transversely independently of one another and that carry auxiliary cylinders for pivoting tamping arms for compacting ballast.
  • the EP 2 902 546 A1 discloses a ballast bed compaction device which provides a stabilization unit on a machine frame, which is equipped for gripping around a rail head.
  • a stabilization unit By oscillating the stabilization unit by means of a hydraulic cylinder vibrator, a horizontal oscillating of the track is achieved, which leads to a settlement of the track on the ballast bed.
  • DE 199 12 984 A1 discloses a double acting piston actuator having a floating piston assembly provided at one end of a piston rod.
  • the invention is based on the object of creating a vibration drive with a high level of efficiency. Aspects of series production and/or aspects of productive use, such as producibility with little effort, maintainability with little effort and/or a small installation space requirement, can advantageously be taken into account.
  • a further advantage is that several functions can be integrated into a multi-surface cylinder as a single assembly, so that on the one hand assembly work during production and maintenance can be reduced and on the other hand space can be saved or for other functions, such as a larger piston surface and/or a longer piston extension stroke, can be used. If it is a piston-extending feed drive, a high extension force can be achieved.
  • a multi-surface cylinder can be understood to mean a fluid cylinder on whose piston there are at least three fluidically active piston surfaces.
  • the piston surfaces can be pressurized, for example, via cylinder chambers or fluid chambers that do not fluidly communicate with one another.
  • a rapid traverse cylinder as a multi-surface cylinder.
  • a rapid travel cylinder can be described as having at least one annular piston surface on the piston rod side, an oppositely directed annular piston surface or one facing away from the piston rod and a rotary piston surface facing away from the piston rod, with the piston surfaces facing away from the rod being structurally separate and not communicating fluidically.
  • a tandem cylinder can be described as a fluid cylinder on the piston rod of which at least two piston heads are arranged offset in the longitudinal direction, with two piston surfaces facing one another and arranged one behind the other not communicating fluidly in a structurally separate manner.
  • a preferred fluid is a hydraulic fluid because of the higher pressures that can be achieved, in particular a hydraulic fluid for mobile applications because of the biodegradability.
  • the fluid circuit Z according to the invention has the advantage that the piston surfaces of the multi-surface cylinder and/or the valves can be optimized, such as optimized in terms of efficiency.
  • Z has a high overall force available, for example for a penetration movement of the tamping tine to be driven into a ballast bed.
  • the first two piston surfaces each have an effective piston surface that is at least approximately the same size. That's how it's done the areas of the same amount in terms of amount when the piston is displaced achieves an approximately equally large volume flow in/out of the respective cylinder chamber.
  • Having an accumulator in communication with the third piston surface has several advantages.
  • compression of the fluid in the cylinder chamber belonging to the third piston surface can be replaced by compression (e.g. a gas bubble) and/or compensatory movement (e.g. a spring-loaded pressure accumulator base) and/or the like in/on the pressure accumulator.
  • compensatory movement e.g. a spring-loaded pressure accumulator base
  • a minimum amplitude and/or a maximum amplitude of the vibration movement can be ensured and/or optimized, such as efficiency-optimized and/or function-optimized, by appropriate dimensioning of the pressure accumulator (e.g. a gas bladder volume and/or a pressure accumulator bottom travel path).
  • the first valve is a vibratable rain valve, this facilitates a vibratory movement of the piston and thus of the tamping tine to be driven.
  • Preferred control valve designs include a proportional valve and/or a servo valve.
  • the control valve is connected Z to a control device for specifying vibration, in order to bring about a vibration that can be specified according to amplitude and/or frequency and/or energy.
  • the control valve is therefore acted upon in an oscillating manner.
  • the control valve is an electrically and/or hydraulically and/or pneumatically pilot-controlled valve with one and/or two stages.
  • the fluid circuit and in particular the multi-surface cylinder and the first valve are suitable for a frequency of up to approximately 50 Hz, more preferably with a frequency of up to approximately 40 Hz, even more preferably with a frequency of up to approximately 35 Hz , and/or to vibrate at a frequency of about 25 to about 40 Hz.
  • these frequency ranges are particularly advantageous for compacting a ballast bed.
  • the hydraulic circuit and in particular the multi-surface cylinder and the first valve are suitable for the piston relative to the cylinder housing with an amplitude of up to approximately 6 mm, more preferably up to approximately 3 mm, even more preferably of at least approximately 3 mm, and/or most preferably oscillates to about 2mm.
  • this vibration promotes rapid and efficient compaction of a ballast bed.
  • the fluid circuit has a measuring device for measuring the fluid pressure in/on the cylinder and/or in/on the first valve. By measuring the (vibrating) fluid pressure profile, a ballast bed compaction can be checked, for example.
  • Driving method Z includes Z both pressurizing the third piston face and vibrating the first valve about a shifted zero point to simultaneously vibrate drive and piston extend.
  • the method step thus contains two parallel steps which can preferably be carried out independently of one another, can be carried out independently of one another in terms of amount and/or can be started and ended independently of one another.
  • the two parallel steps allow, for example, a constantly progressive compaction of a ballast bed by taking two relatively simple control actions.
  • the control method for the multi-surface cylinder is preferably particularly simple and reliable in terms of control technology, the first piston surface and the second piston surface each having an effective piston surface of the same size, and the vibration according to a zero-point symmetrical function, such as such a sine function.
  • Driving with a zero-point symmetrical function, in particular a sine function, is particularly uniform and scalable.
  • a fluid circuit 1 for driving vibrations comprises a multi-surface cylinder or multi-surface fluid cylinder designated as a whole with 2, a vibration valve 4 as the first valve, an extension valve 6 as the second valve and a pressure accumulator 8.
  • the multi-surface cylinder 2 is a rapid travel cylinder 10. It has a cylinder housing 12 with a cylinder wall 18 closed at each end with a cylinder base 14 and a cylinder cover 16 and with a stamp 20 concentric thereto and fixed to the cylinder base.
  • a piston 24 with an annular piston head 26 , an adjoining hollow-cylindrical piston rod 28 and a piston rod head 30 at the axial end is accommodated therein so as to be displaceable along a longitudinal axis 22 defined by the cylinder wall 18 .
  • the rapid travel cylinder 10 has three piston surfaces which are operatively arranged for the axial displacement of the piston and which are collectively designated as 32 .
  • a first piston surface 34 is located on the side of the piston rod 28 on the piston head 26.
  • a second piston surface 36 is located on the inside of the piston rod head 30, facing the punch 20.
  • a third piston surface 38 is located on the side facing away from the piston rod 28 on the piston head 26.
  • the piston surfaces 32 each axially delimit a chamber 40 .
  • a first chamber 42 is defined by the first piston surface 34 , the cylinder wall 18 , the cylinder cover 16 and the piston rod 28 .
  • An overpressure in the first chamber 42 acts on the first piston surface 34 to retract the piston rod 28 .
  • a second chamber 44 is presently defined by the second piston surface 36 , the piston rod 28 and the plunger 20 .
  • An overpressure in the second chamber 44 acts on the second piston surface 36 to extend the piston rod 28.
  • a third chamber 46 is presently defined by the piston 24, the cylinder wall 18, the cylinder base 14 and the plunger 20.
  • An overpressure in the third chamber 46 acts on the third piston surface 38 to extend the piston rod 28.
  • the vibration valve 4 is a valve that can be vibrated in a predetermined manner. It is provided as a 4/3-way valve with two working connections 48 and supply connections 50. For example, it is a proportional spool valve and has an electrically controllable pilot device that can deflect the spool (not shown), such as stimulating preferably symmetrical oscillations about an adjustable operating point/zero point.
  • One working connection 48 of the vibration valve 4 communicates fluidly with the first chamber 42.
  • the other working connection 48 of the vibration valve 4 communicates fluidly through the plunger 20 with the second chamber 44.
  • the extension valve 6 is a switchable valve, for example a pilot-operated pressure-limiting valve with two supply connections 50 and a working connection 48 which communicates fluidly with the third chamber 46 .
  • the pressure accumulator 8 communicates fluidly with the third chamber 46.
  • the pressure accumulator 8 branches off the line between the extension valve 6 and the third chamber 46.
  • the vibration valve 4 is vibrated so that the chambers 42 and 44 are alternately pressurized with fluid at a frequency of up to 35 Hz.
  • fluid pressure is built up and released once in each period in each of the chambers 42,44.
  • the piston 24 is, for example, by one Amplitude of up to 2mm shifted relative to the cylinder body.
  • the piston movement pumps the fluid back and forth between the third chamber 46 and the pressure accumulator 8 . Since the piston areas 34 and 36 are of the same size, a symmetrical oscillation of the disc of the vibration valve about a zero point for pressurizing the chambers 42, 44 is made possible.
  • fluid is fed under pressure to the third chamber 46 via the extension valve 6 , fluid is fed under pressure to the second chamber 44 via the vibration valve 4 , and fluid is discharged from the first chamber 42 via the vibration valve 4 .
  • Fluid is supplied under pressure through the extension valve 6 to the third chamber 46 to simultaneously extend and vibrate the piston 24 .
  • the zero point of the vibration valve and the amplitude of the oscillation of the slide of the vibration valve 4 are shifted in such a way that on the one hand fluid pressure is built up and released once in each period in each of the chambers 42, 44, and on the other hand compared with the volume flow in the first chamber 42 the volume flow in the third chamber 46 piston path corresponding volume flow excess flows into the second chamber 44.
  • the cylinder housing is coupled to a (not shown) machine frame or the like, such as fixed, articulated and/or pivoted, and the piston is coupled to a tamping tine (not shown) to be driven, such as fixed, articulated and/or pivoted .
  • a machine frame or the like such as fixed, articulated and/or pivoted
  • the piston is coupled to a tamping tine (not shown) to be driven, such as fixed, articulated and/or pivoted . Since the mass of the cylinder piston is usually smaller than the mass of the cylinder housing, this construction is energetically favorable and therefore has a high level of efficiency.
  • the multi-surface cylinder 2, the valves 4 and 6 and the pressure accumulator 8 form a compact assembly, so that space can be saved and the entire assembly can be exchanged for a replacement assembly to increase the productive time.
  • a cylinder housing-side coupling to the tamping tine and a piston rod-side coupling to the machine frame are provided, for example due to space considerations and/or in the case of different mass ratios.
  • the 2 shows a second embodiment of the invention.
  • the multi-surface cylinder 2 is a tandem cylinder 52 .
  • This has in the cylinder housing 12 axially approximately centrally between the cylinder base 14 and the piston rod-side axial end of the cylinder housing 12 an annular intermediate cylinder base 54 fixed to the cylinder wall 18, which divides the cylinder 2 into two cylinder working chambers 56 arranged axially one behind the other.
  • an intermediate piston base 58 that is axially displaceable in a fluid-tight manner in the working chamber 56 remote from the cylinder base.
  • the piston surfaces 32 each axially delimit a chamber 40 .
  • the first chamber 42 is defined by the first piston surface 34 , the cylinder wall 18 , the intermediate cylinder floor 54 and the piston rod 28 .
  • An overpressure in a first chamber 42 acts on the first piston surface 34 to retract the piston rod 28.
  • the second piston surface 36 is located on the cylinder (intermediate) base side on the intermediate piston base 58.
  • the second chamber 44 is defined by the second piston surface 36, the cylinder wall 18, the piston rod 28 and the cylinder intermediate base 54 are defined.
  • An overpressure in the second chamber 44 acts on the second piston surface 36 to extend the piston rod 28.
  • the third chamber 46 is defined by the piston 24, the cylinder wall 18 and the cylinder base 14.
  • An overpressure in the third chamber 46 acts on the third piston surface 38 to extend the piston rod 28.
  • the piston surfaces 34 and 36 are of equal size.
  • a space between the intermediate piston base 58 and the axial end of the cylinder housing 12 on the piston rod side is preferably vented.
  • a fourth piston surface 62 is located on the cylinder cover side on the intermediate piston floor 58.
  • a fourth chamber 60 is defined by the fourth piston surface 62, the cylinder wall 18, the cylinder cover 16 and the piston rod.
  • An overpressure in the fourth chamber 60 acts on the fourth piston surface 62 to retract the piston rod 28.
  • the extension valve 6 is an on/off valve, like a controlled 4/3-way valve. Compared to the basic variant of the second embodiment, more fluid pressure can be applied to the piston rod for retracting, for example in order to retract a heavier attachment or to raise a rail.
  • the fourth chamber 60 communicates with a pressure accumulator 8 in order to enable the piston 24 to vibrate with improved efficiency.
  • a sub-variant not shown includes, instead of or in addition to the pressure accumulator 8, a compensating piston (compensating element as well as compensating membrane) that can be displaced between two compensating chambers of approximately the same size, of which one compensating chamber communicates fluidly with the third chamber 46, and the other compensating chamber communicates with the fourth Chamber 60 communicates fluidly.
  • a compensating piston dispenser element as well as compensating membrane

Description

Die Erfindung betrifft zum Einen eine Verwendung eines Zylinders zum Vibrationsantreiben. Zum Anderen betrifft die Erfindung eine Fluidschaltung zum Vibrationsantreiben umfassend einen Zylinder. Zum Nächsten betrifft die Erfindung ein Ansteuerverfahren für einen vibrationsantreibbaren Zylinder.On the one hand, the invention relates to the use of a cylinder for driving vibrations. On the other hand, the invention relates to a fluid circuit for driving vibrations, comprising a cylinder. Next, the invention relates to a driving method for a vibration-driven cylinder.

Im Gleisbau werden Gleisbetten aus Schotter oder dergleichen zur Unterlage von Schwellen verwendet. Zur Herstellung und/oder zur Wiederaufbereitung wird der Schotter unter die Schwellen gedrückt ("gestopft"), und werden somit die Gleise gehoben. Dabei werden Stopfaggregate verwendet, welche mit einem Stopfwerkzeug, wie einen Stopfpickel, oder einem Stopfwerkzeugpaar in den Schotter einstechen, und welche dann mit einer beispielsweise schwenkenden Bewegung ("Beistellen" bzw. "Zustellen" bzw. "Einschwenken") den Schotter unter die jeweilige Schwelle schieben. Ein Vibrieren bzw. Schwingen bzw. Oszillierendes Werkzeugs ist dabei von doppeltem Nutzen, um einerseits ein Eindringen des Werkzeugs in den Schotter zu erleichtern, und andererseits eine verfestigende Verdichtung des Schotters zu erreichen. Ein Vibrationsantrieb, wie ein fluidischer Vibrationsantrieb, dient dabei zum Antreiben zumindest eines Stopfwerkzeugs.In track construction, track beds made of ballast or the like are used as a base for sleepers. For production and/or recycling, the ballast is pressed ("tamped") under the sleepers, and the tracks are thus lifted. Tamping units are used, which pierce the ballast with a tamping tool, such as a tamping pick, or a pair of tamping tools, and which then move the ballast under the respective slide threshold. A vibrating or swinging or oscillating tool is of dual benefit in order to facilitate penetration of the tool into the ballast on the one hand and to achieve a solidifying compaction of the ballast on the other hand. A vibration drive, such as a fluidic vibration drive, serves to drive at least one tamping tool.

Die WO 2014 / 127393 A1 nennt als Stand der Technik, für Stopfwerkzeuge einen Hydraulikzylinder für eine Zustellbewegung und einen Hydraulikzylinder für eine Vibrationsbewegung mechanisch in Reihe zu schalten, wobei daran neben einem hohen Wartungsaufwand auch nachteilig sei, dass eine Amplitudengröße nicht frei einstellbar sei.the WO 2014 / 127393 A1 states as state of the art mechanically connecting a hydraulic cylinder for an infeed movement and a hydraulic cylinder for a vibration movement in series for tamping tools, with the disadvantage that, in addition to a high level of maintenance, is that an amplitude size cannot be freely adjusted.

Dieselbe WO 2014/127393 A1 offenbart gattungsbildend, einen einzelnen Hydraulikzylinder, wie einen Differentialzylinder, mit einem Wegsensor zum Bestimmen der Hydraulikzylinderstellung vorzusehen, wobei der Hydraulikzylinder wegsensorsignalabhängig als Beistellantrieb und als Schwingungsantrieb angesteuert wird, wobei zur Betätigung bevorzugt zumindest ein Servo- oder Proportionalventil vorgesehen wird.the same WO 2014/127393 A1 discloses generically to provide a single hydraulic cylinder, such as a differential cylinder, with a displacement sensor for determining the position of the hydraulic cylinder, the hydraulic cylinder as an auxiliary drive depending on the displacement sensor signal and is controlled as a vibratory drive, with at least one servo or proportional valve preferably being provided for actuation.

Diese Konstruktion führt zu hohen Anforderungen an das Regelventil: Beispielsweise bei einem Vibrieren eines Differentialzylinders ist zum Erreichen gleicher Kräfte an beiden Kolbenseiten eine betragsmäßig größere Ventilauslenkung zum Druckbeaufschlagen der Kolbenstangenseite notwendig. Beispielsweise bei gleichzeitigem Vibrieren und überlagerten Kolbenausfahren ist eine fluidmengenmäßig größere Ventilöffnung zum Fluidversorgen der stangenabgewandten Kolbenseite notwendig. Mithin hat die vorstehende Konstruktion nachteilhaft einen Zielkonflikt bzw. eine regelungsseitige Ungleichheit zur Folge.This construction leads to high demands on the control valve: For example, if a differential cylinder vibrates, a larger amount of valve deflection is necessary to apply pressure to the piston rod side in order to achieve the same forces on both sides of the piston. For example, in the case of simultaneous vibration and superimposed piston extensions, a valve opening that is larger in terms of fluid quantity is necessary for supplying fluid to the piston side facing away from the rod. Consequently, the above construction disadvantageously results in a conflict of objectives or an inequality in terms of regulation.

Die genannte Konstruktion führt weiters zu einem schlechten Wirkungsgrad. Fluide sind kompressibel. Neben den als "kompressiblen Fluiden" angesehenen Gasen weisen auch die als "inkompressible Fluide" bezeichneten Flüssigkeiten eine Elastizität auf; beispielsweise kann man für Mineralöle einen Kompressibilitätsfaktor von 0,7% bis 0,8% pro 100bar annehmen. Hieraus folgt für die vorstehende Konstruktion mit einem einzelnen Hydraulikzylinder in Differentialzylinderbauweise, dass zum Erzeugen der Vibration das gesamte Fluidvolumen in der jeweiligen Zylinderkammer, also das Volumen für die Kolbenausfahrbewegung zusätzlich zu dem Vibrationsvolumen, je Vibrationszyklus einmal unter Energieeinsatz komprimiert (und entspannt) werden muss.The construction mentioned also leads to poor efficiency. Fluids are compressible. In addition to the gases regarded as "compressible fluids", the liquids designated as "incompressible fluids" also exhibit elasticity; for example, a compressibility factor of 0.7% to 0.8% per 100 bar can be assumed for mineral oils. From this it follows for the above construction with a single hydraulic cylinder in differential cylinder design that in order to generate the vibration, the entire fluid volume in the respective cylinder chamber, i.e. the volume for the piston extension movement in addition to the vibration volume, must be compressed (and relaxed) once per vibration cycle using energy.

Die WO 2016 / 054667 A1 offenbart eine Gleisstopfmaschine mit zwei voneinander unabhängig quer verlagerbaren Stopfaggregaten, welche Beistellzylinder zum Schwenken von Stopfarmen zum Verdichten von Schotter tragen.the WO 2016 / 054667 A1 discloses a track tamping machine with two tamping units that can be displaced transversely independently of one another and that carry auxiliary cylinders for pivoting tamping arms for compacting ballast.

Die EP 2 902 546 A1 offenbart eine Schotterbettungsverdichtungsvorrichtung, welche an einem Maschinenrahmen ein Stabilisationsaggregat vorsieht, das zum Umgreifen eines Schienenkopfes ausgestattet ist. Durch ein Schwingen des Stabilisationsaggregats mittels eines hydraulischen Zylindervibrators wird ein horizontales Schwingen des Gleises erreicht, was zu einer Setzung des Gleises auf dem Schotterbett führt.the EP 2 902 546 A1 discloses a ballast bed compaction device which provides a stabilization unit on a machine frame, which is equipped for gripping around a rail head. By oscillating the stabilization unit by means of a hydraulic cylinder vibrator, a horizontal oscillating of the track is achieved, which leads to a settlement of the track on the ballast bed.

DE 199 12 984 A1 offenbart eine doppelwirkende Kolbenbetätigungseinrichtung mit einer schwimmenden Kolbenanordnung, die an einem Ende einer Kolbenstange vorgesehen ist. Z DE 199 12 984 A1 discloses a double acting piston actuator having a floating piston assembly provided at one end of a piston rod. Z

Offenbarung der ErfindungDisclosure of Invention

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, einen Vibrationsantrieb mit einem hohen Wirkungsgrad zu schaffen. Aspekte der Serienfertigung und/oder Aspekte des produktiven Einsatzes, wie eine Herstellbarkeit mit geringem Aufwand, eine Wartbarkeit mit geringem Aufwand und/oder ein geringer Bauraumbedarf, können mit Vorteil Berücksichtigung finden.In contrast, the invention is based on the object of creating a vibration drive with a high level of efficiency. Aspects of series production and/or aspects of productive use, such as producibility with little effort, maintainability with little effort and/or a small installation space requirement, can advantageously be taken into account.

Bezüglich der Fluidschaltung zum Vibrationsantreiben wird die Aufgabe durch die Merkmale des Anspruchs 1 gelöst. Bezüglich des Ansteuerverfahrens zum Vibrationsantreiben wird die Aufgabe durch die Merkmale des Anspruchs 4 ge-Es versteht sich, dass Verbesserungen und Modifikationen an der unten im Detail beschriebenen vorliegenden Erfindung vorgenommen werden können, ohne vom Umfang der Erfindung abzuweichen, welche in den beigefügten Ansprüchen offenbart ist. ZWith regard to the fluid circuit for driving vibration, the object is solved by the features of claim 1. Regarding the driving method for vibration driving, the object is achieved by the features of claim 4. It is understood that improvements and modifications can be made to the present invention described in detail below without departing from the scope of the invention disclosed in the appended claims . Z

Ein weiterer Vorteil ist, dass in einen Mehrflächenzylinder als eine einzelne Baugruppe mehrere Funktionen integrierbar sind, sodass einerseits ein Montageaufwand bei der Herstellung und bei der Wartung reduziert werden kann, und andererseits Bauraum gespart bzw. für andere Funktionen, wie eine größere Kolbenfläche und/oder einen längeren Kolbenausfahrweg, verwendet werden kann. Handelt es sich um einen kolbenausfahrenden Zustellantrieb, kann eine hohe Ausfahrkraft erreicht werden.A further advantage is that several functions can be integrated into a multi-surface cylinder as a single assembly, so that on the one hand assembly work during production and maintenance can be reduced and on the other hand space can be saved or for other functions, such as a larger piston surface and/or a longer piston extension stroke, can be used. If it is a piston-extending feed drive, a high extension force can be achieved.

Unter einem Mehrflächenzylinder kann ein Fluidzylinder verstanden werden, an dessen Kolben zumindest drei fluidisch wirksame Kolbenflächen vorhanden sind. Die Kolbenflächen können beispielsweise über nicht miteinander fluidisch kommunizierende Zylinderkammern bzw. Fluidkammern druckbeaufschlagbar sein.A multi-surface cylinder can be understood to mean a fluid cylinder on whose piston there are at least three fluidically active piston surfaces. The piston surfaces can be pressurized, for example, via cylinder chambers or fluid chambers that do not fluidly communicate with one another.

Weiterbildend wird vorgeschlagen, einen Eilgangzylinder als Mehrflächenzylinder zu verwenden. Ein Eilgangzylinder kann beschrieben werden, als dass dieser zumindest eine Kolbenstangen-seitige Ringkolbenfläche, eine entgegen gerichtete bzw. Kolbenstangen-abgewandte Ringkolbenfläche und eine Kolbenstangen-abgewandte Kreiskolbenfläche aufweist, wobei die stangenabgewandten Kolbenflächen baulich getrennt nicht fluidisch kommunizieren.As a further development, it is proposed to use a rapid traverse cylinder as a multi-surface cylinder. A rapid travel cylinder can be described as having at least one annular piston surface on the piston rod side, an oppositely directed annular piston surface or one facing away from the piston rod and a rotary piston surface facing away from the piston rod, with the piston surfaces facing away from the rod being structurally separate and not communicating fluidically.

Ebenfalls weiterbildend wird vorgeschlagen, einen Tandemzylinder als Mehrflächenzylinder zu verwenden. Ein Tandemzylinder kann beschrieben werden als ein Fluidzylinder, an dessen Kolbenstange in Längsrichtung versetzt zumindest zwei Kolbenböden angeordnet sind, wobei zwei zueinander weisende und hintereinander angeordnete Kolbenflächen baulich getrennt nicht fluidisch kommunizieren.It is also proposed as a development to use a tandem cylinder as a multi-surface cylinder. A tandem cylinder can be described as a fluid cylinder on the piston rod of which at least two piston heads are arranged offset in the longitudinal direction, with two piston surfaces facing one another and arranged one behind the other not communicating fluidly in a structurally separate manner.

Ein bevorzugtes Fluid ist eine Hydraulikflüssigkeit wegen der höheren erreichbaren Drücke, insbesondere eine Hydraulikflüssigkeit für mobile Anwendung wegen der biologischen Abbaubarkeit.A preferred fluid is a hydraulic fluid because of the higher pressures that can be achieved, in particular a hydraulic fluid for mobile applications because of the biodegradability.

Die erfindungsgemäße Fluidschaltung Z hat den Vorteil, dass die Kolbenflächen des Mehrflächenzylinders und/oder die Ventile optimiert, wie wirkungsgradoptimiert, ausgelegt sein können.The fluid circuit Z according to the invention has the advantage that the piston surfaces of the multi-surface cylinder and/or the valves can be optimized, such as optimized in terms of efficiency.

Durch das Druckbeaufschlagen der dritten Kolbenfläche und der gleichwirkend angeordneten Kolbenfläche der ersten beiden Kolbenflächen steht Z insgesamt hohe Kraft, beispielsweise für ein mit einer Zustellbewegung einhergehendes Eindringen des anzutreibenden Stopfpickels in ein Schotterbett, zur Verfügung.By applying pressure to the third piston surface and the piston surface of the first two piston surfaces arranged in the same way, Z has a high overall force available, for example for a penetration movement of the tamping tine to be driven into a ballast bed.

Vorzugsweise, bei einer besonders einfach anzusteuernden Konstruktion weisen die ersten beiden Kolbenflächen jeweils eine zumindest etwa gleich große wirksame Kolbenfläche auf. So wird durch die betragsmäßig gleich großen Flächen beim Kolbenverlagern ein etwa gleich großer Volumenstrom in/aus der jeweiligen Zylinderkammer erreicht.Preferably, in a construction that is particularly easy to control, the first two piston surfaces each have an effective piston surface that is at least approximately the same size. That's how it's done the areas of the same amount in terms of amount when the piston is displaced achieves an approximately equally large volume flow in/out of the respective cylinder chamber.

Wenn ein Druckspeicher mit der dritten Kolbenfläche kommunizierend verbunden ist, hat dies mehrere Vorteile. Zum Einen kann wirkungsgraderhöhend eine Kompression des Fluids in der zu der dritten Kolbenfläche gehörenden Zylinderkammer durch eine Kompression (beispielsweise einer Gasblase) und/oder Ausgleichsbewegung (beispielsweise eines federvorgespannten Druckspeicherbodens) und/oder dergleichen in/an dem Druckspeicher ersetzt werden. Zum Anderen kann durch eine entsprechende Dimensionierung des Druckspeichers (beispielsweise eines Gasblasevolumens und/oder eines Druckspeicherbodenverfahrwegs) eine Minimalamplitude und/oder eine Maximalamplitude der Vibrationsbewegung sichergestellt und/oder optimiert, wie wirkungsgradoptimiert und/oder funktionsoptimiert, werden.Having an accumulator in communication with the third piston surface has several advantages. On the one hand, to increase efficiency, compression of the fluid in the cylinder chamber belonging to the third piston surface can be replaced by compression (e.g. a gas bubble) and/or compensatory movement (e.g. a spring-loaded pressure accumulator base) and/or the like in/on the pressure accumulator. On the other hand, a minimum amplitude and/or a maximum amplitude of the vibration movement can be ensured and/or optimized, such as efficiency-optimized and/or function-optimized, by appropriate dimensioning of the pressure accumulator (e.g. a gas bladder volume and/or a pressure accumulator bottom travel path).

Da das erste Ventil ein vibrierbares Regenventil ist, erleichtert dies eine Vibrationsbewegung des Kolbens und damit des anzutreibenden Stopfpickels. Bevorzugte Regelventilbauformen umfassen ein Proportionalventil und/oder ein Servoventil. Z Das Regelventil ist Z mit einer Ansteuereinrichtung zum Vibrationvorgeben verbunden, um eine nach Amplitude und/oder Frequenz und/oder Energie vorgebbare Vibration zu bewirken. Das Regelventil wird also oszillierend beaufschlagt Beispielsweise ist das Regelventil ein elektrisch und/oder hydraulisch und/oder pneumatisch ein- und/oder zweistufig vorgesteuertes Ventil. Gemäß einer bevorzugten Weiterbildung sind die Fluidschaltung und insbesondere der Mehrflächenzylinder und das erste Ventil dazu geeignet, mit einer Frequenz von bis zu etwa 50 Hz, bevorzugter mit einer Frequenz von bis zu etwa 40 Hz, noch bevorzugter mit einer Frequenz von bis zu etwa 35 Hz, und/oder mit einer Frequenz von etwa 25 bis etwa 40 Hz zu schwingen. Diese Frequenzbereiche sind für ein Verdichten eines Schotterbetts erfahrungsgemäß besonders vorteilhaft geeignet.Since the first valve is a vibratable rain valve, this facilitates a vibratory movement of the piston and thus of the tamping tine to be driven. Preferred control valve designs include a proportional valve and/or a servo valve. Z The control valve is connected Z to a control device for specifying vibration, in order to bring about a vibration that can be specified according to amplitude and/or frequency and/or energy. The control valve is therefore acted upon in an oscillating manner. For example, the control valve is an electrically and/or hydraulically and/or pneumatically pilot-controlled valve with one and/or two stages. According to a preferred development, the fluid circuit and in particular the multi-surface cylinder and the first valve are suitable for a frequency of up to approximately 50 Hz, more preferably with a frequency of up to approximately 40 Hz, even more preferably with a frequency of up to approximately 35 Hz , and/or to vibrate at a frequency of about 25 to about 40 Hz. Experience has shown that these frequency ranges are particularly advantageous for compacting a ballast bed.

Gemäß einer weiteren bevorzugten Weiterbildung sind die Hydraulikschaltung und insbesondere der Mehrflächenzylinder und das erste Ventil dazu geeignet, dass der Kolben relativ zum Zylindergehäuse mit einer Amplitude bis etwa 6 mm, bevorzugter bis etwa 3 mm, noch bevorzugter von mindestens etwa 3 mm, und/oder am bevorzugtesten bis etwa 2 mm schwingt. Diese Vibration fördert erfahrungsgemäß ein rasches und effizientes Verdichten eines Schotterbetts.According to a further preferred development, the hydraulic circuit and in particular the multi-surface cylinder and the first valve are suitable for the piston relative to the cylinder housing with an amplitude of up to approximately 6 mm, more preferably up to approximately 3 mm, even more preferably of at least approximately 3 mm, and/or most preferably oscillates to about 2mm. Experience has shown that this vibration promotes rapid and efficient compaction of a ballast bed.

Weiterbildend weist die Fluidschaltung eine Messeinrichtung zum Messen des Fluiddrucks im/am Zylinder und/oder im/am ersten Ventil auf. Durch ein Messen des (vibrierenden) Fluiddruckverlaufs kann beispielswiese eine Schotterbettverdichtung geprüft werden.In a further development, the fluid circuit has a measuring device for measuring the fluid pressure in/on the cylinder and/or in/on the first valve. By measuring the (vibrating) fluid pressure profile, a ballast bed compaction can be checked, for example.

Das Ansteuerverfahren Z enthält Z zum gleichzeitigen Vibrationsantreiben und Kolbenausfahren sowohl die dritte Kolbenfläche mit Druck zu beaufschlagen, als auch das erste Ventil um einen verschobenen Nullpunkt zu vibrieren. Der Verfahrensschritt enthält somit zwei parallele Schritte, welche vorzugsweise voneinander unabhängig vornehmbar sind, wie betragsmäßig unabhängig vornehmbar und/oder voneinander unabhängig beginnbar und endbar sind. Im Gegensatz zum Stand der Technik, wobei eine einzelne Zylinderkammer gleichzeitig zum Kolbenverlagern und Vibrationsantreiben mit Druck beaufschlagt wird, ermöglichen die zwei parallelen Schritte beispielsweise ein konstant fortschreitendes Verdichten eines Schotterbetts durch Vornehmen zweier relativ einfacher Steuerungsaktionen.Driving method Z includes Z both pressurizing the third piston face and vibrating the first valve about a shifted zero point to simultaneously vibrate drive and piston extend. The method step thus contains two parallel steps which can preferably be carried out independently of one another, can be carried out independently of one another in terms of amount and/or can be started and ended independently of one another. In contrast to the prior art, where a single cylinder chamber is simultaneously pressurized for piston displacement and vibration driving, the two parallel steps allow, for example, a constantly progressive compaction of a ballast bed by taking two relatively simple control actions.

Vorzugsweise besonders steuerungstechnisch einfach und zuverlässig wird das Ansteuerverfahren für den Mehrflächenzylinder, wobei erste Kolbenfläche und zweite Kolbenfläche jeweils eine gleich große wirksame Kolbenfläche aufweisen, und wobei die Vibration gemäß einer Nullpunkt-symmetrischen Funktion, wie einer solchen Sinusfunktion, vorgegeben wird.The control method for the multi-surface cylinder is preferably particularly simple and reliable in terms of control technology, the first piston surface and the second piston surface each having an effective piston surface of the same size, and the vibration according to a zero-point symmetrical function, such as such a sine function.

Ein Ansteuern mit einer Nullpunkt-symmetrischen Funktion, insbesondere Sinusfunktion, ist besonders gleichmäßig und skalierbar.Driving with a zero-point symmetrical function, in particular a sine function, is particularly uniform and scalable.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Bevorzugte Ausführungsbeispiele der Erfindung werden im Folgenden anhand schematischer Zeichnungen näher erläutert. Es zeigen:

  • Figur 1 einen Teil eines Schaltplans einer erfindungsgemäßen Fluidschaltung zum Vibrationsantreiben beispielsweise eines Stopfpickels gemäß einer ersten Ausführungsform,
  • Figur 2 einen Teil eines Schaltplans einer erfindungsgemäßen Fluidschaltung zum Vibrationsantreiben beispielsweise eines Stopfpickels gemäß einer zweiten Ausführungsform, und
  • Figur 3 einen Teil eines Schaltplans einer erfindungsgemäßen Fluidschaltung zum Vibrationsantreiben beispielsweise eines Stopfpickels gemäß einer Variante der zweiten Ausführungsform.
Preferred exemplary embodiments of the invention are explained in more detail below using schematic drawings. Show it:
  • figure 1 part of a circuit diagram of a fluid circuit according to the invention for vibrating, for example, a tamping tool according to a first embodiment,
  • figure 2 a part of a circuit diagram of a fluid circuit according to the invention for vibrating, for example, a tamping tine according to a second embodiment, and
  • figure 3 a part of a circuit diagram of a fluid circuit according to the invention for vibrating, for example, a tamping tine according to a variant of the second embodiment.

Die Fig. 1 zeigt eine erste Ausführungsform der Erfindung. Eine Fluidschaltung 1 zum Vibrationsantreiben umfasst vorliegend einen als Ganzes mit 2 bezeichneten Mehrflächenzylinder bzw. Mehrflächen-Fluidzylinder, ein Vibrationsventil 4 als erstes Ventil, ein Ausfahrventil 6 als zweites Ventil und einen Druckspeicher 8.the 1 shows a first embodiment of the invention. In the present case, a fluid circuit 1 for driving vibrations comprises a multi-surface cylinder or multi-surface fluid cylinder designated as a whole with 2, a vibration valve 4 as the first valve, an extension valve 6 as the second valve and a pressure accumulator 8.

Der Mehrflächenzylinder 2 ist bei der ersten Ausführungsform ein Eilgangzylinder 10. Er weist ein Zylindergehäuse 12 mit einer je endseitig mit einem Zylinderboden 14 und einem Zylinderdeckel 16 abgeschlossenen Zylinderwand 18 und mit einem dazu konzentrischen und Zylinderboden-festen Stempel 20 auf. Darin ist entlang einer durch die Zylinderwand 18 definierten Längsachse 22 verlagerbar ein Kolben 24 mit einem ringförmigen Kolbenboden 26, einer daran anschließenden hohlzylindrischen Kolbenstange 28 und einem axial endseitigen Kolbenstangenboden 30 aufgenommen.In the first embodiment, the multi-surface cylinder 2 is a rapid travel cylinder 10. It has a cylinder housing 12 with a cylinder wall 18 closed at each end with a cylinder base 14 and a cylinder cover 16 and with a stamp 20 concentric thereto and fixed to the cylinder base. A piston 24 with an annular piston head 26 , an adjoining hollow-cylindrical piston rod 28 and a piston rod head 30 at the axial end is accommodated therein so as to be displaceable along a longitudinal axis 22 defined by the cylinder wall 18 .

Der Eilgangzylinder 10 weist drei zum axialen Kolbenverlagern wirksam angeordnete Kolbenflächen auf, die gemeinsam mit 32 bezeichnet werden. Eine erste Kolbenfläche 34 befindet sich an der Seite der Kolbenstange 28 an dem Kolbenboden 26. Eine zweite Kolbenfläche 36 befindet sich dem Stempel 20 zugewandt innen an dem Kolbenstangenboden 30.The rapid travel cylinder 10 has three piston surfaces which are operatively arranged for the axial displacement of the piston and which are collectively designated as 32 . A first piston surface 34 is located on the side of the piston rod 28 on the piston head 26. A second piston surface 36 is located on the inside of the piston rod head 30, facing the punch 20.

Eine dritte Kolbenfläche 38 befindet sich an der der Kolbenstange 28 abgewandten Seite an dem Kolbenboden 26.A third piston surface 38 is located on the side facing away from the piston rod 28 on the piston head 26.

Die Kolbenflächen 32 begrenzen jeweils axial eine Kammer 40. Eine erste Kammer 42 wird vorliegend durch die erste Kolbenfläche 34, die Zylinderwand 18, den Zylinderdeckel 16 und die Kolbenstange 28 definiert. Ein Überdruck in der ersten Kammer 42 wirkt auf die erste Kolbenfläche 34 zum Einfahren der Kolbenstange 28. Eine zweite Kammer 44 wird vorliegend durch die zweite Kolbenfläche 36, die Kolbenstange 28 und den Stempel 20 definiert. Ein Überdruck in der zweiten Kammer 44 wirkt auf die zweite Kolbenfläche 36 zum Ausfahren der Kolbenstange 28. Eine dritte Kammer 46 wird vorliegend durch den Kolben 24, die Zylinderwand 18, den Zylinderboden 14 und den Stempel 20 definiert. Ein Überdruck in der dritten Kammer 46 wirkt auf die dritte Kolbenfläche 38 zum Ausfahren der Kolbenstange 28.The piston surfaces 32 each axially delimit a chamber 40 . In the present case, a first chamber 42 is defined by the first piston surface 34 , the cylinder wall 18 , the cylinder cover 16 and the piston rod 28 . An overpressure in the first chamber 42 acts on the first piston surface 34 to retract the piston rod 28 . A second chamber 44 is presently defined by the second piston surface 36 , the piston rod 28 and the plunger 20 . An overpressure in the second chamber 44 acts on the second piston surface 36 to extend the piston rod 28. A third chamber 46 is presently defined by the piston 24, the cylinder wall 18, the cylinder base 14 and the plunger 20. An overpressure in the third chamber 46 acts on the third piston surface 38 to extend the piston rod 28.

Das Vibrationsventil 4 ist ein vorgebbar vibrierbares Ventil. Es ist als 4/3-Wegeventil mit je zwei Arbeitsanschlüssen 48 und Versorgungsanschlüssen 50 versehen. Beispielsweise ist es ein proportionales Schieberventil, und weist es eine elektrische ansteuerbare Vorsteuereinrichtung auf, welche den (nicht dargestellten) Schieber auslenken kann, wie beispielsweise zu bevorzugt symmetrischen Schwingung um einen einstellbaren Arbeitspunkt / Nullpunkt anregen kann. Ein Arbeitsanschluss 48 des Vibrationsventils 4 kommuniziert fluidisch mit der ersten Kammer 42. Der andere Arbeitsanschluss 48 des Vibrationsventils 4 kommuniziert fluidisch durch den Stempel 20 hindurch mit der zweiten Kammer 44.The vibration valve 4 is a valve that can be vibrated in a predetermined manner. It is provided as a 4/3-way valve with two working connections 48 and supply connections 50. For example, it is a proportional spool valve and has an electrically controllable pilot device that can deflect the spool (not shown), such as stimulating preferably symmetrical oscillations about an adjustable operating point/zero point. One working connection 48 of the vibration valve 4 communicates fluidly with the first chamber 42. The other working connection 48 of the vibration valve 4 communicates fluidly through the plunger 20 with the second chamber 44.

Das Ausfahrventil 6 ist ein schaltbares Ventil, beispielsweise ein vorgesteuertes Druckbegrenzungsventil mit zwei Versorgungsanschlüssen 50 und einem Arbeitsanschluss 48, der mit der dritten Kammer 46 fluidisch kommuniziert.The extension valve 6 is a switchable valve, for example a pilot-operated pressure-limiting valve with two supply connections 50 and a working connection 48 which communicates fluidly with the third chamber 46 .

Der Druckspeicher 8 kommuniziert fluidisch mit der dritten Kammer 46. Beispielsweise zweigt der Druckspeicher 8 von der Leitung zwischen dem Ausfahrventil 6 und dritten Kammer 46 ab.The pressure accumulator 8 communicates fluidly with the third chamber 46. For example, the pressure accumulator 8 branches off the line between the extension valve 6 and the third chamber 46.

Zum Vibrationsantreiben des Kolbens 24 wird das Vibrationsventil 4 vibriert, sodass die Kammern 42 und 44 abwechselnd mit einer Frequenz von bis zu 35 Hz mit Fluiddruck beaufschlagt werden. Zum Beispiel wird in jeder Periode in jeder der Kammern 42, 44 einmal Fluiddruck aufgebaut und abgebaut. Dabei wird der Kolben 24 beispielsweise um eine Amplitude von bis zu 2mm relativ zu dem Zylindergehäuse verlagert. Die Kolbenbewegung pumpt das Fluid zwischen der dritten Kammer 46 und dem Druckspeicher 8 dabei hin und her. Da die Kolbenflächen 34, und 36 gleich groß sind, wird eine symmetrische Schwingung des Scheibers des Vibrationsventils um einen Nullpunkt zum Druckbeaufschlagen der Kammern 42, 44 ermöglicht.To vibrate the piston 24, the vibration valve 4 is vibrated so that the chambers 42 and 44 are alternately pressurized with fluid at a frequency of up to 35 Hz. For example, fluid pressure is built up and released once in each period in each of the chambers 42,44. In this case, the piston 24 is, for example, by one Amplitude of up to 2mm shifted relative to the cylinder body. The piston movement pumps the fluid back and forth between the third chamber 46 and the pressure accumulator 8 . Since the piston areas 34 and 36 are of the same size, a symmetrical oscillation of the disc of the vibration valve about a zero point for pressurizing the chambers 42, 44 is made possible.

Zum Ausfahren des Kolbens 24 wird beispielsweise über das Ausfahrventil 6 der dritten Kammer 46 unter Druck Fluid zugeführt, wird über das Vibrationsventil 4 der zweiten Kammer 44 unter Druck Fluid zugeführt, und wird über das Vibrationsventil 4 aus der ersten Kamer 42 Fluid abgeführt.To extend the piston 24 , fluid is fed under pressure to the third chamber 46 via the extension valve 6 , fluid is fed under pressure to the second chamber 44 via the vibration valve 4 , and fluid is discharged from the first chamber 42 via the vibration valve 4 .

Zum gleichzeitigen Ausfahren und Vibrationsantreiben des Kolbens 24 wird über das Ausfahrventil 6 der dritten Kammer 46 unter Druck Fluid zugeführt. Der Nullpunkt des Vibrationsventils und die Amplitude der Schwingung des Schiebers des Vibrationsventils 4 werden so verschoben, dass einerseits in jeder Periode in jeder der Kammern 42, 44 einmal Fluiddruck aufgebaut und abgebaut wird, und dass andererseits verglichen mit dem Volumenstrom in die erste Kammer 42 ein dem Volumenstrom in die dritte Kammer 46 Kolbenwegentsprechender Volumenstromüberschuss in die zweite Kammer 44 strömt.Fluid is supplied under pressure through the extension valve 6 to the third chamber 46 to simultaneously extend and vibrate the piston 24 . The zero point of the vibration valve and the amplitude of the oscillation of the slide of the vibration valve 4 are shifted in such a way that on the one hand fluid pressure is built up and released once in each period in each of the chambers 42, 44, and on the other hand compared with the volume flow in the first chamber 42 the volume flow in the third chamber 46 piston path corresponding volume flow excess flows into the second chamber 44.

Beispielsweise ist das Zylindergehäuse an einen (nicht dargestellten) Maschinenrahmen oder dergleichen gekoppelt, wie fest gelagert, angelenkt und/oder verschwenkbar gelagert, und ist der Kolben an einen (nicht dargestellten) anzutreibenden Stopfpickel gekoppelt, wie fest gelagert, angelenkt und/oder verschwenkbar gelagert. Da die Masse des Zylinderkolbens üblicherweise kleine als die Masse des Zylindergehäuses ist, ist diese Konstruktion energetisch günstig, und hat daher einen hohen Wirkungsgrad.For example, the cylinder housing is coupled to a (not shown) machine frame or the like, such as fixed, articulated and/or pivoted, and the piston is coupled to a tamping tine (not shown) to be driven, such as fixed, articulated and/or pivoted . Since the mass of the cylinder piston is usually smaller than the mass of the cylinder housing, this construction is energetically favorable and therefore has a high level of efficiency.

Gemäß einer (nicht dargestellten) Variante bilden der Mehrflächenzylinder 2, die Ventile 4 und 6 und der Druckspeicher 8 eine kompakte Baugruppe, sodass Bauraum gespart werden kann, und zur Produktivzeiterhöhung die gesamte Baugruppe gegen eine Ersatzbaugruppe tauschbar ist.According to a variant (not shown), the multi-surface cylinder 2, the valves 4 and 6 and the pressure accumulator 8 form a compact assembly, so that space can be saved and the entire assembly can be exchanged for a replacement assembly to increase the productive time.

Gemäß einer (nicht dargestellten) Variante der ersten Ausführungsform ist beispielsweise aus bauraumlichen Erwägungen heraus und/oder bei anderen Massenverhältnissen eine zylindergehäuseseitige Kopplung an den Stopfpickel und eine kolbenstangenseitige Kopplung an den Maschinenrahmen vorgesehen.According to a variant (not shown) of the first embodiment, a cylinder housing-side coupling to the tamping tine and a piston rod-side coupling to the machine frame are provided, for example due to space considerations and/or in the case of different mass ratios.

Die Fig. 2 zeigt eine zweite Ausführungsform der Erfindung. Diese unterscheidet sich von der ersten Ausführungsform zumindest dadurch, dass der Mehrflächenzylinder 2 ein Tandemzylinder 52 ist. Dieser weist in dem Zylindergehäuse 12 axial etwa mittig zwischen dem Zylinderboden 14 und dem Kolbenstangen-seitigen axialen Ende des Zylindergehäuses 12 einen an der Zylinderwand 18 festgelegten, ringförmigen Zylinderzwischenboden 54 auf, welcher den Zylinder 2 in zwei axial hintereinander angeordnete Zylinderarbeitsräume 56 teilt. Der Kolben 24 umfasst zueinander festgelegt neben dem im Zylinderboden-nahen Zylinderarbeitsraum 56 fluiddicht axial verlagerbaren, scheibenförmigen Kolbenboden 26 und der im Zylinderzwischenboden 54 fluiddicht gelagerten Kolbenstange 28 einen im Zylinderbodenfernen Arbeitsraum 56 fluiddicht axial verlagerbaren Kolbenzwischenboden 58.the 2 shows a second embodiment of the invention. This differs from the first embodiment at least in that the multi-surface cylinder 2 is a tandem cylinder 52 . This has in the cylinder housing 12 axially approximately centrally between the cylinder base 14 and the piston rod-side axial end of the cylinder housing 12 an annular intermediate cylinder base 54 fixed to the cylinder wall 18, which divides the cylinder 2 into two cylinder working chambers 56 arranged axially one behind the other. In addition to the disk-shaped piston head 26, which is fixed to one another in the cylinder working chamber 56 near the cylinder base and is axially displaceable in a fluid-tight manner, and the piston rod 28, which is mounted in a fluid-tight manner in the intermediate cylinder base 54, an intermediate piston base 58 that is axially displaceable in a fluid-tight manner in the working chamber 56 remote from the cylinder base.

Die Kolbenflächen 32 begrenzen jeweils axial eine Kammer 40. Die erste Kammer 42 wird durch die erste Kolbenfläche 34, die Zylinderwand 18, den Zylinderzwischenboden 54 und die Kolbenstange 28 definiert. Ein Überdruck in einer ersten Kammer 42 wirkt auf die erste Kolbenfläche 34 zum Einfahren der Kolbenstange 28. Die zweite Kolbenfläche 36 befindet sich Zylinder(zwischen)boden-seitig an dem Kolbenzwischenboden 58. Die zweite Kammer 44 wird durch die zweite Kolbenfläche 36, die Zylinderwand 18, die Kolbenstange 28 und Zylinderzwischenboden 54 definiert. Ein Überdruck in der zweiten Kammer 44 wirkt auf die zweite Kolbenfläche 36 zum Ausfahren der Kolbenstange 28. Die dritte Kammer 46 wird durch den Kolben 24, die Zylinderwand 18 und den Zylinderboden 14 definiert. Ein Überdruck in der dritten Kammer 46 wirkt auf die dritte Kolbenfläche 38 zum Ausfahren der Kolbenstange 28. Die Kolbenflächen 34 und 36 sind gleich groß. Ein Raum zwischen dem Kolbenzwischenboden 58 und dem Kolbenstangen-seitigen axialen Ende des Zylindergehäuses 12 ist vorzugsweise entlüftet.The piston surfaces 32 each axially delimit a chamber 40 . The first chamber 42 is defined by the first piston surface 34 , the cylinder wall 18 , the intermediate cylinder floor 54 and the piston rod 28 . An overpressure in a first chamber 42 acts on the first piston surface 34 to retract the piston rod 28. The second piston surface 36 is located on the cylinder (intermediate) base side on the intermediate piston base 58. The second chamber 44 is defined by the second piston surface 36, the cylinder wall 18, the piston rod 28 and the cylinder intermediate base 54 are defined. An overpressure in the second chamber 44 acts on the second piston surface 36 to extend the piston rod 28. The third chamber 46 is defined by the piston 24, the cylinder wall 18 and the cylinder base 14. An overpressure in the third chamber 46 acts on the third piston surface 38 to extend the piston rod 28. The piston surfaces 34 and 36 are of equal size. A space between the intermediate piston base 58 and the axial end of the cylinder housing 12 on the piston rod side is preferably vented.

Die Fig. 3 zeigt eine Variante der zweiten Ausführungsform. Eine vierte Kolbenfläche 62 befindet sich Zylinderdeckel-seitig an dem Kolbenzwischenboden 58. Eine vierte Kammer 60 wird durch die vierte Kolbenfläche 62, die Zylinderwand 18, den Zylinderdeckel 16 und die Kolbenstange definiert. Ein Überdruck in der vierten Kammer 60 wirkt auf die vierte Kolbenfläche 62 zum Einfahren der Kolbenstange 28. Das Ausfahrventil 6 ist ein Ein-/Ausfahrventil, wie ein gesteuertes 4/3-Wegeventil. Gegenüber der Grundvariante der zweiten Ausführungsform kann mehr Fluiddruck zum Einfahren auf die Kolbenstange aufgebracht werden, beispielsweise um ein schwereres Anbaugerät einzufahren, oder zum Anheben einer Schiene.the 3 shows a variant of the second embodiment. A fourth piston surface 62 is located on the cylinder cover side on the intermediate piston floor 58. A fourth chamber 60 is defined by the fourth piston surface 62, the cylinder wall 18, the cylinder cover 16 and the piston rod. An overpressure in the fourth chamber 60 acts on the fourth piston surface 62 to retract the piston rod 28. The extension valve 6 is an on/off valve, like a controlled 4/3-way valve. Compared to the basic variant of the second embodiment, more fluid pressure can be applied to the piston rod for retracting, for example in order to retract a heavier attachment or to raise a rail.

Die vierte Kammer 60 kommuniziert dabei mit einem Druckspeicher 8, um ein wirkungsgradverbessertes Vibrieren des Kolbens 24 zu ermöglichen.The fourth chamber 60 communicates with a pressure accumulator 8 in order to enable the piston 24 to vibrate with improved efficiency.

Eine nicht dargestellte Untervariante beinhaltet anstelle der Druckspeicher 8 oder diese ergänzend einen zwischen zwei etwa gleich großen Ausgleichskammern verlagerbaren Ausgleichskolben (Ausgleichselement, wie auch Ausgleichsmembran), von denen eine Ausgleichskammer mit der dritten Kammer 46 fluidisch kommuniziert, und von denen die andere Ausgleichskammer mit der vierten Kammer 60 fluidisch kommuniziert. Gegenüber der vorstehenden Lösung mit zwei Druckspeichern 8 verbessert dies nochmals den Wirkungsgrad.A sub-variant not shown includes, instead of or in addition to the pressure accumulator 8, a compensating piston (compensating element as well as compensating membrane) that can be displaced between two compensating chambers of approximately the same size, of which one compensating chamber communicates fluidly with the third chamber 46, and the other compensating chamber communicates with the fourth Chamber 60 communicates fluidly. Compared to the above solution with two pressure accumulators 8, this again improves the efficiency.

Claims (5)

  1. Fluid circuit for vibration driving, the circuit comprising a multiple-surface cylinder (2, 10, 52), a first valve (4) which is connected to the first two counteracting piston surfaces (34, 36) of a piston (24) of the multiple-surface cylinder (2, 10, 52), and a second valve (6) which is connected to a third piston surface (38), the multiple-surface cylinder (2, 10, 52) having a first piston surface (34), a second piston surface (36) which is arranged so as to counteract the first piston surface (34), and a third piston surface (38) which is arranged so as to act identically to the second piston surface (36),
    the first valve (4) being a control valve which can be vibrated and is connected to an actuating device for vibration specification; characterized in that the third piston surface (38) is a piston surface which acts so as to extend the piston when pressurized, and in that the second valve (6) is configured to make an extension of the piston (24) possible while the piston (24) is vibrating.
  2. Fluid circuit according to Claim 1, the first two piston surfaces (34, 36) in each case having an active piston area of identical size.
  3. Fluid circuit according to either of Claims 1 and 2, a pressure accumulator (8) being connected in a communicating manner to the third piston surface (38).
  4. Actuating method for vibration driving for a multiple-surface cylinder (2, 10, 52) which has a first piston surface (34), a second piston surface (36) which is arranged so as to counteract the first piston surface (34), and a third piston surface (38) which is arranged so as to act identically to the second piston surface (36),
    the first piston surface (34) and the second piston surface (36) being loaded with pressure in an alternating manner for vibration driving;
    the first piston surface (34) and the second piston surface (36) being connected to a first valve (4), a slide of the valve (4) being vibrated for vibration driving; characterized in that,
    for simultaneous vibration driving and piston extension, the third piston surface (38) is loaded with pressure, and the first valve (4) is vibrated about a shifted zero point.
  5. Actuating method according to Claim 4 for the multiple-surface cylinder (2, 10, 52), the first piston surface (34) and the second piston surface (36) in each case having an active piston area of identical size, and the vibration being specified in accordance with a zero point-symmetrical sine function.
EP19168620.3A 2018-04-17 2019-04-11 Vibration driving with a multi-surface cylinder Active EP3556478B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018205821.0A DE102018205821A1 (en) 2018-04-17 2018-04-17 Vibration drive with a multi-surface cylinder

Publications (2)

Publication Number Publication Date
EP3556478A1 EP3556478A1 (en) 2019-10-23
EP3556478B1 true EP3556478B1 (en) 2022-06-15

Family

ID=66105174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19168620.3A Active EP3556478B1 (en) 2018-04-17 2019-04-11 Vibration driving with a multi-surface cylinder

Country Status (2)

Country Link
EP (1) EP3556478B1 (en)
DE (1) DE102018205821A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19912984A1 (en) * 1998-03-23 1999-10-07 Team Corp Preload piston actuator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT339358B (en) * 1974-05-09 1977-10-10 Plasser Bahnbaumasch Franz DRIVE AND CONTROL DEVICE FOR VIBRATING AND ADJUSTABLE TOOLS OF A TRACK MACHINE, IN PARTICULAR MOBILE TRACK PAD MACHINE
DE102012020581A1 (en) * 2012-10-22 2014-04-24 Robert Bosch Gmbh Hydraulic circuit for a hydraulic axis and a hydraulic axis
AT513973B1 (en) 2013-02-22 2014-09-15 System7 Railsupport Gmbh Tamping unit for a tamping machine
EP2902546B2 (en) 2014-01-30 2020-09-02 HP3 Real GmbH Device for the compaction of railway ballast
AT516311B1 (en) 2014-10-06 2016-06-15 System 7 - Railsupport GmbH Track tamping machine for compacting the ballast bed of a track
ES2583373B1 (en) * 2015-03-18 2017-06-15 Jose Antonio Ibañez Latorre RAILWAY MAINTENANCE MACHINE FOR LEVELING AND ALIGNMENT OF ROAD, WITH CAPACITY TO OPERATE WITHOUT INTERRUPTIONS IN YOUR RUNWAY ADVANCED AND OPERATE IN ROAD CHANGES BATTING THE DEVIVED ROAD.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19912984A1 (en) * 1998-03-23 1999-10-07 Team Corp Preload piston actuator

Also Published As

Publication number Publication date
EP3556478A1 (en) 2019-10-23
DE102018205821A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
EP2498982B1 (en) Machine press
EP3239398B1 (en) Tamping unit for a rail tamping machine
AT517843B1 (en) Method and tamping unit for submerging a track
DE2507020A1 (en) TRACK MACHINE, IN PARTICULAR MOBILE TRACK TAMPING MACHINE WITH VIBRANT AND ADAPTABLE TAMPING TOOLS
AT513973A4 (en) Tamping unit for a tamping machine
EP0135479B1 (en) Device for driving and extracting
WO2023161173A1 (en) Hydraulic actuation device for a hydraulically actuated implement
EP3743560B1 (en) Tamping assembly for a track-tamping machine
WO2007147422A1 (en) System and method for manufacturing concrete products
EP3556478B1 (en) Vibration driving with a multi-surface cylinder
DE2114282A1 (en) Vibration drive for tool assemblies of a track construction machine
AT519219A4 (en) Stopfaggregat for clogging thresholds of a track
EP3115190A1 (en) Device and method for controlling the principal drive of a precision cutting press
EP1728564A1 (en) Vibration generator with an operating piston that is slidingly supported between pressure chambers
EP3094480B1 (en) Device and method for compacting mineral mixtures or for deep drawing sheet metal or plastic sheets
DE202014000704U1 (en) Device for compacting mineral mixtures
DE4340699A1 (en) Vehicle-mounted dynamic ground-compacting machine
EP0058131B1 (en) Vibrator
DE2621726C2 (en) Cutting shock absorption device on presses
WO2002038365A1 (en) Method and device for compressing granular materials
DE10000109B4 (en) Zeroing device for a hydrostatic piston-cylinder unit
DE102006018810A1 (en) Apparatus for the production of concrete blocks with a vibrator and actuator
EP2815832B1 (en) Break separator
DE10061449A1 (en) Compacting device for compacting product bodies consisting of granular mass
DE202014000162U1 (en) Device for compacting mineral mixtures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200423

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019004620

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B06B0001180000

Ipc: F15B0011036000

RIC1 Information provided on ipc code assigned before grant

Ipc: B06B 1/18 20060101ALI20220215BHEP

Ipc: E01B 27/16 20060101ALI20220215BHEP

Ipc: F15B 15/14 20060101ALI20220215BHEP

Ipc: F15B 11/036 20060101AFI20220215BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004620

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1498548

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220916

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221017

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004620

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

26N No opposition filed

Effective date: 20230316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230627

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230411

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230411

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230411