EP3556478A1 - Vibration driving with a multi-surface cylinder - Google Patents

Vibration driving with a multi-surface cylinder Download PDF

Info

Publication number
EP3556478A1
EP3556478A1 EP19168620.3A EP19168620A EP3556478A1 EP 3556478 A1 EP3556478 A1 EP 3556478A1 EP 19168620 A EP19168620 A EP 19168620A EP 3556478 A1 EP3556478 A1 EP 3556478A1
Authority
EP
European Patent Office
Prior art keywords
piston
cylinder
valve
vibration
piston surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19168620.3A
Other languages
German (de)
French (fr)
Other versions
EP3556478B1 (en
Inventor
Leopold Sandberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3556478A1 publication Critical patent/EP3556478A1/en
Application granted granted Critical
Publication of EP3556478B1 publication Critical patent/EP3556478B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • F15B11/036Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of servomotors having a plurality of working chambers
    • F15B11/0365Tandem constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1466Hollow piston sliding over a stationary rod inside the cylinder
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/365Directional control combined with flow control and pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50554Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure downstream of the pressure control means, e.g. pressure reducing valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5158Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/526Pressure control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6658Control using different modes, e.g. four-quadrant-operation, working mode and transportation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7055Linear output members having more than two chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7055Linear output members having more than two chambers
    • F15B2211/7056Tandem cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/77Control of direction of movement of the output member
    • F15B2211/7733Control of direction of movement of the output member providing vibrating movement, e.g. dither control for emptying a bucket

Definitions

  • the invention relates to a use of a cylinder for vibration driving.
  • the invention relates to a fluid circuit for vibration driving comprising a cylinder.
  • the invention relates to a driving method for a vibration-driven cylinder.
  • track construction track beds made of gravel or the like are used to support sleepers. To produce and / or reprocess the crushed stone is pushed ("stuffed") under the sleepers, and thus the tracks are lifted.
  • Stopfaggregate be used which pierce with a stuffing tool, such as a tamping pick, or a Stopftechnikmaschinefar in the gravel, and which then with an example pivoting movement ("Beistellen” or "infeed” or “swinging") the gravel under the respective Push threshold.
  • a vibrating or oscillating tool is of dual use, on the one hand to facilitate penetration of the tool into the ballast, and on the other hand to achieve a consolidating compaction of the ballast.
  • a vibration drive such as a fluidic vibration drive, serves to drive at least one stuffing tool.
  • WO 2014/127393 A1 discloses generically forming to provide a single hydraulic cylinder, such as a differential cylinder, with a displacement sensor for determining the hydraulic cylinder position, wherein the hydraulic cylinder allegedlysororsignalcommun as Beistellantrieb and is driven as a vibration drive, wherein for actuation preferably at least one servo or proportional valve is provided.
  • Fluids are compressible.
  • the fluids designated as “incompressible fluids” also have elasticity; For example, for mineral oils, one may assume a compressibility factor of 0.7% to 0.8% per 100 bars. It follows for the above construction with a single hydraulic cylinder in differential cylinder design that for generating the vibration, the entire volume of fluid in the respective cylinder chamber, so the volume for the Kolbenausfahrmos in addition to the vibration volume, each cycle must be compressed under energy use (and relaxed).
  • the WO 2016/054667 A1 discloses a track tamping machine with two independently transversely displaceable tamping units, which carry auxiliary cylinders for pivoting Stopfarmen for compacting ballast.
  • the EP 2 902 546 A1 discloses a ballast bed compaction apparatus which provides on a machine frame a stabilizer assembly equipped to engage around a rail head. By swinging the stabilization unit by means of a hydraulic cylinder vibrator, a horizontal swinging of the track is achieved, which leads to a settlement of the track on the ballast bed.
  • the present invention seeks to provide a vibration drive with a high efficiency.
  • the object is achieved by the features of claim 1.
  • the object is achieved by the features of claim 4.
  • the driving method for vibration driving the object is achieved by the features of claim 9.
  • each function (such as feed motion, vibration in the first direction, vibration in the opposite direction and the like) can be assigned a fluid chamber, so that each function is optimized, such as efficiency-optimized, can be designed and / or controlled.
  • Another advantage is that in a multi-surface cylinder than a single module several functions are integrated, so on the one hand assembly costs during manufacture and maintenance can be reduced, and on the other hand saves space or for other functions, such as a larger piston area and / or a longer Kolbenausfahrweg, can be used. If it is a piston-extending feed drive, a high extension force can be achieved.
  • a multi-surface cylinder may be understood to mean a fluid cylinder on the piston of which at least three fluidically effective piston surfaces are present.
  • the piston surfaces can be pressurized, for example, via cylinder chambers or fluid chambers that are not fluidly communicating with one another.
  • a rapid traverse cylinder can be described as having at least one piston rod-side annular piston surface, an oppositely directed or piston rod-remote annular piston surface and a piston rod-remote circular piston surface, wherein the rod-facing piston surfaces structurally separated do not communicate fluidly.
  • a tandem cylinder can be described as a fluid cylinder, at the piston rod offset in the longitudinal direction at least two piston plates are arranged, wherein two mutually facing and successively arranged piston surfaces structurally separated do not communicate fluidly.
  • a preferred fluid is a hydraulic fluid because of the higher achievable pressures, in particular a hydraulic fluid for mobile application because of biodegradability.
  • a multi-surface cylinder wherein the feed drive and the vibration drive in the feed direction in each case at least one piston surface is assigned.
  • a tamping pick to be driven can be driven into a ballast bed in a structurally simple manner with high force.
  • these at least two piston surfaces are fluidly separate. Two fluidically separate piston surfaces are, even hydrostatically, and preferably over the entire piston stroke, acted upon with different pressure levels, they are not fluidly communicating.
  • a multi-surface cylinder as above, wherein the vibratory drive is associated with a vibratable valve, so that the vibratory driving control technology is simple and reliable implemented by a vibration excitation of the valve.
  • a valve associated with the delivery drive valve may be provided, wherein the valves are separate or independent of each other in order to separately optimize the vibration drive and the delivery drive, such as optimizing efficiency.
  • a pressure accumulator connected to a cylinder chamber of a fluid cylinder and connected in a fluidically communicating manner.
  • the fluidically communicating pressure accumulator can inhibit the compression of the fluid in the connected cylinder chamber, so that an energy compressing the fluid can be saved effect-increasing.
  • This advantage is achieved in all cylinder designs, such as a plunger cylinder with external vibration drive or a differential cylinder with vibrating pressurization.
  • a pressure accumulator which is connected to a cylinder chamber of a divided by a piston in at least two cylinder chambers fluid cylinder, as fluidly communicating connected.
  • a fluid circuit for vibratory driving such as for driving a stuffing plug, comprises, according to the invention, a multi-surface cylinder, a first valve and a second valve.
  • the first valve is connected to first two counteracting or oppositely disposed piston surfaces of a piston of the multi-surface cylinder, as communicatively connected.
  • the first valve may be connected via separate connections and / or lines to the first two piston surfaces.
  • a connection such as a communicating connection of a valve and a piston surface may mean that the valve is valve position-dependent for pressurizing (including vacuum pressurizing) and connected to the cylinder.
  • the second valve is connected to a third piston surface as communicatively connected.
  • the circuit according to the invention has the advantage that the piston surfaces of the multi-surface cylinder and / or the valves optimized, as optimized efficiency, can be designed.
  • the third piston surface is a piston-pressure-acting piston surface pressurized, by applying pressure to the third piston surface and the piston surface of the first two piston surfaces acting the same way, a high overall force is available, for example for a penetration of the tamping chip to be driven into a ballast bed.
  • the first two piston surfaces each have an at least approximately equal effective piston area. This is how it works the same amount in terms of areas when Kolbenverlagern reaches an approximately equal volume flow in / out of the respective cylinder chamber.
  • a compression of the fluid in the cylinder chamber belonging to the third piston surface can be replaced by a compression (for example a gas bubble) and / or compensation movement (for example of a spring-biased pressure storage bottom) and / or the like in / at the pressure accumulator.
  • a corresponding dimensioning of the pressure accumulator for example, a gas bubble volume and / or Druck Amsterdamteilverfahrwegs
  • a minimum amplitude and / or a maximum amplitude of the vibratory motion ensured and / or optimized, such as efficiency-optimized and / or optimized function.
  • the first valve is a vibratable control valve, this facilitates a vibratory movement of the piston and thus of the stuffing plug to be driven.
  • Preferred control valve designs include a proportional valve and / or a servo valve.
  • the control valve is connected to a control device for vibration preselection in order to effect a vibration that can be predetermined according to amplitude and / or frequency and / or energy.
  • the control valve can therefore be applied oscillating.
  • the control valve is an electrically and / or hydraulically and / or two-stage pilot-operated valve.
  • the fluid circuit and in particular the multi-surface cylinder and the first valve are suitable, with a frequency of up to about 50 Hz, more preferably with a frequency of up to about 40 Hz, even more preferably with a frequency of up to about 35 Hz , and / or oscillate at a frequency of about 25 to about 40 Hz. According to experience, these frequency ranges are particularly advantageous for compacting a ballast bed.
  • the hydraulic circuit and in particular the multi-surface cylinder and the first valve are suitable for the piston relative to the cylinder housing having an amplitude up to about 6 mm, more preferably up to about 3 mm, more preferably at least about 3 mm, and / or most preferably oscillates to about 2 mm.
  • this vibration promotes rapid and efficient compaction of a ballast bed.
  • the fluid circuit has a measuring device for measuring the fluid pressure in / on the cylinder and / or in / on the first valve. By measuring the (vibrating) fluid pressure curve, for example, a ballast bed compaction can be tested.
  • a fluid circuit for vibratory driving comprising a divided by a piston in at least two cylinder chambers fluid cylinder and at least one arranged to pressurize at least one of the chambers and / or fluidly communicating connected and / or connected valve, such as a vibratable valve, wherein a pressure accumulator with at least one of the cylinder chambers, in particular the piston surface larger cylinder chamber, fluidically communicates.
  • the fluidically communicating pressure accumulator can inhibit the compression of the fluid in the connected cylinder chamber, so that an energy that compresses the fluid can be saved in terms of efficiency. This advantage is thus achievable not only in multi-surface cylinders, but also in differential cylinders and the like.
  • the accumulator can be structurally simple volume compensating executed.
  • the accumulator may advantageously be dimensioned to compensate for piston area differential to inhibit unsymmetrical fluid compression.
  • An inventive driving method for vibration driving for example, a stuffing peg, is provided for a multi-surface cylinder, a first piston surface, a piston surface of the first counteracting arranged, and preferably fluidly separated, second piston surface and a second piston surface with the same effect, and preferably fluidly separated, third Has piston surface.
  • the driving method according to the invention may include, for vibrational driving, the piston surfaces first piston surface and second piston surface alternately pressurized.
  • the pressure may be a negative pressure or, preferably, an overpressure with respect to the pressure level applied to the respective other of the two piston surfaces. This process step advantageously causes a force-and-degradation for solidifying beispielswiese a ballast bed.
  • the driving method according to the invention may include pressurizing the second piston surface and / or the third piston surface for piston extension (or alternatively for piston retraction).
  • the pressure may be a negative pressure or, preferably, an overpressure, see above.
  • This method step advantageously brings about a displacement of a coupling point of the piston rod relative to the cylinder housing, in order, for example, to advance penetration of a stuffing plug to be driven into a ballast bed.
  • the driving method according to the invention may include for vibrationally driving the piston surfaces first piston surface and second piston surface alternately or oscillatingly pressurized, and for piston extension or piston retraction to pressurize the second piston surface and / or the third piston surface with pressure.
  • This process step causes a simultaneous or superimposed piston extension / retraction and vibration driving, so that, for example, a constantly progressive compression of a ballast bed with time savings becomes possible.
  • the driving method for the multi-surface cylinder wherein the piston surfaces first piston surface and second piston surface with a first valve or respectively connected to working ports of a first valve, as communicatively connected, be suitable.
  • the driving method in the vibration driving step may include vibrating a spool of the valve.
  • the driving method may include simultaneous vibration driving and piston extension to both pressurize the third piston surface and to vibrate the first valve by a shifted zero point.
  • the method step thus contains two parallel steps, which can preferably be performed independently of one another, how they can be arranged independently of one another and / or can be started and ended independently of one another.
  • the two parallel steps allow a progressively compacting of a ballast bed by making two relatively simple control actions.
  • the control method for the multi-surface cylinder is particularly simple in terms of control technology, with the piston surfaces having the first piston surface and the second piston surface each having an equal effective piston area, and the vibration being predetermined in accordance with a zero-point symmetrical function, such as such a sinusoidal function.
  • a control with a zero-point symmetric function, in particular sine function, is particularly uniform and scalable.
  • a fluid circuit 1 for vibration drive comprises a multi-surface cylinder or multi-surface fluid cylinder designated as a whole by 2, a vibration valve 4 as a first valve, an extension valve 6 as a second valve and a pressure reservoir 8.
  • the multi-surface cylinder 2 is a rapid-action cylinder 10. It has a cylinder housing 12 with a cylinder wall 18, which is closed on each end with a cylinder bottom 14 and a cylinder cover 16, and with a cylinder-bottom-fixed punch 20 concentric therewith. Therein, along a longitudinal axis 22 defined by the cylinder wall 18, a piston 24 with an annular piston head 26, an adjoining hollow cylindrical piston rod 28 and an axially end piston rod bottom 30 are accommodated.
  • the rapid traverse cylinder 10 has three effective for axial piston displacement arranged piston surfaces, which are designated together with 32.
  • a first piston surface 34 is located on the side of the piston rod 28 on the piston head 26.
  • a second piston surface 36 is located on the piston rod bottom 30 facing the punch 20.
  • a third piston surface 38 is located on the piston rod 28 side facing away from the piston head 26th
  • the piston surfaces 32 respectively delimit a chamber 40 axially.
  • a first chamber 42 is defined here by the first piston surface 34, the cylinder wall 18, the cylinder cover 16 and the piston rod 28.
  • An overpressure in the first chamber 42 acts on the first piston surface 34 for retraction of the piston rod 28.
  • a second chamber 44 is defined here by the second piston surface 36, the piston rod 28 and the plunger 20.
  • An overpressure in the second chamber 44 acts on the second piston surface 36 for extending the piston rod 28.
  • a third chamber 46 is defined here by the piston 24, the cylinder wall 18, the cylinder bottom 14 and the plunger 20. An overpressure in the third chamber 46 acts on the third piston surface 38 for extending the piston rod 28.
  • the vibration valve 4 is a predeterminably vibratable valve. It is provided as a 4/3-way valve with two working ports 48 and 50 supply connections. For example, it is a proportional slide valve, and it has an electrically controllable pilot control device, which can deflect the slide (not shown), for example, to stimulate preferably symmetrical vibration by an adjustable operating point / zero point.
  • a working connection 48 of the vibration valve 4 communicates fluidically with the first chamber 42.
  • the other working connection 48 of the vibration valve 4 communicates fluidically through the ram 20 with the second chamber 44.
  • the deployment valve 6 is a switchable valve, such as a pilot-operated pressure relief valve having two supply ports 50 and a working port 48 that fluidly communicates with the third chamber 46.
  • the accumulator 8 communicates fluidly with the third chamber 46.
  • the pressure accumulator 8 branches off from the line between the extension valve 6 and third chamber 46.
  • the vibration valve 4 is vibrated, so that the chambers 42 and 44 are alternately applied with a frequency of up to 35 Hz with fluid pressure. For example, in each period in each of the chambers 42, 44 fluid pressure is built up and released once. In this case, the piston 24, for example, a Amplitude of up to 2mm relative to the cylinder housing shifted.
  • the piston movement pumps the fluid between the third chamber 46 and the accumulator 8 back and forth. Since the piston surfaces 34, and 36 are the same size, a symmetrical vibration of the disk of the vibration valve is made possible by a zero point for pressurizing the chambers 42, 44.
  • the piston 24 fluid is supplied, for example, via the extension valve 6 of the third chamber 46 under pressure fluid is supplied via the vibration valve 4 of the second chamber 44 under pressure fluid, and is discharged via the vibration valve 4 from the first camera 42 fluid.
  • the cylinder housing is coupled to a (not shown) machine frame or the like, as fixedly mounted, hinged and / or pivotally mounted, and the piston is coupled to a (not shown) to be driven tamping pick, as fixedly mounted, articulated and / or pivotally mounted , Since the mass of the cylinder piston is usually smaller than the mass of the cylinder housing, this construction is energetically favorable, and therefore has a high efficiency.
  • valves 4 and 6 and the pressure accumulator 8 form a compact assembly, so that space can be saved, and for productive time increase, the entire assembly is exchangeable for a replacement module.
  • a cylinder housing-side coupling to the tamping pommel and a piston rod-side coupling to the machine frame are provided, for example, for space considerations and / or other mass ratios.
  • the Fig. 2 shows a second embodiment of the invention.
  • the multi-surface cylinder 2 is a tandem cylinder 52.
  • This has in the cylinder housing 12 axially approximately centrally between the cylinder bottom 14 and the piston rod-side axial end of the cylinder housing 12 an established on the cylinder wall 18, annular cylinder intermediate bottom 54, which divides the cylinder 2 into two axially successively arranged cylinder working spaces 56.
  • the piston 24 includes fixed to each other in addition to the cylinder bottom near-cylinder working space 56 fluid-axially displaceable, disc-shaped piston head 26 and the cylinder intermediate bottom 54 fluid-tight piston rod 28 a fluid-tight axially displaceable in the cylinder bottom working space 56 piston intermediate bottom 58th
  • the piston surfaces 32 respectively delimit a chamber 40 axially.
  • the first chamber 42 is defined by the first piston surface 34, the cylinder wall 18, the cylinder intermediate bottom 54 and the piston rod 28.
  • An overpressure in a first chamber 42 acts on the first piston surface 34 for retraction of the piston rod 28.
  • the second piston surface 36 is located on the bottom side of the piston intermediate bottom 58.
  • the second chamber 44 is defined by the second piston surface 36, the cylinder wall 18 defining the piston rod 28 and cylinder intermediate bottom 54.
  • An overpressure in the second chamber 44 acts on the second piston surface 36 for extending the piston rod 28.
  • the third chamber 46 is defined by the piston 24, the cylinder wall 18 and the cylinder bottom 14.
  • An overpressure in the third chamber 46 acts on the third piston surface 38 for extending the piston rod 28.
  • the piston surfaces 34 and 36 are the same size. A space between the piston intermediate bottom 58 and the piston rod-side axial end of the cylinder housing 12 is preferably vented.
  • the Fig. 3 shows a variant of the second embodiment.
  • a fourth piston surface 62 is located on the cylinder head side on the piston intermediate bottom 58.
  • a fourth chamber 60 is defined by the fourth piston surface 62, the cylinder wall 18, the cylinder cover 16 and the piston rod.
  • An overpressure in the fourth chamber 60 acts on the fourth piston surface 62 to retract the piston rod 28.
  • the deployment valve 6 is an on / off valve, such as a controlled 4/3 way valve. Compared to the basic variant of the second embodiment, more fluid pressure can be applied for retraction onto the piston rod, for example to retract a heavier attachment, or for lifting a rail.
  • the fourth chamber 60 communicates with a pressure accumulator 8 in order to allow an efficiency-enhanced vibration of the piston 24.
  • compensation piston piston (compensating element, as well as compensating diaphragm)
  • a compensation chamber communicates fluidically with the third chamber 46
  • the other compensation chamber with the fourth Chamber 60 fluidly communicates.
  • a multi-surface cylinder as combined feed drive and vibration drive for efficient vibration drive is disclosed.
  • a fluid circuit for efficient vibration driving comprising a multi-surface cylinder, a first valve connected to first two opposing piston surfaces of a piston of the multi-surface cylinder, and a second valve connected to a third piston surface.
  • a driving method for vibratory driving for a multi-surface cylinder having a first piston surface, a second piston surface counteracting the first piston surface, and a third piston surface equally disposed with the second piston surface, wherein the piston surfaces alternately pressurize the piston surface and second piston surface to vibrate be, and / or wherein the piston extension, the second piston surface and / or the third piston surface is pressurized / be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Offenbart ist die Verwendung eines Mehrflächenzylinders (2, 10 52) als kombinierter Zustellantrieb und Vibrationsantrieb zum effizienten Vibrationsantreiben. Ferner wird eine Fluidschaltung (1) zum effizienten Vibrationsantreiben offenbart, wobei die Schaltung (1) einen Mehrflächenzylinder (2, 10 52), ein erstes Ventil (4), das mit ersten beiden entgegenwirkenden Kolbenflächen (34, 36) eines Kolbens (24) des Mehrflächenzylinders (2, 10 52) verbunden ist, und ein zweites Ventil (6), das mit einer dritten Kolbenfläche (38) verbunden ist, umfasst. Schließlich wird ein Ansteuerverfahren zum Vibrationsantreiben für einen Mehrflächenzylinder (2, 10 52) offenbart, der eine erste Kolbenfläche (34), eine der ersten Kolbenfläche (34) entgegenwirkend angeordnete zweite Kolbenfläche (36) und eine zu der zweiten Kolbenfläche (36) gleichwirkend angeordnete dritte Kolbenfläche (38) aufweist, wobei zum Vibrationsantreiben die Kolbenflächen erste Kolbenfläche (34) und zweite Kolbenfläche (36) abwechselnd mit Druck beaufschlagt werden, und/oder wobei zum Kolbenausfahren die zweite Kolbenfläche (36) und/oder die dritte Kolbenfläche (38) mit Druck beaufschlagt wird.Disclosed is the use of a multi-surface cylinder (2, 10 52) as a combined feed drive and vibration drive for efficient vibration drive. Furthermore, a fluid circuit (1) for efficient vibration driving is disclosed, the circuit (1) having a multi-surface cylinder (2, 10 52), a first valve (4) which is connected to the first two opposing piston surfaces (34, 36) of a piston (24) of the multi-surface cylinder (2, 10 52), and a second valve (6) which is connected to a third piston surface (38) comprises. Finally, a control method for vibratory driving of a multi-surface cylinder (2, 10 52) is disclosed which has a first piston surface (34), a second piston surface (36) arranged counteracting the first piston surface (34) and a second piston surface (36) arranged in the same way as the second piston surface (36) third piston surface (38), wherein the piston surfaces first piston surface (34) and second piston surface (36) are alternately pressurized for the purpose of vibrating, and / or where the second piston surface (36) and / or the third piston surface (38) are used to extend the piston is pressurized.

Description

Die Erfindung betrifft zum Einen eine Verwendung eines Zylinders zum Vibrationsantreiben. Zum Anderen betrifft die Erfindung eine Fluidschaltung zum Vibrationsantreiben umfassend einen Zylinder. Zum Nächsten betrifft die Erfindung ein Ansteuerverfahren für einen vibrationsantreibbaren Zylinder.The invention relates to a use of a cylinder for vibration driving. On the other hand, the invention relates to a fluid circuit for vibration driving comprising a cylinder. Next, the invention relates to a driving method for a vibration-driven cylinder.

Im Gleisbau werden Gleisbetten aus Schotter oder dergleichen zur Unterlage von Schwellen verwendet. Zur Herstellung und/oder zur Wiederaufbereitung wird der Schotter unter die Schwellen gedrückt ("gestopft"), und werden somit die Gleise gehoben. Dabei werden Stopfaggregate verwendet, welche mit einem Stopfwerkzeug, wie einen Stopfpickel, oder einem Stopfwerkzeugpaar in den Schotter einstechen, und welche dann mit einer beispielsweise schwenkenden Bewegung ("Beistellen" bzw. "Zustellen" bzw. "Einschwenken") den Schotter unter die jeweilige Schwelle schieben. Ein Vibrieren bzw. Schwingen bzw. Oszillierendes Werkzeugs ist dabei von doppeltem Nutzen, um einerseits ein Eindringen des Werkzeugs in den Schotter zu erleichtern, und andererseits eine verfestigende Verdichtung des Schotters zu erreichen. Ein Vibrationsantrieb, wie ein fluidischer Vibrationsantrieb, dient dabei zum Antreiben zumindest eines Stopfwerkzeugs.In track construction track beds made of gravel or the like are used to support sleepers. To produce and / or reprocess the crushed stone is pushed ("stuffed") under the sleepers, and thus the tracks are lifted. Stopfaggregate be used which pierce with a stuffing tool, such as a tamping pick, or a Stopfwerkzeugpaar in the gravel, and which then with an example pivoting movement ("Beistellen" or "infeed" or "swinging") the gravel under the respective Push threshold. A vibrating or oscillating tool is of dual use, on the one hand to facilitate penetration of the tool into the ballast, and on the other hand to achieve a consolidating compaction of the ballast. A vibration drive, such as a fluidic vibration drive, serves to drive at least one stuffing tool.

Die WO 2014 / 127393 A1 nennt als Stand der Technik, für Stopfwerkzeuge einen Hydraulikzylinder für eine Zustellbewegung und einen Hydraulikzylinder für eine Vibrationsbewegung mechanisch in Reihe zu schalten, wobei daran neben einem hohen Wartungsaufwand auch nachteilig sei, dass eine Amplitudengröße nicht frei einstellbar sei.The WO 2014/127393 A1 As the state of the art, a hydraulic cylinder for a feed movement and a hydraulic cylinder for a vibratory movement are mechanically connected in series for stuffing tools, and besides a high maintenance effort, it is also disadvantageous that an amplitude variable can not be freely adjusted.

Dieselbe WO 2014 / 127393 A1 offenbart gattungsbildend, einen einzelnen Hydraulikzylinder, wie einen Differentialzylinder, mit einem Wegsensor zum Bestimmen der Hydraulikzylinderstellung vorzusehen, wobei der Hydraulikzylinder wegsensorsignalabhängig als Beistellantrieb und als Schwingungsantrieb angesteuert wird, wobei zur Betätigung bevorzugt zumindest ein Servo- oder Proportionalventil vorgesehen wird.the same WO 2014/127393 A1 discloses generically forming to provide a single hydraulic cylinder, such as a differential cylinder, with a displacement sensor for determining the hydraulic cylinder position, wherein the hydraulic cylinder wegensororsignalabhängig as Beistellantrieb and is driven as a vibration drive, wherein for actuation preferably at least one servo or proportional valve is provided.

Diese Konstruktion führt zu hohen Anforderungen an das Regelventil: Beispielsweise bei einem Vibrieren eines Differentialzylinders ist zum Erreichen gleicher Kräfte an beiden Kolbenseiten eine betragsmäßig größere Ventilauslenkung zum Druckbeaufschlagen der Kolbenstangenseite notwendig. Beispielsweise bei gleichzeitigem Vibrieren und überlagerten Kolbenausfahren ist eine fluidmengenmäßig größere Ventilöffnung zum Fluidversorgen der stangenabgewandten Kolbenseite notwendig. Mithin hat die vorstehende Konstruktion nachteilhaft einen Zielkonflikt bzw. eine regelungsseitige Ungleichheit zur Folge.This design leads to high demands on the control valve: For example, in a vibration of a differential cylinder to achieve the same forces on both sides of a larger piston valve deflection for pressurizing the piston rod side is necessary. For example, with simultaneous vibration and superimposed piston extension is a fluid volume larger valve opening for fluid supply of the rod-side piston side necessary. Thus, the above construction disadvantageously results in a goal conflict or a regulation-side inequality.

Die genannte Konstruktion führt weiters zu einem schlechten Wirkungsgrad. Fluide sind kompressibel. Neben den als "kompressiblen Fluiden" angesehenen Gasen weisen auch die als "inkompressible Fluide" bezeichneten Flüssigkeiten eine Elastizität auf; beispielsweise kann man für Mineralöle einen Kompressibilitätsfaktor von 0,7% bis 0,8% pro 100bar annehmen. Hieraus folgt für die vorstehende Konstruktion mit einem einzelnen Hydraulikzylinder in Differentialzylinderbauweise, dass zum Erzeugen der Vibration das gesamte Fluidvolumen in der jeweiligen Zylinderkammer, also das Volumen für die Kolbenausfahrbewegung zusätzlich zu dem Vibrationsvolumen, je Vibrationszyklus einmal unter Energieeinsatz komprimiert (und entspannt) werden muss.The construction mentioned also leads to a poor efficiency. Fluids are compressible. In addition to the gases considered as "compressible fluids", the fluids designated as "incompressible fluids" also have elasticity; For example, for mineral oils, one may assume a compressibility factor of 0.7% to 0.8% per 100 bars. It follows for the above construction with a single hydraulic cylinder in differential cylinder design that for generating the vibration, the entire volume of fluid in the respective cylinder chamber, so the volume for the Kolbenausfahrbewegung in addition to the vibration volume, each cycle must be compressed under energy use (and relaxed).

Die WO 2016 / 054667 A1 offenbart eine Gleisstopfmaschine mit zwei voneinander unabhängig quer verlagerbaren Stopfaggregaten, welche Beistellzylinder zum Schwenken von Stopfarmen zum Verdichten von Schotter tragen.The WO 2016/054667 A1 discloses a track tamping machine with two independently transversely displaceable tamping units, which carry auxiliary cylinders for pivoting Stopfarmen for compacting ballast.

Die EP 2 902 546 A1 offenbart eine Schotterbettungsverdichtungsvorrichtung, welche an einem Maschinenrahmen ein Stabilisationsaggregat vorsieht, das zum Umgreifen eines Schienenkopfes ausgestattet ist. Durch ein Schwingen des Stabilisationsaggregats mittels eines hydraulischen Zylindervibrators wird ein horizontales Schwingen des Gleises erreicht, was zu einer Setzung des Gleises auf dem Schotterbett führt.The EP 2 902 546 A1 discloses a ballast bed compaction apparatus which provides on a machine frame a stabilizer assembly equipped to engage around a rail head. By swinging the stabilization unit by means of a hydraulic cylinder vibrator, a horizontal swinging of the track is achieved, which leads to a settlement of the track on the ballast bed.

Offenbarung der ErfindungDisclosure of the invention

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, einen Vibrationsantrieb mit einem hohen Wirkungsgrad zu schaffen. Aspekte der Serienfertigung und/oder Aspekte des produktiven Einsatzes, wie eine Herstellbarkeit mit geringem Aufwand, eine Wartbarkeit mit geringem Aufwand und/oder ein geringer Bauraumbedarf, können mit Vorteil Berücksichtigung finden.In contrast, the present invention seeks to provide a vibration drive with a high efficiency. Aspects of series production and / or aspects of productive use, such as manufacturability with little effort, maintainability with little effort and / or a small space requirement, can be considered with advantage.

Bezüglich der Verwendung eines Zylinders zum Vibrationsantreiben wird die Aufgabe durch die Merkmale des Anspruchs 1 gelöst. Bezüglich der Fluidschaltung zum Vibrationsantreiben wird die Aufgabe durch die Merkmale des Anspruchs 4 gelöst. Bezüglich des Ansteuerverfahrens zum Vibrationsantreiben wird die Aufgabe durch die Merkmale des Anspruchs 9 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche. Auch wenn nachstehend einzelne Merkmale beispielsweise redundanzvermeidend nur für die erfindungsgemäße Verwendung, die erfindungsgemäße Fluidschaltung oder das erfindungsgemäßen Ansteuerverfahren beschrieben sein sollten, sind diese Merkmale dennoch übertragbar.With regard to the use of a cylinder for vibration driving, the object is achieved by the features of claim 1. With regard to the fluid circuit for vibration driving, the object is achieved by the features of claim 4. With regard to the driving method for vibration driving, the object is achieved by the features of claim 9. Advantageous developments of the invention are the subject of the dependent claims. Even if, below, individual features should be described, for example, avoidance of redundancy only for the use according to the invention, the fluid circuit according to the invention or the control method according to the invention, these features are nonetheless transferable.

Beim erfindungsgemäß vorgeschlagenen Verwenden eines Mehrflächenzylinders als einen kombinierten Zustellantrieb und Vibrationsantrieb, beispielswiese zum Antreiben eines Stopfpickels, ist vorteilhaft jeder Funktion (wie Zustellbewegung, Vibration in erste Richtung, Vibration in Gegenrichtung und dergleichen) eine Fluidkammer zuordenbar, sodass jede Funktion optimiert, wie wirkungsgradoptimiert, entworfen und/oder angesteuert werden kann. Ein weiterer Vorteil ist, dass in einen Mehrflächenzylinder als eine einzelne Baugruppe mehrere Funktionen integrierbar sind, sodass einerseits ein Montageaufwand bei der Herstellung und bei der Wartung reduziert werden kann, und andererseits Bauraum gespart bzw. für andere Funktionen, wie eine größere Kolbenfläche und/oder einen längeren Kolbenausfahrweg, verwendet werden kann. Handelt es sich um einen kolbenausfahrenden Zustellantrieb, kann eine hohe Ausfahrkraft erreicht werden.When using according to the invention a multi-surface cylinder as a combined feed drive and vibration drive, for example, for driving a stuffing peg, advantageously each function (such as feed motion, vibration in the first direction, vibration in the opposite direction and the like) can be assigned a fluid chamber, so that each function is optimized, such as efficiency-optimized, can be designed and / or controlled. Another advantage is that in a multi-surface cylinder than a single module several functions are integrated, so on the one hand assembly costs during manufacture and maintenance can be reduced, and on the other hand saves space or for other functions, such as a larger piston area and / or a longer Kolbenausfahrweg, can be used. If it is a piston-extending feed drive, a high extension force can be achieved.

Unter einem Mehrflächenzylinder kann ein Fluidzylinder verstanden werden, an dessen Kolben zumindest drei fluidisch wirksame Kolbenflächen vorhanden sind. Die Kolbenflächen können beispielsweise über nicht miteinander fluidisch kommunizierende Zylinderkammern bzw. Fluidkammern druckbeaufschlagbar sein.A multi-surface cylinder may be understood to mean a fluid cylinder on the piston of which at least three fluidically effective piston surfaces are present. The piston surfaces can be pressurized, for example, via cylinder chambers or fluid chambers that are not fluidly communicating with one another.

Weiterbildend wird vorgeschlagen, einen Eilgangzylinder als Mehrflächenzylinder zu verwenden. Ein Eilgangzylinder kann beschrieben werden, als dass dieser zumindest eine Kolbenstangen-seitige Ringkolbenfläche, eine entgegen gerichtete bzw. Kolbenstangen-abgewandte Ringkolbenfläche und eine Kolbenstangen-abgewandte Kreiskolbenfläche aufweist, wobei die stangenabgewandten Kolbenflächen baulich getrennt nicht fluidisch kommunizieren.Further education is proposed to use a rapid traction cylinder as a multi-surface cylinder. A rapid traverse cylinder can be described as having at least one piston rod-side annular piston surface, an oppositely directed or piston rod-remote annular piston surface and a piston rod-remote circular piston surface, wherein the rod-facing piston surfaces structurally separated do not communicate fluidly.

Ebenfalls weiterbildend wird vorgeschlagen, einen Tandemzylinder als Mehrflächenzylinder zu verwenden. Ein Tandemzylinder kann beschrieben werden als ein Fluidzylinder, an dessen Kolbenstange in Längsrichtung versetzt zumindest zwei Kolbenböden angeordnet sind, wobei zwei zueinander weisende und hintereinander angeordnete Kolbenflächen baulich getrennt nicht fluidisch kommunizieren.It is also proposed to use a tandem cylinder as a multi-surface cylinder. A tandem cylinder can be described as a fluid cylinder, at the piston rod offset in the longitudinal direction at least two piston plates are arranged, wherein two mutually facing and successively arranged piston surfaces structurally separated do not communicate fluidly.

Ein bevorzugtes Fluid ist eine Hydraulikflüssigkeit wegen der höheren erreichbaren Drücke, insbesondere eine Hydraulikflüssigkeit für mobile Anwendung wegen der biologischen Abbaubarkeit.A preferred fluid is a hydraulic fluid because of the higher achievable pressures, in particular a hydraulic fluid for mobile application because of biodegradability.

Weiterbildend wird die Verwendung eines Mehrflächenzylinders vorgeschlagen, wobei dem Zustellantrieb und dem Vibrationsantrieb in Zustellrichtung jeweils zumindest eine Kolbenfläche zugeordnet ist. Auf diese Weise kann beispielsweise ein anzutreibender Stopfpickel konstruktiv einfach mit hoher Kraft in ein Schotterbett eingetrieben werden. Vorzugsweise sind diese zumindest zwei Kolbenflächen fluidisch separat. Zwei fluidisch separate Kolbenflächen sind, auch hydrostatisch, und vorzugsweise über den gesamten Kolbenhub, mit unterschiedlichen Druckniveaus beaufschlagbar, sie sind nicht fluidisch kommunizierend.Further development, the use of a multi-surface cylinder is proposed, wherein the feed drive and the vibration drive in the feed direction in each case at least one piston surface is assigned. In this way, for example, a tamping pick to be driven can be driven into a ballast bed in a structurally simple manner with high force. Preferably, these at least two piston surfaces are fluidly separate. Two fluidically separate piston surfaces are, even hydrostatically, and preferably over the entire piston stroke, acted upon with different pressure levels, they are not fluidly communicating.

Vorgeschlagen wird auch eine Verwendung eines Mehrflächenzylinders wie vorstehend, wobei dem Vibrationsantrieb ein vibrierbares Ventil zugeordnet ist, sodass durch ein Vibrationsanregen des Ventils das Vibrationsantreiben steuerungstechnisch einfach und zuverlässig umsetzbar ist. Weiterbilden kann die Verwendung eines dem Zustellantrieb zugeordneten Ventils vorgesehen sein, wobei die Ventile separat bzw. voneinander unabhängig sind, um das Vibrationsantreiben und das Zustellantreiben getrennt optimieren, wie wirkungsgradoptimieren, zu können.Also proposed is a use of a multi-surface cylinder as above, wherein the vibratory drive is associated with a vibratable valve, so that the vibratory driving control technology is simple and reliable implemented by a vibration excitation of the valve. Further, the use of a valve associated with the delivery drive valve may be provided, wherein the valves are separate or independent of each other in order to separately optimize the vibration drive and the delivery drive, such as optimizing efficiency.

Unabhängig beanspruchbar vorgeschlagen wird auch, ein Verwenden eines mit einer Zylinderkammer eines Fluidzylinders verbundenen, wie fluidisch kommunizierend verbundenen, Druckspeichers vorgeschlagen. Der fluidisch kommunizierend angeschlossene Druckspeicher kann die Kompression des Fluids in der angeschlossenen Zylinderkammer hemmen, so dass eine das Fluid komprimierende Energie wirkungsgraderhöhend gespart werden kann. Dieser Vorteil wird bei allen Zylinderbauformen, wie beispielsweise einem Plungerzylinder mit externem Vibrationsantrieb oder einem Differentialzylinder mit vibrierender Druckbeaufschlagung, erreicht. Aus gleichem Grund wird ebenfalls unabhängig beanspruchbar vorgeschlagen eine Verwendung eines Druckspeichers, der mit einer Zylinderkammer eines durch einen Kolben in zumindest zwei Zylinderkammern unterteilten Fluidzylinders verbunden, wie fluidisch kommunizierend verbunden, ist.It is also suggested to claim an independently claimable use of a pressure accumulator connected to a cylinder chamber of a fluid cylinder and connected in a fluidically communicating manner. The fluidically communicating pressure accumulator can inhibit the compression of the fluid in the connected cylinder chamber, so that an energy compressing the fluid can be saved effect-increasing. This advantage is achieved in all cylinder designs, such as a plunger cylinder with external vibration drive or a differential cylinder with vibrating pressurization. For the same reason, it is also proposed independently claim a use of a pressure accumulator, which is connected to a cylinder chamber of a divided by a piston in at least two cylinder chambers fluid cylinder, as fluidly communicating connected.

Eine Fluidschaltung zum Vibrationsantreiben, wie zum Antreiben eines Stopfpickels, umfasst erfindungsgemäß einen Mehrflächenzylinder, ein erstes Ventil und ein zweites Ventil. Das erste Ventil ist mit ersten beiden entgegenwirkenden bzw. entgegenwirkend angeordneten Kolbenflächen eines Kolbens des Mehrflächenzylinders verbunden, wie kommunizierend verbunden. Dabei kann das erste Ventil über separate Anschlüsse und/oder Leitungen mit den ersten beiden Kolbenflächen verbunden sein. Eine Verbindung, wie eine kommunizierende Verbindung eines Ventils und einer Kolbenfläche kann bedeuten, dass das Ventil ventilstellungsabhängig zum Druckbeaufschlagen (einschließlich eines Unterdruckbeaufschlagens) angeordnet und mit dem Zylinder verbunden ist. Das zweite Ventil ist mit einer dritten Kolbenfläche verbunden, wie kommunizierend verbunden. Die erfindungsgemäße Schaltung hat den Vorteil, dass die Kolbenflächen des Mehrflächenzylinders und/oder die Ventile optimiert, wie wirkungsgradoptimiert, ausgelegt sein können.A fluid circuit for vibratory driving, such as for driving a stuffing plug, comprises, according to the invention, a multi-surface cylinder, a first valve and a second valve. The first valve is connected to first two counteracting or oppositely disposed piston surfaces of a piston of the multi-surface cylinder, as communicatively connected. In this case, the first valve may be connected via separate connections and / or lines to the first two piston surfaces. A connection such as a communicating connection of a valve and a piston surface may mean that the valve is valve position-dependent for pressurizing (including vacuum pressurizing) and connected to the cylinder. The second valve is connected to a third piston surface as communicatively connected. The circuit according to the invention has the advantage that the piston surfaces of the multi-surface cylinder and / or the valves optimized, as optimized efficiency, can be designed.

Wenn die dritte Kolbenfläche eine druckbeaufschlagt kolbenausfahrend wirkende Kolbenfläche ist, steht durch Druckbeaufschlagen der dritten Kolbenfläche und der gleichwirkend angeordneten Kolbenfläche der ersten beiden Kolbenflächen eine insgesamt hohe Kraft, beispielsweise für ein mit einer Zustellbewegung einhergehendes Eindringen des anzutreibenden Stopfpickels in ein Schotterbett, zur Verfügung.If the third piston surface is a piston-pressure-acting piston surface pressurized, by applying pressure to the third piston surface and the piston surface of the first two piston surfaces acting the same way, a high overall force is available, for example for a penetration of the tamping chip to be driven into a ballast bed.

Bei einer besonders einfach anzusteuernden Konstruktion weisen die ersten beiden Kolbenflächen jeweils eine zumindest etwa gleich große wirksame Kolbenfläche auf. So wird durch die betragsmäßig gleich großen Flächen beim Kolbenverlagern ein etwa gleich großer Volumenstrom in/aus der jeweiligen Zylinderkammer erreicht.In a particularly easy-to-control design, the first two piston surfaces each have an at least approximately equal effective piston area. This is how it works the same amount in terms of areas when Kolbenverlagern reaches an approximately equal volume flow in / out of the respective cylinder chamber.

Wenn ein Druckspeicher mit der dritten Kolbenfläche kommunizierend verbunden ist, hat dies mehrere Vorteile. Zum Einen kann wirkungsgraderhöhend eine Kompression des Fluids in der zu der dritten Kolbenfläche gehörenden Zylinderkammer durch eine Kompression (beispielsweise einer Gasblase) und/oder Ausgleichsbewegung (beispielsweise eines federvorgespannten Druckspeicherbodens) und/oder dergleichen in/an dem Druckspeicher ersetzt werden. Zum Anderen kann durch eine entsprechende Dimensionierung des Druckspeichers (beispielsweise eines Gasblasevolumens und/oder eines Druckspeicherbodenverfahrwegs) eine Minimalamplitude und/oder eine Maximalamplitude der Vibrationsbewegung sichergestellt und/oder optimiert, wie wirkungsgradoptimiert und/oder funktionsoptimiert, werden.When a pressure accumulator communicates with the third piston surface, this has several advantages. On the one hand, a compression of the fluid in the cylinder chamber belonging to the third piston surface can be replaced by a compression (for example a gas bubble) and / or compensation movement (for example of a spring-biased pressure storage bottom) and / or the like in / at the pressure accumulator. On the other hand, by a corresponding dimensioning of the pressure accumulator (for example, a gas bubble volume and / or Druckspeicherbodenverfahrwegs) a minimum amplitude and / or a maximum amplitude of the vibratory motion ensured and / or optimized, such as efficiency-optimized and / or optimized function.

Ist das erste Ventil ein vibrierbares Regelventil, erleichtert dies eine Vibrationsbewegung des Kolbens und damit des anzutreibenden Stopfpickels. Bevorzugte Regelventilbauformen umfassen ein Proportionalventil und/oder ein Servoventil. Vorzugsweise ist das Regelventil mit einer Ansteuereinrichtung zum Vibrationvorgeben verbunden, um eine nach Amplitude und/oder Frequenz und/oder Energie vorgebbare Vibration zu bewirken. Das Regelventil kann also oszillierend beaufschlagt werden. Beispielsweise ist das Regelventil ein elektrisch und/oder hydraulisch und/oder pneumatisch ein- und/oder zweistufig vorgesteuertes Ventil.If the first valve is a vibratable control valve, this facilitates a vibratory movement of the piston and thus of the stuffing plug to be driven. Preferred control valve designs include a proportional valve and / or a servo valve. Preferably, the control valve is connected to a control device for vibration preselection in order to effect a vibration that can be predetermined according to amplitude and / or frequency and / or energy. The control valve can therefore be applied oscillating. For example, the control valve is an electrically and / or hydraulically and / or two-stage pilot-operated valve.

Gemäß einer bevorzugten Weiterbildung sind die Fluidschaltung und insbesondere der Mehrflächenzylinder und das erste Ventil dazu geeignet, mit einer Frequenz von bis zu etwa 50 Hz, bevorzugter mit einer Frequenz von bis zu etwa 40 Hz, noch bevorzugter mit einer Frequenz von bis zu etwa 35 Hz, und/oder mit einer Frequenz von etwa 25 bis etwa 40 Hz zu schwingen. Diese Frequenzbereiche sind für ein Verdichten eines Schotterbetts erfahrungsgemäß besonders vorteilhaft geeignet.According to a preferred embodiment, the fluid circuit and in particular the multi-surface cylinder and the first valve are suitable, with a frequency of up to about 50 Hz, more preferably with a frequency of up to about 40 Hz, even more preferably with a frequency of up to about 35 Hz , and / or oscillate at a frequency of about 25 to about 40 Hz. According to experience, these frequency ranges are particularly advantageous for compacting a ballast bed.

Gemäß einer weiteren bevorzugten Weiterbildung sind die Hydraulikschaltung und insbesondere der Mehrflächenzylinder und das erste Ventil dazu geeignet, dass der Kolben relativ zum Zylindergehäuse mit einer Amplitude bis etwa 6 mm, bevorzugter bis etwa 3 mm, noch bevorzugter von mindestens etwa 3 mm, und/oder am bevorzugtesten bis etwa 2 mm schwingt. Diese Vibration fördert erfahrungsgemäß ein rasches und effizientes Verdichten eines Schotterbetts.According to a further preferred development, the hydraulic circuit and in particular the multi-surface cylinder and the first valve are suitable for the piston relative to the cylinder housing having an amplitude up to about 6 mm, more preferably up to about 3 mm, more preferably at least about 3 mm, and / or most preferably oscillates to about 2 mm. Experience has shown that this vibration promotes rapid and efficient compaction of a ballast bed.

Weiterbildend weist die Fluidschaltung eine Messeinrichtung zum Messen des Fluiddrucks im/am Zylinder und/oder im/am ersten Ventil auf. Durch ein Messen des (vibrierenden) Fluiddruckverlaufs kann beispielswiese eine Schotterbettverdichtung geprüft werden.In a further development, the fluid circuit has a measuring device for measuring the fluid pressure in / on the cylinder and / or in / on the first valve. By measuring the (vibrating) fluid pressure curve, for example, a ballast bed compaction can be tested.

Unabhängig beanspruchbar ist eine Fluidschaltung zum Vibrationsantreiben umfassend einen durch einen Kolben in zumindest zwei Zylinderkammern unterteilten Fluidzylinder und zumindest ein zum Druckbeaufschlagen zumindest einer der Kammern angeordneten und/oder fluidisch kommunizierend verbundenen und/oder angeschlossenen Ventil, wie ein vibrierbares Ventil, wobei ein Druckspeicher mit zumindest einer der Zylinderkammern, insbesondere der kolbenflächengrößeren Zylinderkammer, fluidisch kommuniziert. Der fluidisch kommunizierend angeschlossene Druckspeicher kann die Kompression des Fluids in der angeschlossenen Zylinderkammer hemmen, so dass eine das Fluid komprimierende Energie Wirkungsgraderhöhend gespart werden kann. Dieser Vorteil ist also nicht nur bei Mehrflächenzylindern, sondern auch bei Differenzialzylindern und dergleichen erzielbar. Der Druckspeicher kann konstruktiv einfach volumenausgleichend ausgeführt sein. Der Druckspeicher kann mit Vorteil Kolbenflächendifferenz-ausgleichend dimensioniert sein, um eine unsymmetrische Fluidkompression zu hemmen.Independently claimable is a fluid circuit for vibratory driving comprising a divided by a piston in at least two cylinder chambers fluid cylinder and at least one arranged to pressurize at least one of the chambers and / or fluidly communicating connected and / or connected valve, such as a vibratable valve, wherein a pressure accumulator with at least one of the cylinder chambers, in particular the piston surface larger cylinder chamber, fluidically communicates. The fluidically communicating pressure accumulator can inhibit the compression of the fluid in the connected cylinder chamber, so that an energy that compresses the fluid can be saved in terms of efficiency. This advantage is thus achievable not only in multi-surface cylinders, but also in differential cylinders and the like. The accumulator can be structurally simple volume compensating executed. The accumulator may advantageously be dimensioned to compensate for piston area differential to inhibit unsymmetrical fluid compression.

Ein erfindungsgemäßes Ansteuerverfahren zum Vibrationsantreiben, beispielsweise eines Stopfpickels, ist vorgesehen für einen Mehrflächenzylinder, der eine erste Kolbenfläche, eine der ersten Kolbenfläche entgegenwirkend angeordnete, und vorzugsweise fluidisch getrennte, zweite Kolbenfläche und eine zu der zweiten Kolbenfläche gleichwirkend angeordnete, und vorzugsweise fluidisch getrennte, dritte Kolbenfläche aufweist.An inventive driving method for vibration driving, for example, a stuffing peg, is provided for a multi-surface cylinder, a first piston surface, a piston surface of the first counteracting arranged, and preferably fluidly separated, second piston surface and a second piston surface with the same effect, and preferably fluidly separated, third Has piston surface.

Das erfindungsgemäße Ansteuerverfahren kann beinhalten, zum Vibrationsantreiben die Kolbenflächen erste Kolbenfläche und zweite Kolbenfläche abwechselnd mit Druck zu beaufschlagen. Der Druck kann ein Unterdruck oder bevorzugt ein Überdruck bezüglich des an der jeweils anderen der beiden Kolbenflächen anliegenden Druckniveaus sein. Dieser Verfahrensschritt bewirkt vorteilhaft einen Kraftauf-und-Abbau zum Verfestigen beispielswiese eines Schotterbetts.The driving method according to the invention may include, for vibrational driving, the piston surfaces first piston surface and second piston surface alternately pressurized. The pressure may be a negative pressure or, preferably, an overpressure with respect to the pressure level applied to the respective other of the two piston surfaces. This process step advantageously causes a force-and-degradation for solidifying beispielswiese a ballast bed.

Das erfindungsgemäße Ansteuerverfahren kann beinhalten, zum Kolbenausfahren (oder alternativ zum Kolbeneinfahren) die zweite Kolbenfläche und/oder die dritte Kolbenfläche mit Druck zu beaufschlagen. Der Druck kann ein Unterdruck oder bevorzugt ein Überdruck sein, siehe oben. Dieser Verfahrensschritt bewirkt vorteilhaft ein Verlagern eines Ankoppelpunkts der Kolbenstange relativ zum Zylindergehäuse, um beispielsweise ein Eindringen eines anzutreibenden Stopfpickels in ein Schotterbett voranzutreiben.The driving method according to the invention may include pressurizing the second piston surface and / or the third piston surface for piston extension (or alternatively for piston retraction). The pressure may be a negative pressure or, preferably, an overpressure, see above. This method step advantageously brings about a displacement of a coupling point of the piston rod relative to the cylinder housing, in order, for example, to advance penetration of a stuffing plug to be driven into a ballast bed.

Das erfindungsgemäße Ansteuerverfahren kann beinhalten, zum Vibrationsantreiben die Kolbenflächen erste Kolbenfläche und zweite Kolbenfläche abwechselnd bzw. oszillierendmit Druck zu beaufschlagen, und zum Kolbenausfahren oder Kolbeneinfahren die zweite Kolbenfläche und/oder die dritte Kolbenfläche mit Druck zu beaufschlagen. Zum Druck siehe oben. Dieser Verfahrensschritt bewirkt ein gleichzeitiges bzw. überlagertes Kolbenaus-/einfahren und Vibrationsantreiben, sodass beispielsweise ein konstant fortschreitendes Verdichten eines Schotterbetts unter Zeitersparnis möglich wird.The driving method according to the invention may include for vibrationally driving the piston surfaces first piston surface and second piston surface alternately or oscillatingly pressurized, and for piston extension or piston retraction to pressurize the second piston surface and / or the third piston surface with pressure. For printing see above. This process step causes a simultaneous or superimposed piston extension / retraction and vibration driving, so that, for example, a constantly progressive compression of a ballast bed with time savings becomes possible.

Weiterbildend kann das Ansteuerverfahren für den Mehrflächenzylinder, wobei die Kolbenflächen erste Kolbenfläche und zweite Kolbenfläche mit einem ersten Ventil bzw. jeweils mit Arbeitsanschlüssen eines ersten Ventils verbunden, wie kommunizierend verbunden, sind, geeignet sein. Dabei kann das Ansteuerungsverfahren bei dem Schritt des Vibrationsantreibens ein Vibrieren bzw. Oszillieren eines Schiebers des Ventils enthalten. Hierdurch kann in steuerungstechnisch einfacher und zuverlässiger Weise eine Vibration nach Amplitude und/oder Frequenz und/oder Energie vorgegeben werden.Further, the driving method for the multi-surface cylinder, wherein the piston surfaces first piston surface and second piston surface with a first valve or respectively connected to working ports of a first valve, as communicatively connected, be suitable. At this time, the driving method in the vibration driving step may include vibrating a spool of the valve. As a result, a vibration according to amplitude and / or frequency and / or energy can be specified in a simple and reliable manner in terms of control engineering.

Das Ansteuerverfahren kann zum gleichzeitigen Vibrationsantreiben und Kolbenausfahren enthalten, sowohl die dritte Kolbenfläche mit Druck zu beaufschlagen, als auch das erste Ventil um einen verschobenen Nullpunkt zu vibrieren. Der Verfahrensschritt enthält somit zwei parallele Schritte, welche vorzugsweise voneinander unabhängig vornehmbar sind, wie betragsmäßig unabhängig vornehmbar und/oder voneinander unabhängig beginnbar und endbar sind. Im Gegensatz zum Stand der Technik, wobei eine einzelne Zylinderkammer gleichzeitig zum Kolbenverlagern und Vibrationsantreiben mit Druck beaufschlagt wird, ermöglichen die zwei parallelen Schritte beispielsweise ein konstant fortschreitendes Verdichten eines Schotterbetts durch Vornehmen zweier relativ einfacher Steuerungsaktionen.The driving method may include simultaneous vibration driving and piston extension to both pressurize the third piston surface and to vibrate the first valve by a shifted zero point. The method step thus contains two parallel steps, which can preferably be performed independently of one another, how they can be arranged independently of one another and / or can be started and ended independently of one another. For example, in contrast to the prior art wherein a single cylinder chamber is pressurized simultaneously for piston shifting and vibratory driving, the two parallel steps allow a progressively compacting of a ballast bed by making two relatively simple control actions.

Besonders steuerungstechnisch einfach und zuverlässig wird das Ansteuerverfahren für den Mehrflächenzylinder, wobei die Kolbenflächen erste Kolbenfläche und zweite Kolbenfläche jeweils eine gleich große wirksame Kolbenfläche aufweisen, und wobei die Vibration gemäß einer Nullpunkt-symmetrischen Funktion, wie einer solchen Sinusfunktion, vorgegeben wird. Ein Ansteuern mit einer Nullpunkt-symmetrischen Funktion, insbesondere Sinusfunktion, ist besonders gleichmäßig und skalierbar.The control method for the multi-surface cylinder is particularly simple in terms of control technology, with the piston surfaces having the first piston surface and the second piston surface each having an equal effective piston area, and the vibration being predetermined in accordance with a zero-point symmetrical function, such as such a sinusoidal function. A control with a zero-point symmetric function, in particular sine function, is particularly uniform and scalable.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Bevorzugte Ausführungsbeispiele der Erfindung werden im Folgenden anhand schematischer Zeichnungen näher erläutert. Es zeigen:

  • Figur 1 einen Teil eines Schaltplans einer erfindungsgemäßen Fluidschaltung zum Vibrationsantreiben beispielsweise eines Stopfpickels gemäß einer ersten Ausführungsform,
  • Figur 2 einen Teil eines Schaltplans einer erfindungsgemäßen Fluidschaltung zum Vibrationsantreiben beispielsweise eines Stopfpickels gemäß einer zweiten Ausführungsform, und
  • Figur 3 einen Teil eines Schaltplans einer erfindungsgemäßen Fluidschaltung zum Vibrationsantreiben beispielsweise eines Stopfpickels gemäß einer Variante der zweiten Ausführungsform.
Preferred embodiments of the invention are explained in more detail below with reference to schematic drawings. Show it:
  • FIG. 1 1 shows a part of a circuit diagram of a fluid circuit according to the invention for vibrationally driving, for example, a stuffing peg according to a first embodiment,
  • FIG. 2 a part of a circuit diagram of a fluid circuit according to the invention for vibration driving, for example, a stuffed pork according to a second embodiment, and
  • FIG. 3 a part of a circuit diagram of a fluid circuit according to the invention for vibrational driving, for example, a stuffed pork according to a variant of the second embodiment.

Die Fig. 1 zeigt eine erste Ausführungsform der Erfindung. Eine Fluidschaltung 1 zum Vibrationsantreiben umfasst vorliegend einen als Ganzes mit 2 bezeichneten Mehrflächenzylinder bzw. Mehrflächen-Fluidzylinder, ein Vibrationsventil 4 als erstes Ventil, ein Ausfahrventil 6 als zweites Ventil und einen Druckspeicher 8.The Fig. 1 shows a first embodiment of the invention. In the present case, a fluid circuit 1 for vibration drive comprises a multi-surface cylinder or multi-surface fluid cylinder designated as a whole by 2, a vibration valve 4 as a first valve, an extension valve 6 as a second valve and a pressure reservoir 8.

Der Mehrflächenzylinder 2 ist bei der ersten Ausführungsform ein Eilgangzylinder 10. Er weist ein Zylindergehäuse 12 mit einer je endseitig mit einem Zylinderboden 14 und einem Zylinderdeckel 16 abgeschlossenen Zylinderwand 18 und mit einem dazu konzentrischen und Zylinderboden-festen Stempel 20 auf. Darin ist entlang einer durch die Zylinderwand 18 definierten Längsachse 22 verlagerbar ein Kolben 24 mit einem ringförmigen Kolbenboden 26, einer daran anschließenden hohlzylindrischen Kolbenstange 28 und einem axial endseitigen Kolbenstangenboden 30 aufgenommen.In the first embodiment, the multi-surface cylinder 2 is a rapid-action cylinder 10. It has a cylinder housing 12 with a cylinder wall 18, which is closed on each end with a cylinder bottom 14 and a cylinder cover 16, and with a cylinder-bottom-fixed punch 20 concentric therewith. Therein, along a longitudinal axis 22 defined by the cylinder wall 18, a piston 24 with an annular piston head 26, an adjoining hollow cylindrical piston rod 28 and an axially end piston rod bottom 30 are accommodated.

Der Eilgangzylinder 10 weist drei zum axialen Kolbenverlagern wirksam angeordnete Kolbenflächen auf, die gemeinsam mit 32 bezeichnet werden. Eine erste Kolbenfläche 34 befindet sich an der Seite der Kolbenstange 28 an dem Kolbenboden 26. Eine zweite Kolbenfläche 36 befindet sich dem Stempel 20 zugewandt innen an dem Kolbenstangenboden 30. Eine dritte Kolbenfläche 38 befindet sich an der der Kolbenstange 28 abgewandten Seite an dem Kolbenboden 26.The rapid traverse cylinder 10 has three effective for axial piston displacement arranged piston surfaces, which are designated together with 32. A first piston surface 34 is located on the side of the piston rod 28 on the piston head 26. A second piston surface 36 is located on the piston rod bottom 30 facing the punch 20. A third piston surface 38 is located on the piston rod 28 side facing away from the piston head 26th

Die Kolbenflächen 32 begrenzen jeweils axial eine Kammer 40. Eine erste Kammer 42 wird vorliegend durch die erste Kolbenfläche 34, die Zylinderwand 18, den Zylinderdeckel 16 und die Kolbenstange 28 definiert. Ein Überdruck in der ersten Kammer 42 wirkt auf die erste Kolbenfläche 34 zum Einfahren der Kolbenstange 28. Eine zweite Kammer 44 wird vorliegend durch die zweite Kolbenfläche 36, die Kolbenstange 28 und den Stempel 20 definiert. Ein Überdruck in der zweiten Kammer 44 wirkt auf die zweite Kolbenfläche 36 zum Ausfahren der Kolbenstange 28. Eine dritte Kammer 46 wird vorliegend durch den Kolben 24, die Zylinderwand 18, den Zylinderboden 14 und den Stempel 20 definiert. Ein Überdruck in der dritten Kammer 46 wirkt auf die dritte Kolbenfläche 38 zum Ausfahren der Kolbenstange 28.The piston surfaces 32 respectively delimit a chamber 40 axially. A first chamber 42 is defined here by the first piston surface 34, the cylinder wall 18, the cylinder cover 16 and the piston rod 28. An overpressure in the first chamber 42 acts on the first piston surface 34 for retraction of the piston rod 28. A second chamber 44 is defined here by the second piston surface 36, the piston rod 28 and the plunger 20. An overpressure in the second chamber 44 acts on the second piston surface 36 for extending the piston rod 28. A third chamber 46 is defined here by the piston 24, the cylinder wall 18, the cylinder bottom 14 and the plunger 20. An overpressure in the third chamber 46 acts on the third piston surface 38 for extending the piston rod 28.

Das Vibrationsventil 4 ist ein vorgebbar vibrierbares Ventil. Es ist als 4/3-Wegeventil mit je zwei Arbeitsanschlüssen 48 und Versorgungsanschlüssen 50 versehen. Beispielsweise ist es ein proportionales Schieberventil, und weist es eine elektrische ansteuerbare Vorsteuereinrichtung auf, welche den (nicht dargestellten) Schieber auslenken kann, wie beispielsweise zu bevorzugt symmetrischen Schwingung um einen einstellbaren Arbeitspunkt / Nullpunkt anregen kann. Ein Arbeitsanschluss 48 des Vibrationsventils 4 kommuniziert fluidisch mit der ersten Kammer 42. Der andere Arbeitsanschluss 48 des Vibrationsventils 4 kommuniziert fluidisch durch den Stempel 20 hindurch mit der zweiten Kammer 44.The vibration valve 4 is a predeterminably vibratable valve. It is provided as a 4/3-way valve with two working ports 48 and 50 supply connections. For example, it is a proportional slide valve, and it has an electrically controllable pilot control device, which can deflect the slide (not shown), for example, to stimulate preferably symmetrical vibration by an adjustable operating point / zero point. A working connection 48 of the vibration valve 4 communicates fluidically with the first chamber 42. The other working connection 48 of the vibration valve 4 communicates fluidically through the ram 20 with the second chamber 44.

Das Ausfahrventil 6 ist ein schaltbares Ventil, beispielsweise ein vorgesteuertes Druckbegrenzungsventil mit zwei Versorgungsanschlüssen 50 und einem Arbeitsanschluss 48, der mit der dritten Kammer 46 fluidisch kommuniziert.The deployment valve 6 is a switchable valve, such as a pilot-operated pressure relief valve having two supply ports 50 and a working port 48 that fluidly communicates with the third chamber 46.

Der Druckspeicher 8 kommuniziert fluidisch mit der dritten Kammer 46. Beispielsweise zweigt der Druckspeicher 8 von der Leitung zwischen dem Ausfahrventil 6 und dritten Kammer 46 ab.The accumulator 8 communicates fluidly with the third chamber 46. For example, the pressure accumulator 8 branches off from the line between the extension valve 6 and third chamber 46.

Zum Vibrationsantreiben des Kolbens 24 wird das Vibrationsventil 4 vibriert, sodass die Kammern 42 und 44 abwechselnd mit einer Frequenz von bis zu 35 Hz mit Fluiddruck beaufschlagt werden. Zum Beispiel wird in jeder Periode in jeder der Kammern 42, 44 einmal Fluiddruck aufgebaut und abgebaut. Dabei wird der Kolben 24 beispielsweise um eine Amplitude von bis zu 2mm relativ zu dem Zylindergehäuse verlagert. Die Kolbenbewegung pumpt das Fluid zwischen der dritten Kammer 46 und dem Druckspeicher 8 dabei hin und her. Da die Kolbenflächen 34, und 36 gleich groß sind, wird eine symmetrische Schwingung des Scheibers des Vibrationsventils um einen Nullpunkt zum Druckbeaufschlagen der Kammern 42, 44 ermöglicht.To vibrate the piston 24, the vibration valve 4 is vibrated, so that the chambers 42 and 44 are alternately applied with a frequency of up to 35 Hz with fluid pressure. For example, in each period in each of the chambers 42, 44 fluid pressure is built up and released once. In this case, the piston 24, for example, a Amplitude of up to 2mm relative to the cylinder housing shifted. The piston movement pumps the fluid between the third chamber 46 and the accumulator 8 back and forth. Since the piston surfaces 34, and 36 are the same size, a symmetrical vibration of the disk of the vibration valve is made possible by a zero point for pressurizing the chambers 42, 44.

Zum Ausfahren des Kolbens 24 wird beispielsweise über das Ausfahrventil 6 der dritten Kammer 46 unter Druck Fluid zugeführt, wird über das Vibrationsventil 4 der zweiten Kammer 44 unter Druck Fluid zugeführt, und wird über das Vibrationsventil 4 aus der ersten Kamer 42 Fluid abgeführt.To extend the piston 24 fluid is supplied, for example, via the extension valve 6 of the third chamber 46 under pressure fluid is supplied via the vibration valve 4 of the second chamber 44 under pressure fluid, and is discharged via the vibration valve 4 from the first camera 42 fluid.

Zum gleichzeitigen Ausfahren und Vibrationsantreiben des Kolbens 24 wird über das Ausfahrventil 6 der dritten Kammer 46 unter Druck Fluid zugeführt. Der Nullpunkt des Vibrationsventils und die Amplitude der Schwingung des Schiebers des Vibrationsventils 4 werden so verschoben, dass einerseits in jeder Periode in jeder der Kammern 42, 44 einmal Fluiddruck aufgebaut und abgebaut wird, und dass andererseits verglichen mit dem Volumenstrom in die erste Kammer 42 ein dem Volumenstrom in die dritte Kammer 46 Kolbenwegentsprechender Volumenstromüberschuss in die zweite Kammer 44 strömt.For simultaneous extension and vibration driving of the piston 24 fluid is supplied via the extension valve 6 of the third chamber 46 under pressure. The zero point of the vibration valve and the amplitude of the vibration of the slider of the vibration valve 4 are shifted so that once in each of the chambers 42, 44 fluid pressure is built up and broken down, and on the other hand compared to the volume flow in the first chamber 42 a the volume flow in the third chamber 46 piston path corresponding volume flow surplus flows into the second chamber 44.

Beispielsweise ist das Zylindergehäuse an einen (nicht dargestellten) Maschinenrahmen oder dergleichen gekoppelt, wie fest gelagert, angelenkt und/oder verschwenkbar gelagert, und ist der Kolben an einen (nicht dargestellten) anzutreibenden Stopfpickel gekoppelt, wie fest gelagert, angelenkt und/oder verschwenkbar gelagert. Da die Masse des Zylinderkolbens üblicherweise kleine als die Masse des Zylindergehäuses ist, ist diese Konstruktion energetisch günstig, und hat daher einen hohen Wirkungsgrad.For example, the cylinder housing is coupled to a (not shown) machine frame or the like, as fixedly mounted, hinged and / or pivotally mounted, and the piston is coupled to a (not shown) to be driven tamping pick, as fixedly mounted, articulated and / or pivotally mounted , Since the mass of the cylinder piston is usually smaller than the mass of the cylinder housing, this construction is energetically favorable, and therefore has a high efficiency.

Gemäß einer (nicht dargestellten) Variante bilden der Mehrflächenzylinder 2, die Ventile 4 und 6 und der Druckspeicher 8 eine kompakte Baugruppe, sodass Bauraum gespart werden kann, und zur Produktivzeiterhöhung die gesamte Baugruppe gegen eine Ersatzbaugruppe tauschbar ist.
Gemäß einer (nicht dargestellten) Variante der ersten Ausführungsform ist beispielsweise aus bauraumlichen Erwägungen heraus und/oder bei anderen Massenverhältnissen eine zylindergehäuseseitige Kopplung an den Stopfpickel und eine kolbenstangenseitige Kopplung an den Maschinenrahmen vorgesehen.
According to a (not shown) variant of the multi-surface cylinder 2, the valves 4 and 6 and the pressure accumulator 8 form a compact assembly, so that space can be saved, and for productive time increase, the entire assembly is exchangeable for a replacement module.
According to a variant of the first embodiment (not shown), a cylinder housing-side coupling to the tamping pommel and a piston rod-side coupling to the machine frame are provided, for example, for space considerations and / or other mass ratios.

Die Fig. 2 zeigt eine zweite Ausführungsform der Erfindung. Diese unterscheidet sich von der ersten Ausführungsform zumindest dadurch, dass der Mehrflächenzylinder 2 ein Tandemzylinder 52 ist. Dieser weist in dem Zylindergehäuse 12 axial etwa mittig zwischen dem Zylinderboden 14 und dem Kolbenstangen-seitigen axialen Ende des Zylindergehäuses 12 einen an der Zylinderwand 18 festgelegten, ringförmigen Zylinderzwischenboden 54 auf, welcher den Zylinder 2 in zwei axial hintereinander angeordnete Zylinderarbeitsräume 56 teilt. Der Kolben 24 umfasst zueinander festgelegt neben dem im Zylinderboden-nahen Zylinderarbeitsraum 56 fluiddicht axial verlagerbaren, scheibenförmigen Kolbenboden 26 und der im Zylinderzwischenboden 54 fluiddicht gelagerten Kolbenstange 28 einen im Zylinderbodenfernen Arbeitsraum 56 fluiddicht axial verlagerbaren Kolbenzwischenboden 58.The Fig. 2 shows a second embodiment of the invention. This differs from the first embodiment at least in that the multi-surface cylinder 2 is a tandem cylinder 52. This has in the cylinder housing 12 axially approximately centrally between the cylinder bottom 14 and the piston rod-side axial end of the cylinder housing 12 an established on the cylinder wall 18, annular cylinder intermediate bottom 54, which divides the cylinder 2 into two axially successively arranged cylinder working spaces 56. The piston 24 includes fixed to each other in addition to the cylinder bottom near-cylinder working space 56 fluid-axially displaceable, disc-shaped piston head 26 and the cylinder intermediate bottom 54 fluid-tight piston rod 28 a fluid-tight axially displaceable in the cylinder bottom working space 56 piston intermediate bottom 58th

Die Kolbenflächen 32 begrenzen jeweils axial eine Kammer 40. Die erste Kammer 42 wird durch die erste Kolbenfläche 34, die Zylinderwand 18, den Zylinderzwischenboden 54 und die Kolbenstange 28 definiert. Ein Überdruck in einer ersten Kammer 42 wirkt auf die erste Kolbenfläche 34 zum Einfahren der Kolbenstange 28. Die zweite Kolbenfläche 36 befindet sich Zylinder(zwischen)boden-seitig an dem Kolbenzwischenboden 58. Die zweite Kammer 44 wird durch die zweite Kolbenfläche 36, die Zylinderwand 18, die Kolbenstange 28 und Zylinderzwischenboden 54 definiert. Ein Überdruck in der zweiten Kammer 44 wirkt auf die zweite Kolbenfläche 36 zum Ausfahren der Kolbenstange 28. Die dritte Kammer 46 wird durch den Kolben 24, die Zylinderwand 18 und den Zylinderboden 14 definiert. Ein Überdruck in der dritten Kammer 46 wirkt auf die dritte Kolbenfläche 38 zum Ausfahren der Kolbenstange 28. Die Kolbenflächen 34 und 36 sind gleich groß. Ein Raum zwischen dem Kolbenzwischenboden 58 und dem Kolbenstangen-seitigen axialen Ende des Zylindergehäuses 12 ist vorzugsweise entlüftet.The piston surfaces 32 respectively delimit a chamber 40 axially. The first chamber 42 is defined by the first piston surface 34, the cylinder wall 18, the cylinder intermediate bottom 54 and the piston rod 28. An overpressure in a first chamber 42 acts on the first piston surface 34 for retraction of the piston rod 28. The second piston surface 36 is located on the bottom side of the piston intermediate bottom 58. The second chamber 44 is defined by the second piston surface 36, the cylinder wall 18 defining the piston rod 28 and cylinder intermediate bottom 54. An overpressure in the second chamber 44 acts on the second piston surface 36 for extending the piston rod 28. The third chamber 46 is defined by the piston 24, the cylinder wall 18 and the cylinder bottom 14. An overpressure in the third chamber 46 acts on the third piston surface 38 for extending the piston rod 28. The piston surfaces 34 and 36 are the same size. A space between the piston intermediate bottom 58 and the piston rod-side axial end of the cylinder housing 12 is preferably vented.

Die Fig. 3 zeigt eine Variante der zweiten Ausführungsform. Eine vierte Kolbenfläche 62 befindet sich Zylinderdeckel-seitig an dem Kolbenzwischenboden 58. Eine vierte Kammer 60 wird durch die vierte Kolbenfläche 62, die Zylinderwand 18, den Zylinderdeckel 16 und die Kolbenstange definiert. Ein Überdruck in der vierten Kammer 60 wirkt auf die vierte Kolbenfläche 62 zum Einfahren der Kolbenstange 28. Das Ausfahrventil 6 ist ein Ein-/Ausfahrventil, wie ein gesteuertes 4/3-Wegeventil. Gegenüber der Grundvariante der zweiten Ausführungsform kann mehr Fluiddruck zum Einfahren auf die Kolbenstange aufgebracht werden, beispielsweise um ein schwereres Anbaugerät einzufahren, oder zum Anheben einer Schiene. Die vierte Kammer 60 kommuniziert dabei mit einem Druckspeicher 8, um ein wirkungsgradverbessertes Vibrieren des Kolbens 24 zu ermöglichen.The Fig. 3 shows a variant of the second embodiment. A fourth piston surface 62 is located on the cylinder head side on the piston intermediate bottom 58. A fourth chamber 60 is defined by the fourth piston surface 62, the cylinder wall 18, the cylinder cover 16 and the piston rod. An overpressure in the fourth chamber 60 acts on the fourth piston surface 62 to retract the piston rod 28. The deployment valve 6 is an on / off valve, such as a controlled 4/3 way valve. Compared to the basic variant of the second embodiment, more fluid pressure can be applied for retraction onto the piston rod, for example to retract a heavier attachment, or for lifting a rail. The fourth chamber 60 communicates with a pressure accumulator 8 in order to allow an efficiency-enhanced vibration of the piston 24.

Eine nicht dargestellte Untervariante beinhaltet anstelle der Druckspeicher 8 oder diese ergänzend einen zwischen zwei etwa gleich großen Ausgleichskammern verlagerbaren Ausgleichskolben (Ausgleichselement, wie auch Ausgleichsmembran), von denen eine Ausgleichskammer mit der dritten Kammer 46 fluidisch kommuniziert, und von denen die andere Ausgleichskammer mit der vierten Kammer 60 fluidisch kommuniziert. Gegenüber der vorstehenden Lösung mit zwei Druckspeichern 8 verbessert dies nochmals den Wirkungsgrad.A sub-variant, not shown, instead of the pressure accumulator 8 or this supplementally displaceable between two equal equalization chambers compensation piston (compensating element, as well as compensating diaphragm), of which a compensation chamber communicates fluidically with the third chamber 46, and of which the other compensation chamber with the fourth Chamber 60 fluidly communicates. Compared to the above solution with two pressure accumulators 8 this again improves the efficiency.

Offenbart ist also die Verwendung eines Mehrflächenzylinders als kombinierter Zustellantrieb und Vibrationsantrieb zum effizienten Vibrationsantreiben. Ferner wird eine Fluidschaltung zum effizienten Vibrationsantreiben offenbart, wobei die Schaltung einen Mehrflächenzylinder, ein erstes Ventil, das mit ersten beiden entgegenwirkenden Kolbenflächen eines Kolbens des Mehrflächenzylinders verbunden ist, und ein zweites Ventil, das mit einer dritten Kolbenfläche verbunden ist, umfasst. Schließlich wird ein Ansteuerverfahren zum Vibrationsantreiben für einen Mehrflächenzylinder offenbart, der eine erste Kolbenfläche, eine der ersten Kolbenfläche entgegenwirkend angeordnete zweite Kolbenfläche und eine zu der zweiten Kolbenfläche gleichwirkend angeordnete dritte Kolbenfläche aufweist, wobei zum Vibrationsantreiben die Kolbenflächen erste Kolbenfläche und zweite Kolbenfläche abwechselnd mit Druck beaufschlagt werden, und/oder wobei zum Kolbenausfahren die zweite Kolbenfläche und/oder die dritte Kolbenfläche mit Druck beaufschlagt wird / werden.Thus, the use of a multi-surface cylinder as combined feed drive and vibration drive for efficient vibration drive is disclosed. Further, there is disclosed a fluid circuit for efficient vibration driving, the circuit comprising a multi-surface cylinder, a first valve connected to first two opposing piston surfaces of a piston of the multi-surface cylinder, and a second valve connected to a third piston surface. Finally, a driving method for vibratory driving is disclosed for a multi-surface cylinder having a first piston surface, a second piston surface counteracting the first piston surface, and a third piston surface equally disposed with the second piston surface, wherein the piston surfaces alternately pressurize the piston surface and second piston surface to vibrate be, and / or wherein the piston extension, the second piston surface and / or the third piston surface is pressurized / be.

Claims (12)

Verwendung eines Mehrflächenzylinders (2, 10 52) als kombinierter Zustellantrieb und Vibrationsantrieb zum Vibrationsantreiben.Use of a multi-surface cylinder (2, 10 52) as a combined feed drive and vibration drive for vibration drive. Verwendung eines Mehrflächenzylinders (2, 10 52) gemäß dem Anspruch 1, wobei dem Zustellantrieb und dem Vibrationsantrieb in Zustellrichtung jeweils zumindest eine Kolbenfläche (32) zugeordnet ist.Use of a multi-surface cylinder (2, 10 52) according to claim 1, wherein the feed drive and the vibration drive in the feed direction in each case at least one piston surface (32) is associated. Verwendung eines Mehrflächenzylinders (2, 10 52) gemäß einem der Ansprüche 1 bis 2, wobei dem Vibrationsantrieb ein vibrierbares Ventil (4) zugeordnet ist.Use of a multi-surface cylinder (2, 10 52) according to one of claims 1 to 2, wherein the vibration drive is associated with a vibratable valve (4). Fluidschaltung zum Vibrationsantreiben, wobei die Schaltung einen Mehrflächenzylinder (2, 10 52), ein erstes Ventil (4), das mit ersten beiden entgegenwirkenden Kolbenflächen (34, 36) eines Kolbens (24) des Mehrflächenzylinders (2, 10 52) verbunden ist, und ein zweites Ventil (6), das mit einer dritten Kolbenfläche (38) verbunden ist, umfasst.Fluid circuit for vibratory driving, the circuit comprising a multi-surface cylinder (2, 10, 52), a first valve (4) connected to first two counteracting piston surfaces (34, 36) of a piston (24) of the multi-surface cylinder (2, 10, 52), and a second valve (6) connected to a third piston surface (38). Fluidschaltung gemäß dem Anspruch 4, wobei die dritte Kolbenfläche (38) eine druckbeaufschlagt kolbenausfahrend wirkende Kolbenfläche ist.Fluid circuit according to claim 4, wherein the third piston surface (38) is a piston-actuated piston area pressurized piston. Fluidschaltung gemäß einem der Ansprüche 4 bis 5, wobei die ersten beiden Kolbenflächen (34, 36) jeweils eine gleich große wirksame Kolbenfläche aufweisen.Fluid circuit according to one of claims 4 to 5, wherein the first two piston surfaces (34, 36) each have an equal effective piston area. Fluidschaltung gemäß einem der Ansprüche 4 bis 6, wobei ein Druckspeicher (8) mit der dritten Kolbenfläche (38) kommunizierend verbunden ist.Fluid circuit according to one of claims 4 to 6, wherein a pressure accumulator (8) communicating with the third piston surface (38) is connected. Fluidschaltung gemäß einem der Ansprüche 4 bis 7, wobei das erste Ventil (4) ein vibrierbares Regelventil ist, das mit einer Ansteuereinrichtung zum Vibrationvorgeben verbunden ist.Fluid circuit according to one of claims 4 to 7, wherein the first valve (4) is a vibratable control valve, which is connected to a drive device for vibration pretending. Ansteuerverfahren zum Vibrationsantreiben für einen Mehrflächenzylinder (2, 10 52), der eine erste Kolbenfläche (34), eine der ersten Kolbenfläche (349 entgegenwirkend angeordnete zweite Kolbenfläche (36) und eine zu der zweiten Kolbenfläche (36) gleichwirkend angeordnete dritte Kolbenfläche (38) aufweist, wobei zum Vibrationsantreiben die Kolbenflächen erste Kolbenfläche (34) und zweite Kolbenfläche (36) abwechselnd mit Druck beaufschlagt werden, und/oder wobei zum Kolbenausfahren die zweite Kolbenfläche (36) und/oder die dritte Kolbenfläche (38) mit Druck beaufschlagt wird.A driving method for vibratory driving for a multi-surface cylinder (2, 10, 52) comprising a first piston surface (34), a second piston surface (36) counteracting the first piston surface (349), and a third piston surface (38) cooperatively disposed with the second piston surface (36). having, for vibratory driving the piston surfaces first piston surface (34) and second piston surface (36) are alternately pressurized, and / or wherein the piston extension, the second piston surface (36) and / or the third piston surface (38) is pressurized. Ansteuerverfahren gemäß dem Anspruch 9 für den Mehrflächenzylinder (2, 10 52), wobei die Kolbenflächen erste Kolbenfläche (34) und zweite Kolbenfläche (36) mit einem ersten Ventil (4) verbunden sind, wobei zum Vibrationsantreiben ein Schieber des Ventils (4) vibriert wird.A driving method according to claim 9 for the multi-surface cylinder (2, 10 52), wherein the piston surfaces first piston surface (34) and second piston surface (36) are connected to a first valve (4), wherein for vibratory driving a slide of the valve (4) vibrates becomes. Ansteuerverfahren gemäß dem Anspruch 10 für den Mehrflächenzylinder (2, 10 52) mit dem ersten Ventil (4), wobei zum gleichzeitigen Vibrationsantreiben und Kolbenausfahren die dritte Kolbenfläche (38) mit Druck beaufschlagt wird, und das erste Ventil (4) um einen verschobenen Nullpunkt vibriert wird.A driving method according to claim 10 for the multi-surface cylinder (2, 10 52) with the first valve (4), wherein for simultaneous vibration driving and piston extension, the third piston surface (38) is pressurized, and the first valve (4) by a shifted zero point is vibrated. Ansteuerverfahren gemäß einem der Ansprüche 9 bis 11 für den Mehrflächenzylinder (2, 10 52), wobei die Kolbenflächen erste Kolbenfläche (34) und zweite Kolbenfläche (36) jeweils eine gleich große wirksame Kolbenfläche aufweisen, und wobei die Vibration gemäß einer Nullpunkt-symmetrischen Sinusfunktion vorgegeben wird.A driving method according to any one of claims 9 to 11 for the multi-surface cylinder (2, 10 52), wherein the piston surfaces first piston surface (34) and second piston surface (36) each have an equal effective piston area, and wherein the vibration according to a zero-point sinusoidal function is given.
EP19168620.3A 2018-04-17 2019-04-11 Vibration driving with a multi-surface cylinder Active EP3556478B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018205821.0A DE102018205821A1 (en) 2018-04-17 2018-04-17 Vibration drive with a multi-surface cylinder

Publications (2)

Publication Number Publication Date
EP3556478A1 true EP3556478A1 (en) 2019-10-23
EP3556478B1 EP3556478B1 (en) 2022-06-15

Family

ID=66105174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19168620.3A Active EP3556478B1 (en) 2018-04-17 2019-04-11 Vibration driving with a multi-surface cylinder

Country Status (2)

Country Link
EP (1) EP3556478B1 (en)
DE (1) DE102018205821A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT339358B (en) * 1974-05-09 1977-10-10 Plasser Bahnbaumasch Franz DRIVE AND CONTROL DEVICE FOR VIBRATING AND ADJUSTABLE TOOLS OF A TRACK MACHINE, IN PARTICULAR MOBILE TRACK PAD MACHINE
EP2722165A2 (en) * 2012-10-22 2014-04-23 Robert Bosch Gmbh Hydraulic circuit for a hydraulic axle and a hydraulic axle
WO2014127393A1 (en) 2013-02-22 2014-08-28 System7-Railsupport Gmbh Tamping unit for a track tamping machine
EP2902546A1 (en) 2014-01-30 2015-08-05 System7-Railsupport GmbH Device for the compaction of railway ballast
WO2016054667A1 (en) 2014-10-06 2016-04-14 System 7 - Railsupport GmbH Tamping machine for compacting the ballast bed of a track
EP3073012A1 (en) * 2015-03-18 2016-09-28 Ibañez Latorre, Jose Antonio Railway maintenance machine for track levelling and alignment with the capacity to operate without interruptions in its advance on straight tracks and to operate on track turnouts tamping the diverging track

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996417A (en) * 1998-03-23 1999-12-07 Team Corporation Preload piston actuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT339358B (en) * 1974-05-09 1977-10-10 Plasser Bahnbaumasch Franz DRIVE AND CONTROL DEVICE FOR VIBRATING AND ADJUSTABLE TOOLS OF A TRACK MACHINE, IN PARTICULAR MOBILE TRACK PAD MACHINE
EP2722165A2 (en) * 2012-10-22 2014-04-23 Robert Bosch Gmbh Hydraulic circuit for a hydraulic axle and a hydraulic axle
WO2014127393A1 (en) 2013-02-22 2014-08-28 System7-Railsupport Gmbh Tamping unit for a track tamping machine
EP2902546A1 (en) 2014-01-30 2015-08-05 System7-Railsupport GmbH Device for the compaction of railway ballast
WO2016054667A1 (en) 2014-10-06 2016-04-14 System 7 - Railsupport GmbH Tamping machine for compacting the ballast bed of a track
EP3073012A1 (en) * 2015-03-18 2016-09-28 Ibañez Latorre, Jose Antonio Railway maintenance machine for track levelling and alignment with the capacity to operate without interruptions in its advance on straight tracks and to operate on track turnouts tamping the diverging track

Also Published As

Publication number Publication date
EP3556478B1 (en) 2022-06-15
DE102018205821A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
DE2145440C3 (en) Device for the production of blocks, in particular block anodes, from granules
EP0135479B1 (en) Device for driving and extracting
DE2507020A1 (en) TRACK MACHINE, IN PARTICULAR MOBILE TRACK TAMPING MACHINE WITH VIBRANT AND ADAPTABLE TAMPING TOOLS
EP2512791A2 (en) Drive device for a bending press
WO2023161173A1 (en) Hydraulic actuation device for a hydraulically actuated implement
EP3545134B1 (en) Tamping unit for tamping sleepers of a track
DE19957888A1 (en) Device for the hydraulic high pressure forming of a tubular component or a blank
EP3743560B1 (en) Tamping assembly for a track-tamping machine
WO2007147422A1 (en) System and method for manufacturing concrete products
DE102005057863B3 (en) Hydraulic press for manufacture of automotive components has pressure regulation system consisting of a piston-cylinder and spring unit
DE102018004999A1 (en) Energy-efficient press with extended ram guide and controlled synchronization with off-center loading
EP3556478B1 (en) Vibration driving with a multi-surface cylinder
EP3094480B1 (en) Device and method for compacting mineral mixtures or for deep drawing sheet metal or plastic sheets
EP1728564B1 (en) Vibration generator with an operating piston that is slidingly supported between pressure chambers
DE2114282A1 (en) Vibration drive for tool assemblies of a track construction machine
EP3115190A1 (en) Device and method for controlling the principal drive of a precision cutting press
DE102006018810A1 (en) Apparatus for the production of concrete blocks with a vibrator and actuator
DE202014000704U1 (en) Device for compacting mineral mixtures
DE4340699A1 (en) Vehicle-mounted dynamic ground-compacting machine
DE19643396B4 (en) Hydraulic control device
DE2621726C2 (en) Cutting shock absorption device on presses
WO2002038365A1 (en) Method and device for compressing granular materials
DE19737248A1 (en) Mold for making molded bodies
DE10061449A1 (en) Compacting device for compacting product bodies consisting of granular mass
EP1469980A1 (en) Device for producing molded bodies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200423

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019004620

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B06B0001180000

Ipc: F15B0011036000

RIC1 Information provided on ipc code assigned before grant

Ipc: B06B 1/18 20060101ALI20220215BHEP

Ipc: E01B 27/16 20060101ALI20220215BHEP

Ipc: F15B 15/14 20060101ALI20220215BHEP

Ipc: F15B 11/036 20060101AFI20220215BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004620

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1498548

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220916

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221017

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004620

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

26N No opposition filed

Effective date: 20230316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230627

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230411

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230411

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230411