EP2902546B2 - Device for the compaction of railway ballast - Google Patents

Device for the compaction of railway ballast Download PDF

Info

Publication number
EP2902546B2
EP2902546B2 EP14153245.7A EP14153245A EP2902546B2 EP 2902546 B2 EP2902546 B2 EP 2902546B2 EP 14153245 A EP14153245 A EP 14153245A EP 2902546 B2 EP2902546 B2 EP 2902546B2
Authority
EP
European Patent Office
Prior art keywords
track
cylinder
piston
hydraulic
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14153245.7A
Other languages
German (de)
French (fr)
Other versions
EP2902546B1 (en
EP2902546A1 (en
Inventor
Bernhard Lichtberger
Hans Jörg Hofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP3 Real GmbH
Original Assignee
HP3 Real GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50070314&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2902546(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by HP3 Real GmbH filed Critical HP3 Real GmbH
Priority to PL14153245T priority Critical patent/PL2902546T3/en
Priority to NO14153245A priority patent/NO2902546T3/no
Priority to EP14153245.7A priority patent/EP2902546B2/en
Priority to CN201410802961.4A priority patent/CN104818656A/en
Priority to RU2014153651/11A priority patent/RU2602871C2/en
Priority to US14/597,547 priority patent/US9982396B2/en
Publication of EP2902546A1 publication Critical patent/EP2902546A1/en
Publication of EP2902546B1 publication Critical patent/EP2902546B1/en
Publication of EP2902546B2 publication Critical patent/EP2902546B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/20Compacting the material of the track-carrying ballastway, e.g. by vibrating the track, by surface vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • B06B1/183Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid operating with reciprocating masses
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/12Tamping devices
    • E01B2203/127Tamping devices vibrating the track surface
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/14Way of locomotion or support
    • E01B2203/141Way of locomotion or support on the track to be treated

Definitions

  • the invention relates to a device for compacting the ballast bedding of a track, with a machine frame which can be moved on the track with a stabilization unit running on rollers on the track and equipped with a vibratory drive for generating a vibration in a plane parallel to the track
  • the stabilization unit is preferably equipped with tensioning rollers encompassing the rail head and wherein the stabilization unit is hinged to the machine frame in a height-adjustable manner with an adjustment drive and can be adjusted against the track under load.
  • the machine has flange rollers and clamping rollers that can roll on rails, the flange rollers being pressed onto the rails via telescopic axes in order to be able to guide the stabilization unit on the track with practically no play.
  • Such a device is from SU 1761845 A1 known.
  • Known stabilization units U.S. 5,887,527 A
  • dynamic track stabilizers are currently vibration units that are equipped with a mechanical vibration drive that has two eccentric masses rotating in opposite directions.
  • the two revolving eccentric masses are coupled via gears in such a way that counterbalancing rotation of the masses about assigned axes is guaranteed.
  • the vibration force components cancel each other out in the vertical direction and the vibration force components increase in the horizontal direction, that is, in a plane parallel to the track, transverse to the longitudinal direction of the track.
  • Rock heaps especially those made of railway ballast, can be compacted efficiently, in particular by the action of horizontal vibrations, especially when the Frequency is chosen such that the ballast assumes an elasto-liquid behavior, which is the case at frequencies greater than 30 Hertz.
  • Dynamic track stabilization units are used to compensate for irregular initial settlements of the track on the ballast bed through targeted, controlled anticipation by removing them from the outset. This noticeably increases the durability of the geometric track position.
  • the frictional power can be calculated by measuring the load as normal force and the coefficient of friction of the threshold on the ballast, which is also referred to as the lateral displacement resistance.
  • the displacement resistance is not measured directly, but indirectly.
  • the lateral displacement resistance is the determining, safety-critical one Size for the resistance to warping of a continuously welded track.
  • the lateral displacement resistance is usually determined at 2 mm displacement.
  • the typical oscillation amplitudes of the track with dynamic slide stabilizers are around 2 to 3 mm.
  • the lateral displacement resistance is one of the most important safety-critical variables in track construction and is usually determined by means of complex individual threshold measurements, usually under an undesired track block.
  • the vertical stiffness of the track is determined by measuring the force that has to be applied for a certain depression of the track.
  • the measuring devices provided for this are based on the principle of applying a static load, mostly with the help of hydraulic cylinders that act on railway wheel sets.
  • the value of the force caused by subsidence then gives the vertical stiffness, which is an important measure for assessing the track quality and the track behavior under repeated tensile loads. Strongly fluctuating track stiffnesses lead to irregular subsidence under tension loads and thus to corresponding track geometry errors. Since the vertical stiffnesses are highly non-linear, the statically measured vertical stiffness is only of limited significance.
  • a device for centering and cooling a piston-cylinder unit of a hydraulic vibration exciter with a pulsation generator for the application of pressure to a cylinder receiving a movable piston is, for example, from FIG CH 641 064 A5 known.
  • the invention is based on the object of creating a device of the type described at the outset which has a simpler, more compact structure and at the same time allows a particularly effective stabilization of a track on a ballast bed.
  • the lateral sliding resistance and the vertical rigidity of a track should be able to be measured as easily as possible.
  • the introduction of resonance frequencies into a track should be avoided or the time spans for introduction of the resonance frequency should be kept as short as possible.
  • the oscillating drive comprises at least one cylinder vibrator, controlled by a proportional valve or a servo valve and formed by a hydraulic cylinder, the cylinder vibrator being equipped with a sensor that measures the piston position of the piston assigned to the hydraulic cylinder for determining a lateral displacement resistance and wherein the oscillating drive comprises at least one cylinder vibrator formed by a synchronizing cylinder with two piston rods.
  • the measures according to the invention result in a structure that is considerably simpler than in the prior art, since only at least one oscillating cylinder has to be provided instead of two eccentric shafts that are mounted and rotating in opposite directions. Thus, a gear and cardan drive for driving the eccentric shaft is no longer necessary.
  • the complex eccentric adjustment for adjusting the impact force can be omitted, which in the case of the cylinder vibrator is simply set by specifying the corresponding amplitude.
  • the complex mechanical vibration generation by eccentric masses rotating in opposite directions and the complex adjustment of the oscillating force by hydraulic adjustment of these eccentric masses can be dispensed with.
  • the vibrating force is determined by the amplitude and frequency of the particularly compact cylinder vibrators and thus by the vibrating mass.
  • the hydraulic cylinder of the cylinder vibrator is supported on the stabilization unit and the piston of the hydraulic cylinder forms and / or carries the oscillating mass (s).
  • the cylinder vibrator is controlled or regulated via an on the cylinder attached proportional valve or servo valve.
  • the desired amplitude and frequency is specified by a control or regulation.
  • the cylinder vibrator is equipped with a sensor that measures the piston position of the piston assigned to the hydraulic cylinder in order to be able to carry out the most exact control or regulation possible and also to be able to subsequently easily draw conclusions about lateral displacement resistance. Whether the sensor determines the position of the piston directly or the position of a piston rod assigned to the piston or a mass assigned to the piston or the like is the responsibility of a person skilled in the art.
  • the hydraulic cylinder of the cylinder vibrator is assigned a pressure sensor that measures the hydraulic pressure to determine a static and dynamic lateral displacement resistance of the track.
  • the vibration force can be increased by means of auxiliary masses attached to the cylinder rods.
  • the cylinder vibrator of the oscillating drive in particular the hydraulic cylinder and / or its piston, is assigned at least one auxiliary mass to amplify the dynamic force.
  • the vibration drive can comprise two or more coupled hydraulic cylinders, each with an integrated piston displacement measurement.
  • the oscillating drive comprises at least one cylinder vibrator formed by a synchronizing cylinder with two piston rods.
  • the stabilization unit is height-adjustable via, preferably vertically aligned, hydraulic adjusting cylinders
  • the machine frame is articulated and can be adjusted and vibrated under load against the track, the adjusting cylinders also forming a cylinder vibrator controlled by a proportional or servo valve.
  • the adjusting cylinders are preferably in turn equipped with at least one sensor measuring the position of the piston and are preferably equipped with pressure sensors measuring hydraulic pressure to determine a static and dynamic vertical stiffness of the track. All proportional or servo valves are preferably always attached directly to the associated cylinder in order to keep any pressure losses and vibrations in the supply lines as low as possible.
  • the pressures in the vertical cylinders and in the horizontal cylinders are measured by pressure sensors.
  • the respective forces and subsequently the dynamic and static vertical stiffness can be determined.
  • the static force acts like a shift of the working point on the vertical stiffness line.
  • the static and dynamic lateral displacement resistance can be measured by measuring the horizontal force. Since the horizontal force acting on the cylinder is measured via the hydraulic pressure, the displacement resistance can be determined directly.
  • two oscillating cylinders can also be connected in parallel.
  • the amplitude and phase synchronicity of several cylinder vibrators or stabilization units arranged one behind the other in the longitudinal direction of the track is implemented electronically via control loops.
  • a device allows particularly high control speeds of the system.
  • traditional eccentric systems with hydraulic eccentric adjustment have a considerable adjustment time due to the high time constants.
  • Due to the direct generation of the oscillation frequency according to the invention running through resonance frequencies when starting and lowering the stabilization unit can be avoided or be kept particularly short.
  • Since cylinder vibrators are small in size and height, they can practically be installed very close to the height of the upper edge of the rail, which means that an almost pure horizontal force can be introduced into the track.
  • the conventional systems known from the prior art build significantly higher because of the eccentric shafts arranged one above the other, whereby vertical components are introduced into the track due to the superimposed torques, which act on the track in a considerably irregular manner and cause an undesirable side effect.
  • the device according to the invention can also be retrofitted without problems in existing track construction machines, such as ballast plows or the like.
  • the fast control time of the device according to the invention avoids re-vibration after the eccentric shafts have been switched off and run out, which is particularly unpleasant when working on bridges, since the natural frequency band of the bridges is regularly passed through.
  • the waveform can be chosen freely. Sinusoidal, triangular, trapezoidal, rectangular or similar waveforms could be selected, as well as various basic vibrations with superimposed harmonics.
  • a vertical vibration of the load cylinders not only leads to an improved controllability of the settlement differences between the left and right side of the track, but also to a higher compression effect and better settlement, which also increases the durability of the geometric track position.
  • a device for compacting the ballast bedding of a track 1 comprises a machine frame 2, which is in particular part of a rail construction train or the like , the track level is denoted by G, equipped stabilization unit 5 can be moved on track 1.
  • the stabilization unit 5 is built on a frame 6, can be moved on track rollers 3 equipped with wheel rims on track 1 and is equipped with tensioning rollers 7 which encompass the rail head and which are equipped with a swivel drive 8 to release the track head in order to release the stabilization unit 5 from track 1 and to be able to take off.
  • the stabilization unit 5 is articulated to the machine frame 2 in a height-adjustable manner with an adjusting drive 9, two hydraulic cylinders and can be adjusted against the track 1 under load.
  • the rollers 3 are equipped with telescopic axles 10 which press the rollers 3 against the rails, where variations in the track widths can be compensated for and play-free guidance of the stabilization unit 5 on the track across the direction of travel is guaranteed.
  • the oscillating drive 4 comprises at least one cylinder vibrator 12, which is controlled by a proportional or servo valve 11 and formed by a hydraulic cylinder.
  • the cylinder vibrator 12 is formed by a synchronous cylinder with two piston rods 13, each of which carries an auxiliary mass 14.
  • the cylinder vibrator 12 is equipped with a sensor 15, a displacement sensor, which measures the piston position of the hydraulic cylinder piston.
  • the sensor 15 measures either directly the piston position, the piston rod or, if necessary, the auxiliary mass position.
  • a pressure sensor 16 which measures the hydraulic pressure is assigned to the hydraulic cylinder of the cylinder vibrator 12, in order to be able to subsequently calculate the static and dynamic lateral displacement resistance of the track 1.
  • the stabilization unit 5 is articulated to the machine frame 2 in a height-adjustable manner via the adjusting drive 9 forming vertically aligned hydraulic adjusting cylinders and can be adjusted and vibrated under load against the track 1.
  • the force with which the stabilization unit 5 is pressed against the track 1 while being supported on the machine frame 2 can thus be set via the adjusting cylinder.
  • the adjusting cylinders also form a cylinder vibrator regulated or controlled by a proportional or servo valve 11.
  • the position of the adjusting cylinder piston is in turn measured with a sensor 15 and a pressure sensor 16 measuring the hydraulic pressure is assigned to the adjusting cylinders to determine a static and dynamic vertical rigidity of the track.
  • Figure 4 shows a schematic diagram relating to the vertical stiffness of the track. This is made up of various individual stiffnesses, such as the elasticity of the rails, the elasticity of the intermediate layer, any elastic sleeper padding, the elasticity of the sleepers, the ballast, the stiffness of the subgrade and / or the frost protection layer and the stiffness of the soil below.
  • This characteristic curve is strongly non-linear, as shown in the schematic curve shown. If a static force is applied by the vertical load, the track grid will lower under this load. This depression is measured by means of the displacement transducers, the sensors 15, assigned to the cylinders. The force used for this can also be determined by measuring the cylinder pressure. This data can be used to calculate the vertical stiffness given in the diagram.
  • Fig. 5 shows a schematic lateral displacement diagram of a track.
  • the excitation amplitude of the vibration unit or the vibration path of the track in the ballast bed is indicated on the horizontal.
  • the area drawn under the curve corresponds to the friction work performed.
  • the horizontal force that has to be applied to move the track grid is plotted vertically.
  • the displacement is measured by the displacement transducer attached to the cylinder vibrator, the force is determined by measuring the hydraulic pressure in the cylinder.

Description

Die Erfindung bezieht sich auf eine Vorrichtung zum Verdichten der Schotterbettung eines Gleises, mit einem Maschinenrahmen, der mit einem auf Laufrollen auf dem Gleis laufenden und mit einem Schwingantrieb zur Erzeugung einer Schwingung in einer gleisparallelen Ebene ausgestatteten, Stabilisationsaggregat auf dem Gleis verfahrbar ist, wobei das Stabilisationsaggregat vorzugsweise mit den Schienenkopf umgreifenden Spannrollen ausgestattet ist und wobei das Stabilisationsaggregat mit einem Anstellantrieb höhenverstellbar am Maschinenrahmen angelenkt und unter Auflast gegen das Gleis anstellbar ist. Die Maschine weist auf Schienen abrollbare Spurkranzrollen und Einspannrollen auf, wobei die Spurkranzrollen über Teleskopachsen an die Schienen angepresst werden, um das Stabilisationsaggregat praktisch spielfrei auf dem Gleis führen zu können.The invention relates to a device for compacting the ballast bedding of a track, with a machine frame which can be moved on the track with a stabilization unit running on rollers on the track and equipped with a vibratory drive for generating a vibration in a plane parallel to the track The stabilization unit is preferably equipped with tensioning rollers encompassing the rail head and wherein the stabilization unit is hinged to the machine frame in a height-adjustable manner with an adjustment drive and can be adjusted against the track under load. The machine has flange rollers and clamping rollers that can roll on rails, the flange rollers being pressed onto the rails via telescopic axes in order to be able to guide the stabilization unit on the track with practically no play.

Eine derartige Vorrichtung ist aus der SU 1761845 A1 bekannt.Such a device is from SU 1761845 A1 known.

Bekannte Stabilisationsaggregate ( US 5 887 527 A ), sogenannte dynamische Gleisstabilisatoren, sind derzeit Schwingungsaggregate, die mit einem mechanischen Schwingungsantrieb ausgestattet sind, der über zwei gegengleich umlaufend exzentrische Massen verfügt. Die beiden umlaufenden exzentrischen Massen sind dabei über Zahnräder derart gekoppelt, dass eine gegengleiche Rotation der Massen um zugeordnete Achsen gewährleistet ist. Mit dieser Anordnung heben sich die Schwingkraftkomponenten in Vertikalrichtung auf und verstärken sich die Schwingkraftkomponenten in Horizontalrichtung, also in einer gleisparallelen Ebene quer zur Gleislängsrichtung. Gesteinshaufwerke, wie insbesondere aus Eisenbahnschotter, lassen sich insbesondere durch Einwirken horizontaler Schwingungen effizient verdichten, vor allem dann, wenn die Frequenz derart gewählt wird, dass der Schotter ein elasto-liquides Verhalten annimmt, was bei Frequenzen von größer als 30 Hertz der Fall ist. Dynamische Gleisstabilisationsaggregate dienen dazu, unregelmäßige Anfangssetzungen des Gleises auf dem Schotterbett durch eine gezielte gesteuerte Vorwegnahme auszugleichen, indem sie von Vornherein weggenommen werden. Die Haltbarkeit der geometrischen Gleislage wird dadurch merklich erhöht. In diesem Zusammenhang ist es auch bekannt, zwei in Gleislängsrichtung hintereinander angeordnete Exzenterschwingaggregate miteinander in einem Stabilisationsaggregat zu verbauen, wobei beide Schwingaggregate dann üblicherweise über eine Kardanwelle gekoppelt sind, damit diese Frequenz- und Phasensynchron laufen. Um zu vermeiden, dass das Stabilisationsaggregat auf der Schiene frei herumrutscht und dabei gegebenenfalls Rattermarken bzw. übermäßigen Verschleiß an den Schienen verursachen, ist es notwendig, die Aggregate statisch über Hydraulikzylinder gegen den Maschinenrahmen abzustützen und zusätzlich zu Spurkranzrollen auch Einspannrollen vorzusehen, welche das Stabilisationsaggregat am Gleis praktisch spielfrei halten.Known stabilization units ( U.S. 5,887,527 A ), so-called dynamic track stabilizers, are currently vibration units that are equipped with a mechanical vibration drive that has two eccentric masses rotating in opposite directions. The two revolving eccentric masses are coupled via gears in such a way that counterbalancing rotation of the masses about assigned axes is guaranteed. With this arrangement, the vibration force components cancel each other out in the vertical direction and the vibration force components increase in the horizontal direction, that is, in a plane parallel to the track, transverse to the longitudinal direction of the track. Rock heaps, especially those made of railway ballast, can be compacted efficiently, in particular by the action of horizontal vibrations, especially when the Frequency is chosen such that the ballast assumes an elasto-liquid behavior, which is the case at frequencies greater than 30 Hertz. Dynamic track stabilization units are used to compensate for irregular initial settlements of the track on the ballast bed through targeted, controlled anticipation by removing them from the outset. This noticeably increases the durability of the geometric track position. In this context, it is also known to build two eccentric oscillating units arranged one behind the other in a stabilization unit, with both oscillating units then usually being coupled via a cardan shaft so that they run frequency and phase synchronized. In order to prevent the stabilization unit from sliding around freely on the rail and possibly causing chatter marks or excessive wear on the rails, it is necessary to support the units statically against the machine frame via hydraulic cylinders and, in addition to flanged rollers, also to provide clamping rollers which the stabilization unit on Keep the track practically free of play.

Zur Steuerung der in den Gleisunterbau eingebrachten Energie ist es bekannt, die umlaufenden exzentrischen Massen verstellbar auszuführen, wobei ein Verschieben der exzentrischen Masse nach außen bei gleichbleibender Frequenz eine Erhöhung der dynamisch wirkenden Kräfte zur Folge hat. Es existieren auch Messeinrichtungen, die eine Abweichung von einer gegebenen Solleinsenkung des Gleises in Längsrichtung des Gleisbettes anzeigen. Ebenso sind Messeinrichtungen zum Messen der Querhöhenneigung, z. B. mit Hilfe von Inklinometern oder physikalischen Pendeln, in Verwendung. Ebenfalls bekannt ist eine kontinuierliche dynamische Querverschiebewiderstandsmesseinrichtung, die auf dem Prinzip der Messung der hydraulischen Antriebsleistung des mechanischen Schwingaggregates und einer Gleichsetzung mit der Reibleistung des Gleises auf dem Schotter beruht. Die Reibleistung ist dabei durch Messung der Auflast als Normalkraft und dem Reibwert der Schwelle auf dem Schotter, der auch als Querverschiebewiderstand bezeichnet wird, berechenbar. Dabei wird der Verschiebewiderstand also nicht direkt gemessen, sondern indirekt. Der Querverschiebewiderstand ist die bestimmende, sicherheitskritische Größe für die Verwerfungssicherheit eines durchgehend geschweißten Gleises. Üblicherweise wird der Querverschiebewiderstand bei 2 mm Verschiebeweg bestimmt. Die typischen Schwingamplituden des Gleises bei dynamischen Gleitstabilisatoren liegen bei etwa 2 bis 3 mm. Der Querverschiebewiderstand ist im Gleisbau eine der wichtigen sicherheitskritischen Größen und wird meist durch aufwendige Einzelschwellenmessungen in der Regel unter einer unerwünschten Gleissperre ermittelt.In order to control the energy introduced into the track substructure, it is known to make the rotating eccentric masses adjustable, shifting the eccentric mass outward at a constant frequency resulting in an increase in the dynamically acting forces. There are also measuring devices that indicate a deviation from a given setpoint indentation of the track in the longitudinal direction of the track bed. Likewise, measuring devices for measuring the transverse height inclination, e.g. B. with the help of inclinometers or physical pendulums in use. Also known is a continuous dynamic lateral displacement resistance measuring device which is based on the principle of measuring the hydraulic drive power of the mechanical oscillating unit and equating it with the friction power of the track on the ballast. The frictional power can be calculated by measuring the load as normal force and the coefficient of friction of the threshold on the ballast, which is also referred to as the lateral displacement resistance. The displacement resistance is not measured directly, but indirectly. The lateral displacement resistance is the determining, safety-critical one Size for the resistance to warping of a continuously welded track. The lateral displacement resistance is usually determined at 2 mm displacement. The typical oscillation amplitudes of the track with dynamic slide stabilizers are around 2 to 3 mm. The lateral displacement resistance is one of the most important safety-critical variables in track construction and is usually determined by means of complex individual threshold measurements, usually under an undesired track block.

Die vertikale Steifigkeit des Gleises wird durch das Messen der Kraft ermittelt, die für eine bestimmte Einsenkung des Gleises aufgewandt werden muss. Dafür vorgesehene Messeinrichtungen basieren auf dem Prinzip des Aufbringens einer statischen Last, meist mithilfe von Hydraulikzylindern, die auf Eisenbahnradsätze einwirken. Der Wert der Kraft durch Einsenkung ergibt dann die vertikale Steifigkeit, die ein wichtiges Maß für die Beurteilung der Gleisqualität und des Gleisverhaltens unter wiederholt verkehrenden Zuglasten ist. Stark schwankende Gleissteifigkeiten führen zu unregelmäßigen Setzungen unter Zuglasten und damit zu entsprechenden Gleisgeometriefehlern. Da die vertikalen Steifigkeiten stark unlinear sind, ist die statisch gemessene vertikale Steifigkeit nur bedingt aussagekräftig.The vertical stiffness of the track is determined by measuring the force that has to be applied for a certain depression of the track. The measuring devices provided for this are based on the principle of applying a static load, mostly with the help of hydraulic cylinders that act on railway wheel sets. The value of the force caused by subsidence then gives the vertical stiffness, which is an important measure for assessing the track quality and the track behavior under repeated tensile loads. Strongly fluctuating track stiffnesses lead to irregular subsidence under tension loads and thus to corresponding track geometry errors. Since the vertical stiffnesses are highly non-linear, the statically measured vertical stiffness is only of limited significance.

Eine Einrichtung zum Zentrieren und Kühlen einer Kolben-Zylindereinheit eines hydraulischen Schwingungserregers mit einem Pulsationserzeuger für die Druckbeaufschlagung eines einen beweglichen Kolben aufnehmenden Zylinders ist beispielsweise aus der CH 641 064 A5 bekannt.A device for centering and cooling a piston-cylinder unit of a hydraulic vibration exciter with a pulsation generator for the application of pressure to a cylinder receiving a movable piston is, for example, from FIG CH 641 064 A5 known.

Bei einer Vorrichtung zum Verdichten der Schotterbettung eines Gleises ist es bekannt ( EP 1 653 003 A2 ), einen über ein Servoventil angesteuerten Vibrationsantrieb zum Beistellen und Vibrieren der Stopfpickel eines Stopfaggregates vorzusehen.In the case of a device for compacting the ballast bedding of a track, it is known ( EP 1 653 003 A2 ) to provide a vibration drive controlled by a servo valve to set and vibrate the tamping tines of a tamping unit.

Ausgehend von einem Stand der Technik der vorgenannten Art liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung der eingangs geschilderten Art zu schaffen, die einen einfacheren, kompakteren Aufbau aufweist und dabei eine besonders effektive Stabilisation eines Gleises auf einem Schotterbett erlaubt. Nach einer Weiterbildung der Erfindung sollen der Querschiebewiderstand und die Vertikalsteifigkeit eines Gleises möglichst einfach gemessen werden können. Zudem soll ein Einbringen von Resonanzfrequenzen in ein Gleis vermieden bzw. die Zeitspannen für ein Einbringen der Resonanzfrequenz möglichst klein gehalten werden.On the basis of a prior art of the aforementioned type, the invention is based on the object of creating a device of the type described at the outset which has a simpler, more compact structure and at the same time allows a particularly effective stabilization of a track on a ballast bed. According to a further development of the invention, the lateral sliding resistance and the vertical rigidity of a track should be able to be measured as easily as possible. In addition, the introduction of resonance frequencies into a track should be avoided or the time spans for introduction of the resonance frequency should be kept as short as possible.

Die Erfindung löst die gestellte Aufgabe dadurch, dass der Schwingantrieb wenigstens einen, über ein Proportional- oder ein Servoventil angesteuerten, von einem Hydraulikzylinder gebildeten, Zylindervibrator umfasst, wobei der Zylindervibrator zur Bestimmung eines Querverschiebewiderstandes mit einem die Kolbenlage des dem Hydraulikzylinder zugeordneten Kolbens messenden Sensor ausgerüstet ist und wobei der Schwingantrieb wenigstens einen von einem Gleichlaufzylinder mit zwei Kolbenstangen gebildeten Zylindervibrator umfasst.The invention solves the problem in that the oscillating drive comprises at least one cylinder vibrator, controlled by a proportional valve or a servo valve and formed by a hydraulic cylinder, the cylinder vibrator being equipped with a sensor that measures the piston position of the piston assigned to the hydraulic cylinder for determining a lateral displacement resistance and wherein the oscillating drive comprises at least one cylinder vibrator formed by a synchronizing cylinder with two piston rods.

Durch die erfindungsgemäßen Maßnahmen ergibt sich ein gegenüber dem Stand der Technik wesentlich einfacherer Aufbau, da nur wenigstens ein Schwingzylinder statt je zwei gelagerten und gegenläufigen Exzenterwellen vorgesehen werden muss. Somit ist auch ein Getriebe und Kardantrieb für den Antrieb der Exzenterwelle hinfällig. Zudem kann die aufwendige Exzenterverstellung zur Verstellung der Schlagkraft entfallen, die beim Zylindervibrator einfach durch Vorgabe der entsprechenden Amplitude eingestellt wird. Mit der Erfindung können die aufwendige mechanische Schwingungserzeugung durch gegengleich umlaufende exzentrische Massen und die aufwendige Verstellung der Schwingkraft durch hydraulische Verstellung dieser exzentrischen Massen entfallen. Die Schwingkraft wird bei der Erfindung durch Amplitude und Frequenz der besonders kompakt bauenden Zylindervibratoren und somit durch die schwingende Masse bestimmt. Beispielsweise stützt sich der Hydraulikzylinder des Zylindervibrators am Stabilisationsaggregat ab und bildet und/oder trägt der Kolben des Hydraulikzylinders die schwingende(n) Masse(n). Die Steuerung bzw. Regelung des Zylindervibrators erfolgt über ein an den Zylinder angebautes Proportionalventil bzw. Servoventil. Die gewünschte Amplitude und Frequenz wird von einer Steuerung bzw. Regelung vorgegeben.The measures according to the invention result in a structure that is considerably simpler than in the prior art, since only at least one oscillating cylinder has to be provided instead of two eccentric shafts that are mounted and rotating in opposite directions. Thus, a gear and cardan drive for driving the eccentric shaft is no longer necessary. In addition, the complex eccentric adjustment for adjusting the impact force can be omitted, which in the case of the cylinder vibrator is simply set by specifying the corresponding amplitude. With the invention, the complex mechanical vibration generation by eccentric masses rotating in opposite directions and the complex adjustment of the oscillating force by hydraulic adjustment of these eccentric masses can be dispensed with. In the invention, the vibrating force is determined by the amplitude and frequency of the particularly compact cylinder vibrators and thus by the vibrating mass. For example, the hydraulic cylinder of the cylinder vibrator is supported on the stabilization unit and the piston of the hydraulic cylinder forms and / or carries the oscillating mass (s). The cylinder vibrator is controlled or regulated via an on the cylinder attached proportional valve or servo valve. The desired amplitude and frequency is specified by a control or regulation.

Um dabei eine möglichst exakte Steuerung bzw. Regelung vornehmen zu können und auch in weiterer Folge einfach Rückschlüsse auf Querverschiebewiderstand ziehen zu können, ist der Zylindervibrator mit einem die Kolbenlage des dem Hydraulikzylinder zugeordneten Kolbens messenden Sensor ausgerüstet. Ob der Sensor dabei die Lage des Kolbens direkt oder die Lage einer dem Kolbens zugeordneten Kolbenstange bzw. einer dem Kolben zugeordneten Masse oder dgl. bestimmt, obliegt einem Fachmann.The cylinder vibrator is equipped with a sensor that measures the piston position of the piston assigned to the hydraulic cylinder in order to be able to carry out the most exact control or regulation possible and also to be able to subsequently easily draw conclusions about lateral displacement resistance. Whether the sensor determines the position of the piston directly or the position of a piston rod assigned to the piston or a mass assigned to the piston or the like is the responsibility of a person skilled in the art.

Ebenso empfiehlt es sich, wenn dem Hydraulikzylinder des Zylindervibrators zur Ermittlung eines statischen und dynamischen Querverschiebewiderstandes des Gleises, ein den Hydraulikdruck messender Drucksensor zugeordnet ist. Die Schwingkraft kann über an die Zylinderstangen angebauten Hilfsmassen verstärkt werden. Dazu ist dem Zylindervibrator des Schwingantriebes, insbesondere dem Hydraulikzylinder und/oder seinem Kolben, wenigstens eine Hilfsmasse zur Verstärkung der dynamischen Kraft zugeordnet.It is also advisable if the hydraulic cylinder of the cylinder vibrator is assigned a pressure sensor that measures the hydraulic pressure to determine a static and dynamic lateral displacement resistance of the track. The vibration force can be increased by means of auxiliary masses attached to the cylinder rods. For this purpose, the cylinder vibrator of the oscillating drive, in particular the hydraulic cylinder and / or its piston, is assigned at least one auxiliary mass to amplify the dynamic force.

Zur Erhöhung der Schwingenergie kann der Schwingantrieb zwei oder auch mehrere gekoppelte Hydraulikzylinder mit jeweils integrierter Kolbenwegmessung umfassen.In order to increase the vibration energy, the vibration drive can comprise two or more coupled hydraulic cylinders, each with an integrated piston displacement measurement.

Die Schwingformen, zu denen Schwingantrieb und/oder Anstellantrieb anregbar sind, sind vorzugsweise von einer Steuerung bzw. Regelung frei vorgebbar. Erfindungsgemäß umfasst der Schwingantrieb wenigstens einen von einem Gleichlaufzylinder mit zwei Kolbenstangen gebildeten Zylindervibrator. Mit einer derartigen Vorrichtung kann sichergestellt werden, dass beide Schienenstränge des Gleises während der Stabilisation gleich belastet bzw. mit gleichem Energieeintrag versehen werden.The oscillation shapes to which the oscillating drive and / or adjusting drive can be excited can preferably be freely specified by a control or regulation. According to the invention, the oscillating drive comprises at least one cylinder vibrator formed by a synchronizing cylinder with two piston rods. With such a device it can be ensured that both rails of the track are equally loaded or provided with the same energy input during stabilization.

Zusätzlich empfiehlt es sich, wenn das Stabilisationsaggregat über, vorzugsweise vertikal ausgerichtete, hydraulische Anstellzylinder höhenverstellbar am Maschinenrahmen angelenkt und unter Auflast gegen das Gleis anstellbar und schwingungserregbar ist, wobei die Anstellzylinder ebenfalls einen von einem Proportional- oder Servoventil geregelten Zylindervibrator bilden. Die Anstellzylinder sind dabei vorzugsweise wiederum je mit wenigstens einem die Lage des Kolbens messenden Sensor ausgerüstet und vorzugsweise zur Ermittlung einer statischen und dynamischen Vertikalsteifigkeit des Gleises mit den Hydraulikdruck messenden Drucksensoren ausgestattet. Alle Proportional- bzw. Servoventile werden vorzugsweise stets direkt an den zugeordneten Zylinder angebaut, um etwaige Druckverluste und Schwingungen in den Zuleitungen so gering wie möglich zu halten. Die Drücke in den Vertikalzylindern und in den Horizontalzylindern werden von Drucksensoren gemessen.In addition, it is recommended if the stabilization unit is height-adjustable via, preferably vertically aligned, hydraulic adjusting cylinders The machine frame is articulated and can be adjusted and vibrated under load against the track, the adjusting cylinders also forming a cylinder vibrator controlled by a proportional or servo valve. The adjusting cylinders are preferably in turn equipped with at least one sensor measuring the position of the piston and are preferably equipped with pressure sensors measuring hydraulic pressure to determine a static and dynamic vertical stiffness of the track. All proportional or servo valves are preferably always attached directly to the associated cylinder in order to keep any pressure losses and vibrations in the supply lines as low as possible. The pressures in the vertical cylinders and in the horizontal cylinders are measured by pressure sensors.

Über die Messung der dynamischen Amplituden der Anstellzylinder und des Hydraulikzylinders des Kolbenvibrators können die jeweiligen Kräfte und in weiterer Folge die dynamische und die statische Vertikalsteifigkeit ermittelt werden. Dabei wirkt die statische Kraft wie eine Verschiebung des Arbeitspunktes auf der vertikalen Steifigkeitslinie. Durch Messung der Horizontalkraft können der statische und der dynamische Querverschiebewiderstand gemessen werden. Da die wirkende Horizontalkraft am Zylinder über den Hydraulikdruck gemessen wird, kann der Verschiebewiderstand direkt ermittelt werden. Natürlich können auch zwei Schwingzylinder parallel geschaltet werden. Die Amplituden- und Phasensynchronizität mehrerer, in Längsrichtung des Gleises hintereinander angeordneter Zylindervibratoren bzw. Stabilisierungsaggregate wird über Regelkreise elektronisch realisiert. Damit lassen sich mit der Erfindung eine einfache Messung des statischen und dynamischen Querverschiebewiderstands sowie der statischen und dynamischen Vertikalsteifigkeit realisieren.By measuring the dynamic amplitudes of the adjusting cylinder and the hydraulic cylinder of the piston vibrator, the respective forces and subsequently the dynamic and static vertical stiffness can be determined. The static force acts like a shift of the working point on the vertical stiffness line. The static and dynamic lateral displacement resistance can be measured by measuring the horizontal force. Since the horizontal force acting on the cylinder is measured via the hydraulic pressure, the displacement resistance can be determined directly. Of course, two oscillating cylinders can also be connected in parallel. The amplitude and phase synchronicity of several cylinder vibrators or stabilization units arranged one behind the other in the longitudinal direction of the track is implemented electronically via control loops. With the invention, a simple measurement of the static and dynamic lateral displacement resistance as well as the static and dynamic vertical rigidity can thus be realized.

Eine erfindungsgemäße Vorrichtung erlaubt besonders hohe Regelgeschwindigkeiten des Systems. Demgegenüber weisen traditionelle Exzentersysteme mit hydraulischer Exzenterverstellung aufgrund hoher Zeitkonstanten eine erhebliche Verstelldauer auf. Durch die erfindungsgemäße direkte Erzeugung der Schwingungsfrequenz kann ein Durchfahren von Resonanzfrequenzen beim Hochfahren und Niederfahren des Stabilisationsaggregates vermieden bzw. besonders kurz gehalten werden. Da Zylindervibratoren eine geringe Baugröße und Bauhöhe aufweisen, können diese praktisch sehr nahe der Höhe der Schienenoberkante eingebaut werden, womit eine nahezu reine Horizontalkraft in das Gleis eingebracht werden kann. Die konventionellen, aus dem Stand der Technik bekannten Systeme bauen wegen der übereinander angeordneten Exzenterwellen wesentlich höher, wodurch aufgrund der überlagerten Drehmomente auch Vertikalkomponenten in das Gleis eingebracht werden, die erheblich unregelmäßig auf das Gleis einwirken und einen unerwünschten Nebeneffekt bedingen. Aufgrund der geringen Bauhöhe durch die Verwendung von Zylindervibratoren kann die erfindungsgemäße Vorrichtung auch bei bestehenden Gleisbaumaschinen, wie auch Schotterpflügen oder dgl. problemlos nachgerüstet werden. Die schnelle Regelzeit der erfindungsgemäßen Vorrichtung vermeidet ein Nachvibrieren nach dem Abschalten und Auslaufen der Exzenterwellen, was eben bei Arbeiten auf Brücken besonders unangenehm ist, da dabei regelmäßig das Eigenfrequenzband der Brücken durchfahren wird.A device according to the invention allows particularly high control speeds of the system. In contrast, traditional eccentric systems with hydraulic eccentric adjustment have a considerable adjustment time due to the high time constants. Due to the direct generation of the oscillation frequency according to the invention, running through resonance frequencies when starting and lowering the stabilization unit can be avoided or be kept particularly short. Since cylinder vibrators are small in size and height, they can practically be installed very close to the height of the upper edge of the rail, which means that an almost pure horizontal force can be introduced into the track. The conventional systems known from the prior art build significantly higher because of the eccentric shafts arranged one above the other, whereby vertical components are introduced into the track due to the superimposed torques, which act on the track in a considerably irregular manner and cause an undesirable side effect. Due to the low overall height due to the use of cylinder vibrators, the device according to the invention can also be retrofitted without problems in existing track construction machines, such as ballast plows or the like. The fast control time of the device according to the invention avoids re-vibration after the eccentric shafts have been switched off and run out, which is particularly unpleasant when working on bridges, since the natural frequency band of the bridges is regularly passed through.

Die Schwingungsform kann frei gewählt werden. Es könnten sinusförmige, dreieckförmige, trapezförmige, rechteckförmige oder dgl. Schwingungsformen gewählt werden, wie auch diverse Grundschwingungen mit überlagerten Oberschwingungen. Eine vertikale Vibration der Auflastzylinder führt nicht nur zu einer verbesserten Regelbarkeit der Setzungsunterschiede zwischen linker und rechter Gleisseite, sondern überhaupt zu einer höheren Verdichterwirkung und zu besseren Setzungen, was die Haltbarkeit der geometrischen Gleislage zudem erhöht.The waveform can be chosen freely. Sinusoidal, triangular, trapezoidal, rectangular or similar waveforms could be selected, as well as various basic vibrations with superimposed harmonics. A vertical vibration of the load cylinders not only leads to an improved controllability of the settlement differences between the left and right side of the track, but also to a higher compression effect and better settlement, which also increases the durability of the geometric track position.

In der Zeichnung ist die Erfindung schematisch anhand eines Ausführungsbeispiels dargestellt. Es zeigen

Fig. 1
eine Draufsicht auf ein erfindungsgemäßen Stabilisationsaggregat,
Fig. 2
eine Vorderansicht auf das erfindungsgemäße Stabilisationsaggregat aus Fig. 1,
Fig. 3
ein auf einem Maschinenrahmen aufgebautes Stabilisationsaggregat aus Fig. 1 und 2 in kleinerem Maßstab,
Fig. 4
ein schematisches Diagramm für die vertikale Gleissteifigkeit über der Auflast und
Fig. 5
ein schematisches Diagramm für die Querverschiebekraft über der Amplitude.
The invention is shown schematically in the drawing using an exemplary embodiment. Show it
Fig. 1
a plan view of a stabilization unit according to the invention,
Fig. 2
a front view of the stabilization unit according to the invention Fig. 1 ,
Fig. 3
a stabilization unit built on a machine frame Figs. 1 and 2 on a smaller scale,
Fig. 4
a schematic diagram for the vertical track stiffness over the load and
Fig. 5
a schematic diagram for the transverse displacement force over the amplitude.

Eine Vorrichtung zum Verdichten der Schotterbettung eines Gleises 1 umfasst einen Maschinenrahmen 2, der insbesondere Teil eines Schienenbauzuges oder dgl., ist, der mit einem auf Laufrollen 3 auf dem Gleis 1 laufenden, mit einem Schwingantrieb 4 zur Erzeugung einer Schwingung in einer gleisparallelen Ebene E, die Gleisebene ist mit G bezeichnet, ausgestatteten Stabilisationsaggregat 5 auf dem Gleis 1 verfahrbar ist. Das Stabilisationsaggregat 5 ist auf einem Rahmen 6 aufgebaut, auf mit Radkränzen ausgestattete Laufrollen 3 am Gleis 1 verfahrbar und mit den Schienenkopf umgreifenden Spannrollen 7 ausgestattet, die mit einem Schwenkantrieb 8 zur Freigabe des Gleiskopfes ausgestattet sind, um das Stabilisationsaggregat 5 von dem Gleis 1 freigeben und abheben zu können.A device for compacting the ballast bedding of a track 1 comprises a machine frame 2, which is in particular part of a rail construction train or the like , the track level is denoted by G, equipped stabilization unit 5 can be moved on track 1. The stabilization unit 5 is built on a frame 6, can be moved on track rollers 3 equipped with wheel rims on track 1 and is equipped with tensioning rollers 7 which encompass the rail head and which are equipped with a swivel drive 8 to release the track head in order to release the stabilization unit 5 from track 1 and to be able to take off.

Zudem ist das Stabilisationsaggregat 5 mit einem Anstellantrieb 9, zwei Hydraulikzylindern, höhenverstellbar am Maschinenrahmen 2 angelenkt und unter Auflast gegen das Gleis 1 anstellbar. Die Laufrollen 3 sind mit Teleskopachsen 10 ausgestattet, welche die Laufrollen 3 an die Schienen andrücken, wo durch Variationen in der Spurweiten ausgeglichen werden können und ein spielfreies Führen des Stabilisationsaggregates 5 auf dem Gleis quer zur Fahrtrichtung gewährleistet ist.In addition, the stabilization unit 5 is articulated to the machine frame 2 in a height-adjustable manner with an adjusting drive 9, two hydraulic cylinders and can be adjusted against the track 1 under load. The rollers 3 are equipped with telescopic axles 10 which press the rollers 3 against the rails, where variations in the track widths can be compensated for and play-free guidance of the stabilization unit 5 on the track across the direction of travel is guaranteed.

Zur Schaffung besonders einfacher und kompakter Bauverhältnisse umfasst der Schwingantrieb 4 wenigstens einen über ein Proportional- oder Servoventil 11 angesteuerten, von einem Hydraulikzylinder gebildeten Zylindervibrator 12. Der Zylindervibrator 12 wird von einem Gleichlaufzylinder mit zwei Kolbenstangen 13 gebildet, die je eine Hilfsmasse 14 tragen. Der Zylindervibrator 12 ist mit einem die Kolbenlage des Hydraulikzylinderkolbens messenden Sensor 15, einem Wegsensor ausgerüstet. Der Sensor 15 misst dazu entweder direkt die Kolbenlage, die Kolbenstange oder aber gegebenenfalls die Hilfsmassenlage.To create particularly simple and compact structural conditions, the oscillating drive 4 comprises at least one cylinder vibrator 12, which is controlled by a proportional or servo valve 11 and formed by a hydraulic cylinder. The cylinder vibrator 12 is formed by a synchronous cylinder with two piston rods 13, each of which carries an auxiliary mass 14. The cylinder vibrator 12 is equipped with a sensor 15, a displacement sensor, which measures the piston position of the hydraulic cylinder piston. For this purpose, the sensor 15 measures either directly the piston position, the piston rod or, if necessary, the auxiliary mass position.

Zudem ist dem Hydraulikzylinder des Zylindervibrators 12 ein den Hydraulikdruck messender Drucksensor 16 zugeordnet, um in weiterer Folge den statischen und dynamischen Querverschiebewiderstand des Gleises 1 berechnen zu können.In addition, a pressure sensor 16 which measures the hydraulic pressure is assigned to the hydraulic cylinder of the cylinder vibrator 12, in order to be able to subsequently calculate the static and dynamic lateral displacement resistance of the track 1.

Das Stabilisationsaggregat 5 ist über den Anstellantrieb 9 bildende vertikal ausgerichtete hydraulische Anstellzylinder höhenverstellbar am Maschinenrahmen 2 angelenkt und unter Auflast gegen das Gleis 1 anstellbar und schwingungserregbar. Über die Anstellzylinder ist somit jene Kraft einstellbar, mit der das Stabilisationsaggregat 5 unter Abstützung am Maschinenrahmen 2 gegen das Gleis 1 gepresst wird. Die Anstellzylinder bilden dabei ebenfalls einen von einem Proportional- oder Servoventil 11 geregelten bzw. gesteuerten Zylindervibrator. Die Lage des Anstellzylinderkolbens wird wiederum mit einem Sensor 15 gemessen und den Anstellzylindern ist zur Ermittlung einer statischen und dynamischen Vertikalsteifigkeit des Gleises ein den Hydraulikdruck messender Drucksensor 16 zugeordnet.The stabilization unit 5 is articulated to the machine frame 2 in a height-adjustable manner via the adjusting drive 9 forming vertically aligned hydraulic adjusting cylinders and can be adjusted and vibrated under load against the track 1. The force with which the stabilization unit 5 is pressed against the track 1 while being supported on the machine frame 2 can thus be set via the adjusting cylinder. The adjusting cylinders also form a cylinder vibrator regulated or controlled by a proportional or servo valve 11. The position of the adjusting cylinder piston is in turn measured with a sensor 15 and a pressure sensor 16 measuring the hydraulic pressure is assigned to the adjusting cylinders to determine a static and dynamic vertical rigidity of the track.

Figur 4 zeigt ein schematisches Diagramm betreffend die Vertikalsteifigkeit des Gleises. Diese setzt sich aus verschiedenen Einzelsteifigkeiten, wie Schienenelastizität, Elastizität der Zwischenlage, einer eventuellen elastischen Schwellenbesohlung der Elastizität der Schwellen, dem Schotter, der Steifigkeit des Planums und/oder der Frostschutzschicht und der Steifigkeit des darunter anstehenden Bodens zusammen. Diese Kennlinie ist eine stark nichtlineare, wie die abgebildete schematische Kurve zeigt. Wird durch die vertikale Auflast eine statische Kraft aufgebracht, dann senkt sich der Gleisrost unter dieser Last ab. Diese Einsenkung wird mittels der den Zylindern zugeordneten Wegaufnehmer, den Sensoren 15, gemessen. Über die Zylinderdruckmessung kann auch die dazu aufgewendete Kraft bestimmt werden. Aus diesen Daten kann auf die im Diagramm angegebene vertikale Steifigkeit zurückgerechnet werden. Bei einer bestimmten statischen Auflast FSTAT ergibt sich dann der sogenannte Arbeitspunkt A. Da die Anstellzylinder auch dynamisch erregt werden, ergibt sich um diesen Arbeitspunkt eine dynamische Kraftschwankung FDYN, die einer vertikalen Steifigkeitsschwankung entspricht. Durch eine Division der Steifigkeitsschwankung durch das Maß der Kraftschwankung FDYN ergibt sich die dynamische Vertikalsteifigkeit sDYN, die näherungsweise der Tangente bzw. der Steigung der Kurve im Arbeitspunkt entspricht. Figure 4 shows a schematic diagram relating to the vertical stiffness of the track. This is made up of various individual stiffnesses, such as the elasticity of the rails, the elasticity of the intermediate layer, any elastic sleeper padding, the elasticity of the sleepers, the ballast, the stiffness of the subgrade and / or the frost protection layer and the stiffness of the soil below. This characteristic curve is strongly non-linear, as shown in the schematic curve shown. If a static force is applied by the vertical load, the track grid will lower under this load. This depression is measured by means of the displacement transducers, the sensors 15, assigned to the cylinders. The force used for this can also be determined by measuring the cylinder pressure. This data can be used to calculate the vertical stiffness given in the diagram. At a certain static load F STAT , the so-called working point A then results. Since the adjusting cylinders are also dynamically excited, a dynamic force fluctuation F DYN results around this working point, which corresponds to a vertical fluctuation in rigidity. By a division the stiffness fluctuation by the amount of force fluctuation F DYN results in the dynamic vertical stiffness s DYN , which corresponds approximately to the tangent or the slope of the curve at the operating point.

Fig. 5 zeigt ein schematisches Querverschiebungsdiagramm eines Gleises. Auf der horizontalen ist die Erregeramplitude des Schwingungsaggregates bzw. der Schwingweg des Gleises im Schotterbett angegeben. Die eingezeichnete Fläche unter der Kurve entspricht der geleisteten Reibarbeit. Vertikal ist die horizontal wirkende Kraft aufgetragen, die zum Verschieben des Gleisrostes aufgebracht werden muss. Der Weg wird über den am Zylindervibrator angebauten Wegaufnehmer gemessen, die Kraft wird über die Hydraulikdruckmessung im Zylinder ermittelt. Im Eisenbahnwesen ist es üblich, den Querverschiebewiderstand aus einer Verschiebekraft zu bestimmen, die für eine Verschiebung des Gleises um 2 mm aus der Null-Lage erforderlich ist. Da die entsprechenden Parameter wie Weg und Kraft gemessen werden, ist es möglich aus den Messwerten den statischen Querverschiebewiderstand bei 2 mm und die Steigung der Tangente in diesem Arbeitspunkt, den dynamischen Querverschiebewiderstand, zu bestimmen. Fig. 5 shows a schematic lateral displacement diagram of a track. The excitation amplitude of the vibration unit or the vibration path of the track in the ballast bed is indicated on the horizontal. The area drawn under the curve corresponds to the friction work performed. The horizontal force that has to be applied to move the track grid is plotted vertically. The displacement is measured by the displacement transducer attached to the cylinder vibrator, the force is determined by measuring the hydraulic pressure in the cylinder. In the railway industry, it is common to determine the lateral displacement resistance from a displacement force that is required to move the track by 2 mm from the zero position. Since the corresponding parameters such as path and force are measured, it is possible to determine the static lateral displacement resistance at 2 mm and the gradient of the tangent at this operating point, the dynamic transverse displacement resistance, from the measured values.

Claims (8)

  1. Apparatus for compacting the ballast bed of a track, comprising a machine frame (2) which is movable on the track (1) with a stabiliser assembly (5) which runs on rollers (3) on the track (1) and is equipped with a vibration drive (4) for producing a vibration in a plane (E) parallel to the track, wherein the stabiliser assembly (5) is preferably equipped with tension rollers (7) engaging around the rail head, and wherein the stabiliser assembly (5) is articulated in a height-adjustable manner to the machine frame (2) with a positioning drive and can be moved towards the track (1) under load, characterised in that the vibration drive (4) comprises at least one cylinder vibrator (12) which is formed by a hydraulic cylinder and is actuated via a proportional or servo valve (11), wherein the cylinder vibrator (12) is equipped with a sensor (15) which measures the piston position of the piston associated with the hydraulic cylinder in order to determine a resistance against lateral displacement, wherein the vibration drive (4) includes at least one cylinder vibrator (12) which is formed by a synchronous cylinder having two piston rods (13)
  2. Apparatus as claimed in claim 1, characterised in that a pressure sensor (16) measuring the hydraulic pressure is associated with the hydraulic cylinder of the cylinder vibrator (12) for determining a static and dynamic resistance against lateral displacement of the track (1).
  3. Apparatus as claimed in claim 1 or 2, characterised in that the stabiliser assembly (5) is articulated in a height-adjustable manner to the machine frame (2) via hydraulic positioning cylinders which are preferably oriented vertically, and the stabiliser assembly can be moved towards the track (1) under load and can be caused to vibrate, wherein the positioning cylinders likewise form a cylinder vibrator which is controlled by a proportional or servo valve (11).
  4. Apparatus as claimed in claim 3, characterised in that the positioning cylinders are equipped with a sensor (15) measuring the position of its piston.
  5. Apparatus as claimed in claim 3 or 4, characterised in that pressure sensors (16) measuring the hydraulic pressure are associated with the positioning cylinders for determining a static and dynamic vertical stiffness of the track (1).
  6. Apparatus as claimed in any one of claims 1 to 5, characterised in that at least one auxiliary mass (14) for amplifying the dynamic force is associated with the cylinder vibrator (12) of the vibration drive (4), in particular the hydraulic cylinder and/or its piston.
  7. Apparatus as claimed in any one of claims 1 to 6, characterised in that the vibration drive (4) includes two mechanically coupled hydraulic cylinders, each with integrated piston path measurement.
  8. Apparatus as claimed in any one of claims 1 to 7, characterised in that the types of vibration with which the vibration drive (4) and/or the positioning drive (9) can be excited can be predetermined freely by an open-loop/closed-loop control unit.
EP14153245.7A 2014-01-30 2014-01-30 Device for the compaction of railway ballast Active EP2902546B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL14153245T PL2902546T3 (en) 2014-01-30 2014-01-30 Device for the compaction of railway ballast
NO14153245A NO2902546T3 (en) 2014-01-30 2014-01-30
EP14153245.7A EP2902546B2 (en) 2014-01-30 2014-01-30 Device for the compaction of railway ballast
CN201410802961.4A CN104818656A (en) 2014-01-30 2014-12-19 Device for the compaction of railway ballast
RU2014153651/11A RU2602871C2 (en) 2014-01-30 2014-12-26 Device for compaction of broken stone underlayer of railway track
US14/597,547 US9982396B2 (en) 2014-01-30 2015-01-15 Apparatus for compacting the ballast bed of a track

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14153245.7A EP2902546B2 (en) 2014-01-30 2014-01-30 Device for the compaction of railway ballast

Publications (3)

Publication Number Publication Date
EP2902546A1 EP2902546A1 (en) 2015-08-05
EP2902546B1 EP2902546B1 (en) 2017-10-25
EP2902546B2 true EP2902546B2 (en) 2020-09-02

Family

ID=50070314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14153245.7A Active EP2902546B2 (en) 2014-01-30 2014-01-30 Device for the compaction of railway ballast

Country Status (6)

Country Link
US (1) US9982396B2 (en)
EP (1) EP2902546B2 (en)
CN (1) CN104818656A (en)
NO (1) NO2902546T3 (en)
PL (1) PL2902546T3 (en)
RU (1) RU2602871C2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516590B1 (en) * 2014-11-28 2017-01-15 System 7 - Railsupport GmbH Method and device for compacting the ballast bed of a track
AT518373B1 (en) * 2016-02-24 2018-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Machine with stabilization unit and measuring method
US20180010302A1 (en) * 2016-07-05 2018-01-11 Harsco Technologies LLC Apparatus and method for tamping ballast
CA3032145A1 (en) * 2016-08-05 2018-02-08 Harsco Technologies LLC Rail vehicle having stabilizer workhead with powered axles
CN106906703B (en) * 2017-04-14 2018-09-11 河南翔铁路桥工务设备有限公司 Width pillow plate pads tiny fragments of stone, coal, etc. machine
CN107034747A (en) * 2017-06-09 2017-08-11 山东交通学院 Portable tamping tool
AT16251U1 (en) * 2018-01-22 2019-05-15 Hp3 Real Gmbh Tamping unit for a tamping machine
DE102018205821A1 (en) 2018-04-17 2019-10-17 Robert Bosch Gmbh Vibration drive with a multi-surface cylinder
AT521481B1 (en) * 2018-10-24 2020-02-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method and device for stabilizing a track
AT521798B1 (en) * 2018-10-24 2021-04-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method and device for compacting a ballast bed
CN110174228B (en) * 2019-06-28 2024-01-30 中铁二院工程集团有限责任公司 Broadband excitation test device for magnetic levitation beam rail structure
AT523228A1 (en) * 2019-12-10 2021-06-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Machine and method for stabilizing a ballast track
AT525090B1 (en) 2021-08-12 2022-12-15 Hp3 Real Gmbh Process for stabilizing the ballast bed of a track

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT336663B (en) 1972-10-13 1977-05-25 Plasser Bahnbaumasch Franz METHOD AND MACHINE FOR CORRECTING THE LEVEL OF A TRACK WITH BALLBED BED
DE4102869A1 (en) 1990-02-06 1991-08-08 Plasser Bahnbaumasch Franz TRACK CONSTRUCTION MACHINE FOR COMPRESSING THE GRAVEL BED
SU1761845A1 (en) 1990-06-28 1992-09-15 Всесоюзный Научно-Исследовательский Тепловозный Институт Railroad track stabilizing device
EP0688902A1 (en) 1994-06-17 1995-12-27 Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. Continuous measuring method of the resistance to lateral displacement of a railway track

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159233A (en) * 1962-11-14 1964-12-01 Continental Oil Co Seismic transducer construction
US3965822A (en) * 1974-11-11 1976-06-29 Canron, Inc. Shoulder tamping lifting jack
US4046078A (en) * 1975-01-31 1977-09-06 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Track surfacing apparatus
AT343165B (en) * 1975-01-31 1978-05-10 Plasser Bahnbaumasch Franz MOBILE BOTTOM BED COMPACTION MACHINE FOR CORRECTING THE TRACK
US4068595A (en) * 1975-11-17 1978-01-17 Graystone Corporation Track tamper
US4092903A (en) * 1975-11-17 1978-06-06 Graystone Corporation Vibratory drive mechanism
AT356165B (en) * 1978-05-11 1980-04-10 Plasser Bahnbaumasch Franz TRACKING MACHINE WITH TRACK LIFTING AND SIDE DIRECTIONAL DEVICE, ESPECIALLY FOR SWITCH AREAS
CH641064A5 (en) * 1978-07-19 1984-02-15 Koehring Gmbh Bomag Division DEVICE FOR CENTERING AND COOLING A PISTON CYLINDER UNIT OF A HYDRAULIC VIBRATOR WITH A PULSATION GENERATOR.
AT373646B (en) * 1980-05-29 1984-02-10 Plasser Bahnbaumasch Franz TRACK CONSTRUCTION MACHINE WITH TOOL BRACKET FOR LIFTING AND LEVELING TOOLS
AT366735B (en) * 1980-06-02 1982-05-10 Plasser Bahnbaumasch Franz TRACK CONSTRUCTION MACHINE WITH TRACK POSITION CORRECTION DEVICE
US4388981A (en) * 1981-02-23 1983-06-21 Conoco Inc. Variable cylinder hydraulic vibrator and control system
US4643101A (en) * 1982-11-23 1987-02-17 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Mobile track leveling, lining and tamping machine
SU1096324A1 (en) * 1982-11-25 1984-06-07 Ленинградский Ордена Ленина Институт Инженеров Железнодорожного Транспорта Им.Акад.В.Н.Образцова System for controlling working member for compacting railway track ballastway
US4770103A (en) * 1983-02-10 1988-09-13 Canron Corporation Method and apparatus for exchanging railway cross ties with rail clamping mechanism to prevent rail flexure
AT402519B (en) * 1990-02-06 1997-06-25 Plasser Bahnbaumasch Franz CONTINUOUSLY RIDABLE RAILWAY MACHINE FOR COMPRESSING THE GRAVEL BED OF A TRACK
US5887527A (en) * 1994-02-04 1999-03-30 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Track lining machine
ATE176936T1 (en) * 1995-02-09 1999-03-15 Plasser Bahnbaumasch Franz METHOD AND MACHINE FOR TAGGING AND STABILIZING A TRACK
RU2098676C1 (en) * 1995-12-21 1997-12-10 Акционерное общество закрытого типа фирма "ВИБРОБОТ" Hydraulic vibrator
AT3739U3 (en) * 2000-04-07 2001-03-26 Plasser Bahnbaumasch Franz STAMPING MACHINE
US7093361B2 (en) * 2002-01-23 2006-08-22 Control Products, Inc. Method of assembling an actuator with an internal sensor
AT500972B1 (en) 2004-10-29 2006-05-15 Plasser Bahnbaumasch Franz METHOD FOR SUBSTITUTING THRESHOLD
DE502005006301D1 (en) * 2005-02-23 2009-01-29 Plasser Bahnbaumasch Franz METHOD FOR RAILWAY CORRECTION AND TRACKING MACHINE
WO2008009314A1 (en) * 2006-07-20 2008-01-24 Franz Plasser Bahnbaumaschinen-Industriegesellschaft Mbh Method and machine for stabilizing track
AT504517B1 (en) * 2007-04-12 2008-06-15 Plasser Bahnbaumasch Franz Method for controlled lowering of track, involves capturing and recording longitudinal slope of track in rear scanning location of measuring system according to displacement measurement
CN201530965U (en) * 2009-04-07 2010-07-21 常州中铁科技有限公司 Enhancement type stabilizing device
RU2422578C1 (en) * 2010-02-25 2011-06-27 Открытое Акционерное Общество "Российские Железные Дороги" Method to restore underballast layer of railway track
CN201891051U (en) * 2010-10-26 2011-07-06 浙江大学 Hydraulic shock excitation system of tamping device
CN201865011U (en) * 2010-12-03 2011-06-15 襄樊金鹰轨道车辆有限责任公司 Track stabilizing device
CN102899993B (en) * 2011-07-27 2014-09-24 常州市瑞泰工程机械有限公司 Operational method for stabilizing tracks in turnout zone
CN102720101B (en) * 2012-05-22 2015-07-08 昆明中铁大型养路机械集团有限公司 Line tamping stabilizing car and turnout stabilizing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT336663B (en) 1972-10-13 1977-05-25 Plasser Bahnbaumasch Franz METHOD AND MACHINE FOR CORRECTING THE LEVEL OF A TRACK WITH BALLBED BED
DE4102869A1 (en) 1990-02-06 1991-08-08 Plasser Bahnbaumasch Franz TRACK CONSTRUCTION MACHINE FOR COMPRESSING THE GRAVEL BED
SU1761845A1 (en) 1990-06-28 1992-09-15 Всесоюзный Научно-Исследовательский Тепловозный Институт Railroad track stabilizing device
EP0688902A1 (en) 1994-06-17 1995-12-27 Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. Continuous measuring method of the resistance to lateral displacement of a railway track

Also Published As

Publication number Publication date
CN104818656A (en) 2015-08-05
EP2902546B1 (en) 2017-10-25
NO2902546T3 (en) 2018-03-24
EP2902546A1 (en) 2015-08-05
PL2902546T3 (en) 2018-03-30
RU2602871C2 (en) 2016-11-20
US20150211192A1 (en) 2015-07-30
RU2014153651A (en) 2016-07-20
US9982396B2 (en) 2018-05-29

Similar Documents

Publication Publication Date Title
EP2902546B2 (en) Device for the compaction of railway ballast
US9957668B2 (en) Tamping unit for a track tamping machine
AU631963B2 (en) A track maintenance machine for consolidating the ballast bed
US4046079A (en) Track surfacing apparatus
AT402519B (en) CONTINUOUSLY RIDABLE RAILWAY MACHINE FOR COMPRESSING THE GRAVEL BED OF A TRACK
EP2957674B1 (en) Method for operating a movable superstructure machine on a railway track
EP3239398B1 (en) Tamping unit for a rail tamping machine
EP2458088A2 (en) Mobile device for compacting a soil layer structure and method for determining the layer-E module of a top layer in this soil layer structure
JPS582281B2 (en) How to compact the crushed stone track bed
EP0688902A1 (en) Continuous measuring method of the resistance to lateral displacement of a railway track
DE102016004298A1 (en) Temperature-dependent autoadaptive compaction
EP3870760B1 (en) Method and machine for stabilizing a track
DE4102872C2 (en) Continuously movable track construction machine for compacting the ballast bed and method for continuously lowering the track
EA035735B1 (en) Method for correcting the position of a track by a tamping machine
US4046078A (en) Track surfacing apparatus
DE2605969A1 (en) MOBILE MACHINE FOR COMPACTING AND CORRECTING THE TRACK
EP3902956B1 (en) Method and track laying machine for processing a ballasted track
EP4073318B1 (en) Machine and method for stabilising a ballast track
AT525090B1 (en) Process for stabilizing the ballast bed of a track
AT518024B1 (en) Trackable track compactor
AT334945B (en) METHOD AND DEVICE FOR COMPACTING TRACK BEDS
EA045345B1 (en) MACHINE AND METHOD FOR COMPACTING CRADLED STONE BED OF RAIL TRACK
EA042262B1 (en) METHOD AND DEVICE FOR RAIL TRACK STABILIZATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160205

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HP3 REAL GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170705

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 940071

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014005929

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014005929

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: PLASSER THEURER, EXPORT VON BAHNBAUMASCHINEN, GE

Effective date: 20180723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180130

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20200109

Year of fee payment: 7

Ref country code: NL

Payment date: 20200128

Year of fee payment: 7

Ref country code: NO

Payment date: 20200123

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171025

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

27A Patent maintained in amended form

Effective date: 20200902

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502014005929

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230125

Year of fee payment: 10

Ref country code: AT

Payment date: 20230118

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230124

Year of fee payment: 10

Ref country code: DE

Payment date: 20230127

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201202