EP3555559A1 - Procede de mesure d'une partie du corps a partir de photographies numeriques, et mise en oeuvre d'un tel procede pour la fabrication de chaussures sur mesure - Google Patents

Procede de mesure d'une partie du corps a partir de photographies numeriques, et mise en oeuvre d'un tel procede pour la fabrication de chaussures sur mesure

Info

Publication number
EP3555559A1
EP3555559A1 EP17832789.6A EP17832789A EP3555559A1 EP 3555559 A1 EP3555559 A1 EP 3555559A1 EP 17832789 A EP17832789 A EP 17832789A EP 3555559 A1 EP3555559 A1 EP 3555559A1
Authority
EP
European Patent Office
Prior art keywords
foot
photographs
characteristic dimension
photograph
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17832789.6A
Other languages
German (de)
English (en)
Inventor
Maxime MOREAUD
Franck LE FRANC
Sophie ENGSTER
Frédéric ITTHIRAD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chamberlan
Original Assignee
Chamberlan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chamberlan filed Critical Chamberlan
Publication of EP3555559A1 publication Critical patent/EP3555559A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/10Shaping or working-up of animal feeding-stuffs by agglomeration; by granulation, e.g. making powders
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D1/00Foot or last measuring devices; Measuring devices for shoe parts
    • A43D1/02Foot-measuring devices
    • A43D1/025Foot-measuring devices comprising optical means, e.g. mirrors, photo-electric cells, for measuring or inspecting feet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1074Foot measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6898Portable consumer electronic devices, e.g. music players, telephones, tablet computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1072Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring distances on the body, e.g. measuring length, height or thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1079Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing

Definitions

  • the present application relates to the field of measurement from digital photographs, also called photogrammetry, in particular the measurement of a part of the human body, and more specifically the measurement of a foot.
  • the invention is advantageously used in the context of the manufacture of tailor-made shoes.
  • Measurement methods are known from digital images of an object, in particular the human body, using complex image processing procedures to provide a three-dimensional (3D) reconstruction of the object.
  • the present invention provides a simple and robust method for measuring a body part, such as a foot, hand or neck, from digital photographs, without using a 3D reconstruction of said body part.
  • the proposed method can advantageously be implemented by the person himself who wishes to measure a part of his body, without a dedicated imaging device, that is to say for example by means of a simple smart phone comprising a camera.
  • the present invention aims in particular to provide measurements made according to this method for the custom-made manufacture of a shoe, in the case where a foot is measured, or a fashion accessory, typically a jewel, to from the measurement of the foot or other part of the body such as the hands or the neck of a person.
  • the invention makes it possible, in particular, to estimate only the characteristic dimensions of the part of the body which one wishes to measure which will be useful for the custom-made manufacture. Summary of the invention
  • the invention thus relates more specifically to a method of measuring a part of the human body from digital photographs, without 3D reconstruction of the body part, comprising the following steps:
  • the acquisition by means of a device for photographic acquisition of at least one photograph of the part of the body and of a known 2D pattern comprising at least three markers, so that the photograph contains at least one characteristic dimension of the part of the body that one wishes to determine and the three markers of the test pattern;
  • the characteristic dimension of the body part is a Euclidean distance between two points of the body part or a perimeter of the body part.
  • At least one characteristic dimension of the part of the body is determined from a single photograph and the calibration matrix, the matrix making it possible to carry out the correspondence between a point of the photograph and a 3D point situated in the plane of the sights and expressed in the world landmark.
  • At least two photographs are acquired with the photographic acquisition device in two different positions so that each photograph contains said at least one characteristic dimension to be determined, it is estimated the transformation between the positions of the two photographs during of the calibration, and determining said at least one characteristic dimension knowing said transformation.
  • At least one Euclidean distance characteristic dimension is determined between two points from two photographs, said two photographs being acquired in a translational movement of the photographic acquisition device.
  • At least one perimeter-type characteristic dimension is determined from n photographs taken in n different positions around the part of the body, n being greater than or equal to two, typically between 3 and 10 photographs.
  • the length of the apparent diameter di in photograph i is preferably measured on each photograph i, i ranging from 1 to n, and the perimeter p is estimated by the following formula:
  • the photographic acquisition device is a camera of a smart phone.
  • the photographs are transmitted to a remote computer to perform the steps of calibration and determination of the characteristic dimension (s) of the body.
  • the at least one photograph is superimposed on a generic 3D model of the part of the body to be measured, the model being previously calibrated with real generic dimensions of the part of the body to be measured, and;
  • the 3D model is deformed on the photograph in order to coincide the characteristic points belonging to the plane formed by the 2D pattern of the photograph and the model
  • the characteristic dimension is determined from the deformed 3D model.
  • the acquisition of the photographs is guided by means of visual indications, such as the transparency display in the photograph of a drawing of the part of the body and the sight, or by means of indications. sound such as a beep or tactile indications such as vibrations preferably signaling that the gesture made for the acquisition is not the right one.
  • a foot is measured, and the characteristic dimension of the measured foot is a characteristic dimension useful for a box, preferably chosen from a length, a width, a height, a perimeter of a part of the foot.
  • At least one characteristic dimension of at least one measuring point of the following foot is determined:
  • At least one characteristic dimension is preferably determined for each of said measuring points.
  • At least two photographs are acquired during at least one of the following movements (a) to (d):
  • a hand or a neck is measured.
  • the present invention relates to a method of manufacturing a shoe, in which:
  • At least one characteristic dimension of the foot is determined by the measuring method according to the invention, preferably at least the size, and even more preferably the characteristic dimensions of all the following measuring points: the size, the size at the fingers, the instep, the entrance, the malleolus, the ankle, the strong point of the calf, the under-knee, and the little toe-heel; and
  • the present invention relates to a method of manufacturing a fashion accessory adapted to the morphology of a part of the human body, wherein: at least one characteristic dimension of the part of the body, preferably of a hand, a neck or a foot, is determined by the method according to the invention, and preferably the diameter of a finger of the hand, the diameter of the wrist, the diameter of the neck, or the diameter of a part of the foot such as the ankle; and
  • said custom mode accessory is made from said at least one characteristic dimension.
  • FIG. 1A illustrates an exemplary implementation of the measurement method according to the invention comprising taking a photograph (s) with a smartphone of a human foot placed on a staff.
  • Figure 1B is an example of a 2D pattern used for calibrating the photographic acquisition device.
  • FIGS. 2A and 2B illustrate an implementation of the invention in which a length such as the length of a foot (size) is determined by means of a 2D pattern and a photograph.
  • Figure 2A is a diagram of the shooting of the foot and the sight.
  • FIG. 2B represents the photograph acquired during the shooting according to FIG. 2A.
  • FIGS. 3A and 3B illustrate an implementation of the invention in which a length such as the length of a foot (size) is determined by means of a 2D pattern and two photographs.
  • Figure 3A is a diagram of the shooting of the foot and the sight.
  • FIG. 3B represents two photographs acquired during the shooting according to FIG. 3A.
  • FIGS. 4A and 4B illustrate an implementation of the invention in which a perimeter of the foot, in particular the perimeter of the instep, is determined by means of a 2D pattern and three photographs.
  • Figure 4A is a diagram of the shooting of the foot and the sight.
  • FIG. 4B represents the three photographs acquired during the shooting according to FIG. 4A.
  • FIG. 5 illustrates the different measurement points of a foot that can be determined by the method according to the invention.
  • Figure 6 illustrates the gesture made for the acquisition of the images according to an implementation of the invention.
  • the present invention relates to a method for measuring a portion of the human body from digital photographs using a digital photographic acquisition device, a test pattern and a specific algorithmic processing of the acquired photographs.
  • the measurement according to the invention does not rely on a 3D reconstruction of the part of the body, as may be the case with known methods.
  • a 3D reconstruction of an object mainly means that the whole object of study is reconstructed, that is to say that a 3D representation of the object is obtained from a set of images of the object taken from different angles of view.
  • 3D reconstruction of an object from digital photographs we mean a 3D digital reconstruction of the object, that is to say a 3D digital model reproducing the same or almost the real object. It is therefore conceivable that from this 3D reconstruction one could estimate any dimension that one would like to know about the object of study.
  • the 3D reconstruction of an object generally makes use of complex procedures for acquiring and processing images, which are often expensive in terms of computation time. This approach by 3D reconstruction of the object has not been adopted by the inventors.
  • the present invention thus proposes a method of measuring a part of the human body from digital photographs, without 3D reconstruction of said part of the body, which allows the estimation of characteristic dimensions of said body part.
  • the method comprises the following steps:
  • the acquisition by means of a device for photographic acquisition of at least one photograph of the part of the body and of a known 2D pattern comprising at least three markers, so that the photograph contains at least a characteristic dimension of the part of the body that one wishes to determine and the three markers of the test pattern;
  • calibrating the photographic acquisition device from said at least one photograph by establishing a calibration matrix allowing the correspondence between a point of the photograph and a 3D point expressed in a world coordinate system;
  • the present method is simple and robust.
  • the present invention relates to a method of measuring a foot, allowing the determination of foot characteristic dimensions useful to a box for the manufacture of custom shoes.
  • foot in the present description is understood to encompass the foot as such, and part of the leg up to the knee.
  • the term included here all the parts of the foot and the leg whose measure is useful to a shoemaker.
  • hand used in the present description encompasses the hand as such as well as the wrist, or even the part of the arm up to the elbow. It refers to all the parts of the hand and arm whose measurement is useful in the manufacture of a jewel type fashion accessory, for example a ring or a bracelet.
  • the term smartphone taken from English terminology, is used to designate a smartphone, which conventionally comprises a camera.
  • photography By photography is meant an image obtained by a photographic process, that is to say obtained by the action of light on a sensitive surface.
  • image in the present description will also be used to designate a photograph.
  • the present invention relates exclusively to the use of digital photographs.
  • FIG. 1A schematically illustrates a shooting of the method according to the invention.
  • a foot 10 is placed on a two-dimensional (2D) pattern 30 bearing identifiable markers 40.
  • the shooting is for example carried out by means of a smartphone 20, conventionally comprising a camera.
  • a smartphone 20 conventionally comprising a camera.
  • the use of such a non-dedicated and widespread image acquisition device is advantageous.
  • the use of a smartphone allows easy shooting, freehand, can be performed by the person himself who seeks to measure a part of his body, or possibly by a third person.
  • the photographic sensor of the smartphone can be used in both photography mode and video mode, provided that the quality of the images and resolution allows it. In video mode, it exploits part of the images acquired by the sensor.
  • the target 30 is placed so as to be visible by the image acquisition device, just like the foot 10 to be imaged.
  • the target 30 may be placed under or next to the foot to be imaged.
  • At least one image of the foot 10 and the target 30 is acquired by the smartphone 20, so that the image contains all or the characteristic dimensions of the foot 10 that one wishes to determine, and at least three markers 40 of the test 30.
  • the target 30 serves to calibrate the image acquisition device.
  • This calibration pattern includes reference elements of known geometry.
  • the target 30 has at least three markers 40 which form patterns that can be identified in the image, for example black dots on a white background or vice versa, or any other identifiable pattern, preferably capable of being detected automatically. in the picture.
  • An example of a pattern 30 is shown in Figure 1B. This is a simple sheet of A4 paper with identifiable markers 40 at the four corners of the sheet, referenced 1 to 4 in Figure 1B. The standardized dimensions of such a sheet are known. The markers can be placed differently on the sheet, as long as we know the distance between them and / or their size.
  • the 2D pattern 30 is known, that is to say that geometric information is available on the markers 40 (at least three) of the pattern, typically the distance between the markers 40 and / or the size of the markers, and allows the calculation of the position of the image acquisition device in the space, expressed in the world reference.
  • This calibration step of the image acquisition device then makes it possible to determine the characteristic dimensions of the object studied, e.g. the foot, from the points in the image, that is to say allows a calibrated measurement.
  • This type of calibration is known, and for example described in the book “Multiple View Geometry in Computer Vision” by Richard Hartley and Andrew Zisserman (Part I: Geometry and Single View Geometry Camera, Cambridge University Press, pp. 151-233). , 2004).
  • the calibration of the image acquisition device consists in establishing, from at least one photograph taken as described above, and from and markers of the 2D pattern, a calibration matrix allowing the correspondence between a point of the image and a 3D point expressed in a world landmark.
  • the positions in the image of at least three markers 40 of the target 30 are extracted.
  • This extraction can be performed manually: an operator points with a pointing device, such as a mouse, or a finger or a conductive tip if a touch on a touch screen is used, the positions of markers 40.
  • This extraction can also be performed automatically with certain image processing techniques, as for example described in Lowe, 1999 ("Object recognition from local scale-invariant features", Proceedings of the International Conference on Computer Vision , vol 2, 1999).
  • the automatic extraction is based on a technique as described in Lowe 1999, having the particularity to be able to match a pattern representing the marker without being sensitive to projective geometric transformations.
  • the method according to the invention makes it possible in particular to determine a length of a part of the body, that is to say a Euclidean distance between two points of a part of the body. It can be the length, the width or the height of a part of the body, according to the usual definition of these dimensions (length: distance between the two ends furthest from an object / width: dimension perpendicular to the length / height: dimension in the vertical direction, from the base to the top of an object).
  • the measured characteristic dimension may also be a perimeter of the body part, which may be defined as a distance between two points being constrained to remain on a 3D surface.
  • the length of the part of the body for example the length of the foot (size) can be determined directly from one or more images, knowing the length between two points in the image, and knowing the correspondence between the points of the image and 3D points in the world landmark with the calibration matrix.
  • the perimeter of a 3D surface of the portion of the body of interest is preferably calculated from several images according to a method based on a principle known in the field of stereology, described in Bobenko et al., 2008 ("Discrete Differential”). Geometry, Bobenko, "AI, Schroder, P., Sullivan, JM, Ziegler, GM (Eds.), Birkhauser, 2008, DOI 10.1007 / 978-3-7643-8621-4, 149). The method is described later in connection with FIGS. 4A and 4B.
  • the perimeter can also be estimated from a single image. In this case, we measure a length in the image which is an approximation of the perimeter of the part of the body. This approximation can be satisfactory if, for example, it can be assumed that the body part to be measured is similar to a cylinder.
  • the calculations of the calibration step and the determination of the characteristic dimensions of the foot can be carried out directly by the image acquisition device, in the case where the latter comprises calculation means as is the case with a smartphone conventionally comprising a laptop.
  • the smartphone includes the program for processing images for calibration and for measuring the characteristic dimension of the foot.
  • these calculations can be performed remotely, by an external computer-type device with the program for calibration and measurement.
  • the information is transmitted from the image acquisition device to the computer by wire connection, for example via a USB key, a memory card, etc., or by wireless connection, for example WIFI, cellular etc. .
  • Figures 2A and 2B illustrate an implementation of the method of measuring a length according to the invention from an image.
  • At least one characteristic dimension of the part of the body is determined from a single image and from the calibration matrix, the latter making it possible to carry out the correspondence between a point of the image and a 3D point. located in the plane of the sights and expressed in the world landmark.
  • a foot 10 is placed on a 2D chart 30 bearing identifiable markers 40.
  • the picture is taken using the smartphone 20.
  • a photograph of the stand 10 and the screen 30 is acquired by the smartphone 20 , so that the image contains entirely the characteristic dimension of the foot 10 that one wishes to determine, ie the length of the foot 50, corresponding to the size, as well as at least three markers 40 of the target.
  • 30 is a single sheet of white A4 paper with markers 40 in the form of black circular pellets at the four corners, as shown in FIG. 1B.
  • the positions in the image 21 of at least three markers 41 of the target 31 are determined, as previously explained. Knowing the position of the markers 40 of the target 30 in the world coordinate system, the calibration matrix of the photographic sensor is established which makes it possible to match the positions of the points in the image and the 3D positions of the points in the plane of the image. the target in the world landmark (also called object space or object landmark).
  • This calibration method is known (Hartley and Zisserman, 2004: “Multiple View Geometry in Computer Vision", 2004, Part I “Geometry and Single View Geometry Camera", Cambridge University Press, pp. 151-233).
  • the actual length of the foot 50 is determined from the length 51 extracted from the image 21.
  • the observed object ie the foot
  • the plane formed by the test pattern 30 it is assumed that the observed object, ie the foot, is in the plane formed by the test pattern 30.
  • the measurements are then very satisfactory for all the points of the foot present in the plane of the test pattern, and more and more approximate when the points are moving away from this plane.
  • a dimension of length type is preferably determined, i.e a Euclidean distance between two points.
  • other types of dimensions characteristic of the length of the foot 50 can be determined according to this implementation, such as for example the length and width of different parts of the foot of the foot. preferably measured at the base of the foot (points of the foot on the target), such as the dimensions referenced 2b, 2c, 2d, 3b, 3c, 3d, and 9 in Table 1 below, and partly illustrated in FIG. 5.
  • FIG. 3A and 3B illustrate an implementation of the method of measuring a length according to the invention from two images.
  • At least two images are acquired with the image acquisition device placed in two different positions so that each image contains at least one characteristic dimension to be determined, and the characteristic dimension is determined by triangulation at from said at least two photographs.
  • This implementation is based on a triangulation approach for calibration, known and for example described in Hartley and Zisserman, 2004 ("Multiple View Geometry in Computer Vision", 2004, Part II “Two-View Geometry", Cambridge University Press, pp. 237-308).
  • a foot 10 is placed on a 2D chart 30 having identifiable markers 40.
  • the picture is taken using the smartphone 20.
  • At least two images 21 and 22 of the foot 10 and the test pattern 30 are acquired by the smartphone 20 placed in two different positions (a) and (b), so that each image (21, 22) completely contains the characteristic dimension of the foot 10 that one wishes to determine, ie the length of the foot 50 (size), and at least three same markers 40 of the test chart 30.
  • the length of the actual foot 50 is referenced respectively 51 and 52
  • the foot 10 is referenced 11 and 12
  • the three markers 40 of the test pattern 30 are referenced 41 and 42.
  • the pattern 30 is identical to that described for Figure 2A.
  • the estimation of the transformation T can be carried out according to different methods.
  • the use of a 2D test pattern with at least 3 markers visible in the images is required.
  • the estimation of the transformation T can be carried out as follows: in order to be able to estimate the movement of the smartphone between two shots, a paper pattern on which four markers are located is used.
  • the movement of the image acquisition device, e.g. the smartphone, from one view to another is determined by the transformation matrix for passing four markers from the first image to the second image.
  • M be the displacement matrix 3x3 with my coefficient at line i and at column j:
  • Gl, G2, G3 and G4 be the markers of the image 1, and D1, D2, D3, D4 the corresponding markers of the image 2.
  • the values of the coefficients my are obtained by mapping the markers between the two images. as a system and solving it by a less square type method.
  • the measurement error evolves in the same way as for the implementation with an image described with reference to FIGS. 2A and 2B: the measurements are very satisfactory for all the points of the foot close to the plane of the sight, and more and more approximate when the points are moving away from this plane.
  • a characteristic dimension of the portion of the image body preferably a dimension of length type, i.e. a Euclidean distance between two points, knowing the transformation between two images.
  • a characteristic dimension of the portion of the image body preferably a dimension of length type, i.e. a Euclidean distance between two points, knowing the transformation between two images.
  • other types of characteristic dimensions that the length of the foot 50 (size) can be determined according to this implementation such as for example the length, width, height of different parts. of the foot, such as the dimensions referenced 2b, 2c, 2d, 2e, 3b, 3c, 3d, 3e, 4b, 4c, 5a, 5b, 6b, 6c and 9 in Table 1 below, and partly illustrated in FIG. figure 5.
  • a perimeter of a body part it is also possible to determine a perimeter of a body part, if one makes a hypothesis on the geometric shape of the part of the body in question, for example if it is considered that said part has a cylindrical shape. In this case we can approximate the real perimeter by a single measurement of the apparent diameter of the body part in the image.
  • at least one perimeter-type characteristic dimension is determined from n photographs taken in n different positions around the part of the body to be measured, n being greater than or equal to two, typically between 3 and 10 photographs, preferably between 3 and 5 photographs.
  • the perimeter of a part of the body is determined by measuring on each photograph i, i ranging from 1 to n, the length of the apparent diameter di, and the perimeter p is estimated by means of the following formula (IV):
  • FIGS. 4A and 4B illustrate an example of such an implementation, in which three images 21, 22 and 23 are acquired around a foot 10 placed on a target 30 carrying markers 40.
  • the pattern is identical to that described in relation to the preceding figures.
  • the smartphone 20 is therefore placed in 3 different positions (c), (d), and (e) around the foot 10.
  • the instep to be measured is visible, and than the 3 markers 40 (references 41, 42, 43) of the target 30 (references 31, 32, 33).
  • the perimeter 60, at the instep, is determined by measuring in each image 21, 22, and 23, the apparent diameter 61, 62 and 63, and applying the formula (IV).
  • the calibration step is performed as described in relation to FIGS. 2A and 2B. Once the calibration matrix is established, it is possible to determine the actual length of the apparent diameter di measured in the image, and thus to estimate the perimeter using the formula (IV). According to another implementation, the measurement method comprises the following steps:
  • the plane formed by the 2D target is expressed in the world marker, for example with the knowledge of the position of at least 3 markers of the target;
  • At least one acquired image is superimposed on a generic 3D model of the part of the body to be measured, the model being previously calibrated with real generic dimensions of the part of the body to be measured, and;
  • the projected 3D model is deformed on the image so as to make coincide characteristic points belonging to the plane formed by the 2D pattern of the photograph and the 3D model;
  • the characteristic dimension, length or perimeter is determined from the deformed 3D model.
  • the deformation of the 3D model can be done manually, with the intervention of an operator who modifies the points of the model using a pointing device or automatically by implementing an algorithm that adjusts the position of the points to satisfy a given criterion.
  • the deformation of the 3D model is global, that is to say that from the mapping of the characteristic points belonging to the plane formed by the 2D pattern of the photograph and the 3D model, the 3D model is modified da ns his outfit. For example, if we make the base of the 3D model coincide with the length of the foot, we deform the entire 3D model of the foot in proportion to the transformation of the base of the 3D model.
  • the acquisition of the photographs is guided by means of visual indications, such as the transparency display in the photograph of a drawing of the part of the body and the sight, or by means of sound indications such as a beep or tactile indications such as vibrations.
  • visual indications such as the transparency display in the photograph of a drawing of the part of the body and the sight
  • sound indications such as a beep
  • tactile indications such as vibrations.
  • the measuring method according to the invention is advantageously applied to the measurement of a foot, as illustrated in the various figures, and makes it possible to determine a characteristic dimension of the foot which is a characteristic dimension useful to a box, preferably selected from a length, a width, a height, a perimeter of a part of the foot.
  • At least the size is measured, even more preferably at least the size, the size at the fingers, the instep, the entry, and the malleolus are measured, and even more preferably, all these points of measurement are measured. measuring, that is to say, at least one characteristic dimension for each of said measurement points, and preferably all the dimensions listed in Table 1 associated with each measurement point.
  • At least two images acquired in a simple gesture which may comprise at least one of the following movements (a) to (d), are photographed:
  • the images are acquired by performing 5 gestures corresponding to the movements (a) to (d).
  • Figure 6 illustrates the described gestures associated with the acquisition of images. In identifiable markers 40, before taking pictures.
  • diagrams (B) to (F) the movements of the smartphone 20 are indicated by arrows.
  • Diagram (B) illustrates the translation movement 70 of the smartphone 20 above the foot 10 and the test pattern 30, performed in a substantially horizontal plane and in a direction perpendicular to the length of the foot so. This movement makes it possible to determine characteristic dimensions for the size of the fingers (2) and the instep (3).
  • Diagram (C) illustrates the translation movement 71 of the smartphone 20 which is a translation movement inside the foot, in a substantially vertical plane and in a direction parallel to the length of the foot.
  • the triggering of the taking of images can be carried out by the user or automatically by the image acquisition device.
  • an automatic tracking in the image of the test pattern can be performed, and / or a tracking information inclinations and displacements through an accelerometer can also be achieved.
  • One aspect of the invention relates to a tailor-made manufacturing process of a shoe, in which at least one characteristic dimension of the foot is determined by the measurement method described, and a tailor-made shoe is produced from said less a characteristic dimension of the foot.
  • at least the size is determined, and even more preferably the characteristic dimensions of all the following measuring points: the size, the size to the fingers, the instep, the entrance, the malleolus, the ankle, the strong point of the calf, the knee, and the small toe-heel, to provide these measures to the bootmaker for the manufacture of the shoe.
  • the tailor-made shoe is manufactured from the characteristic dimensions of all the measurement points listed above.
  • the measuring method according to the invention can advantageously be applied to the measurement of another part of the human body than the foot, such as a hand or a neck.
  • Another aspect of the invention relates to the manufacture of a fashion adapted to the morphology of a part of the human body, in which at least one characteristic dimension of said part of the body, preferably of one hand, is determined. neck or foot, by the measurement method described, and the tailor-made fashion accessory is made from said at least one characteristic dimension.
  • the diameter of a finger of the hand, the diameter of the wrist, the diameter of the neck, or the diameter of a part of the foot such as the ankle are measured, for example to make an over-sized jewel such as a ring. , a bracelet, a necklace, or any other finery.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Zoology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Animal Husbandry (AREA)
  • Theoretical Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Geometry (AREA)
  • Biotechnology (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Multimedia (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Fodder In General (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

L'invention porte sur un procédé de photogrammétrie numérique pour la mesure d'une partie du corps humain, de préférence un pied, ou encore une main ou un cou, sans reconstruction 3D de ladite partie du corps. En particulier, l'invention permet de déterminer des dimensions caractéristiques d'un pied b partir d'images numériques, en vue de leur utilisation pour la fabrication sur-mesure de chaussures. Les photographies sont avantageusement Ŕrises b l'aide d'un téléphone intelligent disŔosant d'un appareil photographique, par la personne elle-même, selon une procédure de prise de vue simple.

Description

PROCEDE DE MESURE D'UNE PARTIE DU CORPS A PARTIR DE PHOTOGRAPHIES NUMERIQUES, ET MISE EN ŒUVRE D'UN TEL PROCEDE POUR LA FABRICATION DE
CHAUSSURES SUR MESURE
Domaine de l'invention
La présente demande concerne le domaine de la mesure à partir de photographies numériques, aussi appelé photogrammétrie, en particulier la mesure d'une partie du corps humain, et plus spécifiquement la mesure d'un pied. L'invention est avantageusement utilisée dans le cadre de la fabrication de chaussures sur-mesure.
Contexte général et objectifs de l'invention
On connaît des procédés de mesure à partir d'images numériques d'un objet, en particulier du corps humain, faisant appel à des procédures complexes de traitement des images visant à fournir une reconstruction tridimensionnelle (3D) de l'objet.
De nombreuses méthodes de reconstruction 3D d'un objet à partir de photographies numériques existent, certaines étant basées sur l'utilisation d'une mire de calibrage pour l'étape de calibration du capteur, et sur le traitement de plusieurs images de l'objet pour la reconstruction de celui-ci dans l'espace.
La présente invention propose une méthode simple et robuste pour mesurer une partie du corps, tel qu'un pied, une main ou un cou, à partir de photographies numériques, sans faire appel à une reconstruction 3D de ladite partie du corps. La méthode proposée peut avantageusement être mise en œuvre par la personne elle-même qui souhaite mesurer une partie de son corps, sans dispositif de prise d'images dédié, c'est-à-dire par exemple au moyen d'un simple téléphone intelligent comportant un appareil photographique.
La présente invention vise en particulier à fournir des mesures effectuées selon cette méthode pour la fabrication sur-mesure d'une chaussure, dans le cas où l'on mesure un pied, ou encore d'un accessoire de mode, typiquement un bijou, à partir de la mesure du pied ou d'une autre partie du corps comme les mains ou le cou d'une personne.
L'invention permet notamment d'estimer seules les dimensions caractéristiques de la partie du corps que l'on souhaite mesurer qui seront utiles à la fabrication sur- mesure. Résumé de l'invention
L'invention se rapporte ainsi plus précisément à un procédé de mesure d'une partie du corps humain à partir de photographies numériques, sans reconstruction 3D de la partie du corps, comprenant les étapes suivantes :
l'acquisition à l'aide d'un dispositif d'acquisition photographique d'au moins une photographie de la partie du corps et d'une mire 2D connue comportant au moins trois marqueurs, de telle sorte que la photographie contienne entièrement au moins une dimension caractéristique de la partie du corps que l'on souhaite déterminer et les trois marqueurs de la mire ;
le calibrage du dispositif d'acquisition photographique à partir de ladite au moins une photographie et des au moins trois marqueurs de la mire 2D connue, par l'établissement d'une matrice de calibration permettant la correspondance entre un point de la photographie et un point 3D exprimé dans un repère monde ;
la détermination de la dimension caractéristique de la partie du corps à partir de ladite au moins une photographie et de la matrice de calibration.
De préférence, la dimension caractéristique de la partie du corps est une distance euclidienne entre deux points de la partie du corps ou un périmètre de la partie du corps.
Selon une mise en œuvre, on détermine au moins une dimension caractéristique de la partie du corps à partir d'une seule photographie et de la matrice de calibration, la matrice permettant de réaliser la correspondance entre un point de la photographie et un point 3D situé dans le plan de la mire et exprimé dans le repère monde.
Selon une mise en œuvre, on acquiert au moins deux photographies avec le dispositif d'acquisition photographique dans deux positions différentes de telle sorte que chaque photographie contienne ladite au moins une dimension caractéristique à déterminer, on estime la transformation entre les positions des deux photographies lors du calibrage, et on détermine ladite au moins une dimension caractéristique connaissant ladite transformation.
Selon une mise en œuvre, on détermine au moins une dimension caractéristique de type distance euclidienne entre deux points à partir de deux photographies, lesdites deux photographies étant acquises selon un mouvement de translation du dispositif d'acquisition photographique.
Selon une mise en œuvre, on détermine au moins une dimension caractéristique de type périmètre à partir de n photographies prises dans n positions différentes autour de la partie du corps, n étant supérieur ou égal à deux, typiquement compris entre 3 et 10 photographies. Dans ce cas, on mesure de préférence sur chaque photographie i, i allant de 1 à n, la longueur du diamètre apparent di sur la photographie i, et on estime le périmètre p au moyen de la formule suivante :
P = -∑di
n i=i
Avantageusement, le dispositif d'acquisition photographique est un appareil photographique d'un téléphone intelligent.
Selon une mise en œuvre, les photographies sont transmises à un ordinateur distant pour réaliser les étapes de calibrage et de détermination de la ou des dimension(s) caractéristique(s) du corps.
Selon une mise en œuvre, les étapes suivantes sont réalisées :
- on exprime le plan formé par la mire 2D dans le repère du monde ;
on surimpose à ladite au moins une photographie un modèle 3D générique de la partie du corps à mesurer, le modèle étant préalablement calibré avec des dimensions génériques réelles de la partie du corps à mesurer, et ;
on déforme le modèle 3D sur la photographie de manière à faire coïncider des points caractéristiques appartenant au plan formé par la mire 2D de la photographie et du modèle
3D ;
on détermine la dimension caractéristique à partir du modèle 3D déformé.
Selon une mise en œuvre, l'acquisition des photographies est guidée au moyen d'indications visuelles, tel que l'affichage en transparence dans la photographie d'un dessin de la partie du corps et de la mire, ou au moyen d'indications sonores tel qu'un bip sonore ou d'indications tactiles telles que des vibrations signalant de préférence que le geste effectué pour l'acquisition n'est pas le bon.
Selon une mise en œuvre, on mesure un pied, et la dimension caractéristique du pied mesurée est une dimension caractéristique utile à un bottier, de préférence choisie parmi une longueur, une largeur, une hauteur, un périmètre d'une partie du pied.
De préférence, on détermine au moins une dimension caractéristique d'au moins un point de mesure du pied suivant :
- la pointure ;
- la grosseur aux doigts ;
- le cou-de-pied ;
- l'entrée ;
- la malléole ;
- la cheville ;
- le point fort du mollet ; - le sous genou ; et
- le petit orteil-talon,
et on détermine de préférence au moins une dimension caractéristique pour chacun desdits points de mesure.
Selon une mise en œuvre, on acquiert au moins deux photographies lors d'au moins un des mouvements (a) à (d) suivants :
(a) un mouvement de translation du dispositif d'acquisition photographique au-dessus du pied, de préférence dans un plan sensiblement horizontal et dans une direction perpendiculaire à la longueur du pied ;
(b) un mouvement de translation du dispositif d'acquisition photographique à l'intérieur et à l'extérieur du pied, de préférence dans un plan sensiblement vertical et dans une direction parallèle à la longueur du pied ;
(c) un mouvement de rotation du dispositif d'acquisition photographique autour de la cheville ;
(d) un mouvement de rotation dispositif d'acquisition photographique autour de la jambe, et on détermine au moins une des dimensions caractéristiques des points de mesures suivants selon les mouvements du dispositif d'acquisition photographique lors de l'acquisition des photographies :
- la grosseur aux doigts et/ou du cou-de-pied à partir des photographies acquises selon le mouvement (a);
- la pointure et/ou la grosseur aux doigts et/ou le cou-de-pied et/ou l'entrée et/ou la malléole à partir des photographies acquises selon le mouvement (b);
- l'entrée et/ou la cheville à partir des images acquises selon le mouvement (c);
- le point fort du mollet et/ou le sous genou et/ou le petit orteil-talon à partir des photographies acquises selon le mouvement (d).
Selon une mise en œuvre, on mesure une main ou un cou.
Selon un second aspect, la présente invention porte sur un procédé de fabrication d'une chaussure, dans lequel :
- on détermine au moins une dimension caractéristique du pied par le procédé de mesure selon l'invention, de préférence au moins la pointure, et encore plus préférentiellement les dimensions caractéristiques de tous les points de mesures suivants : la pointure, la grosseur aux doigts, le cou-de- pied, l'entrée, la malléole, la cheville, le point fort du mollet, le sous genou, et le petit orteil-talon ; et
- on réalise une chaussure sur mesure à partir de ladite au moins une dimension caractéristique du pied, et de préférence à partir des dimensions caractéristiques de tous lesdits points de mesures. Selon un troisième aspect, la présente invention porte sur un procédé de fabrication d'un accessoire de mode adapté à la morphologie d'une partie du corps humain, dans lequel : - on détermine au moins une dimension caractéristique de la partie du corps, de préférence d'une main, d'un cou ou d'un pied, par le procédé selon l'invention, et de préférence le diamètre d'un doigt de la main, le diamètre du poignet, le diamètre du cou, ou le diamètre d'une partie du pied telle que la cheville ; et
- on réalise ledit accessoire de mode sur mesure à partir de ladite au moins une dimension caractéristique.
D'autres objets et avantages de l'invention apparaîtront à la lecture de la description qui suit d'exemples de réalisations particuliers de l'invention, donnés à titre d'exemples non limitatifs, la description étant faite en référence aux figures annexées décrites ci-après.
Brève description des figures
La figure 1A illustre un exemple de mise en œuvre du procédé de mesure selon l'invention comprenant une prise de photographie(s) avec un téléphone intelligent d'un pied humain posé sur une mire.
La figure 1B est un exemple de mire 2D utilisée pour le calibrage du dispositif d'acquisition photographique.
Les figures 2A et 2B illustrent une mise en œuvre de l'invention dans laquelle on détermine une longueur telle que la longueur d'un pied (pointure) au moyen d'une mire 2D et d'une photographie. La figure 2A est un schéma de la prise de vue du pied et de la mire. La figure 2B représente la photographie acquise lors de la prise de vue selon la figure 2A.
Les figures 3A et 3B illustrent une mise en œuvre de l'invention dans laquelle on détermine une longueur telle que la longueur d'un pied (pointure) au moyen d'une mire 2D et de deux photographies. La figure 3A est un schéma de la prise de vue du pied et de la mire. La figure 3B représente deux photographies acquises lors de la prise de vue selon la figure 3A.
Les figures 4A et 4B illustrent une mise en œuvre de l'invention dans laquelle on détermine un périmètre du pied, en particulier le périmètre du cou-de-pied, au moyen d'une mire 2D et de trois photographies. La figure 4A est un schéma de la prise de vue du pied et de la mire. La figure 4B représente les trois photographies acquises lors de la prise de vue selon la figure 4A. La figure 5 illustre les différents points de mesures d'un pied pouvant être déterminés par le procédé selon l'invention.
La figure 6 illustre la gestuelle réalisée pour l'acquisition des images selon une mise en œuvre de l'invention.
Sur les figures, les mêmes références désignent des éléments identiques ou analogues. Description détaillée de l'invention
La présente invention porte sur un procédé de mesure d'une partie du corps humain à partir de photographies numériques mettant en œuvre un dispositif d'acquisition photographique numérique, une mire et un traitement algorithmique spécifique des photographies acquises.
Avantageusement, la mesure selon l'invention ne repose pas sur une reconstruction 3D de la partie du corps, comme cela peut être le cas de méthodes connues. Une telle reconstruction 3D d'un objet signifie principalement que tout l'objet d'étude est reconstruit, c'est-à-dire qu'une représentation en 3D de l'objet est obtenue à partir d'un ensemble d'images de l'objet prises sous des angles de vue différents. Par reconstruction 3D d'un objet à partir de photographies numériques, on entend une reconstruction 3D numérique de l'objet, c'est-à-dire un modèle 3D numérique reproduisant à l'identique ou presque l'objet réel. On conçoit alors qu'à partir de cette reconstruction 3D, on pourrait estimer n'importe quelle dimension que l'on souhaiterait connaître de l'objet d'étude. Cependant la reconstruction 3D d'un objet fait généralement appel à des procédures complexes d'acquisition et de traitement d'images, souvent coûteuses en temps de calcul. Cette approche par reconstruction 3D de l'objet n'a pas été adoptée par les inventeurs.
La présente invention propose ainsi un procédé de mesure d'une partie du corps humain à partir de photographies numériques, sans reconstruction 3D de ladite partie du corps, qui permet l'estimation de dimensions caractéristiques de ladite partie du corps.
Le procédé comprend les étapes suivantes :
- l'acquisition à l'aide d'un dispositif d'acquisition photographique d'au moins une photographie de la partie du corps et d'une mire 2D connue comportant au moins trois marqueurs, de telle sorte que la photographie contienne entièrement au moins une dimension caractéristique de la partie du corps que l'on souhaite déterminer et les trois marqueurs de la mire ;
- le calibrage du dispositif d'acquisition photographique à partir de ladite au moins une photographie par l'établissement d'une matrice de calibration permettant la correspondance entre un point de la photographie et un point 3D exprimé dans un repère monde ;
- la détermination de la dimension caractéristique de la partie du corps à partir de ladite au moins une photographie et de la matrice de calibration.
Notamment parce que le procédé selon l'invention ne repose pas sur une reconstruction 3D de ladite partie du corps, mais également en raison de la souplesse de prise de vue mise en œuvre et du type de traitement des images réalisé, détaillés plus bas dans la description, le présent procédé est simple et robuste.
Plusieurs parties du corps humain telles que les pieds, les mains ou encore le cou peuvent ainsi être mesurées avec le procédé selon l'invention. En particulier, la présente invention porte sur un procédé de mesure d'un pied, permettant la détermination de dimensions caractéristiques du pied utiles à un bottier pour la fabrication de chaussures sur-mesure.
Dans la suite de la description, le procédé selon l'invention est décrit dans le cas de la mesure d'un pied.
Au préalable, certains termes utilisés dans la présente description sont ci-dessous précisés.
Le terme de pied dans la présente description s'entend comme englobant le pied en tant que tel, ainsi qu'une partie de la jambe allant jusqu'au genou. Le terme inclus ici toutes les parties du pied et de la jambe dont la mesure est utile à un bottier.
De manière similaire, le terme de main utilisé dans la présente description englobe la main en tant que telle ainsi que le poignet, voire la partie du bras allant jusqu'au coude. Il fait référence à toutes le parties de la main et du bras dont la mesure est utile à la fabrication d'un accessoire de mode de type bijou, par exemple une bague ou un bracelet.
Dans la présente description, il est employé le terme de smartphone, tiré de la terminologie anglo- saxonne, pour désigner un téléphone intelligent, qui comprend classiquement un appareil photographique.
Par photographie, on entend une image obtenue par un procédé photographique, c'est-à-dire obtenue par l'action de la lumière sur une surface sensible. On utilisera également le terme d'image dans la présente description pour désigner une photographie. La présente invention porte exclusivement sur l'utilisation de photographies numériques.
Par repère monde, on entend un repère de référence orthonormé associé à l'espace réel tridimensionnel où se trouve l'objet d'étude, c'est-à-dire la partie du corps que l'on souhaite mesurer. On peut noter ce repère R0, d'origine 0 : ( ?0, AO, Y0, ZQ .
La figure 1A illustre schématiquement une prise de vue du procédé selon l'invention. Un pied 10 est posé sur une mire 30 en deux dimensions (2D) portant des marqueurs identifiables 40.
La prise de vue est par exemple effectuée au moyen d'un smartphone 20, comportant classiquement un appareil photographique. L'utilisation d'un tel dispositif d'acquisition d'images non dédié et largement répandu est avantageuse. En outre, l'utilisation d'un smartphone permet une prise de vue simple, à main levée, pouvant être effectuée par la personne elle-même qui cherche à mesurer une partie de son corps, ou éventuellement par une personne tierce.
Le capteur photographique du smartphone peut être utilisé aussi bien en mode photographie qu'en mode vidéo, à condition que la qualité des images et résolution le permette. En mode vidéo, on exploite alors une partie des images acquises par le capteur. La mire 30 est placée de façon à être visible par le dispositif d'acquisition d'images, tout comme le pied 10 à imager. La mire 30 peut être placée sous ou à côté de du pied à imager.
Au moins une image du pied 10 et de la mire 30 est acquise par le smartphone 20, de telle sorte que l'image contienne entièrement la ou les dimensions caractéristiques du pied 10 que l'on souhaite déterminer, ainsi qu'au moins trois marqueurs 40 de la mire 30.
La mire 30 sert à calibrer le dispositif d'acquisition d'images. Cette mire de calibrage comporte des éléments de référence de géométrie connue. Ainsi, la mire 30 dispose d'au moins trois marqueurs 40 qui forment des figures repérables dans l'image, par exemple des points noirs sur un fond blanc ou inversement, ou encore tout autre motif identifiable, de préférence susceptible d'être détecté automatiquement dans l'image. Un exemple d'une mire 30 est illustré à la figure 1B. Il s'agit d'une simple feuille de papier A4 comportant des marqueurs repérables 40 aux quatre coins de la feuille, référencés 1 à 4 dans la figure 1B. Les dimensions standardisées d'une telle feuille sont connues. Les marqueurs peuvent être placés différemment sur la feuille, tant que l'on connaît la distance qui les sépare et/ou leur taille.
La mire 2D 30 est connue, c'est-à-dire qu'on dispose d'informations géométriques sur les marqueurs 40 (au moins trois) de la mire, typiquement la distance entre les marqueurs 40 et/ou la taille des marqueurs, et permet le calcul de la position du dispositif d'acquisition d'images dans l'espace, exprimé dans le repère monde. Cette étape de calibrage du dispositif d'acquisition d'images permet alors de déterminer des dimensions caractéristiques de l'objet étudié, e.g. le pied, à partir des points dans l'image, c'est-à-dire permet une mesure calibrée. Ce type de calibrage est connu, et par exemple décrit dans l'ouvrage de Richard Hartley et Andrew Zisserman intitulé "Multiple View Geometry in computer vision" (Part I : Caméra Geometry and Single View Geometry. Cambridge University Press, p. 151-233, 2004). Le calibrage du dispositif d'acquisition d'images consiste à établir, à partir d'au moins une photographie prise tel que décrit précédemment, et à partir et des marqueurs de la mire 2D, une matrice de calibration permettant la correspondance entre un point de l'image et un point 3D exprimé dans un repère monde.
Pour chaque image acquise, les positions dans l'image d'au moins trois marqueurs 40 de la mire 30 sont extraites. Cette extraction peut être réalisée de manière manuelle : un opérateur pointe à l'aide d'un dispositif de pointage, comme par exemple une souris, ou encore un doigt ou une pointe conductrice si un contact sur un écran tactile est utilisé, les positions des marqueurs 40. Cette extraction peut également être réalisée de manière automatique avec certaines techniques de traitement d'images, tel que par exemple décrite dans Lowe, 1999 (« Object récognition from local scale-invariant features », Proceedings of the International Conférence on Computer Vision, vol. 2, 1999). De préférence, l'extraction automatique se base sur une technique telle que décrite dans Lowe 1999, ayant la particularité de pouvoir mettre en correspondance un motif représentant le marqueur sans être sensible à des transformations géométriques projectives. Une fois ces positions extraites, il est possible de calculer une matrice de calibration, comme cela est par exemple décrit dans Hartley et Zisserman, 2004 ("Multiple View Geometry in computer vision", 2004, Part I « Caméra Geometry and Single View Geometry » et Part II « Two-View Geometry », Cambridge University Press, p. 151-233 et p. 237-308), permettant de faire la correspondance entre les positions des points dans l'image et les positions 3D des points dans le plan de la mire 30 dans le repère monde. Des mesures de distances réelles entre deux points sont alors réalisables, comme cela est illustré aux figures 2A/B, 3A/B, 4A/B décrites plus loin.
Ainsi donc, une fois le calibrage effectué, on peut déterminer la dimension caractéristique du pied à partir de la matrice de calibration et d'au moins une image.
Le procédé selon l'invention permet en particulier de déterminer une longueur d'une partie du corps, c'est-à-dire une distance euclidienne entre deux points d'une partie du corps. Il peut s'agir de la longueur, la largeur ou la hauteur d'une partie du corps, selon la définition usuelle de ces dimensions (longueur : distance entre les deux extrémités les plus éloignées d'un objet / largeur : dimension perpendiculaire à la longueur / hauteur : dimension dans le sens vertical, de la base au sommet d'un objet). La dimension caractéristique mesurée peut également être un périmètre de la partie du corps, pouvant être défini comme une distance entre deux points en étant contraint à rester sur une surface 3D.
La longueur de la partie du corps, par exemple la longueur du pied (pointure), peut être déterminée directement à partir d'une ou plusieurs images, connaissant la longueur entre deux points dans l'image, et connaissant la correspondance entre les points de l'image et les points 3D dans le repère monde avec la matrice de calibrage.
Le périmètre d'une surface 3D de la partie du corps d'intérêt est de préférence calculé à partir de plusieurs images selon une méthode basée sur un principe connu du domaine de la stéréologie, décrit dans Bobenko et al., 2008 (« Discrète Differential Geometry, Bobenko, » A.I., Schroder, P., Sullivan, J.M., Ziegler, G. M. (Eds.), Birkhauser, 2008, DOI 10.1007/978-3-7643-8621-4, p. 149). La méthode est décrite plus loin en relation avec les figures 4A et 4B. Le périmètre peut aussi être estimé à partir d'une seule image. Dans ce cas, on mesure une longueur dans l'image qui constitue une approximation du périmètre de la partie du corps. Cette approximation peut être satisfaisante si on peut par exemple faire l'hypothèse que la partie de corps à mesurer s'apparente à un cylindre.
Les calculs de l'étape de calibrage et la détermination des dimensions caractéristiques du pied peuvent être réalisés directement par le dispositif d'acquisition d'images, dans le cas où ce dernier comporte des moyens de calculs comme c'est le cas d'un smartphone comprenant classiquement un ordinateur portable. Dans ce cas le smartphone comprend le programme permettant le traitement des images pour la calibration et pour la mesure de la dimension caractéristique du pied. Alternativement, ces calculs peuvent être réalisés à distance, par un dispositif externe de type ordinateur disposant du programme pour la calibration et la mesure. Dans ce cas, les informations sont transmises du dispositif d'acquisition d'images vers l'ordinateur par connexion filaire, par exemple via un clef USB, une carte mémoire, etc., ou par connexion sans fil, par exemple WIFI, cellulaire etc.
Dans le cas d'un transfert des images, il est envisageable de rendre anonyme les images en supprimant sur les images avant leur transfert tout signe distinctif, par exemple des grains de beauté ou des tatouages.
Les figures 2A et 2B illustrent une mise en œuvre du procédé de mesure d'une longueur selon l'invention à partir d'une image.
Selon cette mise en œuvre, on détermine au moins une dimension caractéristique de la partie du corps à partir d'une seule image et de la matrice de calibration, cette dernière permettant de réaliser la correspondance entre un point de l'image et un point 3D situé dans le plan de la mire et exprimé dans le repère monde.
Comme dans la figure 1A, un pied 10 est posé sur une mire 2D 30 portant des marqueurs identifiables 40. La prise de vue est effectuée au moyen du smartphone 20. Une photographie du pied 10 et de la mire 30 est acquise par le smartphone 20, de telle sorte que l'image contienne entièrement la dimension caractéristique du pied 10 que l'on souhaite déterminer, i.e. la longueur du pied 50, correspondant à la pointure, ainsi qu'au moins trois marqueurs 40 de la mire 30. La mire 30 est une simple feuille de papier A4 blanche comportant des marqueurs 40 sous forme de pastilles circulaires noires aux quatre coins, tel qu'illustré à la figure 1B.
Pour l'étape de calibrage, on détermine les positions dans l'image 21 d'au moins trois marqueurs 41 de la mire 31, comme expliqué précédemment. Connaissant la position des marqueurs 40 de la mire 30 dans le repère monde, on établit alors la matrice de calibration du capteur photographique qui permet de faire la correspondance entre les positions des points dans l'image et les positions 3D des points dans le plan de la mire dans le repère monde (appelé aussi espace des objets ou repère objet). Cette méthode de calibration est connue (Hartley et Zisserman, 2004 : "Multiple View Geometry in computer vision", 2004, Part I « Caméra Geometry and Single View Geometry », Cambridge University Press, p. 151-233).
Une fois l'étape de calibrage réalisée, on détermine la longueur réelle du pied 50 à partir de la longueur 51 extraite de l'image 21. Pour cette étape, il est fait l'hypothèse que l'objet observé, i.e. le pied, est dans le plan formé par la mire 30. Les mesures sont alors très satisfaisantes pour tous les points du pied présents dans le plan de la mire, et de plus en plus approximatives lorsque les points s'éloignent de ce plan.
Selon cette mise en œuvre, on détermine de préférence une dimension de type longueur, i.e une distance euclidienne entre deux points. Dans le cas de la mesure d'un pied, d'autres types de dimensions caractéristiques que la longueur du pied 50 (pointure) peuvent être déterminées selon cette mise en œuvre, comme par exemple la longueur et la largeur de différentes parties du pied de préférence mesurées à la base du pied (points du pied situés sur la mire), tel que les dimensions référencées 2b, 2c, 2d, 3b, 3c, 3d, et 9 dans le tableau 1 plus bas, et en partie illustrées à la figure 5. Selon cette mise en œuvre, on peut également déterminer un périmètre d'une partie du corps, si on formule une hypothèse sur la forme géométrique de la partie du corps en question, par exemple si on considère que ladite partie a une forme cylindrique. Dans ce cas on peut approximer le périmètre réel par une seule mesure du diamètre apparent de la partie du corps dans l'image. Les figures 3A et 3B illustrent une mise en œuvre du procédé de mesure d'une longueur selon l'invention à partir de deux images.
Selon cette mise en œuvre, on acquiert au moins deux images avec le dispositif d'acquisition d'images placé dans deux positions différentes de telle sorte que chaque image contienne au moins une dimension caractéristique à déterminer, et on détermine la dimension caractéristique par triangulation à partir desdites au moins deux photographies.
Cette mise en œuvre repose sur une approche par triangulation pour la calibration, connue et par exemple décrite dans Hartley et Zisserman, 2004 ("Multiple View Geometry in computer vision", 2004, Part II « Two-View Geometry », Cambridge University Press, p. 237-308).
Comme dans les figures 1A et 2A, un pied 10 est posé sur une mire 2D 30 comportant des marqueurs identifiables 40. La prise de vue est effectuée au moyen du smartphone 20.
Au moins deux images 21 et 22 du pied 10 et de la mire 30 sont acquises par le smartphone 20 placé dans deux positions différentes (a) et (b), de telle sorte que chaque image (21, 22) contienne entièrement la dimension caractéristique du pied 10 que l'on souhaite déterminer, i.e. la longueur du pied 50 (pointure), ainsi qu'au moins trois mêmes marqueurs 40 de la mire 30. Dans les images 21 et 22, la longueur du pied réelle 50 est référencée respectivement 51 et 52, le pied 10 est référencé 11 et 12, les trois marqueurs 40 de la mire 30 sont référencés 41 et 42. La mire 30 est identique à celle décrite pour la figure 2A.
Ainsi, pour chaque dimension caractéristique que l'on souhaite déterminer, on dispose d'au moins deux images acquises par le smartphone 20 dans des positions différentes. En estimant la transformation T (représentée par une double flèche dans la figure 3A) entre les deux positions (a) et (b) des deux images 21 et 22 dans le repère monde à l'aide de la mire 30, on peut déterminer les coordonnées réelles 3D des points de l'image.
L'estimation de la transformation T peut être effectuée selon différentes méthodes. L'utilisation d'une mire 2D comportant au moins 3 marqueurs visibles dans les images est requise. L'estimation de la transformation T peut être effectuée de la manière suivante : afin de pouvoir estimer le déplacement du smartphone entre deux prises de vues, une mire en papier sur laquelle se trouvent quatre marqueurs est utilisée. Le mouvement du dispositif d'acquisition d'images, e.g. le smartphone, d'une vue à l'autre est déterminé par la matrice de transformation permettant de passer des quatre marqueurs de la première image vers la deuxième image.
Soit M la matrice 3x3 de déplacement avec my le coefficient à la ligne i et à la colonne j :
m12 m13
M = m21 m22 m23
m31 m32 m33
Soient Gl, G2, G3 et G4 les marqueurs de l'image 1, et Dl, D2, D3, D4 les marqueurs correspondants de l'image 2. Les valeurs des coefficients my sont obtenues en mettant en correspondance les marqueurs entre les deux images sous forme de système et en le résolvant par une méthode de type moindre carré.
Le système à résoudre s'écrit sous la forme :
Dlx Dly 1 0 0 0 -G1X*D1X -Glx*Dly -Gly = 0
0 0 0 Dlx Dly 1 -Gly*Dlx -Gly*Dly -Gly = 0 etc.
La transformation dans l'espace est alors définie de la manière suivante :
Rotation par rapport à l'axe Z = asin(m2i)
Translation par rapport à l'axe X = m13
Translation par rapport à l'axe Y = m23
- Translation par rapport à l'axe Z = m33
Facteur d'échelle suivant l'axe X = mu/cos(asin(m2i))
Facteur d'échelle suivant l'axe Y = m2i/cos(asin(m2i))
Connaissant la correspondance entre un point 3D dans le repère monde et un point dans chacune des deux images (matrice de calibration), on peut alors déterminer une distance entre deux points de l'espace à partir des deux images. Selon cette approche, on ne fait pas l'hypothèse que l'objet doit être dans le plan formé par la mire, contrairement à la mise en œuvre avec une seule image.
En revanche, l'erreur de mesure évolue de la même manière que pour la mise en œuvre avec une image décrite en rapport avec les figures 2A et 2B : les mesures sont très satisfaisantes pour tous les points du pied proches du plan de la mire, et de plus en plus approximatives lorsque les points s'éloignent de ce plan.
Selon cette mise en œuvre, on peut ainsi déterminer une dimension caractéristique de la partie du corps imagée, de préférence une dimension de type longueur, i.e. une distance euclidienne entre deux points, connaissant la transformation entre deux images. Dans le cas de la mesure d'un pied, d'autres types de dimensions caractéristiques que la longueur du pied 50 (pointure) peuvent être déterminées selon cette mise en œuvre, comme par exemple la longueur, la largeur, la hauteur de différentes parties du pied, tel que les dimensions référencées 2b, 2c, 2d, 2e, 3b, 3c, 3d, 3e, 4b, 4c, 5a, 5b, 6b, 6c et 9 dans le tableau 1 plus bas, et en partie illustrées à la figure 5.
Selon cette mise en œuvre, on peut également déterminer un périmètre d'une partie du corps, si on formule une hypothèse sur la forme géométrique de la partie du corps en question, par exemple si on considère que ladite partie a une forme cylindrique. Dans ce cas on peut approximer le périmètre réel par une seule mesure du diamètre apparent de la partie du corps dans l'image. Selon une mise en œuvre du procédé de mesure, on détermine au moins une dimension caractéristique de type périmètre à partir de n photographies prises dans n positions différentes autour de la partie du corps à mesurer, n étant supérieur ou égal à deux, typiquement compris entre 3 et 10 photographies, de préférence entre 3 et 5 photographies.
En particulier, on détermine le périmètre d'une partie du corps en mesurant sur chaque photographie i, i allant de 1 à n, la longueur du diamètre apparent di, et on estime le périmètre p au moyen de la formule (IV) suivante :
Cette estimation s'appuie sur un principe connue du domaine de la stéréologie, par exemple mentionné dans Bobenko et al., 2008 (« Discrète Differential Geometry, Bobenko, » A.I., Schroder, P., Sullivan, J.M., Ziegler, G. M. (Eds.), Birkhauser, 2008, DOI 10.1007/978-3-7643-8621-4, p. 149), s'appuyant sur un lemme selon lequel la longueur d'une courbe γ c Sd l est égale à π fois la moyenne des intersections de γ avec des grandes hyperspheres Sd~2. Cette estimation fournit une mesure satisfaisante, d'autant plus dans le cas où la surface 3D est convexe et que le nombre d'images n tend vers l'infini.
Les figures 4A et 4B illustrent un exemple d'une telle mise en œuvre, dans lequel trois images 21, 22 et 23 sont acquises autour d'un pied 10 posé sur une mire 30 portant des marqueurs 40. La mire est identique à celle décrite en relation avec les figures précédentes. Le smartphone 20 est pour cela placé dans 3 positions différentes (c), (d), et (e) autour du pied 10. Dans chacune des images 21, 22, 23, le cou-de-pied à mesurer est visible, ainsi que les 3 marqueurs 40 (références 41, 42, 43) de la mire 30 (références 31, 32, 33).
Le périmètre 60, au niveau du cou-de-pied, est déterminé en mesurant dans chaque image 21, 22, et 23, le diamètre apparent 61, 62 et 63, et en appliquant la formule (IV).
Selon cette mise en œuvre, l'étape de calibrage est réalisée comme décrit en relation avec les figures 2A et 2B. Une fois la matrice de calibration établie, il est possible de déterminer la longueur réelle du diamètre apparent di mesuré dans l'image, et ainsi d'estimer le périmètre à l'aide de la formule (IV). Selon une autre mise en œuvre, le procédé de mesure comprend les étapes suivantes :
- on exprime le plan formé par la mire 2D dans le repère du monde, par exemple avec la connaissance de la position d'au moins 3 marqueurs de la mire;
on surimpose à au moins une image acquise un modèle 3D générique de la partie du corps à mesurer, le modèle étant préalablement calibré avec des dimensions génériques réelles de la partie du corps à mesurer, et ;
- on déforme le modèle 3D projeté sur l'image de manière à faire coïncider des points caractéristiques appartenant au plan formé par la mire 2D de la photographie et du modèle 3D ;
on détermine la dimension caractéristique, longueur ou périmètre, à partir du modèle 3D déformé.
La déformation du modèle 3D peut être réalisée de manière manuelle, avec l'intervention d'un opérateur qui modifie les points du modèle à l'aide d'un dispositif de pointage ou de manière automatique par la mise en œuvre d'un algorithme qui ajuste la position des points afin de satisfaire un critère donné. La déformation du modèle 3D est globale, c'est-à-dire qu'à partir de la mise en correspondance des points caractéristiques appartenant au plan formé par la mire 2D de la photographie et du modèle 3D, le modèle 3D est modifié da ns son ensemble. Par exemple, si on fait coïncider la base du modèle 3D avec la longueur du pied, on déforme alors tout le modèle 3D du pied proportionnellement à la transformation de la base du modèle 3D. Selon une autre mise en œuvre du procédé, l'acquisition des photographies est guidée au moyen d'indications visuelles, tel que l'affichage en transparence dans la photographie d'un dessin de la partie du corps et de la mire, ou au moyen d'indications sonores tel qu'un bip sonore ou d'indications tactiles telles que des vibrations. Ces indications peuvent par exemple signaler que le geste effectué pour l'acquisition n'est pas le bon, auquel cas la personne qui manipule le dispositif d'acquisition d'image modifiera la prise de vue.
Le procédé de mesure selon l'invention s'applique avantageusement à la mesure d'un pied, comme cela est illustré dans les différentes figures, et permet de déterminer une dimension caractéristique du pied qui est une dimension caractéristique utile à un bottier, de préférence choisie parmi une longueur, une largeur, une hauteur, un périmètre d'une partie du pied.
Au moins une dimension caractéristique d'au moins un point de mesure du pied suivant est déterminée avec le procédé selon l'invention :
- la pointure ;
- la grosseur aux doigts ;
- le cou-de-pied ;
- l'entrée ;
- la malléole ;
- la cheville ;
- le point fort du mollet ;
- le sous genou ; et
- le petit orteil-talon.
Ces différents points de mesures sont répertoriés dans le tableau 1 ci-dessous, référencés de 1 à 9, et leur position est illustrée à la figure 5. Sur la figure 5, le schéma (A) représente une vue de dessus du pied, et les schémas (B), (C) et (D) des vues de profil du pied. Les différentes dimensions caractéristiques associées à chaque point de mesure sont également listées dans le tableau 1.
De préférence, on mesure au moins la pointure, encore plus préférentiellement on mesure au moins la pointure, la grosseur aux doigts, le cou-de-pied, l'entrée, et la malléole, et plus préférentiellement encore on mesure tous ces points de mesure, c'est-à-dire au moins une dimension caractéristique pour chacun desdits points de mesure, et de préférence toutes les dimensions listées dans le tableau 1 associées à chaque point de mesure. Point Désignation Type
1 Pointure
2a.périmètre
2b.distance du talon à la grosseur aux doigts de l'intérieur du pied
2 Grosseur aux doigts 2c. distance du talon à la grosseur aux doigts de l'extérieur du pied
2d.largeur du pied à la grosseur aux doigts
2e.hauteur du pied à la grosseur aux doigts
3a.périmètre
3b.distance du talon à la grosseur aux doigts de l'intérieur du pied
3 Cou-de-pied 3c. distance du talon à la grosseur aux doigts de l'extérieur du pied
3d.largeur
3e. hauteur
4a.périmètre
4 Entrée 4b.largeur
4c. hauteur
5a.hauteur de la malléole interne
5 Malléole
5b. hauteur de la malléole externe
6a.périmètre
6 Cheville 6b.largeur
6c. hauteur
7 Point fort du mollet Périmètre (peut être approximé par une ellipse)
8 Sous genou Périmètre (peut être approximé par une ellipse)
9 Petit orteil-talon Distance du talon au petit orteil
Tableau 1
Selon une mise en œuvre du procédé pour la mesure du pied, on procède à une prise de vue d'au moins deux images acquises selon une gestuelle simple, qui peut comprendre au moins un des mouvements (a) à (d) suivants :
(a) un mouvement de translation du dispositif d'acquisition photographique au-dessus du pied, de préférence dans un plan sensiblement horizontal et dans une direction perpendiculaire à la longueur du pied ;
(b) un mouvement de translation du dispositif d'acquisition photographique à l'intérieur et à l'extérieur du pied, de préférence dans un plan sensiblement vertical et dans une direction parallèle à la longueur du pied ;
(c) un mouvement de rotation du dispositif d'acquisition photographique autour de la cheville ; (d) un mouvement de rotation dispositif d'acquisition photographique autour de la jambe.
On détermine alors au moins une des dimensions caractéristiques des points de mesures suivants selon les mouvements du dispositif d'acquisition d'images lors de l'acquisition :
- la grosseur aux doigts (2) et/ou du cou-de-pied (3) à partir des photographies acquises selon le mouvement (a) ;
- la pointure (1) et/ou la grosseur aux doigts (2) et/ou le cou-de-pied (3) et/ou l'entrée (4) et/ou la malléole (5) à partir des photographies acquises selon le mouvement (b) ;
- l'entrée (4) et/ou la cheville (6) à partir des images acquises selon le mouvement (c) ;
- le point fort du mollet (7) et/ou le sous genou (8) et/ou le petit orteil-talon (9) à partir des photographies acquises selon le mouvement (d).
De préférence, afin de déterminer un grand nombre de dimensions caractéristiques du pied, par exemple des dimensions pour tous les points de mesures 1 à 9, on réalise une acquisition des images en effectuant 5 gestes correspondant aux mouvements (a) à (d).
La figure 6 illustre la gestuelle décrite associée à l'acquisition des images. En ses marqueurs identifiables 40, avant la prise d'images. Dans les schémas (B) à (F), les mouvements du smartphone 20 sont indiqués par des flèches. Le schéma (B) illustre le mouvement de translation 70 du smartphone 20 au-dessus du pied 10 et de la mire 30, effectué dans un plan sensiblement horizontal et dans une direction perpendiculaire à la longueur du pied de manière. Ce mouvement permet de déterminer des dimensions caractéristiques pour la grosseur aux doigts (2) et le cou-de-pied (3). Le schéma (C) illustre la mouvement de translation 71 du smartphone 20 qui est un mouvement de translation à l'intérieur du pied, dans un plan sensiblement vertical et dans une direction parallèle à la longueur du pied. Une prise de vue selon ce mouvement permet de déterminer des dimensions caractéristiques relatives à la pointure (1), à la grosseur aux doigts (2), au cou-de-pied (3), à l'entrée (4) et à la malléole (5). Une prise de vue selon un mouvement de translation identique mais à l'extérieur du pied, tel que montré sur le schéma (D), permet de déterminer des dimensions caractéristiques des mêmes points de mesures. Des images prises selon le mouvement de rotation 73 autour de la cheville illustré sur le schéma (E), permettent des mesures de l'entrée (4) et la cheville (6). Enfin le schéma (F) illustre un mouvement de rotation 74 autour de la jambe plus ample que celui autour de la cheville, permettant des mesures au niveau du point fort du mollet (7), du sous-genou (8), et du petit orteil-talon (9).
Il est entendu que les images acquises selon différents mouvements peuvent être exploitées pour déterminer une dimension caractéristique donnée. Cette gestuelle très simple, pouvant être réalisée par la personne elle-même, permet de fournir toutes les informations nécessaires à la mesure selon le procédé, en vue de livrer les mesures utiles à un bottier pour la fabrication de chaussures sur-mesure.
Lors des gestes, les déclenchements de la prise d'images peuvent être effectués par l'utilisateur ou automatiquement par le dispositif d'acquisition d'images. Dans ce cas, un suivi automatique dans l'image de la mire peut être réalisé, et/ou un suivi des informations d'inclinaisons et déplacements par le biais d'un accéléromètre peut également être réalisé.
On peut combiner les différentes mises en œuvre décrites sans sortir du cadre de la présente invention. A titre d'exemple il est possible de mettre en œuvre dans le même procédé à la fois la détermination d'une longueur à partir d'une seule image, et/ou la détermination d'une longueur à partir de plusieurs images, et/ou la détermination d'un périmètre à partir de n images. De nombreuses combinaisons sont possibles.
Un aspect de l'invention porte sur un procédé de fabrication sur-mesure d'une chaussure, dans lequel on détermine au moins une dimension caractéristique du pied par le procédé de mesure décrit, et on réalise une chaussure sur mesure à partir de ladite au moins une dimension caractéristique du pied. De préférence on détermine au moins la pointure, et encore plus préférentiellement les dimensions caractéristiques de tous les points de mesures suivants: la pointure, la grosseur aux doigts, le cou-de- pied, l'entrée, la malléole, la cheville, le point fort du mollet, le sous genou, et le petit orteil-talon, en vue de fournir ces mesures au bottier pour la fabrication de la chaussure.
De préférence on fabrique la chaussure sur-mesure à partir des dimensions caractéristiques de tous les points de mesures listés ci-dessus.
Le procédé de mesure selon l'invention peut avantageusement s'appliquer à la mesure d'une autre partie du corps humain que le pied, tel qu'une main ou un cou.
Un autre aspect de l'invention porte la fabrication d'un de mode adapté à la morphologie d'une partie du corps humain, dans lequel on détermine au moins une dimension caractéristique de ladite partie du corps, de préférence d'une main, du cou ou d'un pied, par le procédé de mesure décrit, et on réalise l'accessoire de mode sur-mesure à partir de ladite au moins une dimension caractéristique. De préférence on mesure le diamètre d'un doigt de la main, le diamètre du poignet, le diamètre du cou, ou le diamètre d'une partie du pied telle que la cheville, pour par exemple fabriquer un bijou surmesure tel qu'une bague, un bracelet, un collier, ou tout autre parure. On peut également mesurer les dimensions d'une main nécessaires pour par exemple fabriquer des gants sur-mesure.

Claims

REVENDICATIONS
1. Dispositif Procédé de mesure d'une partie du corps humain à partir de photographies numériques, sans reconstruction 3D de ladite partie du corps, comprenant les étapes suivantes : l'acquisition à l'aide d'un dispositif d'acquisition photographique d'au moins une photographie de ladite partie du corps et d'une mire 2D connue comportant au moins trois marqueurs, de telle sorte que ladite photographie contienne entièrement au moins une dimension caractéristique de ladite partie du corps que l'on souhaite déterminer et les trois marqueurs de ladite mire ;
le calibrage du dispositif d'acquisition photographique à partir de ladite au moins une photographie et des au moins trois marqueurs de la mire 2D connue par l'établissement d'une matrice de calibration permettant la correspondance entre un point de ladite photographie et un point 3D exprimé dans un repère monde ;
la détermination de ladite dimension caractéristique de ladite partie du corps à partir de ladite au moins une photographie et de ladite matrice de calibration.
2. Procédé selon la revendication 1, dans lequel ladite au moins une dimension caractéristique de ladite partie du corps humain est une distance euclidienne entre deux points de ladite partie du corps ou un périmètre de ladite partie du corps.
3. Procédé selon l'une des revendications précédentes, dans lequel on détermine au moins une dimension caractéristique de ladite partie du corps à partir d'une seule photographie et de la matrice de calibration, ladite matrice permettant de réaliser la correspondance entre un point de ladite photographie et un point 3D situé dans le plan de la mire et exprimé dans le repère monde.
4. Procédé selon l'une des revendications 1 à 2, dans lequel on acquiert au moins deux photographies avec le dispositif d'acquisition photographique dans deux positions différentes de telle sorte que chaque photographie contienne ladite au moins une dimension caractéristique à déterminer, on estime la transformation entre les positions des deux photographies lors du calibrage, et on détermine ladite au moins une dimension caractéristique connaissant ladite transformation.
5. Procédé selon la revendication précédente, dans lequel on détermine au moins une dimension caractéristique de type distance euclidienne entre deux points à partir de deux photographies, lesdites deux photographies étant acquises selon un mouvement de translation du dispositif d'acquisition photographique.
6. Procédé selon l'une des revendications précédentes, dans lequel on détermine au moins une dimension caractéristique de type périmètre à partir de n photographies prises dans n positions différentes autour de la partie du corps, n étant supérieur ou égal à 2 et de préférence compris entre 3 et 10 photographies.
7. Procédé selon la revendication 6, dans lequel on détermine un périmètre d'une partie du corps en mesurant sur chaque photographie i, i allant de 1 à n, la longueur du diamètre apparent di sur la photographie i, et on estime le périmètre p au moyen de la formule suivante :
P = -∑di
n i=i
8. Procédé selon l'une des revendications précédentes, dans lequel le dispositif d'acquisition photographique est un appareil photographique d'un téléphone intelligent.
9. Procédé selon l'une des revendications précédentes, dans lequel les photographies sont transmises à un ordinateur distant pour réaliser les étapes de calibrage et de détermination de ladite au moins une dimension caractéristiques du corps humain.
10. Procédé selon l'une des revendications précédentes, dans lequel :
on exprime le plan formé par la mire 2D dans le repère du monde ;
on surimpose à ladite au moins une photographie un modèle 3D générique de la partie du corps à mesurer, ledit modèle étant préalablement calibré avec des dimensions génériques réelles de la partie du corps à mesurer, et ;
- on déforme ledit modèle 3D sur la photographie de manière à faire coïncider des points caractéristiques appartenant au plan formé par la mire 2D de la photographie et du modèle 3D ;
on détermine ladite au moins une dimension caractéristique à partir du modèle 3D déformé.
11. Procédé selon l'une des revendications précédentes, dans lequel l'acquisition des photographies est guidée au moyen d'indications visuelles, tel que l'affichage en transparence dans la photographie d'un dessin de la partie du corps et de la mire, ou au moyen d'indications sonores tel qu'un bip sonore ou tactiles telles que des vibrations signalant de préférence que le geste effectué pour l'acquisition n'est pas le bon.
12. Procédé selon l'une des revendications précédentes pour la mesure d'un pied, dans lequel ladite au moins une dimension caractéristique du pied mesurée est une dimension caractéristique utile à un bottier, de préférence choisie parmi une longueur, une largeur, une hauteur, un périmètre d'une partie du pied.
13. Procédé selon la revendication 12, dans lequel on détermine au moins une dimension caractéristique d'au moins un point de mesure du pied suivant :
- la pointure ;
- la grosseur aux doigts ;
- le cou-de-pied ;
- l'entrée ;
- la malléole ; - la cheville ;
- le point fort du mollet ;
- le sous genou ; et
- le petit orteil-talon,
et de préférence au moins une dimension caractéristique pour chacun desdits points de mesure.
14. Procédé selon l'une des revendications 12 et 13, dans lequel on acquiert au moins deux photographies lors d'au moins un des mouvements (a) à (d) suivants :
(a) un mouvement de translation du dispositif d'acquisition photographique au-dessus du pied, de préférence dans un plan sensiblement horizontal et dans une direction perpendiculaire à la longueur du pied ;
(b) un mouvement de translation du dispositif d'acquisition photographique à l'intérieur et à l'extérieur du pied, de préférence dans un plan sensiblement vertical et dans une direction parallèle à la longueur du pied ;
(c) un mouvement de rotation du dispositif d'acquisition photographique autour de la cheville ;
(d) un mouvement de rotation dispositif d'acquisition photographique autour de la jambe, et dans lequel on détermine au moins une des dimensions caractéristiques des points de mesures suivants selon les mouvements du dispositif d'acquisition photographique lors de l'acquisition des photographies :
la grosseur aux doigts et/ou du cou-de-pied à partir des photographies acquises selon le mouvement (a) ;
la pointure et/ou la grosseur aux doigts et/ou le cou-de-pied et/ou l'entrée et/ou la malléole à partir des photographies acquises selon le mouvement (b) ;
l'entrée et/ou la cheville à partir des images acquises selon le mouvement (c) ;
le point fort du mollet et/ou le sous genou et/ou le petit orteil-talon à partir des photographies acquises selon le mouvement (d).
15. Procédé de fabrication d'une chaussure, dans lequel :
on détermine au moins une dimension caractéristique du pied par le procédé selon l'une des revendications précédentes, de préférence au moins la pointure, et encore plus préférentiellement les dimensions caractéristiques de tous les points de mesures suivants : la pointure, la grosseur aux doigts, le cou-de-pied, l'entrée, la malléole, la cheville, le point fort du mollet, le sous genou, et le petit orteil-talon ; et
on réalise une chaussure sur-mesure à partir de ladite au moins une dimension caractéristique du pied, et de préférence à partir des dimensions caractéristiques de tous lesdits points de mesures.
16. Procédé selon l'une des revendications 1 à 11 pour la mesure d'une main ou d'un cou.
17. Procédé de fabrication d'un accessoire de mode adapté à la morphologie d'une partie du corps humain, dans lequel :
on détermine au moins une dimension caractéristique de ladite partie du corps humain par le procédé selon l'une des revendication 1 à 11, de préférence au moins une dimension caractéristique d'une main, d'un cou, ou d'un pied, et de préférence le diamètre d'un doigt de la main, le diamètre du poignet, le diamètre du cou, ou le diamètre d'une partie du pied telle que la cheville ; et
on réalise ledit accessoire de mode sur-mesure à partir de ladite au moins une dimension caractéristique.
EP17832789.6A 2016-12-15 2017-12-15 Procede de mesure d'une partie du corps a partir de photographies numeriques, et mise en oeuvre d'un tel procede pour la fabrication de chaussures sur mesure Withdrawn EP3555559A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1662478A FR3060735B1 (fr) 2016-12-15 2016-12-15 Procede de mesure d'une partie du corps a partir de photographies numeriques, et mise en oeuvre d'un tel procede pour la fabrication de chaussures sur mesure
PCT/FR2017/053623 WO2018109421A1 (fr) 2016-12-15 2017-12-15 Procede de mesure d'une partie du corps a partir de photographies numeriques, et mise en œuvre d'un tel procede pour la fabrication de chaussures sur mesure

Publications (1)

Publication Number Publication Date
EP3555559A1 true EP3555559A1 (fr) 2019-10-23

Family

ID=57965981

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17832789.6A Withdrawn EP3555559A1 (fr) 2016-12-15 2017-12-15 Procede de mesure d'une partie du corps a partir de photographies numeriques, et mise en oeuvre d'un tel procede pour la fabrication de chaussures sur mesure

Country Status (4)

Country Link
EP (1) EP3555559A1 (fr)
EA (1) EA201991588A1 (fr)
FR (1) FR3060735B1 (fr)
WO (1) WO2018109421A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016193018A1 (fr) * 2015-05-29 2016-12-08 Unilever Plc Système et procédé de mesure d'un diamètre de cheveu
EP3369041A1 (fr) 2015-10-30 2018-09-05 Unilever Plc. Mesure d'un diamètre de cheveux
EP3369040A1 (fr) 2015-10-30 2018-09-05 Unilever Plc. Mesure d'une boucle de cheveux
US10420397B2 (en) * 2016-12-14 2019-09-24 Black Brass, Inc. Foot measuring and sizing application
US20180160777A1 (en) 2016-12-14 2018-06-14 Black Brass, Inc. Foot measuring and sizing application
CN110325113A (zh) 2017-01-06 2019-10-11 耐克创新有限合伙公司 使用自动购物助手进行个性化购物的系统、平台和方法
US11763365B2 (en) 2017-06-27 2023-09-19 Nike, Inc. System, platform and method for personalized shopping using an automated shopping assistant
US20180182123A1 (en) * 2018-02-26 2018-06-28 Chien Min Fang Method of selecting an article for covering a body part by processing the image of the body part
JP7132347B2 (ja) * 2018-09-21 2022-09-06 株式会社Zozo サイズ測定システム
DE102019122889B4 (de) * 2019-05-29 2022-12-22 eekual bionic GmbH Verfahren zur Herstellung eines nahtlosen Schuhs
WO2021009879A1 (fr) * 2019-07-17 2021-01-21 株式会社アシックス Plaque de mesure et système de création de contour de pied
CN110930448B (zh) * 2019-11-01 2023-11-24 北京化工大学 基于手部图像的参数测量方法与装置
EP3866097A4 (fr) * 2019-12-25 2021-09-22 ASICS Corporation Système de gestion d'informations de longueurs de pieds, système de détermination du moment judicieux pour remplacer des chaussures par achat et outil auxiliaire de mesure
IT202000005392A1 (it) 2020-03-12 2021-09-12 Base Prot S R L Metodo di progettazione e fabbricazione di plantari.
CN116235210A (zh) 2020-05-29 2023-06-06 耐克创新有限合伙公司 用于处理捕获的图像的系统和方法
IT202000026942A1 (it) * 2020-11-11 2022-05-11 Trya S R L Metodo di scansione di un piede e relativa interfaccia grafica d’utente

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882512B1 (fr) * 2005-02-28 2008-11-21 Mascio Gerard Di Installation et procede de mesure d'une caracteristique geometrique d'un segment anatomique d'un sujet et programme d'ordinateur mettant en oeuvre un tel procede
WO2007087485A2 (fr) * 2006-01-13 2007-08-02 Digicontractor Corporation Procédé et dispositif de mesure photographique
ITMI20111550A1 (it) * 2011-08-25 2013-02-26 Magari S R L Metodo e sistema per la selezione ottimizzata di articoli calzaturieri o di abbigliamento
DE102011121086A1 (de) * 2011-12-15 2013-06-20 Deichmann Se System und Verfahren zur optischen Vermessung von Gliedmaßen
DE102012204537A1 (de) * 2012-03-21 2013-09-26 rocket eleven GmbH Verfahren zum Bestimmen der Abmessungen eines Körperteils
EP2904349B1 (fr) * 2012-10-01 2020-03-18 Bodybarista ApS Procédé d'étalonnage d'un appareil photo
US20160286906A1 (en) * 2013-11-09 2016-10-06 Edgimago 2012 Ltd. Method and system for measuring 3-dimensional objects

Also Published As

Publication number Publication date
EA201991588A1 (ru) 2019-11-29
WO2018109421A1 (fr) 2018-06-21
FR3060735A1 (fr) 2018-06-22
FR3060735B1 (fr) 2019-12-27

Similar Documents

Publication Publication Date Title
EP3555559A1 (fr) Procede de mesure d'une partie du corps a partir de photographies numeriques, et mise en oeuvre d'un tel procede pour la fabrication de chaussures sur mesure
EP2272047B1 (fr) Système de formation d images 3d
AU2006206334C1 (en) Devices and methods for identifying and monitoring changes of a suspect area on a patient
CN111649690A (zh) 一种能够手持的3d信息采集的设备及方法
EP2947628B1 (fr) Procédé de traitement d'informations locales
FR2897680A1 (fr) Dispositif de capture de mouvement et procede associe
EP3692499B1 (fr) Procede d'imagerie radiographique, dispositif de traitement d'image radiographique et dispositif d'imagerie radiographique
FR2996014A1 (fr) Procede d'aide a la determination de parametres de vision d'un sujet
CN109308462B (zh) 一种指静脉和指节纹感兴趣区域定位方法
FR3069942B1 (fr) Analyse d'un mouvement et/ou d'une posture d'au moins une partie du corps d'un individu
WO2019129879A1 (fr) Procédé et système pour calibrer un système d'imagerie a rayons x
EP1190208B1 (fr) Procede de mesurage d'un objet tridimensionnel, ou d'un ensemble d'objets
CA2487044C (fr) Dispositif de stereoradiographie et procedure d'utilisation
FR3021205A1 (fr) Procede de determination d'au moins un parametre comportemental
FR3096499A1 (fr) Dispositif de traitement de prise de vue
FR2997492A1 (fr) Procede d'etablissement d'un plan de recolement geolocalise, produit programme d'ordinateur et moyen de stockage correspondants
FR2724720A1 (fr) Procede de correlation des mesures tridimensionnelles realisees par des systemes d'acquisition d'images et installation pour sa mise en oeuvre
WO2016005688A1 (fr) Systeme et procede d'imagerie tridimensionnelle en profondeur
FR3097997A1 (fr) Procédé d’analyse de la démarche d’un individu
EP3876826A1 (fr) Système et procédé de visualisation d'éléments relatifs à une articulation d'un patient
FR3069428B1 (fr) Systeme d'aide au repositionnement d'au moins une zone de suivi dermatologique, procede et programme d'ordinateur associes
FR2992415A1 (fr) Procede d'etablissement d'un plan de recolement geolocalise, produit programme d'ordinateur et moyen de stockage correspondants
KR101080064B1 (ko) 현장 폐쇄회로 시스템에 저장된 용의자의 신장을 계측하는 방법
FR3106485A1 (fr) Dispositif et procede de mesure d’une force exercee sur un corps, et caracterisation de la rigidite d’un corps employant un tel dispositif
WO2015019034A1 (fr) Procede et dispositif d'identification d'un angle sur un oeil de patient

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210609

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211221