EP3551538B1 - Dispositif de préparation de solutions radioactives - Google Patents

Dispositif de préparation de solutions radioactives Download PDF

Info

Publication number
EP3551538B1
EP3551538B1 EP17811538.2A EP17811538A EP3551538B1 EP 3551538 B1 EP3551538 B1 EP 3551538B1 EP 17811538 A EP17811538 A EP 17811538A EP 3551538 B1 EP3551538 B1 EP 3551538B1
Authority
EP
European Patent Office
Prior art keywords
support block
syringe
cell
barrel
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17811538.2A
Other languages
German (de)
English (en)
Other versions
EP3551538A1 (fr
Inventor
Guénolé MATHIAS-LAOT
Quentin THOMAS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Lorraine
Original Assignee
Universite de Lorraine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Lorraine filed Critical Universite de Lorraine
Publication of EP3551538A1 publication Critical patent/EP3551538A1/fr
Application granted granted Critical
Publication of EP3551538B1 publication Critical patent/EP3551538B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F7/00Shielded cells or rooms
    • G21F7/005Shielded passages through walls; Locks; Transferring devices between rooms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B3/00Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B3/003Filling medical containers such as ampoules, vials, syringes or the like
    • B65B3/006Related operations, e.g. scoring ampoules
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/015Transportable or portable shielded containers for storing radioactive sources, e.g. source carriers for irradiation units; Radioisotope containers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/0005Isotope delivery systems

Definitions

  • the field of the invention is that of the preparation of radioactive solutions, and in particular of radiopharmaceuticals.
  • the invention relates more particularly to a device for preparing such radioactive solutions and radiopharmaceuticals.
  • radiopharmaceutical drugs contain artificial radioelements called radionuclides, which are used for diagnostic or therapeutic purposes and used in nuclear medicine departments. These drugs are either in the form of pharmaceutical specialties containing radionuclides which are delivered ready for use, or in the form of radiopharmaceutical preparations which are prepared in situ and extemporaneously by labeling of carrier molecules, designated under the term “kits” by those skilled in the art, with a selected radionuclide from a generator.
  • kits carrier molecules
  • the most frequently used radionuclide in nuclear medicine is technetium 99m ( 99m Tc), which is readily available from the 99m Mo / 99m Tc generator and which is administered as a sodium pertechnetate solution.
  • This solution is obtained by elution to give eluate of technetium 99m in the form of sterile and pyrogen-free solutions. More precisely, the vector molecules forming these kits are sterile and pyrogen-free substances, which are usually pre-packaged in the form of vacuum-sealed kit bottles.
  • shielded enclosures are generally used for the preparation of these medicaments, provided with openings of the round glove type on the edges of which are fixed latex gloves where the operators introduce their hands.
  • Certain centers use enclosures without integral gloves, replaced by traditional single-use latex or nitrile gloves worn by the user and changed at each handling. This practice is justified by the fact that gloves attached to the enclosure are too thick and interfere with the agility of preparers, who are more comfortable with traditional thin gloves. We thus play on the “time” factor to protect our from radiation.
  • the preparations are made by transferring a diluted eluate into the kit bottle using disposable syringes. Once the RPM solution has been prepared, and passage through the activity meter, a leaded syringe cover is installed on the syringe.
  • the object of the invention is to provide a device for the preparation of radiopharmaceuticals which enables automated preparation of radioactive solutions and minimizes the exposure of operators to the radiations emitted by the radionuclides.
  • the support block is configured so that it can also be brought into a position, called the closed position, in which the opening is closed by a shielded element carried by the support block.
  • the device equipped with several cells, makes it possible to carry out the preparations required for the use of RPM, whether it is for reconstitutions, labeling and fractionation, or simple dilutions and transfers between vials.
  • the use of the device is not limited to the preparation of RPMs, but can be employed for the preparation of any radioactive solution.
  • the shielded element carried by the support block can be integral therewith, for example if the support block is also made of a material making it possible to block or attenuate the radiation of the isotopes, or else attached to the latter.
  • the shielded element can for example be a disc made of lead-based material (or other suitable anti-radiation material) placed in a housing opening into an upper face of the mobile support block.
  • the shielded screed is made of any material making it possible to attenuate or block the passage of radiation emitted by the isotopes placed in the screed, for example lead, lead-based material, or other anti-radiation materials.
  • the thickness of the armored screed is adjusted according to the doses contained and the desired attenuation.
  • the movable support block is a cylindrical barrel mounted to rotate, preferably along a substantially central axis. vertical, and in which the cells open into the upper face of the barrel.
  • the cells and the housing of the shielded element are positioned in the barrel so as to be able to bring them selectively, by rotating the barrel, into alignment with the opening of the yoke.
  • the syringe actuating means comprises a first mobile with which the syringe holder is integral, the syringe holder ensuring the maintenance of the syringe body and a second mobile with means for coupling to the syringe piston.
  • the syringe actuation means is configured to either simultaneously move the first and second movable, or to move the second mobile relative to the first mobile.
  • the device also advantageously comprises translation means mounted on the first mobile, in order to move the syringe holder laterally with respect to the support block; and / or the syringe holder is associated with a support and comprises means for moving the syringe holder downward with respect to its support.
  • the present invention relates to a device for preparing radioactive solutions and in particular for radiopharmaceutical preparations allowing products to be taken from vials in an automated manner, and guaranteeing the safety of the user.
  • the device is in particular designed to allow the preparation of RPMs, in particular of RPM injections, combining a radioisotope with a vector, that is to say a molecule (or fragment) chosen to be located selectively on a particular structure of the organism.
  • the device for preparing RPM injections 10 which comprises a mobile support block 12 comprising several cells 14 capable of accommodating a vial.
  • the support block 12 is intended to accommodate various vials for reconstituting RPM or their fractionation, with a view to preparing injections.
  • the vials used are glass vials in penicillin vial format (example: diameter 2.5 cm, height 5.5 cm) provided with a rubber cover on the upper opening and called “kits”.
  • Other bottles can of course be used, and the dimensions of the cells 14 adapted accordingly.
  • the device advantageously comprises a protective case shielded around the support block.
  • the protective case is a "shielded" yoke 16, which comprises a side wall 18 surrounding the periphery of the support block 12 and an upper wall 20 covering the upper face 22 of the support block 12.
  • An opening 24 is provided in the upper wall 20 of the housing, to allow access to the cells 14.
  • the shielded cap 16 can be made of lead, for example with a thickness of the order of for example 9 to 30 mm or any other material making it possible to shield (attenuate or block) radionuclide emissions.
  • the wall thickness is chosen to attenuate ionizing radiation depending on the material used and the isotope dose.
  • the upper wall 20 of the yoke 16 is removable, to allow the loading / unloading of bottles in the cells 14.
  • Reference numeral 26 generally designates syringe actuating means configured to move a syringe vertically, substantially in the axis of the opening, and to actuate a plunger of said syringe, as described in more detail below.
  • the reference sign 27 designates a syringe holder for a syringe 29 (visible in figure 5 ).
  • the support block 12 is preferably produced as a rotary barrel, a term which will be adopted for the remainder of the description.
  • the device 10 comprises a means for driving the barrel 12 which is configured to selectively move the barrel 12 into positions, called working positions, in which a given cell 14 is aligned with the opening 24 to allow access to it. cell from outside the box 16.
  • the barrel 12 comprises a body of generally cylindrical shape, with a cylindrical lateral face 28 of axis A, the upper face 22 and a lower face 30. In the device, the barrel 12 is arranged with its lower face 30 facing downwards. .
  • the barrel 12 is rotatably mounted on a plate 32 which forms the base of the device 10 and also supports the armored yoke 16 (the plate 32 can be of anti-radiation material, but this is often not necessary because the device is placed on it. an armored support).
  • the plate 32 can be of anti-radiation material, but this is often not necessary because the device is placed on it. an armored support).
  • it comprises a central cylindrical housing 34 opening into the lower face 20, as seen in Fig. 4 .
  • An axis 36 extends perpendicularly to the plate 32 and engages in the housing 34.
  • the axis 36 has a diameter corresponding substantially to the internal diameter of the housing 34, up to the operating clearance, so as to allow rotation of the barrel. around axis 36 (coincident with axis A).
  • a crown 38 possibly toothed, surrounding the axis 36.
  • the crown 38 allows a drive in rotation, for example by belt (not shown), of the barrel 12 on the axis 34. This belt is also engaged on a drive pulley (not shown) integral with an output shaft of a barrel motor assembly 40, mounted on the plate 32.
  • the barrel 12 comprises four cells 14 (also designated individually 14.1 to 14.4) capable of receiving flasks for the preparation of solutions. These cells 14 are designed to open into the upper face 22 of the barrel 12.
  • the cells 14 are preferably of cylindrical shape (circular section or other), but advantageously have their axis (B) inclined relative to the vertical, for example of 15 to 20 °. This makes it easier to draw from the bottom of the vial when the remaining volume is low.
  • the diameter of the barrel 12, and the dimensions of the cells depend on the bottles to be received and therefore on the intended applications.
  • the cells 14 can have a depth between 35 and 70 mm.
  • the inlet diameter of the cells 14 is adapted to the vials and the passage section of the opening 24 is preferably slightly less than the inlet diameter of the cells 14.
  • the barrel 12 in fact comprises a fifth cell 15, called housing, designed to accommodate lead (the cell is empty on the Fig. 3 ).
  • a lead element 17 is thus placed in this housing 15, for example a disk or cylinder of a shape complementary to the housing ( Fig. 2 ) 15.
  • This lead element 17 makes it possible, when it is aligned with the opening 24, to close this opening 24 and constitutes a shielding which blocks the emission of radiation to the outside of the housing through the orifice 24.
  • the drive means constituted by the motor assembly 40 linked to the crown 38 allows the barrel 12 to be pivoted so as to be able to selectively align each of the cells 14.1 to 14.4 with the opening 22, thus allowing the 'access to the bottles contained in these cells from the outside of the box, forming the working positions.
  • the drive means also makes it possible to put the barrel 12 in the closed position, in which the housing 15 is aligned with the opening 24 and the lead element 17 closes the opening 24.
  • the barrel 12 can be made from any material and by any suitable process. In particular, it can be advantageously produced in a rigid polymer, such as ABS. 3D printing is an advantageous manufacturing technique, but other techniques can be employed.
  • the four cells 14.1 to 14.4 intended to receive vials and the cell 15 accommodating the lead disc 17 have the center of their upper openings, in the plane of the upper face 22 of the barrel, equidistant from the axis of rotation A. Of course, this distance is substantially the same as the distance from the axis A to the center of the opening 24. This therefore allows any of the cells 14.1 to 14.4 and 15 to be aligned as desired with the opening 24, by pivoting the barrel around of its axis.
  • the cell 14.4 comprises a tubular jacket closed at its lower end, which is placed in a hollow region of the barrel 12.
  • the jacket 42 comprises an upper rim 44 by which it rests on the upper face 22 of the cylinder. barrel.
  • Heating and / or cooling means can therefore be provided for one or more cells.
  • a resistive heating wire 42.1 is preferably wound around the jacket 42. Forced cooling of this jacket 42 is obtained by means of a fan (not shown) placed in the hollow region of the barrel 12, which has an opening 46 in the side face 28, under the cell 15. A series of lamellar openings 48 are also made in the side wall 28 of the barrel 12.
  • each cell 14 with a bottle is equipped with a temperature sensor 19 ( Fig. 4 ).
  • Cell 14.4 can include 2 temperature sensors.
  • a precision balance 21 ( Fig. 4 ) is advantageously provided at the bottom of each cell 14.1 to 14.4.
  • the scales make it possible to know in real time the volume present in each bottle.
  • Means for detecting the angular (clockwise) positioning of the barrel are advantageously provided for increased precision in the positioning of the barrel 12 relative to the orifice 24.
  • Optical means (not shown) are preferred.
  • the barrel is equipped with a barcode determining the position of each cell 14.1 to 14.4 and 15.
  • a bar code reader is placed in the screed 16.
  • This disinfection means can comprise a ramp of UV-emitting lamps around 254 nm (for example LEDs), positioned on the upper circumference (inlet) of the cell and oriented towards the interior of the cell, towards the upper side of the bottle.
  • the ramp of LEDs is indicated as 23 in Fig. 4 .
  • the syringe actuating means 26 which is mounted on the plate 32 at the rear of the barrel 12. It comprises two movable elements 52 and 54 (simply called 'movable') sliding vertically along two fixed axes 56 and 58, smooth and vertical; and driven along these axes 56, 58 by means of two endless screws 60 and 62 formed by threaded rods.
  • Each of the mobiles 52, 54 comprises a horizontal support plate 52.1, 54.1 with two orifices crossed by the sliding axes 56, 58.
  • Each support plate 52.1, 54.1 carries, at the level of the sliding holes, a guide sleeve 64 aligned with this last, to improve horizontal stability when moving along the axes 56, 58.
  • the lower support plate 52.1 comprises an orifice through which the worm 60 passes and a thread formed by a threaded sleeve 66, fixed on the support plate 52.1 and aligned with said orifice.
  • the thread of the sleeve 66 corresponds to that of the worm 60 and therefore allows the ascent or the descent of the support plate 52.1 along the worm 60, depending on the direction of rotation of the screw 60.
  • the screw 60 is driven in rotation by a first motor assembly 67 resting on the plate 32.
  • the upper support plate 54.1 comprises a passage (smooth) opening for the worm 60 which drives the lower support plate 52.1. It further comprises an orifice through which the other endless screw 62 passes, associated with a screw thread formed by a threaded sleeve 68, fixed on the support plate 54.1 and aligned with said orifice.
  • the thread of the sleeve 68 corresponds to that of the worm 62 and therefore allows the ascent or the descent of the plate 54.1 along the screw 62, according to the direction of rotation of the latter.
  • the screw 62 is driven in rotation by a second motor assembly 70 fixed to the lower support plate 52.1.
  • the second motor assembly 70 is preferably fixed under the lower support plate 52.1 and the connection with the worm 62 is made through an orifice made in the plate 52.1.
  • the actuation of the first motor assembly 67 alone allows simultaneous movement of the support plates 52.1 and 54.1, which is useful for moving the entire syringe relative to the barrel.
  • the actuation of the second motor assembly 70 causes a relative movement between the two support plates 52.1 and 54.1, which therefore allows the piston of the syringe to be moved relative to the syringe body.
  • a position sensor for example of the potentiometer type, is advantageously associated with each mobile 52 and 54 in order to determine their respective vertical position with good precision. Knowing the relative displacement between the two moving parts 52, 54 makes it possible to know the stroke of the piston and therefore to calculate the volumes introduced into the syringe body or expelled.
  • each support plate 72 parallel, placed vis-à-vis the longitudinal ends of the support plates 52.1 and 54.1. They each comprise on their inner faces a vertical guide means for the mobiles, here in the form of a vertical rib 74 of triangular profile, placed in the center of the upright. Each support plate comprises at its longitudinal ends a triangular incision 76 of shape corresponding to the ribs 74, to improve the stability of the guide.
  • Each of the two wheels 52, 54 comprises gripping means for the syringe.
  • Reference sign 80 denotes an actuator arm of form triangular, integral with the upper support plate 54.1, projecting from the side of the barrel 12. It ends with a coupling portion 82 with a horizontal groove 84 in which the head of the syringe piston is housed.
  • the arm 80 is slidably mounted on a pair of rails 81 fixed to the second plate 54.1, in order to approach the syringe piston head to engage it, or to move away from it. This movement is controlled by a motor assembly 83 driving an endless screw.
  • the syringe body is for its part received and blocked in the syringe holder 27 associated with the support plate 52.1.
  • the syringe holder 27 comprises, in the manner of a box, a base 86 and a cover 88 pivoting relative to this base by virtue of a lateral hinge 90 ( Figures 8 and 9 ).
  • a latch (not shown - remotely controlled) is provided to hold the cover 88 in the closed position on the base 86.
  • the interior parts facing the base 86 and the cover 88 each comprise a recess so as to define a housing for the base. syringe body, ensuring the maintenance of the syringe body in the horizontal and vertical plane.
  • the recesses 92, 92 ' for the cylindrical syringe body, and horizontal slots 93, 93' to accommodate the end flange of the syringe body.
  • the syringe holder 27 is mounted on a support 94, which slides on two horizontal smooth rods 96, transversely to the vertical axis of movement of the syringe holder 27 by means of the mobiles 52 and 54.
  • the support 94 which for example has the shape of a square plate, comprises on the rear face two cylindrical bearings 98 in which the rods 96 are engaged.
  • the rods 96 are held fixedly parallel at their ends by two arms 100 integral with the support plate lower 52.1.
  • a drive means is provided to move the syringe holder support 94 along the rods 96, making it possible to selectively position the syringe holder 27 on either side of the barrel 12 to bring the syringe to a device or accessory placed just above. side of barrel 12.
  • Reference sign 101 designates a motor assembly attached to the outer side of an arm 100. The drive of the syringe holder holder 94 is moved over the rods 96 by means of a belt (not shown). which is driven by the motor 101 and supported by a pulley (not shown) fixed on the arm 100 opposite the motor 101.
  • the syringe holder 27 is advantageously mounted to move relative to its support 94, in order to be able to lower the syringe holder 27 relative to the vertical position of the lower support plate 52.1.
  • the syringe holder 27 it is possible to move the syringe holder 27 laterally, and lower it, to bring the syringe holder 27 into a counting well (not shown) in order to measure the radioactive dose contained in the syringe.
  • the syringe can also be placed on a collection support.
  • the latter is preferably made of a material which does not block the radiation of radionuclides, for example rigid plastic.
  • the syringe holder 27 is lowered relative to its support 94.
  • the syringe holder 27 is connected to the support 94 by means of two driving links (cables) (not shown) which are actuated by a motor assembly 102.
  • Two Centering cones 104 are arranged vertically and fixed to tabs 106 integral with the upper edge of the support 94.
  • the centering cones 104 cooperate with conical housings 108 in the upper face of the base 86 of the syringe holder 27.
  • the links of drives are guided vertically through a central passage in the centering cones 104 and also pass through the conical housings 108.
  • FIGS. 5 and 6 respectively illustrate a working position and the closed position of the barrel.
  • the barrel 12 is positioned with the housing 14.1 aligned with the opening 24.
  • the door syringe 27 rests on its support 94 and the mobile 52 is in the low position: the needle 110 fixed to the end of the syringe 29 is in the cell 14.1 and is engaged in a bottle 112.
  • the syringe piston 92 it is possible to maneuver the syringe piston 92 using the mobile 54 to withdraw liquid from the vial, or inject a quantity from the syringe into the vial 112.
  • sampling or injection operations can be carried out for a bottle housed in any of the cells 14.1 to 14.4, by aligning the cell with the opening 24, that is to say in the working positions of the barrel 12 .
  • the armored side wall 18, the yoke 16 also comprises a rear wall 18.1, therefore surrounds the entire periphery of the barrel 12.
  • the barrel 12 is in an angular position in which the cell / housing 15 carrying the lead disc 17 is aligned with the opening 24: this is the closed position of the barrel 12.
  • the syringe holder 27 is of course reassembled, to release the syringe 29, respectively the needle, from the orifice 24.
  • the lead disc 17 closes the opening 24, physically blocking communication with the interior of the cap 16, and also blocking the emissions of isotopes through the opening 24.
  • An operator can then handle the syringe holder 27, in particular for the installation of a new syringe, without fear of taking a rate of radioactive doses at the end of his fingers.
  • the device preferably comprises a control module managed by software, preferably external to the device, to control: the rotational movements of the barrel, the movements of the mobiles 52 and 54 and thus keep a history ( log) of the quantities withdrawn, and the movements of the syringe holder 27.
  • a control module managed by software, preferably external to the device, to control: the rotational movements of the barrel, the movements of the mobiles 52 and 54 and thus keep a history ( log) of the quantities withdrawn, and the movements of the syringe holder 27.
  • Example of use of the present device for the preparation of injections of RPM Example of use of the present device for the preparation of injections of RPM.
  • the first vial contains the metastable Technetium 99 isotope (Tc 99m *) initially diluted in 5 ml of aqueous sodium chloride (NaCl).
  • Tc 99m * metastable Technetium 99 isotope
  • a patient dose is of the order of 0.6 GBq.
  • Each type of scintigraphic examination requires its specific marker which will be a vector of technetium towards the region to be explored and therefore its own pot.
  • the device ensures the preparation of two types of markers as soon as it is necessary, and once at the beginning of the shift.
  • the second vial contains the NaCl needed to make dilutions.
  • the third vial will become the bone marker for bone scintigraphy.
  • a vial as sold filled with HDP (Hydroxidiphosphonate (HDP) / Osteocis) in powder form is initially loaded into the blister.
  • the device 10 is responsible for filling this third vial with the solution of Tc + NaCl.
  • the barrel 12 is then rotated to facilitate dilution of the powder in Tc + NaCl.
  • the ideal volume activity is 750Mbq / mL.
  • the fourth vial will become the cardiac marker for cardiac scintigraphy.
  • a vial as sold filled with mibi (sestamiBi) in powder form is initially loaded into the cell, in particular cell 14.4.
  • the device is responsible for filling this fourth flask with the Tc + NaCl solution.
  • the barrel 12 is then rotated to facilitate dilution of the powder in Tc + NaCl.
  • the heating function of the cell 14.4 is also activated.
  • the ideal volume activity is 260Mbq / mL.
  • the prescriptions of the vector manufacturers will generally be followed.
  • the scales allow the device in real time to know the volume present in each vial, the heating device only concerns the cardiac marker (mibi). Before labeling, the device will take NaCl in the dedicated vial to dilute the source pot, then take from this source pot, the activity necessary to inject to perform a reconstitution (labeling) of a kit according to the activity of the day or user request.
  • Fractionation the dose to be prepared for the patient is unique and depends on the patient's weight. It is read by the operator from a weight-dose chart.
  • the operator takes in a syringe, and according to his experience, a volume of radioactive drug in a source jar corresponding at first sight to the need for product according to the weight of the patient then measures the dose contained in the syringe in a counting well that will measure the radioactivity. If the “amount” of radioactivity does not correspond to what is needed by the patient, it is necessary, in conventional preparation methods, to make a manual adjustment of the dose present in the syringe to or from the source pot and repeat the procedure. measurement as many times as necessary to arrive at a measurement corresponding to the quantity of radioactivity required by the patient.
  • the fractionation is greatly facilitated by the present device 10. Knowing the volume and activity in the source pot, the device 10 does not need to perform the "round trips" described above, and samples. from the outset, in the requested kit, the volume corresponding to the requested activity. Then, the syringe is measured in a counting well contained in the preparation chamber thanks to the lateral translation on the rods 96, before being placed in a protective tungsten case, when the preparation is finished.
  • the invention is not limited to the embodiment which has just been described by way of example, but covers all the variants thereof.
  • the barrel 12 is a particular embodiment of a mobile support block, but could take other forms to perform the function of receptacle for bottles with its cells / wells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

    Domaine technique
  • Le domaine de l'invention est celui de la préparation de solutions radioactives, et notamment de médicaments radiopharmaceutiques. L'invention concerne plus particulièrement un dispositif de préparation de telles solutions radioactives et de médicaments radiopharmaceutiques.
  • Etat de la technique
  • Comme on le sait, les médicaments dits « radiopharmaceutiques » (RPM) contiennent des radioéléments artificiels appelés radionucléides, qui sont employés à des fins diagnostiques ou thérapeutiques et utilisés dans les services de médecine nucléaire. Ces médicaments se présentent soit sous forme de spécialités pharmaceutiques contenant des radionucléides qui sont livrées prêtes à l'emploi, soit sous forme de préparations radiopharmaceutiques qui sont préparées in situ et extemporanément par marquage de molécules vectrices, désignées sous le vocable de « trousses » par l'homme du métier, avec un radionucléide choisi issu d'un générateur. Le radionucléide le plus fréquemment utilisé en médecine nucléaire est le technétium 99m (99mTc), qui est facilement disponible grâce au générateur 99mMo/99mTc et que l'on administre sous forme d'une solution de pertechnétate de sodium. Cette solution est obtenue par élution pour donner des éluats de technétium 99m sous forme de solutions stériles et apyrogènes. Plus précisément, les molécules vectrices formant ces trousses sont des substances stériles et apyrogènes, qui sont pré-conditionnées le plus souvent sous forme de flacons trousse fermés sous vide.
  • De manière connue, on utilise généralement pour la préparation de ces médicaments des enceintes blindées (contre les rayonnements des isotopes) pourvues d'ouvertures de type ronds de gants sur les bords desquels sont fixés des gants en latex où les opérateurs introduisent les mains. Certain centres utilisent des enceintes dépourvues de gants solidaires, remplacés par des gants à usage unique en latex ou nitrile traditionnels portés par l'utilisateur et changés à chaque manipulation. Cette pratique est justifiée par le fait que les gants solidaires de l'enceinte sont trop épais et nuisent à l'agilité des préparateurs, plus à l'aise avec les gants fins traditionnels. On joue ainsi sur le facteur « temps » pour se protéger des rayonnements. Les préparations se font par transfert d'un éluat dilué dans le flacon trousse à l'aide de seringues à usage unique. Une fois la solution de RPM préparée, et passage dans l'activimètre, un protège seringue plombé est installé sur la seringue.
  • Les inconvénients majeurs de ces procédés de préparation traditionnels résident dans l'existence de débits de doses radioactives très élevés au contact des extrémités des doigts de l'opérateur lors de la manipulation des seringues, pendant les étapes de marquage/reconstitution et fractionnement, alors que les flacons peuvent être manipulées avec des pinces.
  • Objet de l'invention
  • L'invention a pour objet de fournir un dispositif de préparation de radiopharmaceutiques qui permette une préparation automatisée de solutions radioactives et minimise l'exposition des opérateurs aux radiations émises par les radionucléides.
  • Description générale de l'invention
  • Avec cet objectif en tête, la présente invention propose un dispositif de préparation de solutions radioactives comprenant :
    • un bloc support mobile comprenant au moins deux alvéoles aptes à accueillir un flacon ;
    • une chape blindée (anti-radiation), comprenant une paroi latérale entourant la périphérie du bloc support et une paroi supérieure couvrant la face supérieure du bloc support, une ouverture étant prévue dans la paroi supérieure de la chape ;
    • un moyen d'entrainement du bloc support configuré pour déplacer sélectivement le bloc dans des positions, dites positions de travail, dans lesquelles une alvéole donnée est alignée avec l'ouverture pour permettre l'accès à ladite alvéole depuis l'extérieur de la chape ;
    • un porte seringue associé à un moyen d'actionnement de seringue configuré pour déplacer une seringue verticalement sensiblement dans l'axe de l'ouverture et pour actionner un piston de ladite seringue.
  • On appréciera que le bloc support est configuré de sorte qu'il peut être amené en outre dans une position, dite position de fermeture, dans laquelle l'ouverture est obturée par un élément blindé porté par le bloc support.
  • L'existence de la position de fermeture du bloc support mobile, inhérente à celui-ci, permet donc de fermer la communication par l'ouverture de la chape blindée, entre l'intérieur de celle-ci et l'extérieur. Puisque l'unique ouverture est fermée par un élément blindé, les rayonnements émis par les isotopes sont également bloqués. Un opérateur peut donc faire des manipulations au-dessus du dispositif, même à la verticale de l'ouverture de la chape, sans crainte d'un débit de doses significatif.
  • Le dispositif, équipé de plusieurs alvéoles, permet de réaliser les préparations requises pour l'utilisation de RPM, qu'il s'agisse de reconstitutions, marquages et fractionnements, ou de simples dilutions et transferts entre flacons. Comme on le comprendra, l'usage du dispositif n'est pas limité à la préparation de RPM, mais peut être employé pour la préparation de toute solution radioactive.
  • L'élément blindé porté par le bloc support peut être intégral avec celui-ci, par exemple si le bloc support est également réalisée en matériau permettant de bloquer ou atténuer les rayonnements des isotopes, ou bien rapporté dans celui-ci. L'élément blindé peut par exemple être un disque en matériau à base de plomb (ou autre matériau anti-radiation approprié) placé dans un logement débouchant dans une face supérieure du bloc support mobile.
  • La chape blindée est réalisée en tout matériau permettant d'atténuer ou bloquer le passage des rayonnements émis par les isotopes placés dans la chape, par exemple en plomb, matériau à base de plomb, ou autres matériaux anti-radiation. L'épaisseur de la chape blindée est ajustée en fonction des doses contenues et de l'atténuation souhaitée.
  • Selon un mode de réalisation préféré, le bloc support mobile est un barillet cylindrique monté rotatif, de préférence selon un axe central sensiblement vertical, et dans lequel les alvéoles débouchent dans la face supérieure du barillet. Les alvéoles et le logement de l'élément blindé sont positionnés dans le barillet de sorte à pouvoir les amener de manière sélective, par rotation du barillet, en alignement avec l'ouverture de la chape.
  • Selon les variantes, le dispositif présente une ou plusieurs des caractéristiques techniques suivantes :
    • les alvéoles aptes à accueillir des flacons sont des alvéoles cylindriques inclinées par rapport à la verticale ;
    • une ou plusieurs alvéoles comprennent un capteur de température et/ou une balance de précision au fond de l'alvéole ;
    • des moyens de détection de la position angulaire du bloc support mobile, de préférence des moyens de détection optiques ;
    • des moyens de chauffe et/ou de refroidissement sont associés à au moins une des alvéoles ;
    • une alvéole est réalisée en tant que pièce rapportée montée dans une partie creuse du bloc support, les moyens de chauffage et/ou de refroidissement comprenant une résistance chauffante montée sur une chemise disposée dans une alvéole, ainsi qu'un ventilateur monté dans le bloc support et des ouvertures d'aération dans la paroi latérale du bloc support.
    • un moyen de désinfection équipe au moins une, de préférence chacune des alvéoles. Il comprend par exemple une rampe circulaire d'émetteurs d'UV aux alentours de 254 nm, positionnée sur la circonférence supérieure de l'alvéole et orientée préférentiellement vers l'intérieur de l'alvéole, vers le flacon.
  • De préférence, le moyen d'actionnement de seringue comprend un premier mobile dont le porte seringue est solidaire, le porte seringue assurant le maintien du corps de seringue et un deuxième mobile avec des moyens d'accouplement au piston de seringue. Le moyen d'actionnement de seringue est configuré pour, soit déplacer simultanément les premier et deuxième mobiles, soit pour effectuer le déplacement du deuxième mobile par rapport au premier mobile.
  • Le dispositif comprend encore avantageusement des moyens de translation montés sur le premier mobile, afin de déplacer le porte seringue latéralement par rapport au bloc support ; et/ou le porte seringue est associé à un support et comprend des moyens pour déplacer le porte seringue vers le bas par rapport à son support. Ces mesures permettent de dégager la seringue de la zone du barillet afin de, entre autres, l'amener dans un dispositif de mesure/contrôle adjacent ou la déposer dans un étui.
  • Description détaillée à l'aide des figures
  • D'autres particularités et caractéristiques de l'invention ressortiront de la description détaillée d'au moins un mode de réalisation avantageux présenté ci-dessous, à titre d'illustration, en se référant aux dessins annexés. Ceux-ci montrent :
    • Fig.1 :une vue en perspective d'un mode de réalisation d'un dispositif de préparation d'injections de radiopharmaceutiques selon l'invention ;
    • Fig.2 : une vue en perspective du dispositif de la Fig.1, sans le boitier blindé ;
    • Figs.3 : une vue en perspective du barillet ;
    • Fig.4 : une vue en coupe verticale, à travers l'axe central, du barillet ;
    • Fig.5 : une vue en coupe du dispositif de la Fig.1, avec le barillet en position de travail ;
    • Fig.6 : une vue en coupe du dispositif de la Fig.1, avec le barillet en position de fermeture ;
    • Fig.7 : une vue de face de la Fig.2 ;
    • Fig.8 : une vue en perspective du boitier à seringue, capot ouvert ;
    • Fig.9 : une vue en perspective du boitier à seringue, abaissé sur son support.
  • La présente invention concerne un dispositif de préparation de solutions radioactives et notamment de préparations de radiopharmaceutiques permettant le prélèvement de produits dans des flacons de manière automatisée, et garantissant la sécurité de l'utilisateur. Le dispositif est en particulier conçu pour permettre la préparation de RPM, notamment d'injections de RPM, combinant un radio-isotope avec un vecteur, c'est-à-dire une molécule (ou fragment) choisie pour se localiser de façon sélective sur une structure particulière de l'organisme.
  • En se référant tout d'abord aux figures 1 et 2, le dispositif préparation d'injections de RPM 10 qui comprend un bloc support mobile 12 comprenant plusieurs alvéoles 14 aptes à accueillir un flacon. Comme on le comprendra par la suite, le bloc support 12 est destiné à accueillir différents flacons pour la reconstitution de RPM ou leur fractionnement, en vue de la préparation d'injections. Typiquement, les flacons utilisées sont des flacons en verre format flacon de pénicilline (exemple : diamètre 2,5 cm, hauteur 5,5 cm) dotés d'un cache en caoutchouc sur l'ouverture supérieure et appelés "trousses". D'autres flacons peuvent bien entendu être utilisés, et les dimensions des alvéoles 14 adaptées en conséquences.
  • Puisque certains flacons vont contenir un isotope radioactif, le dispositif comprend avantageusement un boitier de protection autour blindé du bloc support. Dans la figure 1, le boitier de protection est une chape « blindée » 16, qui comprend une paroi latérale 18 entourant la périphérie du bloc support 12 et une paroi supérieure 20 couvrant la face supérieure 22 du bloc support 12. Une ouverture 24 est prévue dans la paroi supérieure 20 du boîtier, pour permettre l'accès aux alvéoles 14. La chape blindée 16 peut être réalisée en plomb, par exemple avec une épaisseur de l'ordre de par exemple 9 à 30 mm ou tout autre matériau permettant de faire écran (atténuer ou bloquer) aux émissions des radionucléides. L'épaisseur de paroi est choisie pour une atténuer les rayonnements ionisants selon le matériau employé et la dose d'isotopes. De préférence la paroi supérieure 20 de la chape 16 est amovible, pour permettre le chargement/déchargement de flacons dans les alvéoles 14.
  • Le signe de référence 26 désigne globalement un moyen d'actionnement de seringue configuré pour déplacer une seringue verticalement, sensiblement dans l'axe de l'ouverture, et pour actionner un piston de ladite seringue, comme on le décrit plus en détails ci-après. Le signe de référence 27 désigne un porte seringue pour une seringue 29 (visible en figure 5).
  • Comme on le voit à la Fig.2, le bloc support 12 est de préférence réalisé comme un barillet rotatif, terme que l'on adoptera pour la suite de la description. Le dispositif 10 comprend un moyen d'entrainement du barillet 12 qui est configuré pour déplacer sélectivement le barillet 12 dans des positions, dites positions de travail, dans lesquelles une alvéole 14 donnée est alignée avec l'ouverture 24 pour permettre l'accès à l'alvéole depuis l'extérieur du boitier 16.
  • Le barillet 12 comprend un corps de forme générale cylindrique, avec une face latérale 28 cylindrique d'axe A, la face supérieure 22 et une face inférieure 30. Dans le dispositif, le barillet 12 est agencé avec sa face inférieure 30 tournée vers le bas. Le barillet 12 est monté rotatif sur une platine 32 qui forme la base du dispositif 10 et supporte aussi la chape blindée 16 (la platine 32 peut être en matériau anti-radiation, mais ce n'est souvent pas nécessaire car le dispositif est placé sur un support blindé). A cet effet, il comprend un logement central cylindrique 34 débouchant dans la face inférieure 20, comme on le voit en Fig.4. Un axe 36 s'étend perpendiculairement à la platine 32 et s'engage dans le logement 34. L'axe 36 a un diamètre correspondant sensiblement au diamètre intérieur du logement 34, au jeu de fonctionnement près, de sorte à permettre la rotation du barillet autour de l'axe 36 (confondu avec l'axe A). On note à la base du barillet 12, fixée contre la face inférieure 30, une couronne 38, éventuellement dentée, entourant l'axe 36. La couronne 38 permet un entrainement en rotation, par exemple par courroie (non montrée), du barillet 12 sur l'axe 34. Cette courroie est également engagée sur une poulie d'entrainement (non montrée) solidaire avec un arbre de sortie d'un ensemble moteur 40 de barillet, monté sur la platine 32.
  • Dans la présente variante, le barillet 12 comprend quatre alvéoles 14 (désignées également individuellement 14.1 à 14.4) aptes à recevoir des flacons pour la préparation de solutions. Ces alvéoles 14 sont conçues pour déboucher dans la face supérieure 22 du barillet 12. Les alvéoles 14 sont de préférence de forme cylindrique (section circulaire ou autre), mais ont avantageusement leur axe (B) incliné par rapport à la verticale, par exemple de 15 à 20°. Cela facilite le prélèvement dans le fond du flacon lorsque le volume restant est faible. Le diamètre du barillet 12, et les dimensions des alvéoles dépendent des flacons à accueillir et donc des applications visées. Par exemple, les alvéoles 14 peuvent avoir une profondeur entre 35 et 70 mm. Le diamètre d'entrée des alvéoles 14 est adapté aux flacons et la section de passage de l'ouverture 24 est de préférence légèrement inférieure diamètre d'entrée des alvéoles 14.
  • On remarquera, notamment en Fig. 3, que le barillet 12 comprend en fait une cinquième alvéole 15, appelée logement, prévue pour accueillir du plomb (l'alvéole est vide sur la Fig.3). On place ainsi dans ce logement 15 un élément 17 en plomb, par exemple un disque ou cylindre de forme complémentaire au logement (Fig.2) 15. Cet élément 17 en plomb permet, lorsqu'il est aligné avec l'ouverture 24, de fermer cette ouverture 24 et constitue un blindage qui bloque l'émission de rayonnements vers l'extérieur du boitier à travers l'orifice 24.
  • Comme on le comprendra, le moyen d'entrainement constitué par l'ensemble moteur 40 lié à la couronne 38 permet de faire pivoter le barillet 12 de sorte à pouvoir aligner sélectivement chacune des alvéoles 14.1 à 14.4 avec l'ouverture 22, permettant ainsi l'accès aux flacons contenus dans ces alvéoles depuis l'extérieure du boitier, formant les positions de travail. Le moyen d'entrainement permet également de mettre le barillet 12 en position de fermeture, dans laquelle le logement 15 est aligné avec l'ouverture 24 et l'élément en plomb 17 obture l'ouverture 24.
  • Quelques détails de construction du barillet 12 peuvent être soulignés. Le barillet 12 peut être fabriqué en toute matière et par tout procédé approprié. En particulier il peut être avantageusement réalisé dans un polymère rigide, tel que l'ABS. L'impression 3D est une technique de fabrication avantageuse, mais d'autres techniques peuvent être employées. Les quatre alvéoles 14.1 à 14.4 destinées à accueillir des fioles et l'alvéole 15 accueillant le disque en plomb 17 ont le centre de leurs ouvertures supérieures, dans le plan de la face supérieure 22 du barillet, à équidistance de l'axe de rotation A. Bien entendu, cette distance est sensiblement la même que la distance de l'axe A au centre de l'ouverture 24. Cela permet donc d'aligner au choix n'importe laquelle des alvéoles 14.1 à 14.4 et 15 avec l'ouverture 24, en pivotant le barillet autour de son axe.
  • De préférence, au moins une des alvéoles 14 est conçue comme une pièce rapportée. Dans la variante, l'alvéole 14.4 comprend une chemise tubulaire fermée à son extrémité inférieure, qui vient se placer dans une région creuse du barillet 12. La chemise 42 comprend un rebord supérieur 44 par lequel elle s'appuie sur la face supérieure 22 du barillet.
  • Pour certaines applications, il est souhaitable de pouvoir contrôler la température d'un flacon placé dans le barillet 12. Des moyens de chauffage et/ou refroidissement peuvent donc être prévus pour une ou plusieurs alvéoles. Dans la présente variante, un fil résistif chauffant 42.1 est de préférence enroulé autour de la chemise 42. Un refroidissement forcé de cette chemise 42 est obtenu au moyen d'un ventilateur (non montré) placé dans la région creuse du barillet 12, qui a une ouverture 46 dans la face latérale 28, sous l'alvéole 15. Une série d'ouvertures lamellaires 48 sont également pratiquées dans la paroi latérale 28 du barillet 12.
  • De préférence, chaque alvéole 14 à flacon est équipée d'un capteur de température 19 (Fig.4). L'alvéole 14.4 peut comprendre 2 capteurs de température.
  • Une balance de précision 21 (Fig.4) est avantageusement prévue au fond de chaque l'alvéole 14.1 à 14.4. Les balances permettent de connaitre en temps réel le volume présent dans chaque flacon.
  • Des moyens de détection de positionnement angulaire (horaire) du barillet sont avantageusement prévus pour une précision accrue du positionnement du barillet 12 par rapport à l'orifice 24. Des moyens optiques (non montrés) sont préférés. A cet effet, le barillet est équipé d'un code-barres déterminant la position de chaque alvéole 14.1 à 14.4 et 15. Un lecteur de code barre placé est placé dans la chape 16.
  • On notera encore la présence, sur chaque alvéole 14.1 à 14.4 d'un moyen de désinfection. Ce moyen de désinfection peut comprendre d'une rampe de lampes émettrices d'UV autour de 254 nm (par exemples des LED), positionnée sur la circonférence supérieure (entrée) de l'alvéole et orientée vers l'intérieur de l'alvéole, vers la face supérieure du flacon. La rampe de LEDs est indiquée 23 en Fig.4.
  • Cela permet de maintenir propre la face supérieure des flacons, tout en évitant l'utilisation d'alcool qui à terme salirait les puits. L'utilisation de ces rampes, qui n'empiètent pas ou peu sur l'ouverture de chaque alvéole, a entre autres un effet bactéricide, germicide, virucide sur les surfaces exposées.
  • On va maintenant décrire en détail, en référence principalement aux figures 2 et 7, le moyen d'actionnement de seringue 26, qui est monté sur la platine 32 à l'arrière du barillet 12. Il comprend deux éléments mobiles 52 et 54 (dits simplement 'mobile') coulissant verticalement le long de deux axes fixes 56 et 58, lisses et verticaux ; et entrainés le long de ces axes 56, 58 au moyen de deux vis sans fin 60 et 62 formées par des tiges filetées. Chacun des mobiles 52, 54 comprend une plaque support 52.1, 54.1 horizontale avec deux orifices traversés par les axes de coulissement 56, 58. Chaque plaque support 52.1, 54.1 porte, au niveau des orifices de coulissement, un manchon de guidage 64 aligné avec cette dernière, pour améliorer la stabilité horizontale lors déplacement le long des axes 56, 58.
  • La plaque support inférieure 52.1 comprend un orifice traversé par la vis sans fin 60 et un pas de vis formé par un manchon taraudé 66, fixés sur la plaque support 52.1 et aligné sur ledit orifice. Le pas de vis du manchon 66 correspond à celui de la vis sans fin 60 et permet donc l'ascension ou la descente de la plaque support 52.1 le long de la vis sans fin 60, selon le sens de rotation de la vis 60. La vis 60 est entrainée en rotation par un premier ensemble moteur 67 reposant sur la platine 32.
  • La plaque support supérieure 54.1 comprend un orifice de passage (lisse) pour la vis sans fin 60 qui entraine la plaque support inférieure 52.1. Elle comprend en outre un orifice traversé par l'autre vis sans fin 62, associée à un pas de vis formé par un manchon taraudé 68, fixé sur la plaque support 54.1 et aligné sur ledit orifice. Le pas de vis du manchon 68 correspond à celui de la vis sans fin 62 et permet donc l'ascension ou la descente de la plaque 54.1 le long de la vis 62, selon le sens de rotation de celle-ci. La vis 62 est entrainée en rotation par un deuxième ensemble moteur 70 fixé à la plaque support inférieure 52.1. Pour des raisons d'encombrement, le deuxième ensemble moteur 70 est préférablement fixé sous la plaque support inférieure 52.1 et la connexion avec la vis sans fin 62 se fait à travers un orifice ménagé dans la plaque 52.1.
  • Comme on le comprendra, l'actionnement du premier ensemble moteur 67 seul permet un déplacement simultané des plaques support 52.1 et 54.1, ce qui est utile pour déplacer l'ensemble de la seringue par rapport au barillet. L'actionnement du deuxième ensemble moteur 70 entraine un déplacement relatif entre les deux plaques support 52.1 et 54.1, ce qui permet donc de déplacer le piston de la seringue par rapport au corps de seringue. Un capteur de position, par exemple du type à potentiomètre, est avantageusement associé à chaque mobile 52 et 54 afin de déterminer leur position verticale respective avec une bonne précision. La connaissance du déplacement relatif entre les deux mobiles 52, 54 permet de connaître la course du piston et donc de calculer les volumes introduits dans le corps de seringue ou expulsés.
  • On remarquera encore la présence de deux montants latéraux verticaux 72 parallèles, placés en vis-à-vis aux extrémités longitudinales des plaques support 52.1 et 54.1. Ils comprennent chacun sur leurs faces intérieures un moyen de guidage vertical pour les mobiles, ici sous la forme d'une nervure verticale 74 de profil triangulaire, placée au centre du montant. Chaque plaque support comprend à ses extrémités longitudinales une incision triangulaire 76 de forme correspondant aux nervures 74, pour améliorer la stabilité du guidage.
  • Chacun des deux mobiles 52, 54 comprend des moyens de préhension pour la seringue. Le signe de référence 80 désigne un bras d'actionnement de forme triangulaire, solidaire de la plaque support supérieure 54.1, faisant saillie du côté du barillet 12. Il se termine par une portion d'accouplement 82 avec une rainure horizontale 84 dans laquelle se loge la tête du piston de la seringue. Le bras 80 est monté coulissant sur une paire de rails 81 fixés à la seconde plaque 54.1, afin de s'approcher de la tête de piston de seringue pour l'engager, ou s'en écarter. Ce déplacement est commandé par un ensemble moteur 83 entrainant une vis sans fin.
  • Le corps de seringue est quant à lui reçu et bloqué dans le porte-seringue 27 associé à la plaque support 52.1. Le porte-seringue 27 comprend, à la manière d'un coffret, une base 86 et un capot 88 pivotant par rapport à cette base grâce à une charnière latérale 90 (Figures 8 et 9). Un verrou (non montré- commandé à distance) est prévu pour maintenir le capot 88 en position fermée sur la base 86. Les parties intérieures en regard de la base 86 et du capot 88 comprennent chacune une empreinte de sorte à définir un logement pour le corps de seringue, assurant le maintien du corps de seringue dans le plan horizontal et vertical. On reconnaît à la figure 8 les empreintes 92, 92' pour le corps cylindrique de seringue, et des fentes horizontales 93, 93' pour accueillir la collerette d'extrémité du corps de seringue.
  • Comme on le voit bien en figure 5, lorsque le capot 88 est fermé, le corps de seringue 90 est fermement maintenu dans le porte seringue 27 solidaire de la plaque support inférieure 52.1 et le piston de seringue 92, dont l'extrémité est engagée dans le bras d'actionnement 80 solidaire de la plaque support supérieure 54.1, peut-être manipulé individuellement par actionnement du deuxième ensemble moteur 70.
  • On notera encore que le porte-seringue 27 est monté sur un support 94, qui coulisse sur deux tiges lisses horizontales 96, transversalement à l'axe vertical de déplacement du porte seringue 27 au moyen des mobiles 52 et 54. Pour ce faire, le support 94, qui a par exemple une forme de plaque carrée, comprend en face arrière deux paliers cylindriques 98 dans lesquels sont engagées les tiges 96. Comme on le voit bien sur les figures, les tiges 96 sont maintenues fixement parallèles à leurs extrémités par deux bras 100 solidaires de la plaque-support inférieure 52.1. Un moyen d'entrainement est prévu pour déplacer le support 94 de porte seringue le long des tiges 96, permettant de positionner sélectivement le porte seringue 27 de part et d'autre du barillet 12 pour amener la seringue à un dispositif ou accessoire placé juste à côté du barillet 12. Le signe de référence 101 désigne un ensemble moteur fixé sur le côté extérieur d'un bras 100. L'entrainement du support 94 de porte seringue est déplacé sur les tiges 96 au moyen d'une courroie (non montrée)qui est entrainée par le moteur 101 et supportée par une poulie (non montrée) fixée sur le bras 100 opposé au moteur 101.
  • On notera encore que le porte-seringue 27 est avantageusement monté mobile par rapport à son support 94, afin de pouvoir abaisser le porte-seringue 27 par rapport à la position verticale de la plaque-support inférieure 52.1.
  • En particulier, on pourra déplacer le porte seringue 27 latéralement, et l'abaisser, pour amener le porte seringue 27 dans un puits de comptage (non montré) afin de mesurer la dose radioactive contenue dans la seringue. On pourra également déposer la seringue sur un support de collecte.
  • Afin de permettre la mesure de dose lorsque la seringue est dans le porte-seringue 27, ce dernier est de préférence réalisé dans un matériau ne bloquant pas le rayonnement des radionucléides, par exemple en plastique rigide.
  • Sur la figure 9, le porte-seringue 27 est abaissé par rapport à son support 94. Le porte-seringue 27 est relié au support 94 au moyen de deux liens (filins) d'entrainement (non montrés) qui sont actionnées par un ensemble moteur 102. Deux cônes de centrage 104 sont disposés verticalement et fixés à des pattes 106 solidaires du bord supérieur du support 94. Les cônes de centrage 104 coopèrent avec des logements coniques 108 dans la face supérieure de la base 86 du porte-seringue 27. Les liens d'entrainement sont guidés verticalement à travers un passage central dans les cônes de centrage 104 et traversent également les logements coniques 108.
  • On s'intéressera maintenant aux figures 5 et 6 qui illustrent respectivement une position de travail et la position de fermeture du barillet. En figure 5, le barillet 12 est positionné avec le logement 14.1 alignée avec l'ouverture 24. Le porte seringue 27 repose sur son support 94 et le mobile 52 est en position basse : l'aiguille 110 fixée à l'extrémité de la seringue 29 est dans l'alvéole 14.1 et est engagée dans un flacon 112. Comme on le comprendra, dans cette position du mobile 52 et du porte seringue 27, on peut manœuvrer le piston 92 de seringue à l'aide du mobile 54 pour prélever du liquide dans le flacon, ou injecter une quantité depuis la seringue dans le flacon 112.
  • Ces opérations de prélèvement ou injection peuvent être réalisées pour un flacon logé dans n'importe laquelle des alvéoles 14.1 à 14.4, en alignant l'alvéole avec l'ouverture 24, c'est-à-dire dans les positions de travail du barillet 12.
  • On notera encore dans la figure 5 que la paroi latérale 18 de blindée la chape 16 comprend également une paroi arrière 18.1, en entoure donc bien toute la périphérie du barillet 12.
  • Dans la figure 6 le barillet 12 est dans une position angulaire dans laquelle l'alvéole/logement 15 portant le disque de plomb 17 est alignée avec l'ouverture 24 : c'est la position de fermeture du barillet 12. Avant de prendre cette position, le porte seringue 27 est bien entendu remonté, pour dégager la seringue 29, respectivement l'aiguille, de l'orifice 24. Dans la position de fermeture, le disque de plomb 17 obture l'ouverture 24, barrant physiquement la communication avec l'intérieur de la chape 16, et bloquant également les émissions des isotopes par l'ouverture 24. Un opérateur peut alors manipuler le porte-seringue 27, notamment pour la mise en place d'une nouvelle seringue, sans craindre de prendre un débit de doses radioactives à l'extrémité de ses doigts.
  • Sur le plan de la commande, le dispositif comprend de préférence un module de commande géré par un logiciel, de préférence externe au dispositif, pour contrôler : les mouvements de rotation du barillet, les mouvements des mobiles 52 et 54 et garder ainsi un historique (log) des quantités prélevées, et les mouvements du porte seringue 27.
  • Exemple d'utilisation du présent dispositif pour la préparation d'injections de RPM.
  • Dans le présent exemple, on charge quatre flacons dans le barillet 12, pour la préparation de deux RPM pour la scintigraphie osseuse et cardiaque, tel que pourra le faire quotidiennement un praticien. Le dispositif 10 sera, en utilisation, typiquement placé dans une boite à gants blindée.
  • Le premier flacon, dit "pot source", contient l'isotope Technétium 99 métastable (Tc 99m*) dilué initialement dans 5ml de chlorure de sodium aqueux (NaCl). On ne parle pas de concentration pour la mesure dans ce cas, mais d'activité radioactive volumique qui dépend de l'âge d'élution du technétium (prélèvement dans la fontaine mère présente dans l'enceinte de préparation). Un pot source à t=0 présente en général une activité de 5 milliards de becquerels (5GBq), activité qui diminue de moitié toutes 6,02h. Pour indication, une dose patient est de l'ordre de 0,6 GBq.
  • Toutes les préparations sont faites à partir de ce pot source. On distingue deux types de préparations réalisées par le dispositif :
    • le marquage, c'est-à-dire la préparation d'un pot pour un marqueur spécifique (exemple : pot osseux) ; et
    • le fractionnement, c'est-à-dire le prélèvement dans une seringue à usage unique d'une dose de médicament nécessaire au patient.
  • Chaque type d'examen scintigraphique nécessite son marqueur spécifique qui sera vecteur du technétium vers la région à explorer et donc son propre pot. Le dispositif assure la préparation de deux types de marqueurs dès que c'est nécessaire, et une première fois en début de vacation.
  • Le deuxième flacon contient le NaCl nécessaire pour réaliser des dilutions.
  • Le troisième flacon va devenir le marqueur osseux pour scintigraphie osseuse. On charge initialement dans l'alvéole un flacon tel qu'il est vendu rempli de HDP (Hydroxidiphosphonate (HDP)/ Ostéocis) sous forme de poudre. Le dispositif 10 est chargé du remplissage de ce troisième flacon avec la solution de Tc + NaCl. On fait ensuite tourner le barillet 12 pour faciliter la dilution de la poudre dans le Tc + NaCl. L'activité volumique idéale est de 750Mbq/mL.
  • Le quatrième flacon va devenir le marqueur cardiaque pour scintigraphie cardiaque. On charge initialement dans l'alvéole, notamment l'alvéole 14.4, un flacon tel qu'il est vendu rempli mibi (sestamiBi) sous forme de poudre. Le dispositif est chargé du remplissage de ce quatrième flacon avec la solution de Tc + NaCl. On fait ensuite tourner le barillet 12 pour faciliter la dilution de la poudre dans le Tc + NaCl. On active également la fonction chauffage de l'alvéole 14.4. L'activité volumique idéale est de 260Mbq/mL. On se conformera généralement aux prescriptions des fabricants des vecteurs.
  • Typiquement, les balances permettent en temps réel au dispositif de connaitre le volume présent dans chaque flacon, le dispositif de chauffe ne concerne que le marqueur cardiaque (mibi). Avant un marquage, le dispositif va aller prélever du NaCl dans le flacon dédié pour diluer le pot source, puis prélever de ce pot source, l'activité nécessaire à injecter pour effectuer une reconstitution (marquage) d'une trousse en fonction de l'activité de la journée ou d'une demande de l'utilisateur.
  • Le fractionnement : la dose à préparer pour le patient est unique et dépend du poids du patient. Elle est lue par l'opérateur à partir d'un abaque poids-dose.
  • Dans la pratique conventionnelle, l'opérateur prélève dans une seringue, et d'après son expérience, un volume de médicament radioactif dans un pot source correspondant à première vue au besoin de produit en fonction du poids du patient puis mesure la dose contenue dans la seringue dans un puits de comptage qui va mesurer la radioactivité. Si la « quantité » de radioactivité ne correspond pas à ce qui est nécessaire au patient, il est nécessaire, dans les méthodes de préparation conventionnelles, de faire un ajustement manuel de la dose présente dans la seringue vers ou depuis le pot source et recommencer la mesure autant de fois que nécessaire pour arriver à une mesure correspondant à la quantité radioactivité nécessaire au patient.
  • On appréciera que le fractionnement est largement facilité par le présent dispositif 10. Connaissant le volume et l'activité dans le pot source, le dispositif 10 n'a pas besoin d'effecteur les « aller-retour » décrits ci-dessus, et prélève d'emblée, dans la trousse demandée, le volume correspondant à l'activité demandée. Ensuite, la seringue est mesurée dans un puit de comptage contenu dans l'enceinte de préparation grâce à la translation latérale sur les tiges 96, avant d'être déposée dans un étui de protection en tungstène, lorsque la préparation est finie.
  • Bien entendu, l'invention n'est pas limitée au mode de réalisation qui vient d'être décrit à titre d'exemple, mais en couvre toutes les variantes. En particulier, le barillet 12 est une réalisation particulière de bloc support mobile, mais pourrait prendre d'autres formes pour réaliser la fonction de réceptacle de flacons avec ses alvéoles/puits.

Claims (12)

  1. Dispositif de préparation (10) de solutions radioactives, en particulier de solutions radiopharmaceutiques, comprenant :
    un bloc support mobile (12) comprenant au moins deux alvéoles (14) aptes à accueillir un flacon (112) ;
    une chape blindée (16), comprenant une paroi latérale (18) entourant la périphérie du bloc support et une paroi supérieure (20) couvrant la face supérieure du bloc support (12), une ouverture (24) étant prévue dans la paroi supérieure (20) de la chape ;
    un porte seringue (27) associé à un moyen d'actionnement de seringue (26) configuré pour déplacer une seringue verticalement sensiblement dans l'axe de l'ouverture (24) et pour actionner un piston (92) de ladite seringue ; et caractérisé par :
    un moyen d'entraînement du bloc support (12) configuré pour déplacer sélectivement le bloc support dans des positions, dites positions de travail, dans lesquelles une alvéole (14) donnée est alignée avec l'ouverture (24) pour permettre l'accès à ladite alvéole (14) depuis l'extérieur de la chape (16) ;
    et
    dans lequel le bloc support (12) est configuré de sorte qu'il peut être amené en outre dans une position, dite position de fermeture, dans laquelle l'ouverture (24) est obturée par un élément blindé (17) porté par le bloc support.
  2. Dispositif selon la revendication 1, dans l'élément blindé (17) porté par le bloc support (12) est intégral avec le bloc support (12) ou rapporté dans celui-ci.
  3. Dispositif selon la revendication 2, dans lequel ledit élément blindé (17) est un élément en plomb, par exemple un disque, placé dans un logement (15) débouchant dans une face supérieure (22) du bloc support mobile (12).
  4. Dispositif selon la revendication 1, 2 ou 3, dans lequel le bloc support mobile est un barillet cylindrique (12) monté rotatif, de préférence selon un axe central sensiblement vertical, et dans lequel les alvéoles (14) débouchent dans la face supérieure (22) du barillet.
  5. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les alvéoles (14) aptes à accueillir des flacons sont des alvéoles cylindriques inclinées par rapport à la verticale.
  6. Dispositif selon l'une quelconque des revendications précédentes, dans lequel une ou plusieurs alvéoles (14) comprennent :
    un capteur de température (19) ; et/ou
    une balance de (21) précision au fond de l'alvéole ; et/ou
    un dispositif de désinfection (23) comprenant des lampes UV, autour de l'entrée de l'alvéole.
  7. Dispositif selon l'une quelconque des revendications précédentes, comprenant des moyens de détection de la position angulaire du bloc support mobile (12), de préférence des moyens de détection optiques.
  8. Dispositif selon l'une quelconque des revendications précédentes, dans lequel des moyens de chauffe et/ou de refroidissement sont associés à au moins une des alvéoles (14.4).
  9. Dispositif selon la revendication 7, dans lequel une alvéole (14.4) est réalisée en tant que pièce rapportée montée dans une partie creuse du bloc support (12), les moyens de chauffage et/ou de refroidissement comprenant une résistance chauffante (44.1) montée sur une chemise (42) disposée dans une alvéole (14.4), ainsi qu'un ventilateur monté dans le bloc support et des ouvertures d'aération (48) dans la paroi latérale du bloc support.
  10. Dispositif selon l'une quelconque des revendications précédentes, dans lequel moyen d'actionnement de seringue (26) comprend :
    un premier mobile (52) dont le porte seringue est solidaire, le porte seringue assurant le maintien du corps de seringue ; et
    un deuxième mobile (54) avec des moyens d'accouplement au piston de seringue ;
    le moyen d'actionnement de seringue étant configuré pour, soit déplacer simultanément les premier et deuxième mobiles, soit pour effectuer déplacement du deuxième mobile par rapport au premier mobile.
  11. Dispositif selon la revendication 10, dans lequel
    des moyens de translation sont montés sur le premier mobile afin de déplacer le porte seringue latéralement par rapport au bloc support ; et/ou
    le porte seringue est associé à un support et comprend des moyens pour déplacer le porte seringue vers le bas par rapport à son support.
  12. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la chape blindée et l'élément blindé (17) porté par le bloc support sont réalisés dans un matériau anti-radiation, par exemple en plomb ou à base de plomb.
EP17811538.2A 2016-12-07 2017-12-05 Dispositif de préparation de solutions radioactives Active EP3551538B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1662069A FR3059567B1 (fr) 2016-12-07 2016-12-07 Dispositif de preparation de solutions radioactives
PCT/EP2017/081532 WO2018104306A1 (fr) 2016-12-07 2017-12-05 Dispositif de préparation de solutions radioactives

Publications (2)

Publication Number Publication Date
EP3551538A1 EP3551538A1 (fr) 2019-10-16
EP3551538B1 true EP3551538B1 (fr) 2021-02-03

Family

ID=58645141

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17811538.2A Active EP3551538B1 (fr) 2016-12-07 2017-12-05 Dispositif de préparation de solutions radioactives

Country Status (6)

Country Link
US (1) US10755828B2 (fr)
EP (1) EP3551538B1 (fr)
JP (1) JP2020500642A (fr)
ES (1) ES2868787T3 (fr)
FR (1) FR3059567B1 (fr)
WO (1) WO2018104306A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109896054A (zh) * 2019-03-25 2019-06-18 常州市第二人民医院 一种放射性药物微辐射分装装置
EP3754383A1 (fr) * 2019-06-18 2020-12-23 Université de Lorraine Dispositif de préparation de solutions radioactives
CN115367234B (zh) * 2022-10-10 2023-01-31 山东省蓬莱制药机械厂有限公司 一种西林瓶规格可调式全自动药粉灌装机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE902407R (fr) * 1984-10-19 1985-09-02 Karlsruhe Wiederaufarbeit Dispositif de prelevement d'echantillons notamment pour des substances toxiques et/ou radio-actives.
US7750328B2 (en) * 2006-10-27 2010-07-06 Draximage General Partnership Filling system for potentially hazardous materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2020500642A (ja) 2020-01-16
FR3059567B1 (fr) 2018-11-30
WO2018104306A1 (fr) 2018-06-14
FR3059567A1 (fr) 2018-06-08
EP3551538A1 (fr) 2019-10-16
US20190341162A1 (en) 2019-11-07
US10755828B2 (en) 2020-08-25
ES2868787T3 (es) 2021-10-21

Similar Documents

Publication Publication Date Title
EP3551538B1 (fr) Dispositif de préparation de solutions radioactives
US20100331600A1 (en) System for dispensing radio-pharmaceuticals and measuring radiation dosage of it
CA2624744C (fr) Systeme de remplissage pour matieres potentiellement dangereuses
EP2179926B1 (fr) Dispositif stérile à usage unique de préparation d'un médicament radiopharmaceutique, système et procédé mettant en oeuvre ce dispositif
US5479969A (en) Apparatus for dispensing substances which are biologically hazardous
RU2110214C1 (ru) Устройство для раздачи биологически вредных веществ
FR2906475A1 (fr) Unite medicale pour le prelevement,le calibrage,la dilution et/ou l'injection d'un produit radioactif injectable
AU2003209692B2 (en) Container for vial of radiopharmaceutical and set for its infusion in a patient or for its transfer elsewhere
EP2528821B1 (fr) Machine pour remplir une pluralite de recipients, systeme incluant une telle machine et procede de fabrication afferent
JP2009502344A (ja) カウンターフォースアクセス機構、システム、及び方法を備えた放射性医薬品の調剤装置
WO1994004415A1 (fr) Appareil de distribution de substances biologiquement dangereuses
EP2668101B1 (fr) Dispositif sterile a usage unique de mise en seringues de medicaments radiopharmaceutiques, systeme automatique et procede de mise en seringues mettant en oeuvre ce dispositif
FR2739565A1 (fr) Procede et installation de preparation d'une solution injectable radioactive
JP5746552B2 (ja) バイアルシールド
FR2956091A1 (fr) Dispositif sterile a usage unique de mise en seringue de medicaments radiopharmaceutiques, systeme semi-automatique et procede de mise en seringues mettant en œuvre ce dispositif
WO2008117097A2 (fr) Système de remplissage pour des matières potentiellement dangereuses
CN216035883U (zh) 一种防污染的检验科护理用安全型送检装置
WO2013045421A1 (fr) Dispositif

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190614

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: THOMAS, QUENTIN

Inventor name: MATHIAS-LAOT, GUENOLE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1359654

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017032361

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OFFICE ERNEST T. FREYLINGER S.A., CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1359654

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210504

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2868787

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017032361

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211205

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231128

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231201

Year of fee payment: 7

Ref country code: FR

Payment date: 20231127

Year of fee payment: 7

Ref country code: DE

Payment date: 20231128

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 7