EP3546854B1 - Dégivrage d'un système de pompe à chaleur par chaleur perdue - Google Patents

Dégivrage d'un système de pompe à chaleur par chaleur perdue Download PDF

Info

Publication number
EP3546854B1
EP3546854B1 EP18163840.4A EP18163840A EP3546854B1 EP 3546854 B1 EP3546854 B1 EP 3546854B1 EP 18163840 A EP18163840 A EP 18163840A EP 3546854 B1 EP3546854 B1 EP 3546854B1
Authority
EP
European Patent Office
Prior art keywords
heat
compressor
refrigerant
storage means
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18163840.4A
Other languages
German (de)
English (en)
Other versions
EP3546854A1 (fr
Inventor
Duan WU
Michael SALVADOR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric R&D Centre Europe BV Netherlands
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric R&D Centre Europe BV Netherlands
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric R&D Centre Europe BV Netherlands filed Critical Mitsubishi Electric Corp
Priority to EP18163840.4A priority Critical patent/EP3546854B1/fr
Publication of EP3546854A1 publication Critical patent/EP3546854A1/fr
Application granted granted Critical
Publication of EP3546854B1 publication Critical patent/EP3546854B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves

Definitions

  • the invention which is specified in claims 1 and 9, relates to a refrigerant circuit, where, via a refrigerant, heat is transferred between a first environment and a second environment, the refrigerant circuit comprising a compressor for compressing the refrigerant, a first heat exchanger for transferring heat between the first environment and the refrigerant circuit, a second heat exchanger for transferring heat between the second environment and the refrigerant circuit, where the first heat exchanger is configured to operate as a condenser to cool the refrigerant in a heating mode, and the second heat exchanger is configured to operate as an evaporator in the heating mode, and with a compressor driver electrically coupled with the compressor for powering the compressor.
  • Air source heat pumps are becoming popular in domestic applications and replace traditional gas boilers due to improved energy efficiency.
  • Such heat pumps usually comprise a refrigerant circuit with a refrigerant such as R410a, R290, CO 2 , or alike.
  • a compressor is used to increase the pressure and thus separate a low pressure side of the circuit from a high-pressure side.
  • the refrigerant can be conducted from the high-pressure side of the compressor to a four way valve, which is used to reverse the refrigerant circuit from heating mode to cooling mode.
  • the refrigerant will reach the first heat exchanger which may be a plate heat exchanger and works as condenser, and the refrigerant will change the phase from gas to liquid.
  • the condensing process where the latent heat of the refrigerant is released to another fluid in the plate heat on the exchanger, in most cases to water.
  • the refrigerant will usually flow through one or more valves for pressure reduction.
  • the refrigerant will pass another, second heat exchanger working as evaporator, preferably with multiple passes.
  • the second heat exchanger may comprise an extended surface for enhancing heat exchange.
  • the heat can be transferred to the refrigerant form another medium such as ambient air, for instance.
  • This process may be supported by a fan enhancing airflow.
  • the refrigerant temperature is lower than the ambient air temperature and the refrigerant is in liquid form, it will evaporate and absorb heat from the ambient air.
  • the refrigerant will become gas again and then flow through the four way valve into the low pressure suction line of the compressor for the next cycle.
  • the main advantage of such air source heat pumps is the high coefficient of performance (COP).
  • the air source heat pump uses only a small quantity of energy for operating the compressor and other electrical components to absorb heat from the ambient air and then release the heat to the carrier medium of a space heating/cooling circuit, for instance water, in the first heat exchanger.
  • the COP varies from 3 to 5, which means the heat pump can supply 3 to 5 times the heat corresponding to the total power consumption of the compressor and other load units, such as electronics, of the heat pump.
  • heat losses in the heat pump system are not fully used. So, the heat losses of, for instance the compressor will be dissipated to the ambient even if the temperature of the (waste) heat source, i.e. the load unit, can be quite high, for instance 80 degree Celsius for electronic components or even 100 degree Celsius for the compressor.
  • the humidity in the air will deposit on thin surfaces of the air side of the evaporator, the second heat exchanger, and it will form ice, which is called "frosting process".
  • frost becomes significant, it will block the air passage through the evaporator and increase the thermal resistance of the heat exchanger. This lowers the systems efficiency and may disrupt the normal operation of the system. Therefore, when such a frosting process occurs, the heat pump system will reverse the cycle from heating indoor to heating outdoor by switching said four way valve, for instance.
  • the heat pump will start a defrosting mode, in which it will extract heat from indoors via the first plate heat exchanger for heating up the second heat exchanger, the evaporator, to a higher temperature for de-icing the second heat exchanger. This consumes electricity and further extracts heat from indoors, which causes discomfort.
  • the EP 324 4141 A1 discloses a heat pump system including a refrigerant circuit, a compressor driver, and a heat storage means.
  • the refrigerant circuit includes a compressor for compressing the refrigerant, a first heat exchanger for transferring heat between the refrigerant and the interior atmosphere, a throttling device for lowering the pressure of the refrigerant, and the second heat exchanger for transferring heat between the refrigerant and the exterior atmosphere.
  • the first heat exchanger operates as a condenser to cool the refrigerant in the heating mode and operates as an evaporator to vaporize the refrigerant in the cooling mode.
  • the second heat exchanger operates as an evaporator in the heating mode and operates as a condenser in the cooling mode.
  • the compressor driver is electrically connected with the compressor for powering the compressor, and it generates heat in operation.
  • the heat storage means for storing heat generated by the compressor driver is in heat transferable contact with the refrigerant in a defrost mode to transfer stored heat energy to the refrigerant.
  • the US 526 9151 a discloses a passive defrost system that uses a heat exchanger/storage defrost module containing a thermal storage material such as a phase-change material to capture and store low-grade waste heat contained in the liquid refrigerant line of a refrigeration system.
  • a thermal storage material such as a phase-change material
  • the stored heat in the defrost module is released by an automatic device for defrosting the evaporator.
  • the EP 316 5852 a discloses another antifrost heat pump which is capable of preventing an evaporator from frosting during a sub-cooling process by using heat released in the sampling process in sub-cooling means.
  • the heat pump includes a refrigerant circuit having an evaporator, a condenser, sub-cooling means arranged to perform a sub-cooling process of cooling a refrigerant flowing out of the condenser, and heat transfer means arranged to transfer heat released from the refrigerant in the sub-cooling process from the sub-cooling means to the evaporator during the sub-cooling process.
  • the US 2009/028 2854 A1 discloses an air conditioning system with a refrigerant circuit in which a compressor, an indoor radiant panel, a first expansion valve, room air heat exchanger, a second extension valve, and an outdoor air heat exchanger are connected in this order and which operates in a refrigeration circuit by reversibly circulating refrigerant therethrough.
  • the first expansion valve is controlled to reduce the refrigerant pressure so that in a cooling cycle the refrigerant releases heat in the outdoor air heat exchanger and the room heat exchanger and evaporates in the indoor radiant panel.
  • the air conditioning system concurrently provides the defrosting of the outdoor air heat exchanger and the room heating of the room air heat exchanger.
  • the US 2011/031 5368 A1 provides another air conditioning apparatus that can effectively utilize heat energy generated by a control unit.
  • the US 2008/008 6981 A1 describes a composite, hybrid radiant/forced and natural convection, integrated, sandwiched, multirole panel optimally integrating heating, cooling, ventilating, air conditioning, thermoelectric effect, energy recovery, and energy storage function at very moderate operating temperature such that it can directly utilize renewable and waste energy resources having very low energy.
  • US 4 727 726 A which document discloses the features of the preamble of claims 1 and 9, Z describes a refrigeration cycle apparatus including a heat accumulating unit for accumulating an excess heat generated during the operation of a refrigeration cycle main unit and radiating the accumulated heat at a desired time.
  • the accumulating unit includes a heat accumulating container and latent heat accumulating heat material housed in the container. The material has a predetermined phase transition temperature.
  • Both WO2016/008134 A1 and EP 3 187 811 A1 disclose a heat pump system, where excess heat of a compressor is used for the original purpose of the respective heat pump system.
  • the objective technical problem to be solved by the present invention may therefore be regarded to improve the efficiency of a heat pump system.
  • One aspect of the invention relates to a heat pump system with a refrigerant circuit, where, via a refrigerant, heat is transferred between a first environment, e.g. the inside of a building, and a second environment, e.g. the outside of the building, and with a compressor driver.
  • Said environments may also be a local and/or closed environment, such as a buffer tank or buffer system, filled with, for instance, water.
  • the heat pump system is operable in a heating mode, where heat is transferred from the second environment to the first environment.
  • the heat pump system may be operable in a cooling mode, where heat is transferred from the first environment to the second environment.
  • the refrigerant circuit comprises a compressor for compressing the refrigerant, a first heat exchanger for transferring heat between the first environment and the refrigerant circuit, and a second heat exchanger for transferring heat between the second environment and the refrigerant circuit.
  • the first heat exchanger is configured to operate as a condenser to cool the refrigerant in the heating mode.
  • the first heat exchanger may be configured to operate as an evaporator to vaporize the refrigerant in the cooling mode.
  • the second heat exchanger is configured to operate as an evaporator in the heating mode.
  • the second heat exchanger may be configured to operate as a condenser in the cooling mode.
  • the first heat exchanger may be a plate heat exchanger.
  • the first heat exchanger uses a second working medium which may be a liquid such as water.
  • the second heat exchanger may feature an extended surface for enhancing heat exchanger with ambient air.
  • the second heat exchanger uses a second working medium which may be a gas such as ambient air.
  • the refrigerant circuit may comprise a throttling device such as a valve or several valves for lowering the pressure of the refrigerant in the refrigerant circuit or in a specific section of the refrigerant circuit.
  • the compressor driver is electrically coupled with the compressor for powering the compressor.
  • the refrigerant circuit comprises a heat storage means with a heat storage medium different from the refrigerant.
  • Said heat storage means may also be referred to as distinct heat storage means.
  • the heat storage means is thermally coupled with the compressor and/or the compressor driver, and is configured to store heat (which may be referred to as waste heat) generated by the compressor and/or the compressor driver in a normal operating mode.
  • the normal operating mode may comprise the heating mode or the cooling mode or the heating and the cooling mode.
  • the heat storage means is configured to transfer the stored heat to the refrigerant in a defrost mode of the refrigerant circuit, in particular only in a defrost mode of the refrigerant circuit.
  • the heat storage is thermally coupled with the rest of the refrigerant circuit by the refrigerant running through or along the heat storage when heat is transferred from the heat storage medium to the refrigerant.
  • the heat storage means is coupled to the refrigerant circuit directly, and heat is transferred from the heat storage medium to the refrigerant directly, that is, preferably not via another liquid medium or gas medium.
  • the heat storage means does not comprise another circuit for another medium, in particular another liquid and/or gas medium, that may be thermally coupled to the refrigerant circuit. So, the heat storage means may form an additional heat exchanger in the refrigerant circuit, with the refrigerant as first working medium and the heat storage medium as second working medium.
  • the heat storage means is connected to the rest of the refrigerant circuit parallel to the first heat exchanger, so that the first heat exchanger can be bypassed by the heat storage means, and the heat storage means can be bypassed by the heat exchanger.
  • the heat stored in the heat storage means can either be contained in the heat storage means or transferred to the refrigerant flowing through the refrigerant circuit, in particular to the second heat exchanger by, for instance simply switching one valve of the refrigerant circuit causing of the refrigerant flow through the heat storage means instead of the first heat exchanger, or through the first heat exchanger instead of the heat storage means respectively.
  • said setup results in a particularly simple and efficient heat pump system.
  • a control unit and/or at least one additional electrical load is thermally coupled to the heat storage means.
  • the compressor and/or compressor driver and/or the control unit and/or the at least one additional electrical load of the heat pump system are thermally coupled to the heat storage means by respective heat pipes or thermosiphons.
  • Each waste heat source may be thermally coupled to the heat storage means by an individual heat pipe or thermosiphon.
  • several waste heat sources may be thermally coupled to the heat storage by one respective heat pipe or thermosiphon.
  • the heat pump system may comprise a casing for the compressor, the compressor driver, and the heat storage means, as well as, in particular, the other load units or waste heat sources.
  • the heat storage means is preferably arranged above the compressor and/or the compressor driver and/or the other load that are thermally coupled with the heat storage means.
  • storage cells with lower phase-change temperature may be attached to the casing in between the casing and the storage cells with higher phase-change temperature. This gives the advantage of improved thermal efficiency, where excess heat of the storage cells with higher phase-change temperature is transferred to storage cells with a lower phase-change temperature, i.e. used to charge storage cells with a lower phase-change temperature.
  • the heat storage medium comprises or is a phase-change material.
  • the phase-change material may comprise one or more compositions of different phase-change materials. This gives the advantage that the heat can be stored particularly efficiently, and that, by the selection of a phase-change material with appropriate phase-change temperature, the rate of the heat transfer can be adjusted optimally to the working conditions of the compressor driver and the other electrical load units.
  • the heat storage means comprises at least two storage cells with different phase-change materials.
  • Said phase-change materials may also be different compositions of identical phase-change materials.
  • Each storage cell has a different phase-change temperature, and each of the cells is thermally coupled to at least one, i.e. one or several or all, of the following load units: the compressor and/or the compressor driver and/or the control unit and/or the at least one additional electrical load.
  • each of the compressor and/or the compressor driver and/or the control unit and/or the at least one additional electrical load is thermally coupled to one or several of the storage cells, in particular exactly one of the storage cells.
  • the thermal coupling may be realized by respective individual thermosiphons or heat pipes, so that, for instance, each storage cell is coupled to one or more load units by respective thermosiphons or heat pipes, or each load unit is coupled to one or more of the storage cells by respective thermosiphons or heat pipes.
  • the stored heat can then be used in different ways for improving the overall efficiency in the flow arrangement, for instance it enables the refrigerant flow through or along a phase-change material with a low phase-change temperature, a low temperature phase-change material cell, and afterwards through or along a phase-change material with a high phase-change temperature, a high temperature phase-change material cell, as described below.
  • a first storage cell with a lower phase-change temperature than a second storage cell is thermally coupled with a first load unit of the load units, which may for instance be (or comprise) the control unit, where the first load unit has a lower heat generation, in particular lower average heat generation, and/or a lower power consumption, in particular lower average power consumption, than a second load unit of the load units, which may for instance be (or comprise) the compressor driver, and the second storage cell is thermally coupled with the second load unit.
  • the first load unit is not thermally coupled by a heat pipe or thermosiphon to the second load unit and vice versa.
  • Such a heat storage means may also comprise further storage cells with other phase-change temperatures, for instance a third storage cell with a higher phase-change temperature than the second storage cell. The refrigerant may then flow through a cascade of different storage cells.
  • the refrigerant circuit that is, the additional heat exchanger formed by the heat storage means, is configured to conduct the refrigerant through or along the storage cells in ascending order of the respective phase-change temperatures in the defrost mode. So, the refrigerant is receiving heat from a storage cell with a lower phase-change temperature before receiving heat from storage cell with a higher phase-change temperature.
  • one or several first storage cells are configured to transfer heat to one or several second storage cells, in particular one or several second storage cells with a higher phase-change temperature.
  • the heat pump system comprises a temperature sensor for sensing the temperature of a working medium such as water in a space heating/cooling circuit, where the space heating/cooling circuit is connected with the first heat exchanger for heating and/or cooling the first environment.
  • the heat pump system is configured to automatically transfer heat from the space heating/cooling circuit to the refrigerant passing through the first heat exchanger when a temperature of the working medium decreases to a lower limit value, in particular the lowest phase-change temperature of the heat storage means, while a temperature of the second heat exchanger does not reach a predetermined value in the defrost mode.
  • the heat pump system is, in particular in the heating mode, operable in a partial-load mode.
  • the refrigerant is used to store heat in the heat storage means in addition to the heat generated by the compressor and/or the compressor driver, and, when the heat stored in the heat storage means reaches a preset limit, in particular a maximum heat that can be stored in the heat storage means, the compressor is switched off and the heat stored in the heat storage means is transferred to the first environment, in particular by the refrigerant circuit.
  • the heat storage means can be charged, that is heat can be transferred to the heat storage means under a high COP.
  • the compressor can stop and the heat storage means can supply heat to the first environment, for instance the living space, with a low rate. Consequently, the overall efficiency is improved.
  • the heat storage means may comprise a connection to the space heating/cooling circuit, where the space heating/cooling circuit is to be connected with the first heat exchanger in order to heat or cool the first environment.
  • the heat storage means is then configured to transfer heat to the working medium of the space heating/cooling circuit directly, that is, not via another liquid or gas medium, in particular, not the refrigerant.
  • the heat storage means may be configured to transfer the heat to the working medium when the compressor is switched off, preferably only when the compressor is switched off.
  • Another aspect of the invention relates to a method for operating a heat pump system with said refrigerant circuit, where, via a refrigerant, heat is transferred between a first environment and a second environment, and with said compressor driver.
  • the refrigerant circuit is operable in a heating mode and may be operable in a cooling mode.
  • the refrigerant circuit comprises a compressor for compressing the refrigerant, a first heat exchanger for transferring heat between the first environment and the refrigerant circuit, and a second heat exchanger for transferring heat between the second environment and the refrigerant circuit.
  • the first heat exchanger is configured to operate as a condenser to cool the refrigerant in the heating mode.
  • the first heat exchanger may be configured to operate as an evaporator to vaporize the refrigerant in the cooling mode.
  • the second heat exchanger is configured to operate as an evaporator in the heating mode.
  • the second heat exchanger may be configured to operate as a condenser in the cooling mode.
  • the first heat exchanger may be a plate heat exchanger.
  • the first heat exchanger uses a second working medium which may be a liquid such as water.
  • the second heat exchanger may feature an extended surface for enhancing heat exchanger with ambient air.
  • the second heat exchanger uses a second working medium which may be a gas such as ambient air.
  • the refrigerant circuit may comprise a throttling device such as a valve or several valves for lowering the pressure of the refrigerant in the refrigerant circuit or in a specific section of the refrigerant circuit.
  • the compressor driver is electrically coupled with the compressor for powering the compressor.
  • the method is comprises the method step of storing heat generated by the compressor and/or the compressor driver in a heat storage means of the refrigerant circuit, where the heat storage means comprises a heat storage medium, via a thermal coupling of the compressor and/or the compressor driver to the storage means in the heating and/or cooling mode. Furthermore, the method comprises the method stop of transferring the stored heat directly from the heat storage medium to the refrigerant in a defrost mode of the refrigerant circuit.
  • FIG. 1 shows an exemplary embodiment of a heat pump system.
  • the shown heat pump system 1 comprises a refrigerant circuit 2 and a compressor driver 3.
  • the refrigerant circuit 2 is operable in a heating mode and, in the present example, also in a cooling mode, where, via a refrigerant, in the cooling mode heat is transferred from a first environment 4 to a second environment 5, and in the heating mode heat is transferred from the second environment 5 to the first environment 4.
  • the refrigerant circuit 2 comprises a compressor 6 for compressing the refrigerant, a first heat exchanger 7 for transferring heat between the first environment 4 and the refrigerant circuit 2, a second heat exchanger 8 for transferring heat between the second environment 5 and the refrigerant circuit 2, as well as a throttling device 9 and a four way valve 10 in the present example.
  • the compressor driver 3 is electrically coupled with the compressor 6 for powering the compressor 6.
  • the arrows 19 along the refrigerant circuit 2 indicate the flow direction of the refrigerant in the heating mode.
  • the refrigerant circuit 2 comprises a heat storage means 11 with a heat storage medium.
  • the heat storage means 11 is connected to the rest of the refrigerant circuit 2 parallel to the first heat exchanger 7.
  • the heat storage means 11 is thermally coupled with the compressor driver 3 in the present example by a heat pipe or thermosiphon 12.
  • the heat storage means 11 is configured to store heat generated by the compressor driver 3 in the heating and/or cooling mode, and configured to transfer the stored heat to the refrigerant in the refrigerant circuit 2 in a defrost mode of the refrigerant circuit 2 or the heat pump system 1, respectively.
  • a first valve V1 and a second valve V2 is part of the refrigerant circuit 2.
  • the first valve V1 enables/disables the flow of the refrigerant through the first heat exchanger 7, whereas the second valve V2 enables/disables the flow of the refrigerant through the heat storage means 11.
  • first valve V1 In operation of the heat pump system 1, in the heating mode or cooling mode, first valve V1 is open and second valve V2 closed.
  • the compressor 6 and in particular the compressor driver 3 generate waste heat that is transferred to the heat storage means by the heat pipe or thermosiphon 12.
  • the second valve V2 As the second valve V2 is disclosed, the stored heat is not transferred to the refrigerant in a noteworthy extent.
  • the first valve V1 can be closed and the second valve V2 opened. Consequently, heat is transferred not from the first heat exchanger7 to the second heat exchanger 8, but from the heat storage means 11 to the second heat exchanger 8 for defrosting the second heat exchanger 8. This is also shown by the control flowchart of figure 2 .
  • FIG. 2 shows an exemplary control flow chart of the embodiment of Fig. 1 .
  • a first step 20 normal operation of the heat pump system 1 ( Fig. 1 ) is started.
  • heat is transferred to the heat storage means 11 ( Fig. 1 ) and stored therein.
  • the third step 22 it is decided whether defrosting of the second heat exchanger 8 ( Fig. 1 ) is necessary or not. If not, the system proceeds to the final step 29, which is identical to the first step 20 and leads to the desired normal operating mode as long as the heat pump system 1 is running.
  • step 23 If defrosting is required, the system proceeds to another step 23, where it is checked if there is still heat stored in the heat storage means 11. If heat is still stored and available for transferring in the heat storage means 11, in a subsequent step 24 valve V1 is closed and valve V2 is opened. In a next step 25 following step 24, the refrigerant circuit is switched to reverse cycle for the defrosting and the system goes back to step 22.
  • step 26 If there is no heat stored in the heat storage means 11, that is, heat storage means 11 is depleted, the systems proceeds to another step 26, where the valve V1 is opened and the valve V2 is closed. Then, it is checked again in step 27 whether defrosting is required or not for the second heat exchanger 8. If not, the system proceeds to the final step 29, if yes, the system proceeds to step 28. In step 28, the normal reverse defrosting cycle is run as known in the state of the art.
  • FIG 3 shows parts of another exemplary embodiment of a heat pump system.
  • the heat pump system 1 has a casing 13 in which the compressor 6, the thermosiphons 12, 12' as well as the heat storage means 11 and a control unit 14 are enclosed together with other parts of the refrigerant circuit 2 that are not shown for the sake of simplicity.
  • the heat storage means 11 comprises a first storage cell 15 and a second storage cell 16.
  • each storage cell 15, 16 comprises a phase-change material with a specific phase-change temperature.
  • the phase-change temperature of the phase-change material of the first storage cell 15 is lower than the phase-change temperature of the phase-change material of the second storage cell 16.
  • the compressor 6 is thermally coupled to the second storage cell 16 by the heat pipe or, preferably, thermosiphon 12.
  • the control unit 14 is thermally coupled to the first storage cell 15 by another heat pipe or, preferably, thermosiphon 12'. This is reasonable as the compressor 6 (or, alternatively or in addition, the compressor driver 3 ( Fig.
  • the heat storage means 11 also features an inlet 17 as well as an outlet 18 for the refrigerant of the refrigerant circuit 2.
  • Inlet 17 an outlet 18 are used to conduct the refrigerant through or along the first storage cell 15 with the lower phase-change temperature first, and through or along the second storage cell 16 with the higher phase-change temperature afterwards. Consequently, the heat storage means 11 can be considered as an additional heat exchanger.
  • the casing 13 functions as the evaporating section of the additional heat exchanger and the phase-change material of the heat storage means 11 as the condensing section additional heat exchanger.
  • the first storage cell 15 might be arranged in between the second storage cell 16 and the casing 13.
  • the heat storage means 11 is arranged above the compressor six and the control unit 14 in the x-direction.
  • said x-direction corresponds to the direction of the negative gravitational force
  • simple and robust thermosiphons 12, 12' may be used instead of technologically more advanced heat pipes.
  • the integration of the heat storage means 11 in the refrigerant circuit 2, preferably arranged in the casing 13, enables a sleek design, where the described advantageous heat pump system 1 with improved defrosting can be installed even without having to change potentially already existing circuitry. So the heat pump system 1 with casing 13 can be provided as a plug-in module. Hence, the proposed heat pump system is particularly advantageous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Claims (9)

  1. Système de pompe à chaleur (1) présentant
    a) un circuit de fluide frigorigène (2), où, par l'intermédiaire d'un fluide frigorigène, la chaleur est transférée entre un premier environnement (4) et un second environnement (5), le circuit de fluide frigorigène (2) comprenant :
    - un compresseur (6) permettant de comprimer le fluide frigorigène ;
    - un premier échangeur de chaleur (7) permettant de transférer la chaleur entre le premier environnement (4) et le circuit de fluide frigorigène (2) ;
    - un second échangeur de chaleur (8) permettant de transférer la chaleur entre le second environnement (5) et le circuit de fluide frigorigène (2) ;
    où le premier échangeur de chaleur (7) est conçu pour fonctionner comme un condenseur pour refroidir le fluide frigorigène dans un mode de chauffage, et le second échangeur de chaleur (8) est conçu pour fonctionner comme un évaporateur dans le mode de chauffage ;
    b) un dispositif d'entraînement du compresseur (3) couplé électriquement au compresseur (6) pour alimenter le compresseur (6) ;
    dans lequel
    le circuit de fluide frigorigène (2) comprend un moyen de stockage de chaleur (11) avec un milieu de stockage de chaleur qui comprend un matériau à changement de phase, le moyen de stockage de chaleur (11) étant couplé thermiquement au compresseur (6) ou au dispositif d'entraînement du compresseur (3) et étant conçu pour stocker la chaleur générée par le compresseur (6) ou le dispositif d'entraînement du compresseur (3) dans le mode de chauffage et pour transférer la chaleur stockée vers le fluide frigorigène dans un mode de dégivrage du circuit de fluide frigorigène (2),
    caractérisé en ce que
    - outre le compresseur (6) et/ou le dispositif d'entraînement du compresseur (3), une unité de commande et/ou au moins une charge électrique supplémentaire est/sont couplée(s) thermiquement au moyen de stockage de chaleur (11) ;
    - le moyen de stockage de chaleur (11) comprend au moins deux cellules de stockage (15, 16) ayant des matériaux à changement de phase différents, où chaque cellule de stockage (15, 16) présente une température de changement de phase différente, et chacune des cellules de stockage (15, 16) est couplée thermiquement à au moins l'une des unités de charge suivantes : le compresseur (6) et/ou le dispositif d'entraînement du compresseur (3) et/ou l'unité de commande (14) et/ou l'au moins une charge électrique supplémentaire ; et
    - une première cellule de stockage (15), présentant une température de changement de phase inférieure à celle d'une seconde cellule de stockage (16), est couplée thermiquement à une première unité de charge parmi lesdites unités de charge, où la première unité de charge fournit une génération de chaleur inférieure à celle d'une seconde unité de charge parmi lesdites unités de charge, et la seconde cellule de stockage (16) est couplée thermiquement à la seconde unité de charge.
  2. Système de pompe à chaleur (1) selon la revendication 1,
    caractérisé en ce que
    le moyen de stockage de chaleur (11) est relié au reste du circuit de fluide frigorigène (2) parallèlement au premier échangeur de chaleur (7).
  3. Système de pompe à chaleur (1) selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    le compresseur (6) et/ou le dispositif d'entraînement du compresseur (3) et/ou l'unité de commande (14) et/ou l'au moins une charge électrique supplémentaire du système de pompe à chaleur (1) sont couplés thermiquement au moyen de stockage de chaleur (11) par des caloducs ou des thermosiphons respectifs (12, 12').
  4. Système de pompe à chaleur (1) selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    le circuit de fluide frigorigène (2) est conçu pour acheminer le fluide frigorigène à travers ou le long des cellules de stockage (15, 16) dans l'ordre croissant des températures de changement de phase respectives dans le mode de dégivrage.
  5. Système de pompe à chaleur (1) selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    une ou plusieurs premières cellules de stockage (15, 16), en particulier une ou plusieurs premières cellules de stockage (15) présentant une température de changement de phase inférieure, sont conçues pour transférer de la chaleur vers une ou plusieurs secondes cellules de stockage (15, 16), en particulier une ou plusieurs secondes cellules de stockage (16) présentant une température de changement de phase supérieure.
  6. Système de pompe à chaleur (1) selon l'une quelconque des revendications précédentes,
    caractérisé par
    un capteur de température permettant de détecter la température d'un fluide de travail dans un circuit de chauffage/refroidissement de l'espace relié au premier échangeur de chaleur (7) pour chauffer ou refroidir le premier environnement (4), le système de pompe à chaleur (1) étant conçu pour transférer de la chaleur à partir du circuit de chauffage/refroidissement de l'espace vers le fluide frigorigène traversant le premier échangeur de chaleur (7) lorsqu'une température du fluide de travail diminue pour atteindre une valeur limite inférieure, en particulier la température de changement de phase la plus basse du moyen de stockage de chaleur (11), tandis qu'une température du second échangeur de chaleur (8) n'atteint pas une valeur prédéterminée.
  7. Système de pompe à chaleur (1) selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    le système de pompe à chaleur (1) peut fonctionner dans un mode de charge partielle, où le fluide frigorigène est utilisé pour stocker de la chaleur dans le moyen de stockage de chaleur (11) en plus de la chaleur générée par le compresseur (6) ou le dispositif d'entraînement du compresseur (3), et où, lorsque la chaleur stockée dans le moyen de stockage de chaleur (11) atteint une limite prédéfinie, en particulier une chaleur maximale qui peut être stockée dans le moyen de stockage de chaleur (11), le compresseur (6) est arrêté et la chaleur stockée dans le moyen de stockage de chaleur (11) est transférée vers le premier environnement (4).
  8. Système de pompe à chaleur (1) selon la revendication 7,
    caractérisé en ce que
    le moyen de stockage de chaleur (11) comprend une liaison avec le circuit de chauffage/refroidissement de l'espace, où le circuit de chauffage/refroidissement de l'espace doit être relié au premier échangeur de chaleur (7), et est conçu pour transférer de la chaleur vers le fluide de travail du circuit de chauffage/refroidissement de l'espace.
  9. Procédé de fonctionnement d'un système de pompe à chaleur (1) présentant
    a) un circuit de fluide frigorigène (2), où, par l'intermédiaire d'un fluide frigorigène, la chaleur est transférée entre un premier environnement (4) et un second environnement (5), le circuit de fluide frigorigène (2) comprenant :
    - un compresseur (6) permettant de comprimer le fluide frigorigène ;
    - un premier échangeur de chaleur (7) permettant de transférer la chaleur entre le premier environnement (4) et le circuit de fluide frigorigène (2) ;
    - un second échangeur de chaleur (8) permettant de transférer la chaleur entre le second environnement (5) et le circuit de fluide frigorigène (2) ;
    - un moyen de stockage de chaleur (11) avec un milieu de stockage de chaleur qui comprend un matériau à changement de phase ;
    où le premier échangeur de chaleur (7) est conçu pour fonctionner comme un condenseur pour refroidir le fluide frigorigène dans un mode de chauffage, et le second échangeur de chaleur (8) est conçu pour fonctionner comme un évaporateur dans le mode de chauffage ;
    b) un dispositif d'entraînement du compresseur (3) couplé électriquement au compresseur (6) pour alimenter le compresseur (6) ;
    caractérisé en ce que
    - outre le compresseur (6) et/ou le dispositif d'entraînement du compresseur (3), une unité de commande et/ou au moins une charge électrique supplémentaire est/sont couplée(s) thermiquement au moyen de stockage de chaleur (11) ;
    - le moyen de stockage de chaleur (11) comprend au moins deux cellules de stockage (15, 16) ayant des matériaux à changement de phase différents, où chaque cellule de stockage (15, 16) présente une température de changement de phase différente, et chacune des cellules de stockage (15, 16) est couplée thermiquement à au moins l'une des unités de charge suivantes : le compresseur (6) et/ou le dispositif d'entraînement du compresseur (3) et/ou l'unité de commande (14) et/ou l'au moins une charge électrique supplémentaire ;
    et par
    - le stockage de la chaleur générée par le compresseur (6) ou le dispositif d'entraînement du compresseur (3) dans le moyen de stockage de chaleur (11) du circuit de fluide frigorigène (2) dans le mode de chauffage, et
    - le transfert de la chaleur stockée directement vers le fluide frigorigène dans un mode de dégivrage du circuit de fluide frigorigène (2)
    - le stockage de la chaleur d'une première unité de charge parmi lesdites unités de charge, où la première unité de charge fournit une génération de chaleur inférieure à celle d'une seconde unité de charge parmi lesdites unités de charge, dans une première cellule de stockage (15) présentant une température de changement de phase inférieure à celle d'une seconde cellule de stockage (16) et le stockage de la chaleur de la seconde unité de charge dans la seconde cellule de stockage (16).
EP18163840.4A 2018-03-26 2018-03-26 Dégivrage d'un système de pompe à chaleur par chaleur perdue Active EP3546854B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18163840.4A EP3546854B1 (fr) 2018-03-26 2018-03-26 Dégivrage d'un système de pompe à chaleur par chaleur perdue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18163840.4A EP3546854B1 (fr) 2018-03-26 2018-03-26 Dégivrage d'un système de pompe à chaleur par chaleur perdue

Publications (2)

Publication Number Publication Date
EP3546854A1 EP3546854A1 (fr) 2019-10-02
EP3546854B1 true EP3546854B1 (fr) 2022-08-31

Family

ID=61768165

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18163840.4A Active EP3546854B1 (fr) 2018-03-26 2018-03-26 Dégivrage d'un système de pompe à chaleur par chaleur perdue

Country Status (1)

Country Link
EP (1) EP3546854B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111102763B (zh) * 2020-01-07 2024-03-29 珠海格力电器股份有限公司 一种冷热水机组余热回收及利用的系统及其使用方法
CN113137775B (zh) * 2021-03-31 2023-01-31 青岛海尔空调电子有限公司 用于制冷系统的辅助热回收系统及具有其的制冷系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116073A (ja) * 1986-10-31 1988-05-20 株式会社東芝 蓄熱式ヒ−トポンプ
US5269151A (en) 1992-04-24 1993-12-14 Heat Pipe Technology, Inc. Passive defrost system using waste heat
US20080086981A1 (en) 2004-10-14 2008-04-17 Birol Kilkis Composite Hybrid Panel, or Building Element for Combined Heating, Cooling, Ventilating and Air-Conditioning
JP4923794B2 (ja) 2006-07-06 2012-04-25 ダイキン工業株式会社 空気調和装置
EP2416078B1 (fr) 2009-04-03 2017-03-08 Mitsubishi Electric Corporation Dispositif de climatisation
DE102012004094B3 (de) * 2012-02-29 2013-06-13 Glen Dimplex Deutschland Gmbh Vorrichtung, insbesondere Wärmepumpe, mit einem in einem Kreislauf geführten Kältemittel sowie Verfahren zum Betrieb einer derartigen Vorrichtung
AU2014401283A1 (en) * 2014-07-17 2017-02-02 Electrolux (Hangzhou) Home Appliance Co., Ltd. Heat pump system
JP6570269B2 (ja) * 2014-10-28 2019-09-04 三星電子株式会社Samsung Electronics Co.,Ltd. 蓄熱装置及びこれを用いた空気調和機
EP3165852B1 (fr) 2015-11-09 2021-06-09 Mitsubishi Electric Corporation Pompe à chaleur antigivre
EP3244141A1 (fr) 2016-05-09 2017-11-15 Vaillant GmbH Dégivrage avec de la chaleur générée par moteur de compresseur
GB201610977D0 (en) * 2016-06-23 2016-08-10 Sunamp Ltd A thermal energy storage system

Also Published As

Publication number Publication date
EP3546854A1 (fr) 2019-10-02

Similar Documents

Publication Publication Date Title
AU598982B2 (en) Three function heat pump system
US7631515B2 (en) Thermal storage unit for air conditioning applications
US20140230477A1 (en) Hot water supply air conditioning system
US20100038441A1 (en) Energy system with a heat pump
US20110302948A1 (en) Heat pump system
CN101498518B (zh) 多功能蓄冰空调系统及该系统的控制方法
EP3631340B1 (fr) Systèmes à échangeurs de chaleur à composite à changement de phase et à plusieurs circuits
CN103175354B (zh) 蓄热相变除霜装置
CN102132111A (zh) 热泵式制冷/供暖装置
KR101333143B1 (ko) 축열식 냉난방 장치
WO2010102640A1 (fr) Systèmes hybrides d'énergie thermique et applications de ceux-ci
CN109282401A (zh) 分离式热管空调及其控制方法
WO2013061473A1 (fr) Dispositif de distribution d'eau chaude et de climatisation
KR102402125B1 (ko) 에너지 저장 시스템 온도 조절 장치
EP3546854B1 (fr) Dégivrage d'un système de pompe à chaleur par chaleur perdue
CN106705203A (zh) 一种采用热泵和电热复合的户用热管散热装置
CA2436367A1 (fr) Stockage d'energie avec systemes de refrigeration et methode
JP5503167B2 (ja) 空気調和システム
JP2020003173A (ja) 機器温調装置
KR100945452B1 (ko) 히트펌프장치
CN101592416B (zh) 带冷热源互补回路的制冷制热系统
EP3594588B1 (fr) Dispositif de pompe à chaleur géothermique
JP2013068370A (ja) 冷房システム
US11598536B2 (en) Systems with multi-circuited, phase-change composite heat exchangers
WO2023030696A1 (fr) Pompe à chaleur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200320

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220318

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MITSUBISHI ELECTRIC CORPORATION

Owner name: MITSUBISHI ELECTRIC R&D CENTRE EUROPE B.V.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1515575

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018039904

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1515575

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221231

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018039904

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602018039904

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230326

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230326

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240319

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831