EP3545725B1 - Appareil de chauffage de type radiateur électrique incluant un convertisseur de tension - Google Patents
Appareil de chauffage de type radiateur électrique incluant un convertisseur de tension Download PDFInfo
- Publication number
- EP3545725B1 EP3545725B1 EP17816925.6A EP17816925A EP3545725B1 EP 3545725 B1 EP3545725 B1 EP 3545725B1 EP 17816925 A EP17816925 A EP 17816925A EP 3545725 B1 EP3545725 B1 EP 3545725B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage converter
- management unit
- input
- elements
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims description 75
- 238000004146 energy storage Methods 0.000 claims description 21
- 238000012512 characterization method Methods 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 10
- 239000000446 fuel Substances 0.000 claims description 8
- 238000010616 electrical installation Methods 0.000 claims description 6
- 238000003860 storage Methods 0.000 description 20
- 235000021183 entrée Nutrition 0.000 description 16
- 238000005259 measurement Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000011217 control strategy Methods 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000005612 types of electricity Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/20—Arrangement or mounting of control or safety devices
- F24H9/2064—Arrangement or mounting of control or safety devices for air heaters
- F24H9/2071—Arrangement or mounting of control or safety devices for air heaters using electrical energy supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C7/00—Stoves or ranges heated by electric energy
- F24C7/06—Arrangement or mounting of electric heating elements
- F24C7/062—Arrangement or mounting of electric heating elements on stoves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C3/00—Stoves or ranges for gaseous fuels
- F24C3/002—Stoves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D18/00—Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/258—Outdoor temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/355—Control of heat-generating means in heaters
- F24H15/37—Control of heat-generating means in heaters of electric heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/40—Control of fluid heaters characterised by the type of controllers
- F24H15/414—Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H3/00—Air heaters
- F24H3/002—Air heaters using electric energy supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/02—Casings; Cover lids; Ornamental panels
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/0252—Domestic applications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/0252—Domestic applications
- H05B1/0275—Heating of spaces, e.g. rooms, wardrobes
- H05B1/0277—Electric radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2101/00—Electric generators of small-scale CHP systems
- F24D2101/30—Fuel cells
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2101/00—Electric generators of small-scale CHP systems
- F24D2101/40—Photovoltaic [PV] modules
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H2240/00—Fluid heaters having electrical generators
- F24H2240/01—Batteries, electrical energy storage device
Definitions
- the present invention relates to a heating device of the electric radiator type, comprising a box housing a heating member producing a first flow of calories when an input of the heating member is supplied by an electric voltage.
- the invention also relates to an electrical installation comprising an electrical power source and at least one such heating device.
- the electric power source to which the heater is connected delivers an alternating electric voltage and all the components of the heater are adapted accordingly.
- this power source is formed by the local electrical network.
- US 2011/286725 A1 discloses an electric radiator type heating apparatus according to the preamble of claim 1.
- the present invention aims to resolve all or part of the drawbacks listed above.
- the management unit varies the heating apparatus, by controlling the switching elements, between a first operating mode where the first connecting elements and / or the third connecting elements occupy an open circuit configuration and a second operating mode where the first link elements and / or the third link elements occupy a closed circuit configuration, the first operating mode being occupied if the difference between the value determined by the measurement sensor and a setpoint temperature known to the management unit is greater than a first strictly positive predetermined deviation and the second operating mode being occupied if the difference between the value determined by the measurement sensor and the setpoint temperature known to the management unit is less than a second predetermined negative or zero deviation.
- the management unit varies the heating apparatus, by controlling the switching elements, between a third operating mode where the second connecting elements occupy a closed circuit configuration and a fourth. operating mode where the second link elements occupy an open circuit configuration, the third operating mode being occupied if the value determined by the characterization element is less than or equal to a first predetermined threshold known to the management unit and the fourth operating mode being occupied as soon as the value determined by the characterization element is greater than or equal to a second predetermined threshold known to the management unit and strictly greater than the first predetermined threshold.
- the management unit causes the heater to occupy, by controlling the switching elements, a fifth operating mode where the third connecting elements occupy a closed circuit configuration if the value determined by the characterization element is greater than or equal to a third predetermined threshold known to the management unit.
- the management unit controls the voltage converter such that the direct electric voltage delivered at the output of the voltage converter varies as a function of the power to be delivered by the calculated heating member. by the management unit.
- the voltage converter comprises heat sinks producing a second flow of calories with the calories generated by the voltage converter and the second flow is mixed with the first flow of calories generated by the control unit. heated.
- an electrical installation comprising an electrical power source and at least one such heating device, the voltage converter input connection elements of which are connected to the electrical power source, in which the source d 'power supply delivers a continuous electric voltage and includes all or some of the elements following: photovoltaic panels, a fuel cell, a supercapacitor, a battery based on an assembly of electrochemical cells.
- the invention relates essentially to a heating device 10 of the electric radiator type, comprising a box 11 housing a heating member 12 producing a first flow of calories F1 when an input 121 of the member heater 12 is supplied by a direct electric voltage.
- the heating member 12 may in particular comprise at least one radiating body and / or at least one device for heating by heat transfer fluid.
- the invention also relates to an electrical installation comprising an electrical power source 13 and at least one such heating device 10.
- the electrical power source 13 may be of the type. delivering an alternating electric voltage, or, even more advantageously, being of the type delivering a direct electric voltage.
- the heating apparatus 10 comprises a voltage converter 14 installed in the box 11 and comprising an input 141 provided with connection elements making it possible to electrically connect the voltage converter 14 to the electrical power source 13 and an output 142 delivering a direct electric voltage capable of directly or indirectly supplying the input 121 of the heating member 12.
- the voltage converter 14 makes it possible to transform the input current coming from the source 13 into a direct output current which can be used directly under this form by the components that the voltage converter 14 is intended to supply with energy.
- the nature of the voltage converter 14 is directly linked to that of the electric power source 13 to which it is intended to be connected.
- the voltage converter 14 can be configured so as to be able to deliver, at its output 142, the direct electric voltage by converting a direct electric voltage applied to the input 141 of the voltage converter 14 by the electric power source 13 when the voltage converter 14 is connected to the latter .
- the electric power source 13 is of the type delivering a direct electric voltage
- the voltage converter 14 may be of the DC / DC type.
- the voltage converter 14 is configured so as to be able to deliver, at its output 142, the direct electric voltage by converting an alternating electric voltage applied to the input 141 of the voltage converter 14 by the electrical power source 13 when the voltage converter 14 is connected thereto.
- the electric power source 13 is of the type delivering an alternating electric voltage
- the voltage converter 14 may be of the AC / DC type.
- the voltage converter 14 can for example comprise a switching power supply or several switching power supplies in parallel, or more simply at least one chopper, in order to allow the conversion of an alternating current into a direct current directly exploitable by the components that the output 142 of the voltage converter 14 is intended to supply electrical energy.
- the heating apparatus 10 comprises an electrical energy storage device 15 operating under a direct electric current, having an input 151 intended to be supplied by a direct current and an output 152 delivering another current. continued.
- the storage device 15 makes it possible to store the energy used by the heater 10, with a view to spacing out the consumption of electricity over time. It makes it possible in particular to store electrical energy when it is available, in particular when its cost of obtaining is judged to be economical.
- the electrical energy storage device 15 comprises a battery based on an assembly of electrochemical cells and / or a supercapacitor and / or a fuel cell.
- the heating apparatus 10 comprises first connecting elements 16 for connecting the output 142 of the converter. voltage 14 with the input 121 of the heater 12 and able to apply the DC voltage delivered at the output 142 of the voltage converter 14 to the input 121 of the heater 12.
- the heating apparatus 10 comprises second connecting elements 17 to connect the output 142 of the converter. voltage 14 with the input 151 of the electric energy storage device 15 and able to apply the direct electric voltage delivered at the output 142 of the voltage converter 14 to the input 151 of the electric energy storage device 15.
- the heating device 10 comprises third connecting elements 18 for connecting the output 152 of the electrical energy storage device 15 with the input 121 of the heating member 12 and able to apply the direct current delivered by the output 152 of the electric energy storage device 15 to the input 121 of the heater 12.
- first connecting elements 16, the second connecting elements 17 and the third connecting elements 18 is not limiting in itself since it allows them to be adapted to the functions assigned to them presented above. .
- the heater 10 includes switching elements (not shown as such) to vary the first link elements 16 between an open circuit or closed circuit configuration, to vary the second link elements. 17 between an open circuit or closed circuit configuration, and to vary the third connecting elements 18 between an open circuit or closed circuit configuration.
- the heating device 10 also comprises a management unit 19 housed in the box 11 and controlling the heating member 12 via the control links 20 (wired or not).
- the management unit 19 can also control the switching elements mentioned in the previous paragraph.
- the management unit 19 can also ensure the control of the voltage converter 14 via the control links 21 (wired or not) and / or the control of the electrical energy storage device 15 via the control links 22 (wired or no).
- the management unit 19 controls the voltage converter 14 such that the direct electric voltage delivered to the output 142 of the voltage converter 14 varies as a function of the power to be delivered by the heating member 12 calculated by l 'management unit 19.
- a control strategy will be considered and facilitated when the voltage converter 14 comprises a plurality of switching power supplies in parallel. It is therefore possible to vary the power delivered by the heater 12 in a simple and economical manner, without having to resort to a complex electronic solution.
- the direct voltage delivered by the voltage converter 14 is dependent on the voltage required for the heating member 12 or for the storage device 15.
- a voltage converter 14 of the switching power supply or chopper type also makes it possible to avoid redundancy between the direct current supplies of the various electronic components incorporated in the heating device 10 (business card, sensors, display , etc .). On the contrary, the voltage converter 14 makes it possible to supply all the electronic components with direct current. This results in simplicity of design, limited cost and better robustness.
- the output 142 of the voltage converter 14 is also connected to an input of the management unit 19 in order to supply it with electrical energy.
- the heater 10 also comprises a measurement sensor 23 capable of measuring the temperature outside the housing 11 and transmission elements 24 making it possible to address the value determined by the measurement sensor 23 to an input 191 of management unit 19.
- the heating apparatus 10 also comprises a characterization element 25 making it possible to characterize the state of charge of the electrical energy storage device 15 and transmission elements 26 making it possible to address the value determined by the characterization element 25. to an input 192 of the management unit 19.
- the management unit 19 provides control of the switching elements according to a predetermined strategy algorithm recorded in a memory of the management unit 19, as a function of the value determined by the measurement sensor 23 and sent to the input 191 of the management unit 191 via the first transmission elements 24 and as a function of the value determined by the characterization element 25 and addressed to the input 192 of the management unit 19 via the second transmission elements 26.
- the strategy algorithm makes it possible to choose the best conditions for choosing the operation of the heating element 12, the direct charging of the storage device 15 with direct current or the discharge of the storage device 15 through the heating element 12. suitable for direct current.
- the value of the first predetermined deviation is typically between 1 and 3 °, for example equal to 2 °.
- the first operating mode is adopted if the temperature measured by the temperature sensor 23 is at least two degrees higher than the set temperature, which has the effect of stopping the operation. of the heating element 12.
- the value of the second predetermined difference is typically between -1 and 0, for example equal to 0.
- the second operating mode is adopted if the temperature measured by the temperature sensor 23 is less than or equal to the setpoint temperature, which has the effect of starting the heating of the room by the heating element 12.
- the management unit 19 causes the heater 10 to occupy, by controlling the switching elements, a fifth mode operation where the third link elements 18 occupy a closed circuit configuration if the value determined by the characterization element 25 is greater than or equal to a third predetermined threshold known to the management unit 19.
- the third predetermined threshold is between the first predetermined threshold and the second predetermined threshold.
- the first predetermined threshold is equal to 0.15 for example.
- the third operating mode is adopted if the state of charge of the storage device 15 is less than 15%, which has the effect of starting the charging of the storage device 15 in order to avoid an excessive discharge liable to degrade the storage device 15.
- the adoption of the third operating mode may possibly be conditioned on the presence of inexpensive energy from the source 13.
- the second predetermined threshold is itself typically greater than 0.9, for example equal to 0.95.
- the fourth operating mode is adopted if the state of charge of the storage device 15 is greater than 95%, which has the effect of stopping the charging of the storage device 15 in order to avoid excessive charge and overload. premature wear.
- the third predetermined threshold is for its part typically between 0.4 and 0.6, for example equal to 0.5.
- the fifth operating mode is adopted if the state of charge of the storage device 15 is greater than 50% for example, which has the effect of starting the electrical supply to the heating member 12 from the device. storage 15.
- the adoption of the fifth operating mode can optionally be conditioned on the absence of inexpensive energy from the source 13.
- first mode of operation does not confer to these no property of priority of one over the other and no property of exclusion of one by compared to each other.
- second mode of operation does not confer to these no property of priority of one over the other and no property of exclusion of one by compared to each other.
- fourth mode of operation does not confer to these no property of priority of one over the other and no property of exclusion of one by compared to each other.
- state of charge refers to a quantity fully known to those skilled in the art, known as the “state of charge” according to the appropriate Anglo-Saxon terminology. There are many, many ways to assess this state of charge, not limiting here.
- the voltage converter 14 comprises heat sinks producing a second flow of calories F2 with the calories generated by the voltage converter 14.
- the internal organization of the heating device 10 is such that the second flow F2 is mixed with the first flow of calories F1 generated by the heating member 12.
- the second flow F2 serves both for rapid preheating of the other components and makes it possible, by virtue of its mixing with the first flow F1, to optimize the energy yield of the electrical apparatus 10 by preventing the heat produced by the voltage converter 14 from being lost or even annoying.
- the heat given off by the voltage converter 14 for the transformation of the input current into direct current is used for the heating of the components and the generation of heat by the apparatus 10 to avoid losses in efficiency.
- the connection elements of the input 141 of the voltage converter 14 are connected to the electric power supply source 13.
- the electric power supply source 13 delivers a direct electric voltage and includes all or part of the following elements: photovoltaic panels, a fuel cell, a supercapacitor, a battery based on an assembly of electrochemical cells. This makes it possible to optimize the general efficiency of the heating apparatus 10 and of the electrical installation while avoiding losses conventionally due to conversions from an alternating current to a direct current.
- the heater 10 can be used directly by powering it from a direct current source, which is a current trend especially because of the development of renewable energies.
- the box 11 can include a rear part 111 comprising fixing means 18 making it possible to fix the box 11 to a wall, for example a vertical wall such as a wall, and a front guard 112 allowing the radiation of the flows F1 and F2 towards the outside of the box 11.
- the rear part 111 has a thickness substantially equal to the total thickness of the housing 11 and the front guardrail 112 closes the case 11 at the front peripheral contour of the rear part 111.
- the rear part 111 has a thickness less than the total thickness of the box 11 and the box 11 also comprises a front part 113 supporting the front guard 112 in its front zone and coming, in its rear zone, to close the box 11 at the level of the front peripheral contour of the rear part 111.
- the storage device 15 is located above the voltage converter 14 and this first assembly is offset rearwardly relative to a second assembly formed by the heating member 12 and the control unit.
- management 19 arranged side by side.
- a thermally insulating wall 27 separates the first assembly and the second assembly, depending on the thickness of the case 11, only at the level of the storage device 15. On the contrary, the insulating wall 27 is not arranged between the voltage converter 14 and the second set. The result is that the calories generated by the voltage converter 14 during the voltage conversion come to mix with the calories generated by the heating member 12 and allow cold to preheat at least the management unit 19, the control device. storage 15 and the heater 12.
- a heating device 10 operating with direct current and incorporating the voltage converter 14 makes it possible to choose the voltage upstream and inside the heating device 10.
- the heating device 10 makes it possible to control the type of electricity and to choose the nature of the power source 13 and the type of heating member 12 and consequently makes it possible to participate in the integration of the sources of electricity. '' renewable energies on the electricity grid by avoiding transformation losses into alternating current.
- the heater 10 makes it possible to be directly usable by power supply via a direct voltage source, without the need for conversion into alternating current, avoiding the losses which would result therefrom.
- This solution can be integrated into intelligent networks known as “smart grids” to allow storage in optimal conditions of energies from direct voltage sources on the electricity network.
- the management unit 19 of the heater 10 can be controlled subsequently to the events of the domestic network or the national network to compensate for the following cases encountered in “smart grids”: production in excess of demand, demand in excess of the production and withdrawal of reactive power.
- the storage device 15 can consume energy on the domestic or national network for its local storage.
- the storage device 15 can supply energy to the domestic or national network.
- the storage device 15 can be used, with the appropriate voltage and phase parameters, to increase the power factor and / or reduce the harmonic pollution of the network.
- solar energy sources, fuel cells, supercapacitors and electrochemical batteries are direct voltage sources which could be an energy source connected to the heater 10 and these sources having levels of.
- DC voltage the voltage converter 14 of the DC / DC type will allow use in the heater 10 under optimum conditions.
- this solution can be integrated into positive energy homes to allow in situ storage of renewable energies from the production of positive energy homes.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Secondary Cells (AREA)
- Fuel Cell (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Stoves And Ranges (AREA)
- Control Of Resistance Heating (AREA)
- Dc-Dc Converters (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Air-Conditioning For Vehicles (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1661447A FR3059199B1 (fr) | 2016-11-24 | 2016-11-24 | Appareil de chauffage de type radiateur electrique incluant un convertisseur de tension |
PCT/FR2017/053243 WO2018096290A1 (fr) | 2016-11-24 | 2017-11-24 | Appareil de chauffage de type radiateur électrique incluant un convertisseur de tension |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3545725A1 EP3545725A1 (fr) | 2019-10-02 |
EP3545725B1 true EP3545725B1 (fr) | 2020-08-19 |
Family
ID=58162780
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17816924.9A Active EP3545724B1 (fr) | 2016-11-24 | 2017-11-24 | Appareil de chauffage de type radiateur électrique incluant un convertisseur de tension |
EP17816925.6A Active EP3545725B1 (fr) | 2016-11-24 | 2017-11-24 | Appareil de chauffage de type radiateur électrique incluant un convertisseur de tension |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17816924.9A Active EP3545724B1 (fr) | 2016-11-24 | 2017-11-24 | Appareil de chauffage de type radiateur électrique incluant un convertisseur de tension |
Country Status (10)
Country | Link |
---|---|
US (2) | US20190383518A1 (ja) |
EP (2) | EP3545724B1 (ja) |
JP (2) | JP6828159B2 (ja) |
KR (2) | KR102104791B1 (ja) |
CN (2) | CN109983836B (ja) |
AU (2) | AU2017364287B2 (ja) |
CA (2) | CA3044348C (ja) |
ES (2) | ES2887783T3 (ja) |
FR (1) | FR3059199B1 (ja) |
WO (2) | WO2018096289A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3059199B1 (fr) * | 2016-11-24 | 2021-01-01 | Lancey Energy Storage | Appareil de chauffage de type radiateur electrique incluant un convertisseur de tension |
FR3100605B1 (fr) * | 2019-09-05 | 2021-09-10 | Lancey Energy Storage | Radiateur électrique comprenant un bouclier de protection thermique entre l’organe de chauffe et un dispositif de stockage d’énergie électrique amovible |
FR3103646B1 (fr) | 2019-11-27 | 2022-05-06 | Lancey Energy Storage | Micro-réseau résilient d'appareils de chauffage de type radiateur électrique |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5321300A (en) | 1976-08-11 | 1978-02-27 | Hitachi Cable Ltd | Epoxy resin composition |
JPH01149338A (ja) * | 1987-12-04 | 1989-06-12 | Toshiba Corp | マグネトロン駆動装置 |
DE3844607C3 (de) * | 1988-01-20 | 1997-03-13 | Ver Glaswerke Gmbh | Stromversorgungsschaltung für ein Kraftfahrzeug mit zwei unterschiedlichen Verbraucherspannungen |
JP2629491B2 (ja) * | 1991-08-16 | 1997-07-09 | 三菱電機株式会社 | 自然対流式暖房器 |
CN2171939Y (zh) * | 1993-11-18 | 1994-07-13 | 王琛 | 智能化多功能负荷控制器 |
US6218607B1 (en) * | 1997-05-15 | 2001-04-17 | Jx Crystals Inc. | Compact man-portable thermophotovoltaic battery charger |
US6037571A (en) * | 1997-07-21 | 2000-03-14 | Christopher; Nicholas S. | Dual power high heat electric grill |
CA2252213A1 (en) * | 1998-10-29 | 2000-04-29 | Ed Martin | Fireplace-barbecue |
US20020174579A1 (en) * | 2001-05-22 | 2002-11-28 | Corry Arthur A. | Artificial log burning fireplace assembly |
JP4635388B2 (ja) * | 2001-07-27 | 2011-02-23 | トヨタ自動車株式会社 | 熱光発電装置 |
JP3652634B2 (ja) * | 2001-10-05 | 2005-05-25 | 本田技研工業株式会社 | 高圧電装部品の冷却構造 |
US7196263B2 (en) * | 2001-10-18 | 2007-03-27 | Jx Crystals Inc. | TPV cylindrical generator for home cogeneration using low NOx radiant tube burner |
US8157187B2 (en) * | 2002-10-02 | 2012-04-17 | Sbr Investments Company Llc | Vehicle windshield cleaning system |
CN1567644A (zh) * | 2003-06-19 | 2005-01-19 | 李森能 | 蓄电池充电器 |
US10384653B2 (en) * | 2004-03-09 | 2019-08-20 | Uusi, Llc | Vehicle windshield cleaning system |
FR2882132B3 (fr) * | 2005-02-15 | 2007-06-08 | Regis Hautecoeur | Radiateur a chauffage electrique autonome |
US7358463B2 (en) * | 2005-08-12 | 2008-04-15 | Kabushiki Kaisha Toyota Jidoshokki | Switching power supply and method for stopping supply of electricity when electricity of switching power supply exceeds rated electricity |
JP2007059308A (ja) * | 2005-08-26 | 2007-03-08 | Matsushita Electric Ind Co Ltd | 電気機器 |
CN2891442Y (zh) * | 2005-12-29 | 2007-04-18 | 比亚迪股份有限公司 | 电动汽车便携式充电器 |
KR100704963B1 (ko) | 2006-04-04 | 2007-04-09 | (주) 피에스디테크 | 태양광-풍력 발전 시스템의 제어장치 |
US20070273214A1 (en) * | 2006-05-23 | 2007-11-29 | Wang Kon-King M | System and method for connecting power sources to a power system |
CN101150259B (zh) * | 2006-09-18 | 2010-05-12 | 比亚迪股份有限公司 | 电动车充电系统 |
GB2444072B (en) * | 2006-11-24 | 2009-08-19 | Basic Holdings | A battery powered electrical fire |
US8018204B2 (en) * | 2007-03-26 | 2011-09-13 | The Gillette Company | Compact ultra fast battery charger |
DE112008002274T5 (de) * | 2007-08-21 | 2010-08-05 | Mitsubishi Electric Corp. | Induktions-Erwärmungsvorrichtung, Elektroleistungsumwandlungsschaltung und Elektroleistungverarbeitungsvorrichtung |
US8054048B2 (en) * | 2007-10-04 | 2011-11-08 | GM Global Technology Operations LLC | Power grid load management for plug-in vehicles |
US20100039062A1 (en) * | 2008-08-18 | 2010-02-18 | Gong-En Gu | Smart charge system for electric vehicles integrated with alternative energy sources and energy storage |
US8384358B2 (en) * | 2009-05-28 | 2013-02-26 | GM Global Technology Operations LLC | Systems and methods for electric vehicle charging and for providing notification of variations from charging expectations |
JP5465949B2 (ja) * | 2009-08-07 | 2014-04-09 | 本田技研工業株式会社 | 電力供給システム |
US20110286725A1 (en) * | 2010-05-20 | 2011-11-24 | Enerco Group, Inc. | High Heat Electric Fireplace |
CN202040858U (zh) * | 2011-03-25 | 2011-11-16 | 广东美的微波电器制造有限公司 | 太阳能微波炉 |
FR2978624B1 (fr) * | 2011-07-29 | 2013-12-20 | Evtronic | Installation et procede de charge pour batterie electrique |
JP2014099253A (ja) * | 2012-11-13 | 2014-05-29 | Panasonic Corp | 加熱調理器 |
FR3059199B1 (fr) * | 2016-11-24 | 2021-01-01 | Lancey Energy Storage | Appareil de chauffage de type radiateur electrique incluant un convertisseur de tension |
-
2016
- 2016-11-24 FR FR1661447A patent/FR3059199B1/fr not_active Expired - Fee Related
-
2017
- 2017-11-24 CA CA3044348A patent/CA3044348C/fr active Active
- 2017-11-24 WO PCT/FR2017/053242 patent/WO2018096289A1/fr unknown
- 2017-11-24 CN CN201780071848.5A patent/CN109983836B/zh active Active
- 2017-11-24 WO PCT/FR2017/053243 patent/WO2018096290A1/fr unknown
- 2017-11-24 ES ES17816924T patent/ES2887783T3/es active Active
- 2017-11-24 JP JP2019527836A patent/JP6828159B2/ja active Active
- 2017-11-24 EP EP17816924.9A patent/EP3545724B1/fr active Active
- 2017-11-24 AU AU2017364287A patent/AU2017364287B2/en not_active Ceased
- 2017-11-24 US US16/464,045 patent/US20190383518A1/en not_active Abandoned
- 2017-11-24 US US16/464,047 patent/US11060765B2/en active Active
- 2017-11-24 ES ES17816925T patent/ES2831091T3/es active Active
- 2017-11-24 EP EP17816925.6A patent/EP3545725B1/fr active Active
- 2017-11-24 JP JP2019527851A patent/JP6828160B2/ja active Active
- 2017-11-24 KR KR1020197017874A patent/KR102104791B1/ko active IP Right Grant
- 2017-11-24 AU AU2017364286A patent/AU2017364286B2/en not_active Ceased
- 2017-11-24 KR KR1020197018100A patent/KR102104792B1/ko active IP Right Grant
- 2017-11-24 CA CA3044349A patent/CA3044349C/fr active Active
- 2017-11-24 CN CN201780072564.8A patent/CN109983837B/zh active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3545725A1 (fr) | 2019-10-02 |
EP3545724B1 (fr) | 2021-06-09 |
JP6828159B2 (ja) | 2021-02-10 |
CN109983837A (zh) | 2019-07-05 |
ES2887783T3 (es) | 2021-12-27 |
ES2831091T3 (es) | 2021-06-07 |
JP6828160B2 (ja) | 2021-02-10 |
KR102104791B1 (ko) | 2020-04-27 |
FR3059199B1 (fr) | 2021-01-01 |
KR20190077108A (ko) | 2019-07-02 |
KR20190080955A (ko) | 2019-07-08 |
US20190383519A1 (en) | 2019-12-19 |
CA3044348A1 (fr) | 2018-05-31 |
KR102104792B1 (ko) | 2020-04-27 |
CN109983836B (zh) | 2022-05-03 |
US11060765B2 (en) | 2021-07-13 |
CN109983836A (zh) | 2019-07-05 |
CA3044349C (fr) | 2020-01-21 |
AU2017364287B2 (en) | 2019-08-22 |
CA3044348C (fr) | 2020-07-21 |
CN109983837B (zh) | 2022-07-08 |
WO2018096290A1 (fr) | 2018-05-31 |
JP2020513523A (ja) | 2020-05-14 |
AU2017364286B2 (en) | 2019-07-18 |
EP3545724A1 (fr) | 2019-10-02 |
AU2017364287A1 (en) | 2019-06-27 |
JP2020513524A (ja) | 2020-05-14 |
CA3044349A1 (fr) | 2018-05-31 |
FR3059199A1 (fr) | 2018-05-25 |
US20190383518A1 (en) | 2019-12-19 |
AU2017364286A1 (en) | 2019-06-20 |
WO2018096289A1 (fr) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3676541B1 (fr) | Appareil de chauffage intégrant une batterie et un onduleur pour injecter de l'énergie de la batterie vers la source d'alimentation électrique | |
EP3545725B1 (fr) | Appareil de chauffage de type radiateur électrique incluant un convertisseur de tension | |
FR2960099A1 (fr) | Systeme de recuperation d'energie renouvelable | |
EP4200976B1 (fr) | Dispositif et procédé pour déterminer et utiliser un surplus de puissance électrique disponible généré par un générateur solaire photovoltaïque | |
WO2016087632A1 (fr) | Dispositif d'alimentation et convertisseur de tension continue ameliore | |
EP3065021A1 (fr) | Système de chauffe-eau avec installation photovoltaïque dédiée | |
EP3123583A1 (fr) | Mono-onduleur | |
EP2560261A1 (fr) | Procede de gestion d'une installation de production et de stockage d'energie renouvelable | |
EP2772983B1 (fr) | Dispositif de stockage d'énergie et procédé de gestion associé | |
EP3376633B1 (fr) | Dispositif moteur | |
WO2022195007A1 (fr) | Système de gestion d'une source a courant continu a puissance variable | |
FR3113719A1 (fr) | Chauffe-eau électrique instantané comprenant une face avant apte à capter et émettre de la chaleur fatale perdue par la cuve de chauffe et installation | |
FR3075322A1 (fr) | Appareil de chauffage assurant une modulation continue de la puissance d’alimentation de la resistance electrique | |
FR3039720B1 (fr) | Procede de gestion du courant produit par des panneaux | |
FR2990016A1 (fr) | Installation pour le chauffage domestique | |
FR3073606A1 (fr) | Appareil de chauffage integrant une batterie implantee dans le flux d’air frais entrant | |
FR3113722A1 (fr) | Chauffe-eau électrique instantané incluant deux types de résistance de chauffage et installation comprenant un tel chauffe-eau | |
FR2937195A1 (fr) | Dispositif d'alimentation regulee pour au moins un organe electrique connecte a un reseau d'alimentation. | |
EP3016240B1 (fr) | Unité de production électrique autonome autorégulée fournissant un courant continu, et son utilisation dans une borne autonome d'alimentation électrique d'une antenne-relais | |
FR3039721A1 (fr) | Procede de distribution de courant produit par des panneaux photovoltaiques | |
FR2903822A1 (fr) | Procede de fonctionnement d'une installation comprenant une batterie destinee a etre chargee de maniere exclusive par un panneau photovoltaique. | |
WO2014199052A2 (fr) | Procede dynamique de decharge d'un accumulateur recharge par une source d'energie renouvelable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190607 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200323 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017022141 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1305407 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: CABINET GERMAIN AND MAUREAU, CH |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201119 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201120 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201119 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017022141 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2831091 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210607 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
26N | No opposition filed |
Effective date: 20210520 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1305407 Country of ref document: AT Kind code of ref document: T Effective date: 20200819 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20221020 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231128 Year of fee payment: 7 Ref country code: LU Payment date: 20231128 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231129 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231129 Year of fee payment: 7 Ref country code: RO Payment date: 20231124 Year of fee payment: 7 Ref country code: IT Payment date: 20231129 Year of fee payment: 7 Ref country code: IE Payment date: 20231130 Year of fee payment: 7 Ref country code: FR Payment date: 20231129 Year of fee payment: 7 Ref country code: FI Payment date: 20231130 Year of fee payment: 7 Ref country code: DE Payment date: 20231218 Year of fee payment: 7 Ref country code: CH Payment date: 20231201 Year of fee payment: 7 Ref country code: AT Payment date: 20231201 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231229 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |