EP3545725B1 - Heating apparatus of the electric radiator type including a voltage converter - Google Patents
Heating apparatus of the electric radiator type including a voltage converter Download PDFInfo
- Publication number
- EP3545725B1 EP3545725B1 EP17816925.6A EP17816925A EP3545725B1 EP 3545725 B1 EP3545725 B1 EP 3545725B1 EP 17816925 A EP17816925 A EP 17816925A EP 3545725 B1 EP3545725 B1 EP 3545725B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage converter
- management unit
- input
- elements
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims description 75
- 238000004146 energy storage Methods 0.000 claims description 21
- 238000012512 characterization method Methods 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 10
- 239000000446 fuel Substances 0.000 claims description 8
- 238000010616 electrical installation Methods 0.000 claims description 6
- 238000003860 storage Methods 0.000 description 20
- 235000021183 entrée Nutrition 0.000 description 16
- 238000005259 measurement Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000011217 control strategy Methods 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000005612 types of electricity Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/20—Arrangement or mounting of control or safety devices
- F24H9/2064—Arrangement or mounting of control or safety devices for air heaters
- F24H9/2071—Arrangement or mounting of control or safety devices for air heaters using electrical energy supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C7/00—Stoves or ranges heated by electric energy
- F24C7/06—Arrangement or mounting of electric heating elements
- F24C7/062—Arrangement or mounting of electric heating elements on stoves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C3/00—Stoves or ranges for gaseous fuels
- F24C3/002—Stoves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D18/00—Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/258—Outdoor temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/355—Control of heat-generating means in heaters
- F24H15/37—Control of heat-generating means in heaters of electric heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/40—Control of fluid heaters characterised by the type of controllers
- F24H15/414—Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H3/00—Air heaters
- F24H3/002—Air heaters using electric energy supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/02—Casings; Cover lids; Ornamental panels
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/0252—Domestic applications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/0252—Domestic applications
- H05B1/0275—Heating of spaces, e.g. rooms, wardrobes
- H05B1/0277—Electric radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2101/00—Electric generators of small-scale CHP systems
- F24D2101/30—Fuel cells
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2101/00—Electric generators of small-scale CHP systems
- F24D2101/40—Photovoltaic [PV] modules
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H2240/00—Fluid heaters having electrical generators
- F24H2240/01—Batteries, electrical energy storage device
Definitions
- the present invention relates to a heating device of the electric radiator type, comprising a box housing a heating member producing a first flow of calories when an input of the heating member is supplied by an electric voltage.
- the invention also relates to an electrical installation comprising an electrical power source and at least one such heating device.
- the electric power source to which the heater is connected delivers an alternating electric voltage and all the components of the heater are adapted accordingly.
- this power source is formed by the local electrical network.
- US 2011/286725 A1 discloses an electric radiator type heating apparatus according to the preamble of claim 1.
- the present invention aims to resolve all or part of the drawbacks listed above.
- the management unit varies the heating apparatus, by controlling the switching elements, between a first operating mode where the first connecting elements and / or the third connecting elements occupy an open circuit configuration and a second operating mode where the first link elements and / or the third link elements occupy a closed circuit configuration, the first operating mode being occupied if the difference between the value determined by the measurement sensor and a setpoint temperature known to the management unit is greater than a first strictly positive predetermined deviation and the second operating mode being occupied if the difference between the value determined by the measurement sensor and the setpoint temperature known to the management unit is less than a second predetermined negative or zero deviation.
- the management unit varies the heating apparatus, by controlling the switching elements, between a third operating mode where the second connecting elements occupy a closed circuit configuration and a fourth. operating mode where the second link elements occupy an open circuit configuration, the third operating mode being occupied if the value determined by the characterization element is less than or equal to a first predetermined threshold known to the management unit and the fourth operating mode being occupied as soon as the value determined by the characterization element is greater than or equal to a second predetermined threshold known to the management unit and strictly greater than the first predetermined threshold.
- the management unit causes the heater to occupy, by controlling the switching elements, a fifth operating mode where the third connecting elements occupy a closed circuit configuration if the value determined by the characterization element is greater than or equal to a third predetermined threshold known to the management unit.
- the management unit controls the voltage converter such that the direct electric voltage delivered at the output of the voltage converter varies as a function of the power to be delivered by the calculated heating member. by the management unit.
- the voltage converter comprises heat sinks producing a second flow of calories with the calories generated by the voltage converter and the second flow is mixed with the first flow of calories generated by the control unit. heated.
- an electrical installation comprising an electrical power source and at least one such heating device, the voltage converter input connection elements of which are connected to the electrical power source, in which the source d 'power supply delivers a continuous electric voltage and includes all or some of the elements following: photovoltaic panels, a fuel cell, a supercapacitor, a battery based on an assembly of electrochemical cells.
- the invention relates essentially to a heating device 10 of the electric radiator type, comprising a box 11 housing a heating member 12 producing a first flow of calories F1 when an input 121 of the member heater 12 is supplied by a direct electric voltage.
- the heating member 12 may in particular comprise at least one radiating body and / or at least one device for heating by heat transfer fluid.
- the invention also relates to an electrical installation comprising an electrical power source 13 and at least one such heating device 10.
- the electrical power source 13 may be of the type. delivering an alternating electric voltage, or, even more advantageously, being of the type delivering a direct electric voltage.
- the heating apparatus 10 comprises a voltage converter 14 installed in the box 11 and comprising an input 141 provided with connection elements making it possible to electrically connect the voltage converter 14 to the electrical power source 13 and an output 142 delivering a direct electric voltage capable of directly or indirectly supplying the input 121 of the heating member 12.
- the voltage converter 14 makes it possible to transform the input current coming from the source 13 into a direct output current which can be used directly under this form by the components that the voltage converter 14 is intended to supply with energy.
- the nature of the voltage converter 14 is directly linked to that of the electric power source 13 to which it is intended to be connected.
- the voltage converter 14 can be configured so as to be able to deliver, at its output 142, the direct electric voltage by converting a direct electric voltage applied to the input 141 of the voltage converter 14 by the electric power source 13 when the voltage converter 14 is connected to the latter .
- the electric power source 13 is of the type delivering a direct electric voltage
- the voltage converter 14 may be of the DC / DC type.
- the voltage converter 14 is configured so as to be able to deliver, at its output 142, the direct electric voltage by converting an alternating electric voltage applied to the input 141 of the voltage converter 14 by the electrical power source 13 when the voltage converter 14 is connected thereto.
- the electric power source 13 is of the type delivering an alternating electric voltage
- the voltage converter 14 may be of the AC / DC type.
- the voltage converter 14 can for example comprise a switching power supply or several switching power supplies in parallel, or more simply at least one chopper, in order to allow the conversion of an alternating current into a direct current directly exploitable by the components that the output 142 of the voltage converter 14 is intended to supply electrical energy.
- the heating apparatus 10 comprises an electrical energy storage device 15 operating under a direct electric current, having an input 151 intended to be supplied by a direct current and an output 152 delivering another current. continued.
- the storage device 15 makes it possible to store the energy used by the heater 10, with a view to spacing out the consumption of electricity over time. It makes it possible in particular to store electrical energy when it is available, in particular when its cost of obtaining is judged to be economical.
- the electrical energy storage device 15 comprises a battery based on an assembly of electrochemical cells and / or a supercapacitor and / or a fuel cell.
- the heating apparatus 10 comprises first connecting elements 16 for connecting the output 142 of the converter. voltage 14 with the input 121 of the heater 12 and able to apply the DC voltage delivered at the output 142 of the voltage converter 14 to the input 121 of the heater 12.
- the heating apparatus 10 comprises second connecting elements 17 to connect the output 142 of the converter. voltage 14 with the input 151 of the electric energy storage device 15 and able to apply the direct electric voltage delivered at the output 142 of the voltage converter 14 to the input 151 of the electric energy storage device 15.
- the heating device 10 comprises third connecting elements 18 for connecting the output 152 of the electrical energy storage device 15 with the input 121 of the heating member 12 and able to apply the direct current delivered by the output 152 of the electric energy storage device 15 to the input 121 of the heater 12.
- first connecting elements 16, the second connecting elements 17 and the third connecting elements 18 is not limiting in itself since it allows them to be adapted to the functions assigned to them presented above. .
- the heater 10 includes switching elements (not shown as such) to vary the first link elements 16 between an open circuit or closed circuit configuration, to vary the second link elements. 17 between an open circuit or closed circuit configuration, and to vary the third connecting elements 18 between an open circuit or closed circuit configuration.
- the heating device 10 also comprises a management unit 19 housed in the box 11 and controlling the heating member 12 via the control links 20 (wired or not).
- the management unit 19 can also control the switching elements mentioned in the previous paragraph.
- the management unit 19 can also ensure the control of the voltage converter 14 via the control links 21 (wired or not) and / or the control of the electrical energy storage device 15 via the control links 22 (wired or no).
- the management unit 19 controls the voltage converter 14 such that the direct electric voltage delivered to the output 142 of the voltage converter 14 varies as a function of the power to be delivered by the heating member 12 calculated by l 'management unit 19.
- a control strategy will be considered and facilitated when the voltage converter 14 comprises a plurality of switching power supplies in parallel. It is therefore possible to vary the power delivered by the heater 12 in a simple and economical manner, without having to resort to a complex electronic solution.
- the direct voltage delivered by the voltage converter 14 is dependent on the voltage required for the heating member 12 or for the storage device 15.
- a voltage converter 14 of the switching power supply or chopper type also makes it possible to avoid redundancy between the direct current supplies of the various electronic components incorporated in the heating device 10 (business card, sensors, display , etc .). On the contrary, the voltage converter 14 makes it possible to supply all the electronic components with direct current. This results in simplicity of design, limited cost and better robustness.
- the output 142 of the voltage converter 14 is also connected to an input of the management unit 19 in order to supply it with electrical energy.
- the heater 10 also comprises a measurement sensor 23 capable of measuring the temperature outside the housing 11 and transmission elements 24 making it possible to address the value determined by the measurement sensor 23 to an input 191 of management unit 19.
- the heating apparatus 10 also comprises a characterization element 25 making it possible to characterize the state of charge of the electrical energy storage device 15 and transmission elements 26 making it possible to address the value determined by the characterization element 25. to an input 192 of the management unit 19.
- the management unit 19 provides control of the switching elements according to a predetermined strategy algorithm recorded in a memory of the management unit 19, as a function of the value determined by the measurement sensor 23 and sent to the input 191 of the management unit 191 via the first transmission elements 24 and as a function of the value determined by the characterization element 25 and addressed to the input 192 of the management unit 19 via the second transmission elements 26.
- the strategy algorithm makes it possible to choose the best conditions for choosing the operation of the heating element 12, the direct charging of the storage device 15 with direct current or the discharge of the storage device 15 through the heating element 12. suitable for direct current.
- the value of the first predetermined deviation is typically between 1 and 3 °, for example equal to 2 °.
- the first operating mode is adopted if the temperature measured by the temperature sensor 23 is at least two degrees higher than the set temperature, which has the effect of stopping the operation. of the heating element 12.
- the value of the second predetermined difference is typically between -1 and 0, for example equal to 0.
- the second operating mode is adopted if the temperature measured by the temperature sensor 23 is less than or equal to the setpoint temperature, which has the effect of starting the heating of the room by the heating element 12.
- the management unit 19 causes the heater 10 to occupy, by controlling the switching elements, a fifth mode operation where the third link elements 18 occupy a closed circuit configuration if the value determined by the characterization element 25 is greater than or equal to a third predetermined threshold known to the management unit 19.
- the third predetermined threshold is between the first predetermined threshold and the second predetermined threshold.
- the first predetermined threshold is equal to 0.15 for example.
- the third operating mode is adopted if the state of charge of the storage device 15 is less than 15%, which has the effect of starting the charging of the storage device 15 in order to avoid an excessive discharge liable to degrade the storage device 15.
- the adoption of the third operating mode may possibly be conditioned on the presence of inexpensive energy from the source 13.
- the second predetermined threshold is itself typically greater than 0.9, for example equal to 0.95.
- the fourth operating mode is adopted if the state of charge of the storage device 15 is greater than 95%, which has the effect of stopping the charging of the storage device 15 in order to avoid excessive charge and overload. premature wear.
- the third predetermined threshold is for its part typically between 0.4 and 0.6, for example equal to 0.5.
- the fifth operating mode is adopted if the state of charge of the storage device 15 is greater than 50% for example, which has the effect of starting the electrical supply to the heating member 12 from the device. storage 15.
- the adoption of the fifth operating mode can optionally be conditioned on the absence of inexpensive energy from the source 13.
- first mode of operation does not confer to these no property of priority of one over the other and no property of exclusion of one by compared to each other.
- second mode of operation does not confer to these no property of priority of one over the other and no property of exclusion of one by compared to each other.
- fourth mode of operation does not confer to these no property of priority of one over the other and no property of exclusion of one by compared to each other.
- state of charge refers to a quantity fully known to those skilled in the art, known as the “state of charge” according to the appropriate Anglo-Saxon terminology. There are many, many ways to assess this state of charge, not limiting here.
- the voltage converter 14 comprises heat sinks producing a second flow of calories F2 with the calories generated by the voltage converter 14.
- the internal organization of the heating device 10 is such that the second flow F2 is mixed with the first flow of calories F1 generated by the heating member 12.
- the second flow F2 serves both for rapid preheating of the other components and makes it possible, by virtue of its mixing with the first flow F1, to optimize the energy yield of the electrical apparatus 10 by preventing the heat produced by the voltage converter 14 from being lost or even annoying.
- the heat given off by the voltage converter 14 for the transformation of the input current into direct current is used for the heating of the components and the generation of heat by the apparatus 10 to avoid losses in efficiency.
- the connection elements of the input 141 of the voltage converter 14 are connected to the electric power supply source 13.
- the electric power supply source 13 delivers a direct electric voltage and includes all or part of the following elements: photovoltaic panels, a fuel cell, a supercapacitor, a battery based on an assembly of electrochemical cells. This makes it possible to optimize the general efficiency of the heating apparatus 10 and of the electrical installation while avoiding losses conventionally due to conversions from an alternating current to a direct current.
- the heater 10 can be used directly by powering it from a direct current source, which is a current trend especially because of the development of renewable energies.
- the box 11 can include a rear part 111 comprising fixing means 18 making it possible to fix the box 11 to a wall, for example a vertical wall such as a wall, and a front guard 112 allowing the radiation of the flows F1 and F2 towards the outside of the box 11.
- the rear part 111 has a thickness substantially equal to the total thickness of the housing 11 and the front guardrail 112 closes the case 11 at the front peripheral contour of the rear part 111.
- the rear part 111 has a thickness less than the total thickness of the box 11 and the box 11 also comprises a front part 113 supporting the front guard 112 in its front zone and coming, in its rear zone, to close the box 11 at the level of the front peripheral contour of the rear part 111.
- the storage device 15 is located above the voltage converter 14 and this first assembly is offset rearwardly relative to a second assembly formed by the heating member 12 and the control unit.
- management 19 arranged side by side.
- a thermally insulating wall 27 separates the first assembly and the second assembly, depending on the thickness of the case 11, only at the level of the storage device 15. On the contrary, the insulating wall 27 is not arranged between the voltage converter 14 and the second set. The result is that the calories generated by the voltage converter 14 during the voltage conversion come to mix with the calories generated by the heating member 12 and allow cold to preheat at least the management unit 19, the control device. storage 15 and the heater 12.
- a heating device 10 operating with direct current and incorporating the voltage converter 14 makes it possible to choose the voltage upstream and inside the heating device 10.
- the heating device 10 makes it possible to control the type of electricity and to choose the nature of the power source 13 and the type of heating member 12 and consequently makes it possible to participate in the integration of the sources of electricity. '' renewable energies on the electricity grid by avoiding transformation losses into alternating current.
- the heater 10 makes it possible to be directly usable by power supply via a direct voltage source, without the need for conversion into alternating current, avoiding the losses which would result therefrom.
- This solution can be integrated into intelligent networks known as “smart grids” to allow storage in optimal conditions of energies from direct voltage sources on the electricity network.
- the management unit 19 of the heater 10 can be controlled subsequently to the events of the domestic network or the national network to compensate for the following cases encountered in “smart grids”: production in excess of demand, demand in excess of the production and withdrawal of reactive power.
- the storage device 15 can consume energy on the domestic or national network for its local storage.
- the storage device 15 can supply energy to the domestic or national network.
- the storage device 15 can be used, with the appropriate voltage and phase parameters, to increase the power factor and / or reduce the harmonic pollution of the network.
- solar energy sources, fuel cells, supercapacitors and electrochemical batteries are direct voltage sources which could be an energy source connected to the heater 10 and these sources having levels of.
- DC voltage the voltage converter 14 of the DC / DC type will allow use in the heater 10 under optimum conditions.
- this solution can be integrated into positive energy homes to allow in situ storage of renewable energies from the production of positive energy homes.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Secondary Cells (AREA)
- Fuel Cell (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Stoves And Ranges (AREA)
- Control Of Resistance Heating (AREA)
- Dc-Dc Converters (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Air-Conditioning For Vehicles (AREA)
Description
La présente invention concerne un appareil de chauffage de type radiateur électrique, comprenant un boitier logeant un organe de chauffe produisant un premier flux de calories lorsqu'une entrée de l'organe de chauffe est alimentée par une tension électrique.The present invention relates to a heating device of the electric radiator type, comprising a box housing a heating member producing a first flow of calories when an input of the heating member is supplied by an electric voltage.
L'invention concerne aussi une installation électrique comprenant une source d'alimentation électrique et au moins un tel appareil de chauffage.The invention also relates to an electrical installation comprising an electrical power source and at least one such heating device.
Classiquement, la source d'alimentation électrique à laquelle l'appareil de chauffage est raccordé délivre une tension électrique alternative et tous les composants de l'appareil de chauffage sont adaptés en conséquence. Classiquement, cette source d'alimentation est constituée par le réseau électrique local.Conventionally, the electric power source to which the heater is connected delivers an alternating electric voltage and all the components of the heater are adapted accordingly. Conventionally, this power source is formed by the local electrical network.
Dans certains appareils de chauffage, il est également connu d'intégrer un parc de batteries associé à l'organe de chauffe. Ce parc de batteries permet de stocker de l'énergie utilisée par l'appareil de chauffage, en vue d'espacer la consommation d'électricité dans le temps.In certain heating devices, it is also known practice to integrate a bank of batteries associated with the heating member. This bank of batteries makes it possible to store the energy used by the heating device, with a view to spacing out electricity consumption over time.
Toutefois, ces appareils de chauffage connus ne donnent pas encore une entière satisfaction.However, these known heating devices do not yet give complete satisfaction.
En effet, ils confèrent une très grande limitation quant à la nature de la source d'alimentation électrique, excluant les possibilités de fonctionnement via une source d'énergie électrique délivrant une tension électrique continue telle qu'un équipement photovoltaïque, une pile à combustible, une supercapacité ou une batterie à base de cellules électrochimiques, sauf à engendrer des pertes de rendement qui sont rédhibitoires.Indeed, they confer a very great limitation as to the nature of the electric power source, excluding the possibilities of operation via an electric energy source delivering a direct electric voltage such as a photovoltaic equipment, a fuel cell, a supercapacitor or a battery based on electrochemical cells, except to generate yield losses which are prohibitive.
Il est rappelé que la conversion d'une tension continue en une tension alternative et la conversion inverse induisent des pertes de rendement très conséquentes.It is recalled that the conversion of a direct voltage into an alternating voltage and the reverse conversion induce very substantial losses in efficiency.
Or, il est connu que la tendance actuelle favorise les énergies renouvelables qui, la plupart du temps, délivrent une tension électrique continue.However, it is known that the current trend favors renewable energies which, most of the time, deliver a continuous electric voltage.
La présente invention vise à résoudre tout ou partie des inconvénients listés ci-dessus.The present invention aims to resolve all or part of the drawbacks listed above.
Dans ce contexte, il existe un besoin de fournir un appareil de chauffage simple, économique, fiable, ayant un rendement élevé et dont l'utilisation dans le cadre de sources d'alimentation en énergie électrique continue est nettement facilitée tout en améliorant les rendements globaux.In this context, there is a need to provide a simple, economical, reliable heating apparatus having a high efficiency and the use of which in the context of continuous electric power supply sources is clearly facilitated while improving the overall efficiencies. .
A cet effet, il est proposé un appareil de chauffage de type radiateur électrique, comprenant:
- un boitier logeant un organe de chauffe produisant un premier flux de calories lorsqu'une entrée de l'organe de chauffe est alimentée par une tension électrique continue,
- un convertisseur de tension implanté dans le boitier et comprenant une entrée munie d'éléments de raccordement pour raccorder le convertisseur de tension à une source d'alimentation électrique et une sortie délivrant une tension électrique continue apte à alimenter directement ou indirectement l'entrée de l'organe de chauffe, un dispositif de stockage d'énergie électrique fonctionnant sous un courant électrique continu, ayant une entrée destinée à être alimentée par un courant continu et une sortie délivrant un courant continu, le dispositif de stockage d'énergie électrique comprenant une batterie à base d'un assemblage de cellules électrochimiques et/ou un supercondensateur et/ou une pile à combustible,
- une unité de gestion logée dans le boitier et pilotant au moins l'organe de chauffe,
- des premiers éléments de liaison pour relier la sortie du convertisseur de tension avec l'entrée de l'organe de chauffe et aptes à appliquer la tension électrique continue délivrée en sortie du convertisseur de tension à l'entrée de l'organe de chauffe,
- des deuxièmes éléments de liaison pour relier la sortie du convertisseur de tension avec l'entrée du dispositif de stockage d'énergie électrique et aptes à appliquer la tension électrique continue délivrée en sortie du convertisseur de tension à l'entrée du dispositif de stockage d'énergie électrique,
- des troisièmes éléments de liaison pour relier la sortie du dispositif de stockage d'énergie électrique avec l'entrée de l'organe de chauffe et aptes à appliquer le courant continu délivré par la sortie du dispositif de stockage d'énergie électrique à l'entrée de l'organe de chauffe,
- des éléments de commutation pour faire varier les premiers éléments de liaison entre une configuration de circuit ouvert ou de circuit fermé, pour faire varier les deuxièmes éléments de liaison entre une configuration de circuit ouvert ou de circuit fermé, et pour faire varier les troisièmes éléments de liaison entre une configuration de circuit ouvert ou de circuit fermé,
- un élément de caractérisation permettant de caractériser l'état de charge du dispositif de stockage d'énergie électrique,
- des éléments de transmission permettant d'adresser la valeur déterminée par l'élément de caractérisation à une entrée de l'unité de gestion, - un capteur de mesure de la température à l'extérieur du boitier, et
- des éléments de transmission permettant d'adresser la valeur déterminée par le capteur de mesure à une entrée de l'unité de gestion; l'unité de gestion assurant un pilotage des éléments de commutation selon un algorithme de stratégie prédéterminé enregistré dans une mémoire de l'unité de gestion, en fonction de la valeur déterminée par le capteur de mesure et adressée à l'entrée de l'unité de gestion et en fonction de la valeur déterminée par l'élément de caractérisation et adressée à l'entrée de l'unité de gestion.
Selon un autre mode de réalisation particulier, le convertisseur de tension est configuré de sorte à pouvoir délivrer, à sa sortie, ladite tension électrique continue par conversion d'une tension électrique alternative appliquée à l'entrée du convertisseur de tension par la source d'alimentation électrique lorsque le convertisseur de tension est raccordé à celle-ci.For this purpose, a heating device of the electric radiator type is proposed, comprising:
- a box housing a heating member producing a first flow of calories when an input of the heating member is supplied by a direct electric voltage,
- a voltage converter installed in the box and comprising an input provided with connection elements for connecting the voltage converter to an electrical power source and an output delivering a continuous electrical voltage capable of directly or indirectly supplying the input of the heater, an electrical energy storage device operating under a direct current, having an input intended to be supplied by a direct current and an output delivering a direct current, the electrical energy storage device comprising a battery based on an assembly of electrochemical cells and / or a supercapacitor and / or a fuel cell,
- a management unit housed in the box and controlling at least the heating element,
- first connecting elements for connecting the output of the voltage converter with the input of the heating member and able to apply the direct electric voltage delivered at the output of the voltage converter to the input of the heating member,
- second connecting elements for connecting the output of the voltage converter with the input of the electrical energy storage device and able to apply the DC electrical voltage delivered at the output of the voltage converter to the input of the storage device of electric energy,
- third connecting elements for connecting the output of the electrical energy storage device with the input of the heating member and able to apply the direct current delivered by the output of the electrical energy storage device to the input the heating element,
- switching elements for varying the first link elements between an open circuit or closed circuit configuration, for varying the second link elements between an open circuit or closed circuit configuration, and for varying the third link elements link between an open circuit or closed circuit configuration,
- a characterization element making it possible to characterize the state of charge of the electrical energy storage device,
- transmission elements making it possible to address the value determined by the characterization element to an input of the management unit, - a sensor for measuring the temperature outside the box, and
- transmission elements making it possible to address the value determined by the measurement sensor to an input of the management unit; the management unit providing control of the switching elements according to a predetermined strategy algorithm recorded in a memory of the management unit, as a function of the value determined by the measurement sensor and sent to the input of the unit management and as a function of the value determined by the characterization element and sent to the input of the management unit.
According to another particular embodiment, the voltage converter is configured so as to be able to deliver, at its output, said direct electric voltage by converting an alternating electric voltage applied to the input of the voltage converter by the source of. power supply when the voltage converter is connected to it.
Selon encore un autre mode de réalisation particulier, l'unité de gestion fait varier l'appareil de chauffage, par pilotage des éléments de commutation, entre un premier mode de fonctionnement où les premiers éléments de liaison et/ou les troisièmes éléments de liaison occupent une configuration de circuit ouvert et un deuxième mode de fonctionnement où les premiers éléments de liaison et/ou les troisièmes éléments de liaison occupent une configuration de circuit fermé, le premier mode de fonctionnement étant occupé si la différence entre la valeur déterminée par le capteur de mesure et une température de consigne connue de l'unité de gestion est supérieure à un premier écart prédéterminé strictement positif et le deuxième mode de fonctionnement étant occupé si la différence entre la valeur déterminée par le capteur de mesure et la température de consigne connue de l'unité de gestion est inférieure à un deuxième écart prédéterminé négatif ou nul.According to yet another particular embodiment, the management unit varies the heating apparatus, by controlling the switching elements, between a first operating mode where the first connecting elements and / or the third connecting elements occupy an open circuit configuration and a second operating mode where the first link elements and / or the third link elements occupy a closed circuit configuration, the first operating mode being occupied if the difference between the value determined by the measurement sensor and a setpoint temperature known to the management unit is greater than a first strictly positive predetermined deviation and the second operating mode being occupied if the difference between the value determined by the measurement sensor and the setpoint temperature known to the management unit is less than a second predetermined negative or zero deviation.
Selon encore un autre mode de réalisation particulier, l'unité de gestion fait varier l'appareil de chauffage, par pilotage des éléments de commutation, entre un troisième mode de fonctionnement où les deuxièmes éléments de liaison occupent une configuration de circuit fermé et un quatrième mode de fonctionnement où les deuxièmes éléments de liaison occupent une configuration de circuit ouvert, le troisième mode de fonctionnement étant occupé si la valeur déterminée par l'élément de caractérisation est inférieure ou égale à un premier seuil prédéterminé connu de l'unité de gestion et le quatrième mode de fonctionnement étant occupé dès que la valeur déterminée par l'élément de caractérisation est supérieure ou égale à un deuxième seuil prédéterminé connu de l'unité de gestion et strictement supérieur au premier seuil prédéterminé.According to yet another particular embodiment, the management unit varies the heating apparatus, by controlling the switching elements, between a third operating mode where the second connecting elements occupy a closed circuit configuration and a fourth. operating mode where the second link elements occupy an open circuit configuration, the third operating mode being occupied if the value determined by the characterization element is less than or equal to a first predetermined threshold known to the management unit and the fourth operating mode being occupied as soon as the value determined by the characterization element is greater than or equal to a second predetermined threshold known to the management unit and strictly greater than the first predetermined threshold.
Selon encore un autre mode de réalisation particulier, l'unité de gestion fait occuper à l'appareil de chauffage, par pilotage des éléments de commutation, un cinquième mode de fonctionnement où les troisièmes éléments de liaison occupent une configuration de circuit fermé si la valeur déterminée par l'élément de caractérisation est supérieure ou égale à un troisième seuil prédéterminé connu de l'unité de gestion.According to yet another particular embodiment, the management unit causes the heater to occupy, by controlling the switching elements, a fifth operating mode where the third connecting elements occupy a closed circuit configuration if the value determined by the characterization element is greater than or equal to a third predetermined threshold known to the management unit.
Selon encore un autre mode de réalisation particulier, l'unité de gestion assure un pilotage du convertisseur de tension tel que la tension électrique continue délivrée à la sortie du convertisseur de tension varie en fonction de la puissance à délivrer par l'organe de chauffe calculée par l'unité de gestion.According to yet another particular embodiment, the management unit controls the voltage converter such that the direct electric voltage delivered at the output of the voltage converter varies as a function of the power to be delivered by the calculated heating member. by the management unit.
Selon encore un autre mode de réalisation particulier, le convertisseur de tension comprend des dissipateurs thermiques produisant un deuxième flux de calories avec les calories générées par le convertisseur de tension et le deuxième flux est mélangé avec le premier flux de calories généré par l'organe de chauffe.According to yet another particular embodiment, the voltage converter comprises heat sinks producing a second flow of calories with the calories generated by the voltage converter and the second flow is mixed with the first flow of calories generated by the control unit. heated.
Il est également proposé une installation électrique comprenant une source d'alimentation électrique et au moins un tel appareil de chauffage dont les éléments de raccordement de l'entrée du convertisseur de tension sont raccordés à la source d'alimentation électrique, dans laquelle la source d'alimentation électrique délivre une tension électrique continue et comprend tout ou partie des éléments suivants : des panneaux photovoltaïques, une pile à combustible, une supercapacité, une batterie à base d'un assemblage de cellules électrochimiques.There is also proposed an electrical installation comprising an electrical power source and at least one such heating device, the voltage converter input connection elements of which are connected to the electrical power source, in which the source d 'power supply delivers a continuous electric voltage and includes all or some of the elements following: photovoltaic panels, a fuel cell, a supercapacitor, a battery based on an assembly of electrochemical cells.
L'invention sera bien comprise à l'aide de la description qui suit de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés sur les dessins annexés, dans lesquels :
- La
Figure 1 est une vue schématique des composants d'un exemple d'appareil de chauffage selon l'invention. - Les
Figures 2 et3 illustrent deux exemples de réalisation de l'appareil de chauffage de laFigure 1 .
- The
Figure 1 is a schematic view of the components of an example of a heating device according to the invention. - The
Figures 2 and3 illustrate two embodiments of the heater of theFigure 1 .
En référence aux
L'organe de chauffe 12 peut notamment comprendre au moins un corps rayonnant et/ou au moins un dispositif de chauffage par fluide caloporteur.The
L'invention concerne aussi une installation électrique comprenant une source d'alimentation électrique 13 et au moins un tel appareil de chauffage 10. Comme il le sera compris d'après les explications qui suivront, la source d'alimentation électrique 13 peut être du type délivrant une tension électrique alternative, ou, encore plus avantageusement, être du type délivrant une tension électrique continue.The invention also relates to an electrical installation comprising an
L'appareil de chauffage 10 comprend un convertisseur de tension 14 implanté dans le boitier 11 et comprenant une entrée 141 munie d'éléments de raccordement permettant de raccorder électriquement le convertisseur de tension 14 à la source d'alimentation électrique 13 et une sortie 142 délivrant une tension électrique continue apte à alimenter directement ou indirectement l'entrée 121 de l'organe de chauffe 12. Le convertisseur de tension 14 permet de transformer le courant d'entrée en provenance de la source 13 en un courant de sortie continu directement utilisable sous cette forme par les composants que le convertisseur de tension 14 est destiné à alimenter en énergie.The
La nature du convertisseur de tension 14 est directement liée à celle de la source d'alimentation électrique 13 à laquelle il est destiné à être raccordé. Notamment, le convertisseur de tension 14 peut être configuré de sorte à pouvoir délivrer, à sa sortie 142, la tension électrique continue par conversion d'une tension électrique continue appliquée à l'entrée 141 du convertisseur de tension 14 par la source d'alimentation électrique 13 lorsque le convertisseur de tension 14 est raccordé à celle-ci. Ainsi, si la source d'alimentation électrique 13 est du type délivrant une tension électrique continue, alors le convertisseur de tension 14 pourra être de type DC/DC. Alternativement, il reste toutefois envisagé que le convertisseur de tension 14 soit configuré de sorte à pouvoir délivrer, à sa sortie 142, la tension électrique continue par conversion d'une tension électrique alternative appliquée à l'entrée 141 du convertisseur de tension 14 par la source d'alimentation électrique 13 lorsque le convertisseur de tension 14 est raccordé à celle-ci. Ainsi, si la source d'alimentation électrique 13 est du type délivrant une tension électrique alternative, alors le convertisseur de tension 14 pourra être de type AC/DC.The nature of the
Le convertisseur de tension 14 peut par exemple comprendre une alimentation à découpage ou plusieurs alimentations à découpage en parallèle, ou plus simplement au moins un hacheur, afin de permettre la conversion d'un courant alternatif en un courant continu directement exploitable par les composants que la sortie 142 du convertisseur de tension 14 est destinée à alimenter en énergie électrique.The
Selon un mode de réalisation avantageux, l'appareil de chauffage 10 comprend un dispositif de stockage d'énergie électrique 15 fonctionnant sous un courant électrique continu, ayant une entrée 151 destinée à être alimentée par un courant continu et une sortie 152 délivrant un autre courant continu. Le dispositif de stockage 15 permet de stocker de l'énergie utilisée par l'appareil de chauffage 10, en vue d'espacer la consommation d'électricité dans le temps. Il permet en particulier de stocker de l'énergie électrique lorsque celle-ci est disponible, notamment lorsque son coût d'obtention est jugé économique.According to an advantageous embodiment, the
A titre d'exemple, le dispositif de stockage d'énergie électrique 15 comprend une batterie à base d'un assemblage de cellules électrochimiques et/ou un supercondensateur et/ou une pile à combustible.By way of example, the electrical
Par ailleurs, afin de pouvoir réaliser une alimentation directe de l'organe de chauffe 12 en énergie électrique par la sortie 142 du convertisseur de tension 14, l'appareil de chauffage 10 comprend des premiers éléments de liaison 16 pour relier la sortie 142 du convertisseur de tension 14 avec l'entrée 121 de l'organe de chauffe 12 et aptes à appliquer la tension électrique continue délivrée en sortie 142 du convertisseur de tension 14 à l'entrée 121 de l'organe de chauffe 12.Furthermore, in order to be able to provide a direct supply of the
En parallèle, afin de pouvoir réaliser une alimentation indirecte de l'organe de chauffe 12 en énergie électrique par la sortie 142 du convertisseur de tension 14, l'appareil de chauffage 10 comprend des deuxièmes éléments de liaison 17 pour relier la sortie 142 du convertisseur de tension 14 avec l'entrée 151 du dispositif de stockage d'énergie électrique 15 et aptes à appliquer la tension électrique continue délivrée en sortie 142 du convertisseur de tension 14 à l'entrée 151 du dispositif de stockage d'énergie électrique 15. En complément, l'appareil de chauffage 10 comprend des troisièmes éléments de liaison 18 pour relier la sortie 152 du dispositif de stockage d'énergie électrique 15 avec l'entrée 121 de l'organe de chauffe 12 et aptes à appliquer le courant continu délivré par la sortie 152 du dispositif de stockage d'énergie électrique 15 à l'entrée 121 de l'organe de chauffe 12.In parallel, in order to be able to supply the
La nature des premiers éléments de liaison 16, des deuxièmes éléments de liaison 17 et des troisième éléments de liaison 18 n'est pas limitative en soi dès lors qu'elle leur permet d'être adaptés aux fonctions qui leur sont attribuées présentées ci-avant.The nature of the first connecting
En outre, l'appareil de chauffage 10 comprend des éléments de commutation (non représentés en tant que tels) pour faire varier les premiers éléments de liaison 16 entre une configuration de circuit ouvert ou de circuit fermé, pour faire varier les deuxièmes éléments de liaison 17 entre une configuration de circuit ouvert ou de circuit fermé, et pour faire varier les troisièmes éléments de liaison 18 entre une configuration de circuit ouvert ou de circuit fermé.Further, the
L'appareil de chauffage 10 comprend également une unité de gestion 19 logée dans le boitier 11 et pilotant l'organe de chauffe 12 via les liaisons de commande 20 (filaires ou non). L'unité de gestion 19 peut également assurer le pilotage des éléments de commutation évoqués au paragraphe précédent.The
L'unité de gestion 19 peut également assurer le pilotage du convertisseur de tension 14 via les liaisons de commande 21 (filaires ou non) et/ou le pilotage du dispositif de stockage d'énergie électrique 15 via les liaisons de commande 22 (filaires ou non).The
Notamment, l'unité de gestion 19 assure un pilotage du convertisseur de tension 14 tel que la tension électrique continue délivrée à la sortie 142 du convertisseur de tension 14 varie en fonction de la puissance à délivrer par l'organe de chauffe 12 calculée par l'unité de gestion 19. En particulier, une telle stratégie de pilotage sera envisagée et facilitée lorsque le convertisseur de tension 14 comprend une pluralité d'alimentation à découpage en parallèle. Il est donc possible de varier la puissance délivrée par l'organe de chauffe 12 de manière simple et économique, sans avoir recours à une solution électronique complexe.In particular, the
Ainsi, la tension continue délivrée par le convertisseur de tension 14 est dépendante de la tension nécessaire à l'organe de chauffe 12 ou au dispositif de stockage 15.Thus, the direct voltage delivered by the
L'utilisation d'un convertisseur de tension 14 de type alimentation à découpage ou hacheur permet en outre d'éviter la redondance entre les fournitures en courant continu des différentes composants électroniques incorporés dans l'appareil de chauffage 10 (carte métier, capteurs, affichage, etc....). Au contraire, le convertisseur de tension 14 permet d'alimenter en courant continu l'ensemble des composants électroniques. Il en résulte une simplicité de conception, un coût limité, une meilleure robustesse.The use of a
Il va de soi que la sortie 142 du convertisseur de tension 14 est également reliée à une entrée de l'unité de gestion 19 afin d'en assurer l'alimentation en énergie électrique.It goes without saying that the
Comme cela est représenté sur la
L'appareil de chauffage 10 comprend également un élément de caractérisation 25 permettant de caractériser l'état de charge du dispositif de stockage d'énergie électrique 15 et des éléments de transmission 26 permettant d'adresser la valeur déterminée par l'élément de caractérisation 25 à une entrée 192 de l'unité de gestion 19.The
Préférentiellement, l'unité de gestion 19 assure un pilotage des éléments de commutation selon un algorithme de stratégie prédéterminé enregistré dans une mémoire de l'unité de gestion 19, en fonction de la valeur déterminée par le capteur de mesure 23 et adressée à l'entrée 191 de l'unité de gestion 191 via les premiers éléments de transmission 24 et en fonction de la valeur déterminée par l'élément de caractérisation 25 et adressée à l'entrée 192 de l'unité de gestion 19 via les deuxièmes éléments de transmission 26.Preferably, the
L'algorithme de stratégie permet de choisir les meilleures conditions pour choisir le fonctionnement de l'organe de chauffe 12, la charge directe du dispositif de stockage 15 en courant continu ou la décharge du dispositif de stockage 15 à travers l'organe de chauffe 12 adapté au courant continu.The strategy algorithm makes it possible to choose the best conditions for choosing the operation of the
Selon un mode de réalisation préférentiel, l'unité de gestion 19 fait varier l'appareil de chauffage 10, par pilotage des éléments de commutation, entre :
- un premier mode de fonctionnement où les premiers éléments de
liaison 16 et/ou les troisièmes éléments deliaison 18 occupent une configuration de circuit ouvert, le premier mode de fonctionnement étant occupé si la différence entre la valeur déterminée par le capteur de mesure 23 et une température de consigne connue de l'unité de gestion 19 est supérieure à un premier écart prédéterminé strictement positif, - et un deuxième mode de fonctionnement où les premiers éléments de
liaison 16 et/ou les troisièmes éléments deliaison 18 occupent une configuration de circuit fermé, le deuxième mode de fonctionnement étant occupé si la différence entre la valeur déterminée par le capteur de mesure 23 et la température de consigne connue de l'unité de gestion 19 est inférieure à un deuxième écart prédéterminé négatif ou nul.
- a first operating mode where the first connecting
elements 16 and / or the third connectingelements 18 occupy an open circuit configuration, the first operating mode being occupied if the difference between the value determined by themeasurement sensor 23 and a known setpoint temperature of themanagement unit 19 is greater than a first strictly positive predetermined deviation, - and a second operating mode where the first connecting
elements 16 and / or the third connectingelements 18 occupy a closed circuit configuration, the second operating mode being occupied if the difference between the value determined by themeasurement sensor 23 and the known setpoint temperature of themanagement unit 19 is less than a second predetermined negative or zero deviation.
La valeur du premier écart prédéterminé est typiquement comprise entre 1 et 3°, par exemple égal à 2°. Ainsi dans ce dernier exemple, le premier mode de fonctionnement est adopté si la température mesurée par le capteur de température 23 est supérieure d'au moins deux degrés au-delà de la température de consigne, ce qui a pour effet d'arrêter le fonctionnement de l'organe de chauffe 12.The value of the first predetermined deviation is typically between 1 and 3 °, for example equal to 2 °. Thus in this last example, the first operating mode is adopted if the temperature measured by the
La valeur du deuxième écart prédéterminé est typiquement comprise entre -1 et 0, par exemple égale à 0. Ainsi dans ce dernier exemple, le deuxième mode de fonctionnement est adopté si la température mesurée par le capteur de température 23 est inférieure ou égale à la température de consigne, ce qui a pour effet de débuter la chauffe de la pièce par l'organe de chauffe 12.The value of the second predetermined difference is typically between -1 and 0, for example equal to 0. Thus in this last example, the second operating mode is adopted if the temperature measured by the
Par ailleurs, en parallèle de ces stratégies de pilotage déjà décrites en relation avec les premier et deuxième modes de fonctionnement, l'unité de gestion 19 fait varier l'appareil de chauffage 10, par pilotage des éléments de commutation, entre :
- un troisième mode de fonctionnement où les deuxièmes éléments de
liaison 17 occupent une configuration de circuit fermé, le troisième mode de fonctionnement étant occupé si la valeur déterminée par l'élément de caractérisation 25 est inférieure ou égale à un premier seuil prédéterminé connu de l'unité de gestion 19, - et un quatrième mode de fonctionnement où les deuxièmes éléments de
liaison 17 occupent une configuration de circuit ouvert, le quatrième mode de fonctionnement étant occupé dès que la valeur déterminée par l'élément de caractérisation 25 est supérieure ou égale à un deuxième seuil prédéterminé connu de l'unité de gestion 19 et strictement supérieur au premier seuil prédéterminé.
- a third operating mode where the
second link elements 17 occupy a closed circuit configuration, the third operating mode being occupied if the value determined by thecharacterization element 25 is less than or equal to a first predetermined threshold known to themanagement unit 19, - and a fourth operating mode where the
second link elements 17 occupy an open circuit configuration, the fourth operating mode being occupied as soon as the value determined by the control element.characterization 25 is greater than or equal to a second predetermined threshold known to themanagement unit 19 and strictly greater than the first predetermined threshold.
En parallèle de ces stratégies de pilotage déjà décrites en relation avec les premier, deuxième, troisième et quatrième modes de fonctionnement, l'unité de gestion 19 fait occuper à l'appareil de chauffage 10, par pilotage des éléments de commutation, un cinquième mode de fonctionnement où les troisièmes éléments de liaison 18 occupent une configuration de circuit fermé si la valeur déterminée par l'élément de caractérisation 25 est supérieure ou égale à un troisième seuil prédéterminé connu de l'unité de gestion 19. Notamment, le troisième seuil prédéterminé est compris entre le premier seuil prédéterminé et le deuxième seuil prédéterminé.In parallel with these control strategies already described in relation to the first, second, third and fourth operating modes, the
Typiquement, le premier seuil prédéterminé est égal à 0,15 par exemple. Ainsi, le troisième mode de fonctionnement est adopté si l'état de charge du dispositif de stockage 15 est inférieur à 15%, ce qui a pour effet de faire débuter la charge du dispositif de stockage 15 afin d'éviter une décharge excessive susceptible de dégrader le dispositif de stockage 15. Alternativement ou en combinaison avec ce qui précède, l'adoption du troisième mode de fonctionnement peut éventuellement être conditionnée à la présence d'une énergie peu chère à partir de la source 13.Typically, the first predetermined threshold is equal to 0.15 for example. Thus, the third operating mode is adopted if the state of charge of the
Le deuxième seuil prédéterminé est quant à lui typiquement supérieur à 0,9, par exemple égal à 0,95. Ainsi, le quatrième mode de fonctionnement est adopté si l'état de charge du dispositif de stockage 15 est supérieur à 95%, ce qui a pour effet d'arrêter la charge du dispositif de stockage 15 afin d'éviter une charge excessive et une usure prématurée.The second predetermined threshold is itself typically greater than 0.9, for example equal to 0.95. Thus, the fourth operating mode is adopted if the state of charge of the
Le troisième seuil prédéterminé est quant à lui compris typiquement entre 0,4 et 0,6, par exemple égal à 0,5. Ainsi, le cinquième mode de fonctionnement est adopté si l'état de charge du dispositif de stockage 15 est supérieur à 50% par exemple, ce qui a pour effet de débuter l'alimentation électrique de l'organe de chauffe 12 à partir du dispositif de stockage 15. Alternativement ou en combinaison avec ce qui précède, l'adoption du cinquième mode de fonctionnement peut éventuellement être conditionnée à l'absence d'une énergie peu chère à partir de la source 13.The third predetermined threshold is for its part typically between 0.4 and 0.6, for example equal to 0.5. Thus, the fifth operating mode is adopted if the state of charge of the
Il doit bien être compris par le lecteur que l'utilisation des termes « premier mode de fonctionnement », « deuxième mode de fonctionnement », « troisième mode de fonctionnement », « quatrième mode de fonctionnement » et « cinquième mode de fonctionnement » ne confère à ceux-ci aucune propriété de priorité de l'un par rapport à l'autre et aucune propriété d'exclusion de l'un par rapport à l'autre. Au contraire, il est tout à fait possible de combiner différents modes de fonctionnement entre eux.It should be understood by the reader that the use of the terms "first mode of operation", "second mode of operation", "third mode of operation", "fourth mode of operation" and "fifth mode of operation" does not confer to these no property of priority of one over the other and no property of exclusion of one by compared to each other. On the contrary, it is quite possible to combine different operating modes with each other.
Le terme « état de charge » évoque une grandeur totalement connue de l'Homme du Métier, connue sous l'appellation « state of charge » selon la terminologie anglo-saxonne appropriée. Il existe de très nombreuses manières pour évaluer cet état de charge, n'apportant ici aucune limitation.The term “state of charge” refers to a quantity fully known to those skilled in the art, known as the “state of charge” according to the appropriate Anglo-Saxon terminology. There are many, many ways to assess this state of charge, not limiting here.
Avantageusement, le convertisseur de tension 14 comprend des dissipateurs thermiques produisant un deuxième flux de calories F2 avec les calories générées par le convertisseur de tension 14. L'organisation interne de l'appareil de chauffage 10 est telle que le deuxième flux F2 est mélangé avec le premier flux de calories F1 généré par l'organe de chauffe 12. Le deuxième flux F2 sert à la fois à un préchauffage rapide des autres composants et permet, de part son mélange avec le premier flux F1, d'optimiser le rendement énergétique de l'appareil électrique 10 en évitant que les calories produites par le convertisseur de tension 14 ne soient perdues voire gênantes. Autrement dit, la chaleur dégagée par le convertisseur de tension 14 pour la transformation du courant d'entrée en courant continu est utilisée pour le chauffage des composants et la génération de chaleur par l'appareil 10 pour éviter les pertes de rendement.Advantageously, the
Au sein de l'installation électrique maintenant, les éléments de raccordement de l'entrée 141 du convertisseur de tension 14 sont raccordés à la source d'alimentation électrique 13. Très préférentiellement, la source d'alimentation électrique 13 délivre une tension électrique continue et comprend tout ou partie des éléments suivants : des panneaux photovoltaïques, une pile à combustible, une supercapacité, une batterie à base d'un assemblage de cellules électrochimiques. Cela permet d'optimiser le rendement général de l'appareil de chauffage 10 et de l'installation électrique en évitant les pertes dues classiquement aux conversions d'un courant alternatif à un courant continu. En outre, l'appareil de chauffage 10 est directement utilisable par alimentation à partir d'une source de courant continu, qui est une tendance actuelle notamment en raison du développement de la part des énergies renouvelables.Within the electrical installation now, the connection elements of the
En référence aux
Au sein du boitier 11, le dispositif de stockage 15 est situé au-dessus du convertisseur de tension 14 et ce premier ensemble est décalé vers l'arrière par rapport à un deuxième ensemble formé par l'organe de chauffe 12 et l'unité de gestion 19 disposés côte-à-côte. Une paroi isolante thermiquement 27 sépare le premier ensemble et le deuxième ensemble, suivant l'épaisseur du boitier 11, uniquement au niveau du dispositif de stockage 15. Au contraire, la paroi isolante 27 n'est pas aménagée entre le convertisseur de tension 14 et le deuxième ensemble. Il en résulte que les calories générées par le convertisseur de tension 14 durant la conversion de tension viennent se mélanger avec les calories générées par l'organe de chauffe 12 et permettent à froid de préchauffer au moins l'unité de gestion 19, le dispositif de stockage 15 et l'organe de chauffe 12.Within the
Le fait de prévoir un appareil de chauffage 10 fonctionnant avec un courant continu et incorporant le convertisseur de tension 14 permet de choisir la tension en amont et à l'intérieur de l'appareil de chauffage 10. Avec les solutions connues à ce jour, il n'y a pas de possibilité d'utiliser et de contrôler directement une source de tension continue. Au contraire, l'appareil de chauffage 10 permet de contrôler le type d'électricité et de choisir la nature de la source d'alimentation 13 et le type d'organe de chauffe 12 et conséquemment permet de participer à l'intégration des sources d'énergies renouvelables sur le réseau électrique en évitant les pertes de transformation en courant alternatif. En effet, l'appareil de chauffage 10 permet d'être directement utilisable par alimentation via une source de tension continue, sans besoin de conversion en courant alternatif, évitant les pertes qui en résulteraient.The provision of a
Le passage de la tension d'entrée alternative ou continue en une tension continue via le convertisseur de tension 14, typiquement limitée entre 12 et 60 V, permet de limiter les problématiques de sécurité pour les personnes de manière efficace.The change from the AC or DC input voltage to a DC voltage via the
Outre les avantages qui ont été exposés précédemment, la solution objet de l'invention est simple, économique, fiable, présente un rendement élevé et son utilisation dans le cadre de sources d'alimentation en énergie électrique continue est nettement facilitée tout en améliorant les rendements globaux.In addition to the advantages which have been explained above, the solution which is the subject of the invention is simple, economical, reliable, has high efficiency and its Use as part of continuous electrical power supply sources is significantly facilitated while improving overall efficiencies.
Cette solution peut être intégrée au sein des réseaux intelligents dits « smart grids » pour permettre un stockage en conditions optimales des énergies de sources de tension continue sur le réseau électrique.This solution can be integrated into intelligent networks known as “smart grids” to allow storage in optimal conditions of energies from direct voltage sources on the electricity network.
Avantageusement, l'unité de gestion 19 de l'appareil de chauffage 10 peut être commandé subséquemment aux événements du réseau domestique ou du réseau national pour compenser les cas suivants rencontrés en « smart grids » : production en surplus par rapport à la demande, demande en surplus par rapport à la production et soutirage de puissance réactive.Advantageously, the
En cas de production supérieure à la demande, le dispositif de stockage 15 peut consommer de l'énergie sur le réseau domestique ou national en vue de son stockage local.In the event of production exceeding demand, the
En cas de demande supérieure à la production, le dispositif de stockage 15 peut fournir de l'énergie au réseau domestique ou national.In case of demand greater than production, the
En cas de soutirage de puissance réactive, le dispositif de stockage 15 peut être utilisé, avec les paramètres de tension et de phase adéquats, pour augmenter le facteur de puissance et/ou réduire la pollution harmonique du réseau.In the event of reactive power being drawn off, the
Par exemple, les sources d'énergie solaire, les piles à combustible, les supercapacités et les batteries électrochimiques sont des sources de tension continue qui pourront être une source d'énergie connectée à l'appareil de chauffage 10 et ces sources ayant des niveaux de tension continue élevés, le convertisseur de tension 14 de type DC/DC permettra une utilisation dans l'appareil de chauffage 10 dans des conditions optimales. Avantageusement, cette solution pourra être intégrée au sein des habitations à énergies positives pour permettre un stockage in situ des énergies renouvelables issues de la production de l'habitation à énergie positive.For example, solar energy sources, fuel cells, supercapacitors and electrochemical batteries are direct voltage sources which could be an energy source connected to the
Bien entendu, l'invention n'est pas limitée aux modes de réalisation représentés et décrits ci-avant, mais en couvre au contraire toutes les variantes.Of course, the invention is not limited to the embodiments shown and described above, but on the contrary covers all the variants thereof.
Claims (9)
- An electrical radiator type heating appliance (10), comprising:- a case (11) housing a heater member (12) producing a first flow of calories (F1) when an input (121) of the heater member (12) is powered by a direct electric voltage,- a voltage converter (14) implanted in the case (11) and comprising an input (141) provided with connection elements for connecting the voltage converter (14) to an electric power supply source (13) and an output (142) delivering a direct electric voltage adapted to directly or indirectly power the input (121) of the heater member (12),- an electrical energy storage device (15) operating under a direct electric current, having an input (151) intended to be powered by a direct current and an output (152) delivering a direct current, the electrical energy storage device (15) comprising an electrochemical cells assembly-based battery and/or a supercapacitor and/or a fuel cell,- a management unit (19) housed within the case (11) and controlling at least the heater member (12),- first linking elements (16) for linking the output (142) of the voltage converter (14) with the input (121) of the heater member (12) and adapted to apply the direct electric voltage delivered at the output (142) of the voltage converter (14) at the input (121) of the heater member (12),- second linking elements (17) for linking the output (142) of the voltage converter (14) with the input (151) of the electrical energy storage device (15) and adapted to apply the direct electric voltage delivered at the output (142) of the voltage converter (14) at the input (151) of the electrical energy storage device (15),- third linking elements (18) for linking the output (152) of the electrical energy storage device (15) with the input (121) of the heater member (12) and adapted to apply the direct current delivered by the output (152) of the electrical energy storage device (15) at the input (121) of the heater member (12),- switch elements for toggling the first linking elements (16) between an open circuit configuration or a closed circuit configuration, for toggling the second linking elements (17) between an open circuit configuration or a closed circuit configuration, and for toggling the third linking elements (18) between an open circuit configuration or a closed circuit configuration,- a characterization element (25) allowing characterizing the state-of-charge of the electrical energy storage device (15),- transmission elements (26) allowing addressing the value determined by the characterization element (25) to an input (192) of the management unit (19),- a measuring sensor (23) for measuring the temperature outside the case (11), and- transmission elements (24) allowing addressing the value determined by the measuring sensor (23) to an input (191) of the management unit (19);the heating appliance being characterized in that the management unit (19) ensures a control of the switch elements according to a predetermined strategy algorithm stored in a memory of the management unit (19), according to the value determined by the measuring sensor (23) and addressed to the management unit (19) and according to the value determined by the characterization element (25) and addressed to the management unit (19).
- The heating appliance (10) according to claim 1, characterized in that the voltage converter (14) is configured so as to be able to deliver, at its output (142), said direct electric voltage by converting a direct electric voltage applied at the input (141) of the voltage converter (14) by the electric power supply source (13) when the voltage converter (14) is connected thereto.
- The heating appliance (10) according to claim 1, characterized in that the voltage converter (14) is configured so as to be able to deliver, at its output (142), said direct electric voltage by converting an alternating electric voltage applied at the input (141) of the voltage converter (14) by the electric power supply source (13) when the voltage converter (14) is connected thereto.
- The heating appliance (10) according to any of claims 1 to 3, characterized in that the management unit (19) makes the heating appliance (10) toggle, by controlling the switch elements, between a first operating mode where the first linking elements (16) and/or the third linking elements (18) occupy an open circuit configuration and a second operating mode where the first linking elements (16) and/or the third linking elements (18) occupy a closed circuit configuration, the first operating mode being occupied if the difference between the value determined by the measuring sensor (23) and a setpoint temperature known by the management unit (19) is higher than a strictly positive first predetermined value and the second operating mode being occupied if the difference between the value determined by the measuring sensor (23) and the setpoint temperature known by the management unit (19) is lower than a second predetermined value less than or equal to zero.
- The heating appliance (10) according to any one of claims 1 or 4, characterized in that the management unit (19) makes the heating appliance (10) toggle, by controlling the switch elements, between a third operating mode where the second linking elements (17) occupy a closed circuit configuration and a fourth operating mode where the second linking elements (17) occupy an open circuit configuration, the third operating mode being occupied if the value determined by the characterization element (25) is lower than or equal to a first predetermined threshold known by the management unit (19) and the fourth operating mode being occupied as soon as the value determined by the characterization element (25) is higher than or equal to a second predetermined threshold known by the management unit (19) and strictly higher than the first predetermined threshold.
- The heating appliance (10) according to any one of claims 1 to 5, characterized in that the management unit (19) makes the heating appliance (10) occupy, by controlling the switch elements, a fifth operating mode where the third linking elements (18) occupy a closed circuit configuration if the value determined by the characterization element (25) is higher than or equal to a third predetermined threshold known by the management unit (19).
- The heating appliance (10) according to any one of claims 1 to 6, characterized in that the control unit (19) ensures a control of the voltage converter (14) such that the direct electric voltage delivered at the output of the voltage converter (14) varies according to the power to be delivered by the heater member (12) calculated by the management unit (19).
- The heating appliance (10) according to any one of claims 1 to 7, characterized in that the voltage converter (14) comprises heat sinks producing a second flow of calories (F2) with the calories generated by the voltage converter (14) and in that the second flow (F2) is mixed with the first flow of calories (F1) generated by the heater member (12).
- An electrical installation comprising an electric power supply source (13) and at least one heating appliance (10) according to any one of the preceding claims, whose connection elements of the input (141) of the voltage converter (14) are connected to the electric power supply source (13), in which the electric power supply source (13) delivers a direct electric voltage and comprises all or part of the following elements: photovoltaic panels, a fuel cell, a supercapacitor, an electrochemical cells assembly-based battery.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1661447A FR3059199B1 (en) | 2016-11-24 | 2016-11-24 | ELECTRIC RADIATOR-TYPE HEATING UNIT INCLUDING A VOLTAGE CONVERTER |
PCT/FR2017/053243 WO2018096290A1 (en) | 2016-11-24 | 2017-11-24 | Heating apparatus of the electric radiator type including a voltage converter |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3545725A1 EP3545725A1 (en) | 2019-10-02 |
EP3545725B1 true EP3545725B1 (en) | 2020-08-19 |
Family
ID=58162780
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17816924.9A Active EP3545724B1 (en) | 2016-11-24 | 2017-11-24 | Electric radiator type heating apparatus including a voltage converter |
EP17816925.6A Active EP3545725B1 (en) | 2016-11-24 | 2017-11-24 | Heating apparatus of the electric radiator type including a voltage converter |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17816924.9A Active EP3545724B1 (en) | 2016-11-24 | 2017-11-24 | Electric radiator type heating apparatus including a voltage converter |
Country Status (10)
Country | Link |
---|---|
US (2) | US20190383518A1 (en) |
EP (2) | EP3545724B1 (en) |
JP (2) | JP6828159B2 (en) |
KR (2) | KR102104791B1 (en) |
CN (2) | CN109983836B (en) |
AU (2) | AU2017364287B2 (en) |
CA (2) | CA3044348C (en) |
ES (2) | ES2887783T3 (en) |
FR (1) | FR3059199B1 (en) |
WO (2) | WO2018096289A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3059199B1 (en) * | 2016-11-24 | 2021-01-01 | Lancey Energy Storage | ELECTRIC RADIATOR-TYPE HEATING UNIT INCLUDING A VOLTAGE CONVERTER |
FR3100605B1 (en) * | 2019-09-05 | 2021-09-10 | Lancey Energy Storage | Electric heater comprising a thermal protection shield between the heater and a removable electrical energy storage device |
FR3103646B1 (en) | 2019-11-27 | 2022-05-06 | Lancey Energy Storage | Resilient micro-grid of electric radiator type heaters |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5321300A (en) | 1976-08-11 | 1978-02-27 | Hitachi Cable Ltd | Epoxy resin composition |
JPH01149338A (en) * | 1987-12-04 | 1989-06-12 | Toshiba Corp | Magnetron driving device |
DE3844607C3 (en) * | 1988-01-20 | 1997-03-13 | Ver Glaswerke Gmbh | Power supply circuit for a motor vehicle with two different consumer voltages |
JP2629491B2 (en) * | 1991-08-16 | 1997-07-09 | 三菱電機株式会社 | Natural convection heater |
CN2171939Y (en) * | 1993-11-18 | 1994-07-13 | 王琛 | Intelligence multifunction load controller |
US6218607B1 (en) * | 1997-05-15 | 2001-04-17 | Jx Crystals Inc. | Compact man-portable thermophotovoltaic battery charger |
US6037571A (en) * | 1997-07-21 | 2000-03-14 | Christopher; Nicholas S. | Dual power high heat electric grill |
CA2252213A1 (en) * | 1998-10-29 | 2000-04-29 | Ed Martin | Fireplace-barbecue |
US20020174579A1 (en) * | 2001-05-22 | 2002-11-28 | Corry Arthur A. | Artificial log burning fireplace assembly |
JP4635388B2 (en) * | 2001-07-27 | 2011-02-23 | トヨタ自動車株式会社 | Thermolight generator |
JP3652634B2 (en) * | 2001-10-05 | 2005-05-25 | 本田技研工業株式会社 | Cooling structure for high piezoelectric parts |
US7196263B2 (en) * | 2001-10-18 | 2007-03-27 | Jx Crystals Inc. | TPV cylindrical generator for home cogeneration using low NOx radiant tube burner |
US8157187B2 (en) * | 2002-10-02 | 2012-04-17 | Sbr Investments Company Llc | Vehicle windshield cleaning system |
CN1567644A (en) * | 2003-06-19 | 2005-01-19 | 李森能 | Accumulator charger |
US10384653B2 (en) * | 2004-03-09 | 2019-08-20 | Uusi, Llc | Vehicle windshield cleaning system |
FR2882132B3 (en) * | 2005-02-15 | 2007-06-08 | Regis Hautecoeur | RADIATOR WITH ELECTRICAL HEATING |
US7358463B2 (en) * | 2005-08-12 | 2008-04-15 | Kabushiki Kaisha Toyota Jidoshokki | Switching power supply and method for stopping supply of electricity when electricity of switching power supply exceeds rated electricity |
JP2007059308A (en) * | 2005-08-26 | 2007-03-08 | Matsushita Electric Ind Co Ltd | Electric equipment |
CN2891442Y (en) * | 2005-12-29 | 2007-04-18 | 比亚迪股份有限公司 | Portable charger for electric automobile |
KR100704963B1 (en) | 2006-04-04 | 2007-04-09 | (주) 피에스디테크 | Control apparatus for generation system using solar light and wind power |
US20070273214A1 (en) * | 2006-05-23 | 2007-11-29 | Wang Kon-King M | System and method for connecting power sources to a power system |
CN101150259B (en) * | 2006-09-18 | 2010-05-12 | 比亚迪股份有限公司 | Electric car charging system |
GB2444072B (en) * | 2006-11-24 | 2009-08-19 | Basic Holdings | A battery powered electrical fire |
US8018204B2 (en) * | 2007-03-26 | 2011-09-13 | The Gillette Company | Compact ultra fast battery charger |
DE112008002274T5 (en) * | 2007-08-21 | 2010-08-05 | Mitsubishi Electric Corp. | Induction heating device, electric power conversion circuit and electric power processing device |
US8054048B2 (en) * | 2007-10-04 | 2011-11-08 | GM Global Technology Operations LLC | Power grid load management for plug-in vehicles |
US20100039062A1 (en) * | 2008-08-18 | 2010-02-18 | Gong-En Gu | Smart charge system for electric vehicles integrated with alternative energy sources and energy storage |
US8384358B2 (en) * | 2009-05-28 | 2013-02-26 | GM Global Technology Operations LLC | Systems and methods for electric vehicle charging and for providing notification of variations from charging expectations |
JP5465949B2 (en) * | 2009-08-07 | 2014-04-09 | 本田技研工業株式会社 | Power supply system |
US20110286725A1 (en) * | 2010-05-20 | 2011-11-24 | Enerco Group, Inc. | High Heat Electric Fireplace |
CN202040858U (en) * | 2011-03-25 | 2011-11-16 | 广东美的微波电器制造有限公司 | Solar microwave oven |
FR2978624B1 (en) * | 2011-07-29 | 2013-12-20 | Evtronic | CHARGE INSTALLATION AND METHOD FOR ELECTRIC BATTERY |
JP2014099253A (en) * | 2012-11-13 | 2014-05-29 | Panasonic Corp | Heating cooker |
FR3059199B1 (en) * | 2016-11-24 | 2021-01-01 | Lancey Energy Storage | ELECTRIC RADIATOR-TYPE HEATING UNIT INCLUDING A VOLTAGE CONVERTER |
-
2016
- 2016-11-24 FR FR1661447A patent/FR3059199B1/en not_active Expired - Fee Related
-
2017
- 2017-11-24 CA CA3044348A patent/CA3044348C/en active Active
- 2017-11-24 WO PCT/FR2017/053242 patent/WO2018096289A1/en unknown
- 2017-11-24 CN CN201780071848.5A patent/CN109983836B/en active Active
- 2017-11-24 WO PCT/FR2017/053243 patent/WO2018096290A1/en unknown
- 2017-11-24 ES ES17816924T patent/ES2887783T3/en active Active
- 2017-11-24 JP JP2019527836A patent/JP6828159B2/en active Active
- 2017-11-24 EP EP17816924.9A patent/EP3545724B1/en active Active
- 2017-11-24 AU AU2017364287A patent/AU2017364287B2/en not_active Ceased
- 2017-11-24 US US16/464,045 patent/US20190383518A1/en not_active Abandoned
- 2017-11-24 US US16/464,047 patent/US11060765B2/en active Active
- 2017-11-24 ES ES17816925T patent/ES2831091T3/en active Active
- 2017-11-24 EP EP17816925.6A patent/EP3545725B1/en active Active
- 2017-11-24 JP JP2019527851A patent/JP6828160B2/en active Active
- 2017-11-24 KR KR1020197017874A patent/KR102104791B1/en active IP Right Grant
- 2017-11-24 AU AU2017364286A patent/AU2017364286B2/en not_active Ceased
- 2017-11-24 KR KR1020197018100A patent/KR102104792B1/en active IP Right Grant
- 2017-11-24 CA CA3044349A patent/CA3044349C/en active Active
- 2017-11-24 CN CN201780072564.8A patent/CN109983837B/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3545725A1 (en) | 2019-10-02 |
EP3545724B1 (en) | 2021-06-09 |
JP6828159B2 (en) | 2021-02-10 |
CN109983837A (en) | 2019-07-05 |
ES2887783T3 (en) | 2021-12-27 |
ES2831091T3 (en) | 2021-06-07 |
JP6828160B2 (en) | 2021-02-10 |
KR102104791B1 (en) | 2020-04-27 |
FR3059199B1 (en) | 2021-01-01 |
KR20190077108A (en) | 2019-07-02 |
KR20190080955A (en) | 2019-07-08 |
US20190383519A1 (en) | 2019-12-19 |
CA3044348A1 (en) | 2018-05-31 |
KR102104792B1 (en) | 2020-04-27 |
CN109983836B (en) | 2022-05-03 |
US11060765B2 (en) | 2021-07-13 |
CN109983836A (en) | 2019-07-05 |
CA3044349C (en) | 2020-01-21 |
AU2017364287B2 (en) | 2019-08-22 |
CA3044348C (en) | 2020-07-21 |
CN109983837B (en) | 2022-07-08 |
WO2018096290A1 (en) | 2018-05-31 |
JP2020513523A (en) | 2020-05-14 |
AU2017364286B2 (en) | 2019-07-18 |
EP3545724A1 (en) | 2019-10-02 |
AU2017364287A1 (en) | 2019-06-27 |
JP2020513524A (en) | 2020-05-14 |
CA3044349A1 (en) | 2018-05-31 |
FR3059199A1 (en) | 2018-05-25 |
US20190383518A1 (en) | 2019-12-19 |
AU2017364286A1 (en) | 2019-06-20 |
WO2018096289A1 (en) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3676541B1 (en) | Heating apparatus comprising a battery and a power inverter for introducing energy from the battery to the electrical supply source | |
EP3545725B1 (en) | Heating apparatus of the electric radiator type including a voltage converter | |
FR2960099A1 (en) | RENEWABLE ENERGY RECOVERY SYSTEM | |
EP4200976B1 (en) | Device and method for determining and using a surplus of available electrical power generated by a solar photovoltaic generator | |
WO2016087632A1 (en) | Improved direct-current converter and power supply device | |
EP3065021A1 (en) | Water-heating system with dedicated photovoltaic system | |
EP3123583A1 (en) | Mono-inverter | |
EP2560261A1 (en) | Method for managing a facility for producing and storing renewable energy | |
EP2772983B1 (en) | Energy storage device and related management method | |
EP3376633B1 (en) | Motor device | |
WO2022195007A1 (en) | System for managing a variable-power dc current source | |
FR3113719A1 (en) | Instantaneous electric water heater comprising a front face capable of capturing and emitting waste heat lost by the heating tank and installation | |
FR3075322A1 (en) | HEATING APPARATUS PROVIDING CONTINUOUS MODULATION OF POWER SUPPLY POWER OF ELECTRICAL RESISTANCE | |
FR3039720B1 (en) | METHOD FOR MANAGING CURRENT PRODUCED BY PANELS | |
FR2990016A1 (en) | Installation for heating dwelling, has generation unit for generating electrical energy from renewable energy source, and heat pump connected to communication unit to consume electric power provided by supply network | |
FR3073606A1 (en) | HEATING APPARATUS INCORPORATING A BATTERY IMPLANTED IN THE FRESH AIR FLOW | |
FR3113722A1 (en) | Instantaneous electric water heater including two types of heating resistance and installation comprising such a water heater | |
FR2937195A1 (en) | Regulated voltage supply device for electrical network of e.g. car, has detection unit to control location of switching unit in its open state and production of selected voltage, when network voltage is less than reference voltage | |
EP3016240B1 (en) | Autonomous electrical production unit autoregulated and its utilisation for a relais antenna | |
FR3039721A1 (en) | CURRENT DISTRIBUTION METHOD PRODUCED BY PHOTOVOLTAIC PANELS | |
FR2903822A1 (en) | Coolant installation operating method for e.g. automobile, involves utilizing energy provided by photovoltaic panel for heating battery of coolant installation, where photovoltaic panel is connected to battery by regulator | |
WO2014199052A2 (en) | Dynamic method for discharging a battery recharged by a renewable energy source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190607 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200323 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017022141 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1305407 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: CABINET GERMAIN AND MAUREAU, CH |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201119 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201120 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201119 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017022141 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2831091 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210607 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
26N | No opposition filed |
Effective date: 20210520 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1305407 Country of ref document: AT Kind code of ref document: T Effective date: 20200819 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20221020 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231128 Year of fee payment: 7 Ref country code: LU Payment date: 20231128 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231129 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231129 Year of fee payment: 7 Ref country code: RO Payment date: 20231124 Year of fee payment: 7 Ref country code: IT Payment date: 20231129 Year of fee payment: 7 Ref country code: IE Payment date: 20231130 Year of fee payment: 7 Ref country code: FR Payment date: 20231129 Year of fee payment: 7 Ref country code: FI Payment date: 20231130 Year of fee payment: 7 Ref country code: DE Payment date: 20231218 Year of fee payment: 7 Ref country code: CH Payment date: 20231201 Year of fee payment: 7 Ref country code: AT Payment date: 20231201 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231229 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |