EP3545461A1 - Flexible touch panel, flexible display panel and flexible display apparatus, and fabricating method thereof - Google Patents

Flexible touch panel, flexible display panel and flexible display apparatus, and fabricating method thereof

Info

Publication number
EP3545461A1
EP3545461A1 EP16909059.4A EP16909059A EP3545461A1 EP 3545461 A1 EP3545461 A1 EP 3545461A1 EP 16909059 A EP16909059 A EP 16909059A EP 3545461 A1 EP3545461 A1 EP 3545461A1
Authority
EP
European Patent Office
Prior art keywords
flexible
touch
array
electrodes
fingerprint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP16909059.4A
Other languages
German (de)
French (fr)
Other versions
EP3545461A4 (en
Inventor
Rui Xu
Xue Dong
Jing Lv
Haisheng Wang
Yingming Liu
Xiaoliang Ding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Publication of EP3545461A1 publication Critical patent/EP3545461A1/en
Publication of EP3545461A4 publication Critical patent/EP3545461A4/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • G06F3/041661Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving using detection at multiple resolutions, e.g. coarse and fine scanning; using detection within a limited area, e.g. object tracking window
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • G06V40/1359Extracting features related to ridge properties; Determining the fingerprint type, e.g. whorl or loop
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to display technology, more particularly, to a flexible touch panel, a flexible display panel and a flexible display apparatus having the same, and a fabricating method thereof.
  • Biometrics recognition systems such as fingerprint recognition systems
  • fingerprint recognition systems have been widely used in consumer electronic apparatuses, including smart phones, tablets, personal data assistants, and laptop computers.
  • Various types of fingerprint recognition systems have been developed, including optical fingerprint scanners, capacitive fingerprint scanners, ultrasonic fingerprint scanners, thermal fingerprint scanners, and the like.
  • a capacitive fingerprint scanner uses an array of capacitor circuits to collect fingerprint data.
  • the present invention provides a flexible display panel comprising a flexible touch panel and a flexible display module laminated together with the flexible touch panel.
  • the flexible touch panel comprises a touch sensor comprising a plurality of touch electrodes configured to detect a touch, and a capacitive fingerprint sensor comprising an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger.
  • the flexible touch panel further comprises a flexible cover glass, and the plurality of touch electrodes and the array of capacitive sensing electrodes are on the flexible cover glass.
  • the flexible cover glass has a thickness in a range of approximately 25 ⁇ m to approximately 150 ⁇ m.
  • the plurality of touch electrodes and the array of capacitive sensing electrodes are in a same layer; the touch electrodes are in a touch area; and the array of capacitive sensing electrodes are in a fingerprint sensing area.
  • the touch sensor comprises at least a touch electrode layer on a first side of the flexible cover glass; the array of capacitive sensing electrodes are on the first side of the flexible cover glass; the touch electrode layer is formed in a touch area; and the array of capacitive sensing electrodes are formed in a fingerprint sensing area.
  • the array of capacitive sensing electrodes are operated in a time-division driving mode; the time-division driving mode comprises a touch control mode and a fingerprint sensing mode; the array of capacitive sensing electrodes are touch electrodes for conducting touch signals during the touch control mode; and are capacitive sensing electrodes for recognizing ridge lines and valley lines of the fingerprint during the fingerprint sensing mode.
  • the flexible display panel is a flexible organic light emitting display panel
  • the flexible display module is a flexible organic light emitting display module
  • the flexible organic light emitting display module comprises a flexible base substrate; a display unit on the flexible base substrate; a thin film encapsulating layer on a side of the display unit distal to the flexible base substrate; and a polarizer on a side of the thin film encapsulating layer distal to the display unit.
  • the present invention provides a flexible touch panel comprising a flexible cover glass; a touch sensor on the flexible cover glass, comprising a plurality of touch electrodes configured to detect a touch, and a capacitive fingerprint sensor on the flexible cover glass, comprising an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger.
  • the flexible cover glass has a thickness in a range of approximately 25 ⁇ m to approximately 150 ⁇ m.
  • the plurality of touch electrodes and the array of capacitive sensing electrodes are in a same layer; the touch electrodes are in a touch area; and the array of capacitive sensing electrodes are in a fingerprint sensing area.
  • the touch sensor comprises at least a touch electrode layer on a first side of the flexible cover glass; the array of capacitive sensing electrodes are on the first side of the flexible cover glass; the touch electrode layer is formed in a touch area; and the array of capacitive sensing electrodes are formed in a fingerprint sensing area.
  • the array of capacitive sensing electrodes are operated in a time-division driving mode; the time-division driving mode comprises a touch control mode and a fingerprint sensing mode; the array of capacitive sensing electrodes are touch electrodes for conducting touch signals during the touch control mode; and are capacitive sensing electrodes for recognizing ridge lines and valley lines of the fingerprint during the fingerprint sensing mode.
  • the present invention provides a method of fabricating a flexible touch panel, comprising forming a touch sensor and a capacitive fingerprint sensor on a flexible cover glass comprising forming a plurality of touch electrodes configured to detect a touch and an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger.
  • forming the plurality of touch electrodes and the array of capacitive sensing electrodes comprises nanoimprinting the array of capacitive sensing electrodes on the flexible cover glass.
  • the plurality of touch electrodes and the array of capacitive sensing electrodes are formed in a same nanoimprinting process; the plurality of touch electrodes is formed in a touch area; and the array of capacitive sensing electrodes are formed in a fingerprint sensing area.
  • the touch sensor comprises at least a touch electrode layer; forming the touch sensor and the capacitive fingerprint sensor comprises nanoimprinting the touch electrode layer in a touch area on a first side of the flexible cover glass; and nanoimprinting the array of capacitive sensing electrodes in a fingerprint sensing area on the first side of the flexible cover glass.
  • the present invention provides a method of fabricating a flexible display panel, comprising forming a flexible touch panel according to a method described herein; forming a flexible display module; and laminating the flexible touch panel onto the flexible display module.
  • laminating the flexible touch panel onto the flexible display module comprises laminating the flexible touch panel onto the flexible display module in a roll-to-plate manner.
  • the flexible display panel is a flexible organic light emitting display panel
  • the flexible display module is a flexible organic light emitting display module
  • forming the flexible organic light emitting display module comprises forming a display unit on a flexible base substrate; forming a thin film encapsulating layer on a side of the display unit distal to the flexible base substrate; and forming a polarizer on a side of the thin film encapsulating layer distal to the display unit.
  • a plurality of flexible touch panels are formed on a first mother substrate, and a plurality of flexible display modules are formed on a second mother substrate; the method further comprises forming a plurality of flexible touch panels on a first mother substrate comprising a plurality of flexible cover glasses; forming a plurality of flexible display modules are formed on a second mother substrate comprising a plurality of flexible base substrates; laminating the plurality of flexible touch panels onto the plurality of flexible display module, each flexible touch panel laminated onto a corresponding flexible display module; cutting the first mother substrate and the second mother substrate to form a plurality of flexible display panels; cutting a portion of the flexible display panel to expose a driver integrated circuit bonding area on the flexible base substrate; and bonding a driver integrated circuit to the driver integrated circuit bonding area.
  • the present invention provides a flexible display apparatus comprising a flexible display panel described herein or fabricated by a method described herein.
  • FIG. 1 is a diagram illustrating the structure of a flexible display panel in some embodiments according to the present disclosure.
  • FIG. 2 is a diagram illustrating the structure of a sensor layer in some embodiments according to the present disclosure.
  • FIG. 3 shows a cross-sectional view along the A-A’direction of the sensor layer in FIG. 2 in some embodiments according to the present disclosure.
  • FIG. 4 shows a cross-sectional view along the A-A’direction of the sensor layer in FIG. 2 in some embodiments according to the present disclosure.
  • FIG. 5 illustrates a roll-to-plate lamination process in some embodiments according to the present disclosure.
  • FIG. 6 shows a flexible display module and a flexible touch panel laminated together.
  • FIG. 7 shows a process of cutting a first mother substrate and a second mother substrate to form a plurality of flexible display panels in some embodiments according to the present disclosure.
  • the fingerprint scanner is typically installed in a designated space, e.g., under a “Home” button on a smart phone.
  • a space designated for fingerprint scanner valuable surface space available for display and touch control is significantly reduced.
  • Another issue with the conventional display apparatuses is sensitivity of the capacitive fingerprint sensor and accuracy of the fingerprint data associated with the sensitivity.
  • the sensitivity of the capacitive fingerprint sensor is significantly correlated with a distance between the finger and the fingerprint sensor electrodes. Fingerprint sensing becomes increasingly difficult as the distance separating the finger and the fingerprint sensor electrodes increases.
  • the separation distance also leads to blurring of the electric field thus resulting in a loss of resolution in the fingerprint images detected by the fingerprint sensor electrodes.
  • the present invention provides, inter alia, a flexible touch panel, a flexible display panel and a flexible display apparatus having the same, and a fabricating method thereof that substantially obviate one or more of the problems due to limitations and disadvantages of the related art.
  • the present disclosure provides a flexible display panel having a flexible multiple layer structure.
  • the flexible display panel includes a flexible touch panel having a touch sensor including a plurality of touch electrodes configured to detect a touch, and a capacitive fingerprint sensor including an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger; and a flexible display module laminated together with the flexible touch panel.
  • FIG. 1 is a diagram illustrating the structure of a flexible display panel in some embodiments according to the present disclosure.
  • the flexible display panel is a flexible multiple layer structure including a flexible touch panel 30 and a flexible display module 40 laminated together.
  • the flexible display module 40 includes a flexible base substrate 100.
  • the flexible touch panel 30 includes at least a sensor layer 700 on a flexible cover glass 800.
  • the flexible cover glass has a thickness in a range of approximately 25 ⁇ m to approximately 150 ⁇ m, e.g., approximately 25 ⁇ m to approximately 75 ⁇ m, or approximately 50 ⁇ m.
  • FIG. 2 is a diagram illustrating the structure of a sensor layer in some embodiments according to the present disclosure.
  • the sensor layer in some embodiments includes a touch sensor having a plurality of touch electrodes S1 configured to detect a touch, and a capacitive fingerprint sensor including an array of capacitive sensing electrodes S2 configured to enable identification of a fingerprint of a finger.
  • the plurality of touch electrodes S1 and the array of capacitive sensing electrodes S2 are disposed on the flexible cover glass.
  • the capacitive sensing electrode S2 has a dimension smaller than that of the touch electrode S1.
  • the capacitive sensing electrode S2 has a dimension comparable to that of the touch electrode S1.
  • the plurality of touch electrodes S1 is in a touch area TA, and the array of capacitive sensing electrodes S2 are in a fingerprint sensing area FSA.
  • the fingerprint sensing area FSA has a higher electrode distribution density (e.g., in terms of numbers of electrodes) than that of the touch area TA.
  • the fingerprint sensing area FSA may be disposed in any region of the flexible display panel, e.g., any region of a display area of the flexible display panel.
  • the plurality of touch electrodes S1 and the array of capacitive sensing electrodes S2 are in a same layer, e.g., formed in a same process and using a same material. In some embodiments, the plurality of touch electrodes S1 and the array of capacitive sensing electrodes S2 are substantially on a same horizontal plane on the flexible cover glass, but are formed using different materials (e.g., a metal material and a transparent metal oxide material) . As used herein, the term “same layer” refers to the relationship between the layers simultaneously formed in the same step.
  • the plurality of touch electrodes S1 and the array of capacitive sensing electrodes S2 are in a same layer when they are formed as a result of one or more steps of a same process (e.g., a same nanoimprinting process, or a same patterning process performed in a same layer of material) .
  • the plurality of touch electrodes S1 and the array of capacitive sensing electrodes S2 can be formed in a same layer by simultaneously performing the step of forming the plurality of touch electrodes S1 and the step of forming the array of capacitive sensing electrodes S2.
  • the term “same layer” does not always mean that the thickness of the layer or the height of the layer in a cross-sectional view is the same.
  • the touch sensor includes a first touch electrode layer having a plurality of touch electrodes S1 on a first side of the flexible cover glass, and a second touch electrode layer having a plurality of touch electrodes S1 on a second side of the flexible cover glass opposite to the first side (see, e.g., FIG. 4) .
  • the touch sensor includes one or more touch electrode layer on the first side of the flexible cover glass, but not on the second side, i.e., all touch electrode layers of the touch sensor are on a same surface of the flexible cover glass (see, e.g., FIG. 3) .
  • the touch sensor includes at least a touch electrode layer on a first side of the flexible cover glass, and the array of capacitive sensing electrodes are on the first side of the flexible cover glass (see, e.g., FIG. 3 or FIG. 4) .
  • the touch electrode layer is formed in a touch area
  • the array of capacitive sensing electrodes are formed in a fingerprint sensing area.
  • the touch area and the fingerprint sensing area are mutually exclusive areas, i.e., the fingerprint sensing area is outside the touch area.
  • the fingerprint sensing area is within the touch area, e.g., the touch area encompasses the fingerprint sensing area.
  • the array of capacitive sensing electrodes may be operated in a time-division driving mode.
  • the time-division driving mode includes a touch control mode and a fingerprint sensing mode.
  • the array of capacitive sensing electrodes are touch electrodes for conducting touch signals during the touch control mode; and are capacitive sensing electrodes for recognizing ridge lines and valley lines of the fingerprint during the fingerprint sensing mode. Accordingly, during the touch control mode, the fingerprint sensing area is part of the touch area.
  • the flexible display panel is a flexible organic light emitting display panel
  • the flexible display module is a flexible organic light emitting display module.
  • the flexible display module 40 in some embodiments is a flexible organic light emitting display module.
  • the flexible organic light emitting display module in some embodiments includes a flexible base substrate100; a display unit 20 on the flexible base substrate100; and a thin film encapsulating layer 10 on a side of the display unit 20 distal to the flexible base substrate100.
  • the flexible organic light emitting display module further includes a polarizer 600 on a side of the thin film encapsulating layer 10 distal to the display unit20.
  • the thin film encapsulating layer 10 has a multiple sub-layer structure including two or more sub-layers laminated together.
  • the thin film encapsulating layer 10 includes an organic thin film encapsulating sub-layer 400 and an inorganic thin film encapsulating sub-layer 500, as shown in FIG. 1.
  • the display unit 20 in some embodiments includes an organic light emitting diode 300 and a low temperature polysilicon substrate 200 having a number of display components including a thin film transistor.
  • the flexible display panel includes a plurality of subpixels, each of which has a display unit20.
  • the organic light emitting diode includes an anode, a hole transport layer on the anode, a light emitting layer on a side of the hole transport layer distal to the anode, an electron transport layer on a side of the light emitting layer distal to the hole transport layer, and a cathode on a side of the electron transport layer distal to the light emitting layer.
  • the organic light emitting diode further includes a hole injection layer on a side of the hole transport layer proximal to the anode, and an electron injection layer on a side of the electron transport layer proximal to the cathode.
  • the fingerprint sensor is integrated into a flexible touch panel of the flexible display panel.
  • the fingerprint sensor is separated from a finger during a fingerprint recognition process by only a thin cover glass, a sensitive and accurate fingerprint recognition is made possible.
  • the fingerprint scanner can be made in a form of a virtual button, obviating the need of a designated area in the display panel for performing fingerprint recognition (e.g., a “Home” button) .
  • the fingerprint sensor may be operated in a time-division driving mode, the fingerprint sensing area can be used for display and touch control when the fingerprint sensor is not operated in the fingerprint sensing mode, obviating the need of sacrificing valuable display area for fingerprint recognition function.
  • the present disclosure provides a flexible touch panel.
  • the flexible touch panel includes a flexible cover glass, a touch sensor on the flexible cover glass, and a capacitive fingerprint sensor on the flexible cover glass.
  • the touch sensor includes a plurality of touch electrodes configured to detect a touch.
  • the capacitive fingerprint sensor includes an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger.
  • the flexible cover glass has a thickness in a range of approximately 25 ⁇ m to approximately 150 ⁇ m, e.g., approximately 25 ⁇ m to approximately 75 ⁇ m.
  • the touch sensor is a metal mesh touch sensor.
  • the plurality of touch electrodes and the array of capacitive sensing electrodes are in a same layer, e.g., formed in a same process and using a same material. In some embodiments, the plurality of touch electrodes and the array of capacitive sensing electrodes are substantially on a same horizontal plane on the flexible cover glass, but are formed using different materials (e.g., a metal material and a transparent metal oxide material) .
  • the touch sensor includes a first touch electrode layer on a first side of the flexible cover glass, and a second touch electrode layer on a second side of the flexible cover glass opposite to the first side. In some embodiments, the touch sensor includes one or more touch electrode layer on the first side of the flexible cover glass, but not on the second side, i.e., all touch electrode layers of the touch sensor are on a same surface of the flexible cover glass.
  • the touch sensor includes at least a touch electrode layer on a first side of the flexible cover glass, and the array of capacitive sensing electrodes are on the first side of the flexible cover glass.
  • the touch electrode layer is formed in a touch area
  • the array of capacitive sensing electrodes are formed in a fingerprint sensing area.
  • the touch area and the fingerprint sensing area are mutually exclusive areas, i.e., the fingerprint sensing area is outside the touch area.
  • the fingerprint sensing area is within the touch area, e.g., the touch area encompasses the fingerprint sensing area.
  • the array of capacitive sensing electrodes may be operated in a time-division driving mode.
  • the time-division driving mode includes a touch control mode and a fingerprint sensing mode.
  • the array of capacitive sensing electrodes are touch electrodes for conducting touch signals during the touch control mode; and are capacitive sensing electrodes for recognizing ridge lines and valley lines of the fingerprint during the fingerprint sensing mode. Accordingly, during the touch control mode, the fingerprint sensing area is part of the touch area.
  • the present disclosure provides a method of fabricating a flexible touch panel.
  • the method includes forming a touch sensor and a capacitive fingerprint sensor on a flexible cover glass.
  • the step of forming the touch sensor and the capacitive fingerprint sensor includes forming a plurality of touch electrodes configured to detect a touch and an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger.
  • the capacitive fingerprint sensor is formed using a nanoimprinting lithography process, e.g., the array of capacitive sensing electrodes are formed using a nanoimprinting lithography process.
  • nanoimprinting refers to any method for printing or creating a pattern or structure on the microscale and/or nanoscale size range on the surface of a substrate by contacting a mold with the defined pattern or structure on the surface at certain temperatures and pressures.
  • nanoscale refers to any dimensions that are below approximately 1 ⁇ m.
  • microscale refers to any dimensions that are in the range of approximately 1 ⁇ m to approximately 100 ⁇ m.
  • both the touch sensor and the capacitive fingerprint sensor are formed using a nanoimprinting lithography process.
  • forming the plurality of touch electrodes and forming the array of capacitive sensing electrodes include nanoimprinting the plurality of touch electrodes and the array of capacitive sensing electrodes on the flexible cover glass.
  • the flexible cover glass has a thickness in a range of approximately 25 ⁇ m to approximately 150 ⁇ m, e.g., approximately 25 ⁇ m to approximately 75 ⁇ m.
  • the plurality of touch electrodes and the array of capacitive sensing electrodes are formed in a same nanoimprinting process.
  • the plurality of touch electrodes are formed in a touch area; and the array of capacitive sensing electrodes are formed in a fingerprint sensing area.
  • the touch area and the fingerprint sensing area are mutually exclusive areas, i.e., the fingerprint sensing area is outside the touch area.
  • the fingerprint sensing area is within the touch area, e.g., the touch area encompasses the fingerprint sensing area.
  • the touch sensor includes a first touch electrode layer on a first side of the flexible cover glass, and a second touch electrode layer on a second side of the flexible cover glass opposite to the first side. In some embodiments, the touch sensor includes one or more touch electrode layer on the first side of the flexible cover glass, but not on the second side, i.e., all touch electrode layers of the touch sensor are on a same surface of the flexible cover glass.
  • the touch sensor includes at least a touch electrode layer on a first side of the flexible cover glass; and the method includes nanoimprinting the touch electrode layer in a touch area on a first side of the flexible cover glass; and nanoimprinting the array of capacitive sensing electrodes in a fingerprint sensing area on the first side of the flexible cover glass.
  • the plurality of touch electrodes and the array of capacitive sensing electrodes are formed in a same layer using a same material in a same nanoimprinting process.
  • the plurality of touch electrodes and the array of capacitive sensing electrodes are formed substantially on a same horizontal plane on the flexible cover glass.
  • the plurality of touch electrodes and the array of capacitive sensing electrodes are formed in two separate processes.
  • the plurality of touch electrodes and the array of capacitive sensing electrodes are formed using different materials (e.g., a metal material and a transparent metal oxide material) .
  • appropriate electrode materials may be used to make the touch electrodes and the capacitive sensing electrodes.
  • appropriate electrode materials include, but are not limited to, transparent metal oxide electrode materials and transparent metal electrode materials.
  • transparent metal oxide electrode materials include, but are not limited to, indium tin oxide, indium zinc oxide, indium gallium oxide, and indium gallium zinc oxide.
  • transparent metal electrode materials include, but are not limited to, a metal mesh, a silver nano wire, a carbon nano tube, a nano mesh, graphene, and conductive polymers such as poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) .
  • the present disclosure provides a method of fabricating a flexible display panel having a flexible multiple layer structure.
  • the method includes forming a flexible touch panel having a touch sensor including a plurality of touch electrodes configured to detect a touch, and a capacitive fingerprint sensor including an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger; forming a flexible display module; and laminating the flexible touch panel onto the flexible display module.
  • the flexible touch panel may be laminated onto the flexible display module using various appropriate methods. Examples of appropriate methods include, but are not limited to, a roll-to-roll lamination process, a roll-to-plate lamination process, and a plate-to-plate lamination process.
  • the step of laminating the flexible touch panel onto the flexible display module is performed by laminating the flexible touch panel onto the flexible display module in a roll-to-plate manner.
  • the flexible touch panel and the flexible display module can be laminated onto each other with an excellent alignment accuracy, reducing potential alignment errors during the fabrication process.
  • a roll-to-plate lamination process also obviates the issue that the base substrate is prone to physical damages occurred in other lamination processes (e.g., a roll-to-roll lamination process) .
  • FIG. 5 illustrates a roll-to-plate lamination process in some embodiments according to the present disclosure.
  • the flexible display module 40 is loaded on a first stage 40’, and the flexible touch panel 30 is loaded on a second stage 30’.
  • the flexible display module 40 is secured on the first stage 40’, and the flexible touch panel 30 is slidably attached on the second stage 30’.
  • a roller R applies a pressure pressing down the flexible touch panel 30 against the flexible display module 40 secured on the first stage 40’.
  • the second stage 30’ s lidably moves along a moving direction MD, gradually making more areas of the flexible touch panel 30 available for lamination.
  • FIG. 6 shows a flexible display module and a flexible touch panel laminated together when the lamination process is completed.
  • the flexible display panel is a flexible organic light emitting display panel
  • the flexible display module is a flexible organic light emitting display module. Accordingly, the method includes a step of forming a flexible organic light emitting display module.
  • the step of forming the flexible organic light emitting display module includes forming a display unit on a flexible base substrate; and forming a thin film encapsulating layer on a side of the display unit distal to the flexible base substrate.
  • the step of forming the flexible organic light emitting display module further includes forming a polarizer on a side of the thin film encapsulating layer distal to the display unit.
  • the thin film encapsulating layer is formed to have a multiple sub-layer structure including two or more sub-layers laminated together.
  • the step of forming the thin film encapsulating layer includes forming an organic thin film encapsulating sub-layer and forming an inorganic thin film encapsulating sub-layer.
  • the step of forming the display unit includes forming an organic light emitting diode and forming a low temperature polysilicon substrate having a number of display components including a thin film transistor.
  • the flexible display panel includes a plurality of subpixels, each of which has a display unit.
  • the step of forming the organic light emitting diode includes forming an anode, forming a hole transport layer on the anode, forming a light emitting layer on a side of the hole transport layer distal to the anode, forming an electron transport layer on a side of the light emitting layer distal to the hole transport layer, and forming a cathode on a side of the electron transport layer distal to the light emitting layer.
  • the step of forming the organic light emitting diode further includes forming a hole injection layer on a side of the hole transport layer proximal to the anode, and forming an electron injection layer on a side of the electron transport layer proximal to the cathode.
  • the method includes forming a plurality of flexible touch panels on a first mother substrate including a plurality of flexible cover glasses as an integral cover glass, and forming a plurality of flexible display modules are formed on a second mother substrate including a plurality of flexible base substrates as an integral base substrate.
  • the method further includes laminating the plurality of flexible touch panels onto the plurality of flexible display module, each flexible touch panel laminated onto a corresponding flexible display module; cutting the first mother substrate and the second mother substrate to form a plurality of flexible display panels; cutting a portion of the flexible display panel to expose a driver integrated circuit bonding area on the flexible base substrate; and bonding a driver integrated circuit to the driver integrated circuit bonding area.
  • FIG. 7 shows a process of cutting a first mother substrate and a second mother substrate to form a plurality of flexible display panels in some embodiments according to the present disclosure.
  • the plurality of flexible touch panels 30 are formed on a first mother substrate 50
  • the plurality of flexible display modules 40 are formed on a second mother substrate 60.
  • the first mother substrate 50 includes a plurality of flexible cover glass 800 as an integral cover glass.
  • the second mother substrate 60 includes a plurality of flexible base substrates100 as an integral base substrate.
  • the second mother substrate 60 is disposed on a third mother substrate 80 made of glass.
  • a plurality of individual flexible display panels can be obtained by cutting the laminated structure formed on the mother substrates along a cutting line 70.
  • the cutting line 70 is located in a peripheral region of the display panel.
  • the laminated structure formed on the mother substrates is first cut (e.g., by laser) along the cutting line to obtain the plurality of individual flexible display panels.
  • a portion of each individual flexible display panel is then cut (e.g., by a blade) to expose a driver integrated circuit bonding area on the flexible base substrate.
  • a portion of the flexible touch panel and a portion of the thin film encapsulating layer is cut, but the display unit and the flexible base substrate remain intact.
  • the laminated structure formed on the mother substrates is first cut (e.g., by a blade) to expose a driver integrated circuit bonding area on the flexible base substrate in each flexible display panel.
  • the second mother substrate remains intact.
  • the laminated structure is then cut (e.g., by laser) along the cutting line to obtain the plurality of individual flexible display panels.
  • the fingerprint sensor is integrated into a flexible touch panel of the flexible display panel.
  • the fingerprint sensor is separated from a finger during a fingerprint recognition process by only a thin cover glass, a sensitive and accurate fingerprint recognition is made possible.
  • the fingerprint scanner can be made in a form of a virtual button, obviating the need of a designated area in the display panel for performing fingerprint recognition (e.g., a “Home” button) .
  • the fingerprint sensor may be operated in a time-division driving mode, the fingerprint sensing area can be used for display and touch control when the fingerprint sensor is not operated in the fingerprint sensing mode, obviating the need of sacrificing valuable display area for fingerprint recognition function.
  • the present disclosure provides a flexible touch panel fabricated by a method described herein.
  • the present disclosure provides a flexible display panel fabricated by a method described herein.
  • the present disclosure provides a flexible display apparatus having a flexible touch panel described herein or fabricated by a method described herein.
  • the present disclosure provides a flexible display apparatus having a flexible display panel described herein or fabricated by a method described herein.
  • Examples of appropriate display apparatuses includes, but are not limited to, an electronic paper, a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital album, a GPS, etc.
  • the term “the invention” , “the present invention” or the like does not necessarily limit the claim scope to a specific embodiment, and the reference to exemplary embodiments of the invention does not imply a limitation on the invention, and no such limitation is to be inferred.
  • the invention is limited by only the spirit and scope of the appended claims.
  • these claims may refer to use “first” , “second” , etc. following with noun or element.
  • Such terms should be understood as a nomenclature and should not be construed as giving the limitation on the number of the elements modified by such nomenclature unless specific number has been given. Any advantages and benefits described may not apply to all embodiments of the invention.

Abstract

A flexible touch panel (30), a flexible display panel and a flexible display apparatus, and fabricating method thereof are provided. The flexible display panel includes a flexible touch panel (30) and a flexible display module (40) laminated together with the flexible touch panel (30). The flexible touch panel (30) includes a touch sensor having a plurality of touch electrodes (S1) configured to detect a touch, and a capacitive fingerprint sensor having an array of capacitive sensing electrodes (S2) configured to enable identification of a fingerprint of a finger.

Description

    FLEXIBLE TOUCH PANEL, FLEXIBLE DISPLAY PANEL AND FLEXIBLE DISPLAY APPARATUS, AND FABRICATING METHOD THEREOF TECHNICAL FIELD
  • The present invention relates to display technology, more particularly, to a flexible touch panel, a flexible display panel and a flexible display apparatus having the same, and a fabricating method thereof.
  • BACKGROUND
  • Biometrics recognition systems, such as fingerprint recognition systems, have been widely used in consumer electronic apparatuses, including smart phones, tablets, personal data assistants, and laptop computers. Various types of fingerprint recognition systems have been developed, including optical fingerprint scanners, capacitive fingerprint scanners, ultrasonic fingerprint scanners, thermal fingerprint scanners, and the like. A capacitive fingerprint scanner uses an array of capacitor circuits to collect fingerprint data.
  • SUMMARY
  • In one aspect, the present invention provides a flexible display panel comprising a flexible touch panel and a flexible display module laminated together with the flexible touch panel. The flexible touch panel comprises a touch sensor comprising a plurality of touch electrodes configured to detect a touch, and a capacitive fingerprint sensor comprising an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger.
  • Optionally, the flexible touch panel further comprises a flexible cover glass, and the plurality of touch electrodes and the array of capacitive sensing electrodes are on the flexible cover glass.
  • Optionally, the flexible cover glass has a thickness in a range of approximately 25 μm to approximately 150 μm.
  • Optionally, the plurality of touch electrodes and the array of capacitive sensing electrodes are in a same layer; the touch electrodes are in a touch area; and the array of capacitive sensing electrodes are in a fingerprint sensing area.
  • Optionally, the touch sensor comprises at least a touch electrode layer on a first side of the flexible cover glass; the array of capacitive sensing electrodes are on the first side of the flexible cover glass; the touch electrode layer is formed in a touch area; and the array of capacitive sensing electrodes are formed in a fingerprint sensing area.
  • Optionally, the array of capacitive sensing electrodes are operated in a time-division driving mode; the time-division driving mode comprises a touch control mode and a fingerprint sensing mode; the array of capacitive sensing electrodes are touch electrodes for conducting touch signals during the touch control mode; and are capacitive sensing electrodes for recognizing ridge lines and valley lines of the fingerprint during the fingerprint sensing mode.
  • Optionally, the flexible display panel is a flexible organic light emitting display panel, and the flexible display module is a flexible organic light emitting display module.
  • Optionally, the flexible organic light emitting display module comprises a flexible base substrate; a display unit on the flexible base substrate; a thin film encapsulating layer on a side of the display unit distal to the flexible base substrate; and a polarizer on a side of the thin film encapsulating layer distal to the display unit.
  • In another aspect, the present invention provides a flexible touch panel comprising a flexible cover glass; a touch sensor on the flexible cover glass, comprising a plurality of touch electrodes configured to detect a touch, and a capacitive fingerprint sensor on the flexible cover glass, comprising an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger.
  • Optionally, the flexible cover glass has a thickness in a range of approximately 25 μm to approximately 150 μm.
  • Optionally, the plurality of touch electrodes and the array of capacitive sensing electrodes are in a same layer; the touch electrodes are in a touch area; and the array of capacitive sensing electrodes are in a fingerprint sensing area.
  • Optionally, the touch sensor comprises at least a touch electrode layer on a first side of the flexible cover glass; the array of capacitive sensing electrodes are on the first side of the flexible cover glass; the touch electrode layer is formed in a touch area; and the array of capacitive sensing electrodes are formed in a fingerprint sensing area.
  • Optionally, the array of capacitive sensing electrodes are operated in a time-division driving mode; the time-division driving mode comprises a touch control mode and a fingerprint sensing mode; the array of capacitive sensing electrodes are touch electrodes for conducting touch signals during the touch control mode; and are capacitive sensing electrodes for recognizing ridge lines and valley lines of the fingerprint during the fingerprint sensing mode.
  • In another aspect, the present invention provides a method of fabricating a flexible touch panel, comprising forming a touch sensor and a capacitive fingerprint sensor on a flexible cover glass comprising forming a plurality of touch electrodes configured to detect a touch and an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger.
  • Optionally, forming the plurality of touch electrodes and the array of capacitive sensing electrodes comprises nanoimprinting the array of capacitive sensing electrodes on the flexible cover glass.
  • Optionally, the plurality of touch electrodes and the array of capacitive sensing electrodes are formed in a same nanoimprinting process; the plurality of touch electrodes is formed in a touch area; and the array of capacitive sensing electrodes are formed in a fingerprint sensing area.
  • Optionally, the touch sensor comprises at least a touch electrode layer; forming the touch sensor and the capacitive fingerprint sensor comprises nanoimprinting the touch electrode layer in a touch area on a first side of the flexible cover glass; and nanoimprinting the array of capacitive sensing electrodes in a fingerprint sensing area on the first side of the flexible cover glass.
  • In another aspect, the present invention provides a method of fabricating a flexible display panel, comprising forming a flexible touch panel according to a method described herein; forming a flexible display module; and laminating the flexible touch panel onto the flexible display module.
  • Optionally, laminating the flexible touch panel onto the flexible display module comprises laminating the flexible touch panel onto the flexible display module in a roll-to-plate manner.
  • Optionally, the flexible display panel is a flexible organic light emitting display panel, and the flexible display module is a flexible organic light emitting display module; forming the flexible organic light emitting display module comprises forming a display unit on a flexible base substrate; forming a thin film encapsulating layer on a side of the display unit distal to the flexible base substrate; and forming a polarizer on a side of the thin film encapsulating layer distal to the display unit.
  • Optionally, a plurality of flexible touch panels are formed on a first mother substrate, and a plurality of flexible display modules are formed on a second mother substrate; the method further comprises forming a plurality of flexible touch panels on a first mother substrate comprising a plurality of flexible cover glasses; forming a plurality of flexible display modules are formed on a second mother substrate comprising a plurality of flexible base substrates; laminating the plurality of flexible touch panels onto the plurality of flexible display module, each flexible touch panel laminated onto a corresponding flexible display module; cutting the first mother substrate and the second mother substrate to form a plurality of flexible display panels; cutting a portion of the flexible display panel to expose a driver integrated circuit bonding area on the flexible base substrate; and bonding a driver integrated circuit to the driver integrated circuit bonding area.
  • In another aspect, the present invention provides a flexible display apparatus comprising a flexible display panel described herein or fabricated by a method described herein.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The following drawings are merely examples for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the present invention.
  • FIG. 1 is a diagram illustrating the structure of a flexible display panel in some embodiments according to the present disclosure.
  • FIG. 2 is a diagram illustrating the structure of a sensor layer in some embodiments according to the present disclosure.
  • FIG. 3 shows a cross-sectional view along the A-A’direction of the sensor layer in FIG. 2 in some embodiments according to the present disclosure.
  • FIG. 4 shows a cross-sectional view along the A-A’direction of the sensor layer in FIG. 2 in some embodiments according to the present disclosure.
  • FIG. 5 illustrates a roll-to-plate lamination process in some embodiments according to the present disclosure.
  • FIG. 6 shows a flexible display module and a flexible touch panel laminated together.
  • FIG. 7 shows a process of cutting a first mother substrate and a second mother substrate to form a plurality of flexible display panels in some embodiments according to the present disclosure.
  • DETAILED DESCRIPTION
  • The disclosure will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of some embodiments are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
  • In conventional display apparatuses, the fingerprint scanner is typically installed in a designated space, e.g., under a “Home” button on a smart phone. By having a space designated for fingerprint scanner, valuable surface space available for display and touch control is significantly reduced. In the case of fingerprint recognition system using a capacitive-type sensor, another issue with the conventional display apparatuses is sensitivity of the capacitive fingerprint sensor and accuracy of the fingerprint data associated with the sensitivity. The sensitivity of the capacitive fingerprint sensor is significantly correlated with a distance between the finger and the fingerprint sensor electrodes. Fingerprint sensing becomes increasingly difficult as the distance separating the finger and the fingerprint sensor electrodes increases. For example, when the distance is larger than 300 μm, the sensitivity becomes too poor to recognize fingerprint patterns in a meaningful manner, as the electrical field becomes too weak at this distance. The separation distance also leads to blurring of the electric field thus resulting in a loss of resolution in the fingerprint images detected by the fingerprint sensor electrodes.
  • Accordingly, the present invention provides, inter alia, a flexible touch panel, a flexible display panel and a flexible display apparatus having the same, and a fabricating method thereof that substantially obviate one or more of the problems due to limitations and  disadvantages of the related art. In one aspect, the present disclosure provides a flexible display panel having a flexible multiple layer structure. In some embodiments, the flexible display panel includes a flexible touch panel having a touch sensor including a plurality of touch electrodes configured to detect a touch, and a capacitive fingerprint sensor including an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger; and a flexible display module laminated together with the flexible touch panel.
  • FIG. 1 is a diagram illustrating the structure of a flexible display panel in some embodiments according to the present disclosure. Referring to FIG. 1, the flexible display panel is a flexible multiple layer structure including a flexible touch panel 30 and a flexible display module 40 laminated together. The flexible display module 40 includes a flexible base substrate 100. The flexible touch panel 30 includes at least a sensor layer 700 on a flexible cover glass 800. The flexible cover glass has a thickness in a range of approximately 25 μm to approximately 150 μm, e.g., approximately 25 μm to approximately 75 μm, or approximately 50 μm.
  • FIG. 2 is a diagram illustrating the structure of a sensor layer in some embodiments according to the present disclosure. Referring to FIG. 2, the sensor layer in some embodiments includes a touch sensor having a plurality of touch electrodes S1 configured to detect a touch, and a capacitive fingerprint sensor including an array of capacitive sensing electrodes S2 configured to enable identification of a fingerprint of a finger. The plurality of touch electrodes S1 and the array of capacitive sensing electrodes S2 are disposed on the flexible cover glass. As shown in FIG. 2, the capacitive sensing electrode S2 has a dimension smaller than that of the touch electrode S1. Optionally, the capacitive sensing electrode S2 has a dimension comparable to that of the touch electrode S1. Optionally, the plurality of touch electrodes S1 is in a touch area TA, and the array of capacitive sensing electrodes S2 are in a fingerprint sensing area FSA. Optionally, the fingerprint sensing area FSA has a higher electrode distribution density (e.g., in terms of numbers of electrodes) than that of the touch area TA. The fingerprint sensing area FSA may be disposed in any region of the flexible display panel, e.g., any region of a display area of the flexible display panel.
  • In some embodiments, the plurality of touch electrodes S1 and the array of capacitive sensing electrodes S2 are in a same layer, e.g., formed in a same process and using a same material. In some embodiments, the plurality of touch electrodes S1 and the array of capacitive sensing electrodes S2 are substantially on a same horizontal plane on the flexible  cover glass, but are formed using different materials (e.g., a metal material and a transparent metal oxide material) . As used herein, the term “same layer” refers to the relationship between the layers simultaneously formed in the same step. In one example, the plurality of touch electrodes S1 and the array of capacitive sensing electrodes S2 are in a same layer when they are formed as a result of one or more steps of a same process (e.g., a same nanoimprinting process, or a same patterning process performed in a same layer of material) . In another example, the plurality of touch electrodes S1 and the array of capacitive sensing electrodes S2 can be formed in a same layer by simultaneously performing the step of forming the plurality of touch electrodes S1 and the step of forming the array of capacitive sensing electrodes S2. The term “same layer” does not always mean that the thickness of the layer or the height of the layer in a cross-sectional view is the same.
  • In some embodiments, the touch sensor includes a first touch electrode layer having a plurality of touch electrodes S1 on a first side of the flexible cover glass, and a second touch electrode layer having a plurality of touch electrodes S1 on a second side of the flexible cover glass opposite to the first side (see, e.g., FIG. 4) . In some embodiments, the touch sensor includes one or more touch electrode layer on the first side of the flexible cover glass, but not on the second side, i.e., all touch electrode layers of the touch sensor are on a same surface of the flexible cover glass (see, e.g., FIG. 3) .
  • In some embodiments, the touch sensor includes at least a touch electrode layer on a first side of the flexible cover glass, and the array of capacitive sensing electrodes are on the first side of the flexible cover glass (see, e.g., FIG. 3 or FIG. 4) . Optionally, the touch electrode layer is formed in a touch area, and the array of capacitive sensing electrodes are formed in a fingerprint sensing area. Optionally, the touch area and the fingerprint sensing area are mutually exclusive areas, i.e., the fingerprint sensing area is outside the touch area.
  • Optionally, the fingerprint sensing area is within the touch area, e.g., the touch area encompasses the fingerprint sensing area. For example, the array of capacitive sensing electrodes may be operated in a time-division driving mode. In some embodiments, the time-division driving mode includes a touch control mode and a fingerprint sensing mode. The array of capacitive sensing electrodes are touch electrodes for conducting touch signals during the touch control mode; and are capacitive sensing electrodes for recognizing ridge lines and valley lines of the fingerprint during the fingerprint sensing mode. Accordingly, during the touch control mode, the fingerprint sensing area is part of the touch area.
  • In some embodiments, the flexible display panel is a flexible organic light emitting display panel, and the flexible display module is a flexible organic light emitting display module. Referring to FIG. 1, the flexible display module 40 in some embodiments is a flexible organic light emitting display module. As shown in FIG. 1, the flexible organic light emitting display module in some embodiments includes a flexible base substrate100; a display unit 20 on the flexible base substrate100; and a thin film encapsulating layer 10 on a side of the display unit 20 distal to the flexible base substrate100. Optionally, the flexible organic light emitting display module further includes a polarizer 600 on a side of the thin film encapsulating layer 10 distal to the display unit20.
  • In some embodiments, the thin film encapsulating layer 10 has a multiple sub-layer structure including two or more sub-layers laminated together. Optionally, the thin film encapsulating layer 10 includes an organic thin film encapsulating sub-layer 400 and an inorganic thin film encapsulating sub-layer 500, as shown in FIG. 1.
  • The display unit 20 in some embodiments includes an organic light emitting diode 300 and a low temperature polysilicon substrate 200 having a number of display components including a thin film transistor. The flexible display panel includes a plurality of subpixels, each of which has a display unit20. Optionally, the organic light emitting diode includes an anode, a hole transport layer on the anode, a light emitting layer on a side of the hole transport layer distal to the anode, an electron transport layer on a side of the light emitting layer distal to the hole transport layer, and a cathode on a side of the electron transport layer distal to the light emitting layer. Optionally, the organic light emitting diode further includes a hole injection layer on a side of the hole transport layer proximal to the anode, and an electron injection layer on a side of the electron transport layer proximal to the cathode.
  • In the present flexible display panel, the fingerprint sensor is integrated into a flexible touch panel of the flexible display panel. By having this design, the fingerprint sensor is separated from a finger during a fingerprint recognition process by only a thin cover glass, a sensitive and accurate fingerprint recognition is made possible. Because the fingerprint sensor is integrated into the flexible touch panel, the fingerprint scanner can be made in a form of a virtual button, obviating the need of a designated area in the display panel for performing fingerprint recognition (e.g., a “Home” button) . The fingerprint sensor may be operated in a time-division driving mode, the fingerprint sensing area can be used for display and touch control when the fingerprint sensor is not operated in the fingerprint  sensing mode, obviating the need of sacrificing valuable display area for fingerprint recognition function.
  • In another aspect, the present disclosure provides a flexible touch panel. In some embodiments, the flexible touch panel includes a flexible cover glass, a touch sensor on the flexible cover glass, and a capacitive fingerprint sensor on the flexible cover glass. The touch sensor includes a plurality of touch electrodes configured to detect a touch. The capacitive fingerprint sensor includes an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger. Optionally, the flexible cover glass has a thickness in a range of approximately 25 μm to approximately 150 μm, e.g., approximately 25 μm to approximately 75 μm. Optionally, the touch sensor is a metal mesh touch sensor.
  • In some embodiments, the plurality of touch electrodes and the array of capacitive sensing electrodes are in a same layer, e.g., formed in a same process and using a same material. In some embodiments, the plurality of touch electrodes and the array of capacitive sensing electrodes are substantially on a same horizontal plane on the flexible cover glass, but are formed using different materials (e.g., a metal material and a transparent metal oxide material) .
  • In some embodiments, the touch sensor includes a first touch electrode layer on a first side of the flexible cover glass, and a second touch electrode layer on a second side of the flexible cover glass opposite to the first side. In some embodiments, the touch sensor includes one or more touch electrode layer on the first side of the flexible cover glass, but not on the second side, i.e., all touch electrode layers of the touch sensor are on a same surface of the flexible cover glass.
  • In some embodiments, the touch sensor includes at least a touch electrode layer on a first side of the flexible cover glass, and the array of capacitive sensing electrodes are on the first side of the flexible cover glass. Optionally, the touch electrode layer is formed in a touch area, and the array of capacitive sensing electrodes are formed in a fingerprint sensing area. Optionally, the touch area and the fingerprint sensing area are mutually exclusive areas, i.e., the fingerprint sensing area is outside the touch area.
  • Optionally, the fingerprint sensing area is within the touch area, e.g., the touch area encompasses the fingerprint sensing area. For example, the array of capacitive sensing electrodes may be operated in a time-division driving mode. In some embodiments, the time-division driving mode includes a touch control mode and a fingerprint sensing mode. The  array of capacitive sensing electrodes are touch electrodes for conducting touch signals during the touch control mode; and are capacitive sensing electrodes for recognizing ridge lines and valley lines of the fingerprint during the fingerprint sensing mode. Accordingly, during the touch control mode, the fingerprint sensing area is part of the touch area.
  • In another aspect, the present disclosure provides a method of fabricating a flexible touch panel. In some embodiments, the method includes forming a touch sensor and a capacitive fingerprint sensor on a flexible cover glass. Optionally, the step of forming the touch sensor and the capacitive fingerprint sensor includes forming a plurality of touch electrodes configured to detect a touch and an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger.
  • In some embodiments, the capacitive fingerprint sensor is formed using a nanoimprinting lithography process, e.g., the array of capacitive sensing electrodes are formed using a nanoimprinting lithography process. As used herein, the term “nanoimprinting” refers to any method for printing or creating a pattern or structure on the microscale and/or nanoscale size range on the surface of a substrate by contacting a mold with the defined pattern or structure on the surface at certain temperatures and pressures. As used herein, the term “nanoscale” refers to any dimensions that are below approximately 1 μm. As used herein, the term “microscale” refers to any dimensions that are in the range of approximately 1 μm to approximately 100 μm. Optionally, both the touch sensor and the capacitive fingerprint sensor are formed using a nanoimprinting lithography process. Optionally, forming the plurality of touch electrodes and forming the array of capacitive sensing electrodes include nanoimprinting the plurality of touch electrodes and the array of capacitive sensing electrodes on the flexible cover glass. Optionally, the flexible cover glass has a thickness in a range of approximately 25 μm to approximately 150 μm, e.g., approximately 25 μm to approximately 75 μm.
  • In some embodiments, the plurality of touch electrodes and the array of capacitive sensing electrodes are formed in a same nanoimprinting process. Optionally, the plurality of touch electrodes are formed in a touch area; and the array of capacitive sensing electrodes are formed in a fingerprint sensing area. Optionally, the touch area and the fingerprint sensing area are mutually exclusive areas, i.e., the fingerprint sensing area is outside the touch area. Optionally, the fingerprint sensing area is within the touch area, e.g., the touch area encompasses the fingerprint sensing area.
  • In some embodiments, the touch sensor includes a first touch electrode layer on a first side of the flexible cover glass, and a second touch electrode layer on a second side of the flexible cover glass opposite to the first side. In some embodiments, the touch sensor includes one or more touch electrode layer on the first side of the flexible cover glass, but not on the second side, i.e., all touch electrode layers of the touch sensor are on a same surface of the flexible cover glass.
  • In some embodiments, the touch sensor includes at least a touch electrode layer on a first side of the flexible cover glass; and the method includes nanoimprinting the touch electrode layer in a touch area on a first side of the flexible cover glass; and nanoimprinting the array of capacitive sensing electrodes in a fingerprint sensing area on the first side of the flexible cover glass. Optionally, the plurality of touch electrodes and the array of capacitive sensing electrodes are formed in a same layer using a same material in a same nanoimprinting process. Optionally, the plurality of touch electrodes and the array of capacitive sensing electrodes are formed substantially on a same horizontal plane on the flexible cover glass. Optionally, the plurality of touch electrodes and the array of capacitive sensing electrodes are formed in two separate processes. Optionally, the plurality of touch electrodes and the array of capacitive sensing electrodes are formed using different materials (e.g., a metal material and a transparent metal oxide material) .
  • Various appropriate electrode materials may be used to make the touch electrodes and the capacitive sensing electrodes. Examples of appropriate electrode materials include, but are not limited to, transparent metal oxide electrode materials and transparent metal electrode materials. Examples of transparent metal oxide electrode materials include, but are not limited to, indium tin oxide, indium zinc oxide, indium gallium oxide, and indium gallium zinc oxide. Examples of transparent metal electrode materials include, but are not limited to, a metal mesh, a silver nano wire, a carbon nano tube, a nano mesh, graphene, and conductive polymers such as poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) .
  • In another aspect, the present disclosure provides a method of fabricating a flexible display panel having a flexible multiple layer structure. In some embodiments, the method includes forming a flexible touch panel having a touch sensor including a plurality of touch electrodes configured to detect a touch, and a capacitive fingerprint sensor including an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger;  forming a flexible display module; and laminating the flexible touch panel onto the flexible display module.
  • The flexible touch panel may be laminated onto the flexible display module using various appropriate methods. Examples of appropriate methods include, but are not limited to, a roll-to-roll lamination process, a roll-to-plate lamination process, and a plate-to-plate lamination process. In some embodiments, the step of laminating the flexible touch panel onto the flexible display module is performed by laminating the flexible touch panel onto the flexible display module in a roll-to-plate manner. In a roll-to-plate lamination process, the flexible touch panel and the flexible display module can be laminated onto each other with an excellent alignment accuracy, reducing potential alignment errors during the fabrication process. Moreover, a roll-to-plate lamination process also obviates the issue that the base substrate is prone to physical damages occurred in other lamination processes (e.g., a roll-to-roll lamination process) .
  • FIG. 5 illustrates a roll-to-plate lamination process in some embodiments according to the present disclosure. Referring to FIG. 5, in the roll-to-plate lamination process, the flexible display module 40 is loaded on a first stage 40’, and the flexible touch panel 30 is loaded on a second stage 30’. The flexible display module 40 is secured on the first stage 40’, and the flexible touch panel 30 is slidably attached on the second stage 30’. A roller R applies a pressure pressing down the flexible touch panel 30 against the flexible display module 40 secured on the first stage 40’. As the roller R rotates and moves forward, the second stage 30’s lidably moves along a moving direction MD, gradually making more areas of the flexible touch panel 30 available for lamination. When the roller R rotates and moves from the left side to the right side of the first stage 40’, the entire flexible touch panel 30 is laminated onto the flexible display module 40. FIG. 6 shows a flexible display module and a flexible touch panel laminated together when the lamination process is completed.
  • In some embodiments, the flexible display panel is a flexible organic light emitting display panel, and the flexible display module is a flexible organic light emitting display module. Accordingly, the method includes a step of forming a flexible organic light emitting display module.
  • In some embodiments, the step of forming the flexible organic light emitting display module includes forming a display unit on a flexible base substrate; and forming a thin film encapsulating layer on a side of the display unit distal to the flexible base substrate. Optionally, the step of forming the flexible organic light emitting display module further includes forming a polarizer on a side of the thin film encapsulating layer distal to the display unit.
  • In some embodiments, the thin film encapsulating layer is formed to have a multiple sub-layer structure including two or more sub-layers laminated together. Optionally, the step of forming the thin film encapsulating layer includes forming an organic thin film encapsulating sub-layer and forming an inorganic thin film encapsulating sub-layer.
  • In some embodiments, the step of forming the display unit includes forming an organic light emitting diode and forming a low temperature polysilicon substrate having a number of display components including a thin film transistor. The flexible display panel includes a plurality of subpixels, each of which has a display unit. Optionally, the step of forming the organic light emitting diode includes forming an anode, forming a hole transport layer on the anode, forming a light emitting layer on a side of the hole transport layer distal to the anode, forming an electron transport layer on a side of the light emitting layer distal to the hole transport layer, and forming a cathode on a side of the electron transport layer distal to the light emitting layer. Optionally, the step of forming the organic light emitting diode further includes forming a hole injection layer on a side of the hole transport layer proximal to the anode, and forming an electron injection layer on a side of the electron transport layer proximal to the cathode.
  • In some embodiments, the method includes forming a plurality of flexible touch panels on a first mother substrate including a plurality of flexible cover glasses as an integral cover glass, and forming a plurality of flexible display modules are formed on a second mother substrate including a plurality of flexible base substrates as an integral base substrate. In some embodiments, the method further includes laminating the plurality of flexible touch panels onto the plurality of flexible display module, each flexible touch panel laminated onto a corresponding flexible display module; cutting the first mother substrate and the second mother substrate to form a plurality of flexible display panels; cutting a portion of the flexible display panel to expose a driver integrated circuit bonding area on the flexible base substrate; and bonding a driver integrated circuit to the driver integrated circuit bonding area.
  • FIG. 7 shows a process of cutting a first mother substrate and a second mother substrate to form a plurality of flexible display panels in some embodiments according to the present disclosure. Referring to FIG. 7, the plurality of flexible touch panels 30 are formed  on a first mother substrate 50, and the plurality of flexible display modules 40 are formed on a second mother substrate 60. The first mother substrate 50 includes a plurality of flexible cover glass 800 as an integral cover glass. The second mother substrate 60 includes a plurality of flexible base substrates100 as an integral base substrate. Moreover, the second mother substrate 60 is disposed on a third mother substrate 80 made of glass. As shown in FIG. 7, a plurality of individual flexible display panels can be obtained by cutting the laminated structure formed on the mother substrates along a cutting line 70. The cutting line 70 is located in a peripheral region of the display panel.
  • Optionally, the laminated structure formed on the mother substrates is first cut (e.g., by laser) along the cutting line to obtain the plurality of individual flexible display panels. A portion of each individual flexible display panel is then cut (e.g., by a blade) to expose a driver integrated circuit bonding area on the flexible base substrate. In the second cutting step, a portion of the flexible touch panel and a portion of the thin film encapsulating layer is cut, but the display unit and the flexible base substrate remain intact.
  • Optionally, the laminated structure formed on the mother substrates is first cut (e.g., by a blade) to expose a driver integrated circuit bonding area on the flexible base substrate in each flexible display panel. In the first cutting step, the second mother substrate remains intact. Subsequently, the laminated structure is then cut (e.g., by laser) along the cutting line to obtain the plurality of individual flexible display panels.
  • In a flexible touch panel and a flexible display panel fabricated by the present methods, the fingerprint sensor is integrated into a flexible touch panel of the flexible display panel. By having this design, the fingerprint sensor is separated from a finger during a fingerprint recognition process by only a thin cover glass, a sensitive and accurate fingerprint recognition is made possible. Because the fingerprint sensor is integrated into the flexible touch panel, the fingerprint scanner can be made in a form of a virtual button, obviating the need of a designated area in the display panel for performing fingerprint recognition (e.g., a “Home” button) . The fingerprint sensor may be operated in a time-division driving mode, the fingerprint sensing area can be used for display and touch control when the fingerprint sensor is not operated in the fingerprint sensing mode, obviating the need of sacrificing valuable display area for fingerprint recognition function.
  • In another aspect, the present disclosure provides a flexible touch panel fabricated by a method described herein.
  • In another aspect, the present disclosure provides a flexible display panel fabricated by a method described herein.
  • In another aspect, the present disclosure provides a flexible display apparatus having a flexible touch panel described herein or fabricated by a method described herein.
  • In another aspect, the present disclosure provides a flexible display apparatus having a flexible display panel described herein or fabricated by a method described herein.
  • Examples of appropriate display apparatuses includes, but are not limited to, an electronic paper, a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital album, a GPS, etc.
  • The foregoing description of the embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form or to exemplary embodiments disclosed. Accordingly, the foregoing description should be regarded as illustrative rather than restrictive. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. The embodiments are chosen and described in order to explain the principles of the invention and its best mode practical application, thereby to enable persons skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use or implementation contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents in which all terms are meant in their broadest reasonable sense unless otherwise indicated. Therefore, the term “the invention” , “the present invention” or the like does not necessarily limit the claim scope to a specific embodiment, and the reference to exemplary embodiments of the invention does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is limited by only the spirit and scope of the appended claims. Moreover, these claims may refer to use “first” , “second” , etc. following with noun or element. Such terms should be understood as a nomenclature and should not be construed as giving the limitation on the number of the elements modified by such nomenclature unless specific number has been given. Any advantages and benefits described may not apply to all embodiments of the invention. It should be appreciated that variations may be made in the embodiments described by persons skilled in the art without departing from the scope of the present invention as defined by the following claims. Moreover, no element and component in the  present disclosure is intended to be dedicated to the public regardless of whether the element or component is explicitly recited in the following claims.

Claims (22)

  1. A flexible display panel, comprising:
    a flexible touch panel comprising a touch sensor comprising a plurality of touch electrodes configured to detect a touch, and a capacitive fingerprint sensor comprising an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger; and
    a flexible display module laminated together with the flexible touch panel.
  2. The flexible display panel of claim 1, wherein the flexible touch panel further comprises a flexible cover glass, and
    the plurality of touch electrodes and the array of capacitive sensing electrodes are on the flexible cover glass.
  3. The flexible display panel of claim 2, wherein the flexible cover glass has a thickness in a range of approximately 25 μm to approximately 150 μm.
  4. The flexible display panel of claim 2, wherein the plurality of touch electrodes and the array of capacitive sensing electrodes are in a same layer;
    the touch electrodes are in a touch area; and
    the array of capacitive sensing electrodes are in a fingerprint sensing area.
  5. The flexible display panel of claim 2, wherein the touch sensor comprises at least a touch electrode layer on a first side of the flexible cover glass;
    the array of capacitive sensing electrodes are on the first side of the flexible cover glass;
    the touch electrode layer is formed in a touch area; and
    the array of capacitive sensing electrodes are formed in a fingerprint sensing area.
  6. The flexible display panel of claim 2, wherein the array of capacitive sensing electrodes are operated in a time-division driving mode;
    the time-division driving mode comprises a touch control mode and a fingerprint sensing mode;
    the array of capacitive sensing electrodes are touch electrodes for conducting touch signals during the touch control mode; and are capacitive sensing electrodes for recognizing ridge lines and valley lines of the fingerprint during the fingerprint sensing mode.
  7. The flexible display panel of claim 1, wherein the flexible display panel is a flexible organic light emitting display panel, and the flexible display module is a flexible organic light emitting display module.
  8. The flexible display panel of claim 7, wherein the flexible organic light emitting display module comprises:
    a flexible base substrate;
    a display unit on the flexible base substrate;
    a thin film encapsulating layer on a side of the display unit distal to the flexible base substrate; and
    a polarizer on a side of the thin film encapsulating layer distal to the display unit.
  9. A flexible display apparatus, comprising a flexible display panel of any one of claims 1 to 8.
  10. A flexible touch panel, comprising:
    a flexible cover glass;
    a touch sensor on the flexible cover glass, comprising a plurality of touch electrodes configured to detect a touch, and
    a capacitive fingerprint sensor on the flexible cover glass, comprising an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger.
  11. The flexible touch panel of claim 10, wherein the flexible cover glass has a thickness in a range of approximately 25 μm to approximately 150 μm.
  12. The flexible touch panel of claim 10, wherein the plurality of touch electrodes and the array of capacitive sensing electrodes are in a same layer;
    the touch electrodes are in a touch area; and
    the array of capacitive sensing electrodes are in a fingerprint sensing area.
  13. The flexible touch panel of claim 10, wherein the touch sensor comprises at least a touch electrode layer on a first side of the flexible cover glass;
    the array of capacitive sensing electrodes is on the first side of the flexible cover glass;
    the touch electrode layer is formed in a touch area; and
    the array of capacitive sensing electrodes are formed in a fingerprint sensing area.
  14. The flexible touch panel of claim 10, wherein the array of capacitive sensing electrodes are operated in a time-division driving mode;
    the time-division driving mode comprises a touch control mode and a fingerprint sensing mode;
    the array of capacitive sensing electrodes are touch electrodes for conducting touch signals during the touch control mode; and are capacitive sensing electrodes for recognizing ridge lines and valley lines of the fingerprint during the fingerprint sensing mode.
  15. A method of fabricating a flexible touch panel, comprising:
    forming a touch sensor and a capacitive fingerprint sensor on a flexible cover glass comprising forming a plurality of touch electrodes configured to detect a touch and an array of capacitive sensing electrodes configured to enable identification of a fingerprint of a finger.
  16. The method of claim 15, wherein forming the plurality of touch electrodes and the array of capacitive sensing electrodes comprises nanoimprinting the array of capacitive sensing electrodes on the flexible cover glass.
  17. The method of claim 16, wherein the plurality of touch electrodes and the array of capacitive sensing electrodes are formed in a same nanoimprinting process;
    the plurality of touch electrodes is formed in a touch area; and
    the array of capacitive sensing electrodes are formed in a fingerprint sensing area.
  18. The method of claim 16, wherein the touch sensor comprises at least a touch electrode layer on a first side of the flexible cover glass;
    forming the touch sensor and the capacitive fingerprint sensor comprises:
    nanoimprinting the touch electrode layer in a touch area on the first side of the flexible cover glass; and
    nanoimprinting the array of capacitive sensing electrodes in a fingerprint sensing area on the first side of the flexible cover glass.
  19. A method of fabricating a flexible display panel, comprising:
    forming a flexible touch panel according to a method of any one of claims 15 to 18;
    forming a flexible display module; and
    laminating the flexible touch panel onto the flexible display module.
  20. The method of claim 19, wherein laminating the flexible touch panel onto the flexible display module comprises laminating the flexible touch panel onto the flexible display module in a roll-to-plate manner.
  21. The method of claim 19, wherein the flexible display panel is a flexible organic light emitting display panel, and the flexible display module is a flexible organic light emitting display module;
    forming the flexible organic light emitting display module comprises:
    forming a display unit on a flexible base substrate;
    forming a thin film encapsulating layer on a side of the display unit distal to the flexible base substrate; and
    forming a polarizer on a side of the thin film encapsulating layer distal to the display unit.
  22. The method of claim 19, wherein a plurality of flexible touch panels are formed on a first mother substrate, and a plurality of flexible display modules are formed on a second mother substrate;
    the method further comprises:
    forming a plurality of flexible touch panels on a first mother substrate comprising a plurality of flexible cover glasses;
    forming a plurality of flexible display modules are formed on a second mother substrate comprising a plurality of flexible base substrates;
    laminating the plurality of flexible touch panels onto the plurality of flexible display module, each flexible touch panel laminated onto a corresponding flexible display module;
    cutting the first mother substrate and the second mother substrate to form a plurality of flexible display panels;
    cutting a portion of the flexible display panel to expose a driver integrated circuit bonding area on the flexible base substrate; and
    bonding a driver integrated circuit to the driver integrated circuit bonding area.
EP16909059.4A 2016-11-24 2016-11-24 Flexible touch panel, flexible display panel and flexible display apparatus, and fabricating method thereof Ceased EP3545461A4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/107058 WO2018094639A1 (en) 2016-11-24 2016-11-24 Flexible touch panel, flexible display panel and flexible display apparatus, and fabricating method thereof

Publications (2)

Publication Number Publication Date
EP3545461A1 true EP3545461A1 (en) 2019-10-02
EP3545461A4 EP3545461A4 (en) 2020-07-22

Family

ID=62194536

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16909059.4A Ceased EP3545461A4 (en) 2016-11-24 2016-11-24 Flexible touch panel, flexible display panel and flexible display apparatus, and fabricating method thereof

Country Status (4)

Country Link
US (1) US10452888B2 (en)
EP (1) EP3545461A4 (en)
CN (1) CN108475323B (en)
WO (1) WO2018094639A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102348486B1 (en) * 2015-04-29 2022-01-07 삼성전자 주식회사 Electronic device
KR102461720B1 (en) * 2017-08-03 2022-11-01 삼성전자주식회사 Fingerprint recongnizing sensor and combined fingerprint recognition touch screen device
KR102400712B1 (en) * 2017-10-12 2022-05-23 삼성전자주식회사 Display including bending area and electronic device with the same
CN109324713A (en) * 2018-09-11 2019-02-12 深圳市宇顺电子股份有限公司 A kind of touching display screen with fingerprint and preparation method thereof
CN109388287B (en) * 2018-09-29 2022-09-13 上海天马微电子有限公司 Touch display panel and electronic equipment
CN109359584B (en) * 2018-10-15 2021-06-01 Oppo广东移动通信有限公司 Electronic equipment, display assembly, touch panel of display assembly and touch panel preparation method
CN110427121A (en) * 2019-07-05 2019-11-08 武汉华星光电半导体显示技术有限公司 Touch control display apparatus with fingerprint identification function
CN110405362B (en) * 2019-08-07 2021-10-29 京东方科技集团股份有限公司 Display module, cutting method thereof and display device
CN110989231A (en) * 2019-11-25 2020-04-10 Tcl华星光电技术有限公司 Polarizer and display panel

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2391745C (en) * 2002-06-25 2012-08-14 Albert Mark David Touch screen display using ultra-thin glass laminate
JP4493273B2 (en) * 2003-01-29 2010-06-30 日東電工株式会社 Double-sided adhesive sheet and display device with touch panel
US7135352B2 (en) * 2004-02-26 2006-11-14 Eastman Kodak Company Method of fabricating a cover plate bonded over an encapsulated OLEDs
TWI267789B (en) * 2004-06-30 2006-12-01 Au Optronics Corp Transparent touch panel for recognizing fingerprint
GB0515175D0 (en) * 2005-07-25 2005-08-31 Plastic Logic Ltd Flexible resistive touch screen
EP1962348B1 (en) * 2005-08-12 2013-03-06 Cambrios Technologies Corporation Nanowires-based transparent conductors
US7807001B2 (en) * 2007-06-28 2010-10-05 Eastman Kodak Company Lamination device method for flexographic plate manufacturing
WO2010067857A1 (en) * 2008-12-12 2010-06-17 リンテック株式会社 Laminate, method for producing same, electronic device member, and electronic device
US20110005662A1 (en) * 2009-07-10 2011-01-13 Kuo-Hua Sung Method for Fabricating Multilayer Panels
US9274553B2 (en) * 2009-10-30 2016-03-01 Synaptics Incorporated Fingerprint sensor and integratable electronic display
CN102870033B (en) * 2010-02-22 2015-07-01 瑞尔D股份有限公司 Bendable liquid crystal polarization switch for direct view stereoscopic display
US8486535B1 (en) * 2010-05-24 2013-07-16 Rockwell Collins, Inc. Systems and methods for adherable and removable thin flexible glass
KR101153389B1 (en) * 2010-09-27 2012-06-07 엘지이노텍 주식회사 Touch screen panel and touch screen assembly including the same
US20120092279A1 (en) * 2010-10-18 2012-04-19 Qualcomm Mems Technologies, Inc. Touch sensor with force-actuated switched capacitor
US9158958B2 (en) * 2010-10-28 2015-10-13 Synaptics Incorporated Signal strength enhancement in a biometric sensor array
US8564314B2 (en) * 2010-11-02 2013-10-22 Atmel Corporation Capacitive touch sensor for identifying a fingerprint
EP2638456B1 (en) * 2010-11-11 2019-06-12 TPK Touch Solutions (Xiamen) Inc. Single-axis capacitive multi-touch panel, system and method
JP5473990B2 (en) * 2011-06-17 2014-04-16 日東電工株式会社 A conductive laminate, a transparent conductive laminate with a patterned wiring, and an optical device.
JP2013008134A (en) * 2011-06-23 2013-01-10 Panasonic Corp Manufacturing method of touch panel
US8875652B2 (en) * 2011-09-14 2014-11-04 Apple Inc. Liquid adhesive boundary control
JP2013068563A (en) * 2011-09-26 2013-04-18 Fujikura Ltd Pressure sensor
KR20130057637A (en) * 2011-11-24 2013-06-03 삼성전기주식회사 Touch sensing apparatus
US9152838B2 (en) * 2012-03-29 2015-10-06 Synaptics Incorporated Fingerprint sensor packagings and methods
US20130265137A1 (en) * 2012-04-02 2013-10-10 Validity Sensors, Inc. Integratable fingerprint sensor packagings
US20140009429A1 (en) * 2012-07-03 2014-01-09 Chimei Innolux Corporation Method of producing capacitive coplanar touch panel devices with laser ablation
US20140150952A1 (en) * 2012-12-04 2014-06-05 Apple Inc. Lamination Systems With Temperature-Controlled Lamination Rollers
KR102136376B1 (en) * 2013-01-07 2020-07-22 코닝 인코포레이티드 Strengthened laminated glass structures
CN105377785A (en) * 2013-02-21 2016-03-02 康宁股份有限公司 Methods of forming strengthened sintered glass structures
KR102214503B1 (en) * 2013-03-26 2021-02-09 삼성전자주식회사 Method of detecting fingerprint and electronic device thereof
US9051493B2 (en) * 2013-03-28 2015-06-09 Nokia Technologies Oy Method and apparatus for joining together multiple functional layers of a flexible display
TWI631019B (en) 2013-04-19 2018-08-01 美商康寧公司 Methods of forming laminated glass structures
US9374898B2 (en) * 2013-04-24 2016-06-21 Apple Inc. Electrical and mechanical interconnection for electronic components
US20140326182A1 (en) * 2013-05-03 2014-11-06 Areesys Corporation Continuous Substrate Processing Apparatus
KR20160011196A (en) * 2013-09-20 2016-01-29 애플 인크. Pressure-sensing stages for lamination systems
CN103530609B (en) 2013-10-11 2017-07-04 北京京东方光电科技有限公司 A kind of fingerprint recognition element, display screen and display device
KR102221548B1 (en) * 2013-12-31 2021-03-02 삼성디스플레이 주식회사 Touch panel display
CN105022520A (en) * 2014-04-30 2015-11-04 群创光电股份有限公司 Touch panel and touch display apparatus
KR102212632B1 (en) * 2014-05-12 2021-02-08 삼성전자주식회사 Fingerprint Recognition method and electronic device performing thereof
CN104022123B (en) * 2014-05-16 2016-08-31 京东方科技集团股份有限公司 A kind of flexible display substrates and preparation method thereof, flexible display apparatus
KR20160006290A (en) * 2014-07-08 2016-01-19 삼성디스플레이 주식회사 Adhesive film for display device and manufacturing method thereof
US9485862B2 (en) * 2014-08-28 2016-11-01 Apple Inc. Electronic devices with carbon nanotube printed circuits
CN106604912A (en) * 2014-08-29 2017-04-26 巴斯夫欧洲公司 Oxime sulfonate derivatives
US10551658B2 (en) * 2014-12-17 2020-02-04 Mitsubishi Chemical Corporation Image display apparatus with touch panel
KR20160086487A (en) * 2015-01-09 2016-07-20 삼성디스플레이 주식회사 Flexible touch panel and flexible display device
KR102345556B1 (en) * 2015-01-20 2021-12-30 삼성디스플레이 주식회사 A lamination apparutus for a flexible display device and a lamination method usinf the same
WO2016122173A1 (en) 2015-01-27 2016-08-04 엘지이노텍 주식회사 Touch window
KR102277453B1 (en) 2015-02-05 2021-07-14 삼성전자주식회사 Electronic device with touch sensor and driving method thereof
CN104751131A (en) * 2015-03-06 2015-07-01 南昌欧菲生物识别技术有限公司 Fingerprint identification device, touch screen and electronic equipment
WO2016146895A2 (en) * 2015-03-17 2016-09-22 Optitune Oy Scratch resistant, easy-to-clean coatings, methods of producing the same and the use thereof
US9823794B2 (en) * 2015-03-31 2017-11-21 Synaptics Incorporated Differential readout for sensor array
US9817506B2 (en) * 2015-03-31 2017-11-14 Synaptics Incorporated Sensor array configurations for differential readout
US9740326B2 (en) * 2015-03-31 2017-08-22 Synaptics Incorporated Sensor array with split-drive differential sensing
CN104750347A (en) * 2015-04-17 2015-07-01 合肥京东方光电科技有限公司 Capacitive touch screen, production technology for same and touch display panel
KR102348486B1 (en) * 2015-04-29 2022-01-07 삼성전자 주식회사 Electronic device
US10983626B2 (en) * 2015-06-05 2021-04-20 Apple Inc. Electronic devices with display and touch sensor structures
CN107004130B (en) * 2015-06-18 2020-08-28 深圳市汇顶科技股份有限公司 Optical sensor module under screen for sensing fingerprint on screen
US10410037B2 (en) * 2015-06-18 2019-09-10 Shenzhen GOODIX Technology Co., Ltd. Under-screen optical sensor module for on-screen fingerprint sensing implementing imaging lens, extra illumination or optical collimator array
US10410033B2 (en) * 2015-06-18 2019-09-10 Shenzhen GOODIX Technology Co., Ltd. Under-LCD screen optical sensor module for on-screen fingerprint sensing
US10437974B2 (en) * 2015-06-18 2019-10-08 Shenzhen GOODIX Technology Co., Ltd. Optical sensing performance of under-screen optical sensor module for on-screen fingerprint sensing
US10007770B2 (en) * 2015-07-21 2018-06-26 Synaptics Incorporated Temporary secure access via input object remaining in place
CN107923126A (en) * 2015-08-05 2018-04-17 王子控股株式会社 The manufacture method and laminated body of sheet material, sheet material
CN105161514B (en) * 2015-08-10 2016-07-06 京东方科技集团股份有限公司 A kind of organic EL display panel, its preparation method and display device
US9959444B2 (en) * 2015-09-02 2018-05-01 Synaptics Incorporated Fingerprint sensor under thin face-sheet with aperture layer
TWI543087B (en) * 2015-09-03 2016-07-21 晨星半導體股份有限公司 Touch display apparatus with fingerprint identification function and fingerprint identification module
US10635878B2 (en) * 2015-10-23 2020-04-28 Shenzhen GOODIX Technology Co., Ltd. Optical fingerprint sensor with force sensing capability
US10042467B2 (en) * 2016-01-29 2018-08-07 Synaptics Incorporated Integrated capacitive fingerprint sensor
CN105808005B (en) * 2016-03-23 2019-03-12 上海天马微电子有限公司 Flexible display screen and its manufacturing method
US9974188B2 (en) * 2016-04-05 2018-05-15 Compass Technology Company Limited Patterning of graphene circuits on flexible substrates
CN105845708B (en) * 2016-04-20 2019-07-16 上海天马微电子有限公司 Flexible integration touch-control display panel and preparation method thereof
CN105867696B (en) * 2016-06-03 2020-11-17 京东方科技集团股份有限公司 Touch display panel, flexible display panel and display device
CN206541281U (en) * 2016-10-12 2017-10-03 肖特玻璃科技(苏州)有限公司 A kind of electronic device structure and its ultra-thin glass plate used
US20180165495A1 (en) * 2016-12-09 2018-06-14 Fingerprint Cards Ab Electronic device
KR102481643B1 (en) * 2017-01-31 2022-12-28 삼성전자주식회사 Electric device and method for controlling display
US10303218B2 (en) * 2017-02-01 2019-05-28 Apple Inc. Foldable cover and display for an electronic device
US10614283B2 (en) * 2017-03-07 2020-04-07 Shenzhen GOODIX Technology Co., Ltd. Devices with peripheral task bar display zone and under-LCD screen optical sensor module for on-screen fingerprint sensing
KR102384014B1 (en) * 2017-03-14 2022-04-08 삼성전자주식회사 Method and electronic device for detecting fingerprint
KR102331464B1 (en) * 2017-04-18 2021-11-29 삼성전자주식회사 Method for acquiring biometric information using a biometric information sensing area formed in a display area and electronic device supporting the same
CN107425142B (en) * 2017-04-27 2019-08-02 京东方科技集团股份有限公司 A kind of preparation method and flexible display apparatus of flexible display apparatus
KR20180137748A (en) * 2017-06-19 2018-12-28 동우 화인켐 주식회사 Method for Manufacturing Flexible Display Device Comprising Touch Sensor
CN107275376B (en) * 2017-06-27 2019-12-20 上海天马微电子有限公司 Display panel and display device

Also Published As

Publication number Publication date
EP3545461A4 (en) 2020-07-22
CN108475323B (en) 2021-11-05
US10452888B2 (en) 2019-10-22
WO2018094639A1 (en) 2018-05-31
CN108475323A (en) 2018-08-31
US20180307884A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
US10452888B2 (en) Flexible touch panel, flexible display panel and flexible display apparatus, and fabricating method thereof
US11411055B2 (en) Display device
KR102563454B1 (en) Pressure sensor integrated organic light emitting display device and touch screen integrated organic light emitting display device
WO2019114572A1 (en) Array substrate and preparation method therefor, fingerprint recognition method, and display device
CN107579104B (en) Flexible display panel with fingerprint identification function and manufacturing method
US10514798B2 (en) Touch panel with fingerprint identification function and method for fabricating the same
US20130277094A1 (en) Touch panel and method for manufacturing the same
US11171184B2 (en) Display device and method of manufacturing the same
TW201137714A (en) Method for manufacturing one-layer type capacitive touch screen
US11328148B2 (en) Touch panel and fingerprint recognition method and manufacturing method thereof, and display device
US11079870B2 (en) Display device
US20150227170A1 (en) Touch sensor and method for manufacturing the same
US10620735B2 (en) Force touch module, manufacturing method thereof, display screen and display device
US9958974B2 (en) Touch substrate, its manufacturing method and display device
US10386979B2 (en) Touch panel structure having a shielding layer and manufacturing method thereof
WO2018205582A1 (en) Touch display module, display device, and driving method therefor
CN107633200B (en) Capacitive fingerprint identification module and electronic equipment
US11494018B2 (en) Touch display substrate, manufacturing method thereof, and touch display apparatus
US10928961B2 (en) Pressure sensor and display device including the same
US20210319200A1 (en) Touch-fingerprint complex sensor and method of fabricating the same
WO2017205656A1 (en) Capacitive fingerprint sensor with glass substrate
KR101381240B1 (en) Manufacturing method of touch screen panel and touch screen panel using the same
CN104281302A (en) Touch structure and manufacturing method thereof
KR101400741B1 (en) Touch sensing apparatus and method for manufacturing the same
TWI485596B (en) Touch panel and manufacturing method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20200624

RIC1 Information provided on ipc code assigned before grant

Ipc: G06F 3/044 20060101ALI20200618BHEP

Ipc: G06K 9/00 20060101AFI20200618BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20230928