EP3544707A1 - Modellautorennbahn - Google Patents

Modellautorennbahn

Info

Publication number
EP3544707A1
EP3544707A1 EP17801596.2A EP17801596A EP3544707A1 EP 3544707 A1 EP3544707 A1 EP 3544707A1 EP 17801596 A EP17801596 A EP 17801596A EP 3544707 A1 EP3544707 A1 EP 3544707A1
Authority
EP
European Patent Office
Prior art keywords
track
model car
frequency
busbar
busbars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17801596.2A
Other languages
English (en)
French (fr)
Other versions
EP3544707B1 (de
Inventor
Christian Koker
Christian Rathge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrera Toys GmbH
Original Assignee
Stadlbauer Marketing und Vertrieb GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stadlbauer Marketing und Vertrieb GmbH filed Critical Stadlbauer Marketing und Vertrieb GmbH
Publication of EP3544707A1 publication Critical patent/EP3544707A1/de
Application granted granted Critical
Publication of EP3544707B1 publication Critical patent/EP3544707B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H18/00Highways or trackways for toys; Propulsion by special interaction between vehicle and track
    • A63H18/12Electric current supply to toy vehicles through the track
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H18/00Highways or trackways for toys; Propulsion by special interaction between vehicle and track
    • A63H18/16Control of vehicle drives by interaction between vehicle and track; Control of track elements by vehicles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H30/00Remote-control arrangements specially adapted for toys, e.g. for toy vehicles
    • A63H30/02Electrical arrangements
    • A63H30/04Electrical arrangements using wireless transmission
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H18/00Highways or trackways for toys; Propulsion by special interaction between vehicle and track
    • A63H18/08Highways or trackways for toys; Propulsion by special interaction between vehicle and track with mechanical means for guiding or steering

Definitions

  • the invention relates to a model car racing track according to the preamble of claim 1.
  • a model car racecourse, also slotcar or slot (slot) is a technical device used to drive electrically driven model cars on a track, with a guide keel on the model car engaging a slot on the track.
  • the Modellautorennbahn has a roadway, which can be constructed, for example, from a plurality of fauxsteckbarer roadway parts.
  • the roadway may have two lanes each having a slot for guiding each of a model car and two busbars for powering the electric drive of the model vehicles movable along the respective lane.
  • Current collectors of the respective model cars are in contact with the respective busbar in order to ensure transmission of electrical energy.
  • controller each speed and braking behavior of the respective model car can be controlled.
  • cornering for example, due to centrifugal forces acting on the model cars, it may happen that the contact between the Power bus and the pantograph of the model car is interrupted, with the result that the power supply of the electric drive of the model car is interrupted and the model car loses speed.
  • the invention is therefore based on the object to show a way how an uninterrupted supply of model cars such a model car racing track can be ensured with electrical energy.
  • a transformer arrangement is provided with a primary element and a secondary element for non-contact energy transfer from the roadway to the model car, the primary element of the transformer arrangement being the busbar and the model car being the secondary element of the transformer arrangement for coupling in from that generated by the primary element having electromagnetic field.
  • the model car raceway has an air transformer arrangement for non-contact energy transmission, wherein the primary element performs the function of a primary coil or winding and the secondary element assumes the function of a secondary coil or winding.
  • an unchanged roadway can be used with a particularly simple structure, in which the busbars are designed as in the driving direction or track extending conductor.
  • control signals for example for accelerating or decelerating the model car, can also be transmitted with the transformer arrangement, for example by modulating these control signals with a higher frequency and filtering them out again on the model-car side.
  • a rotation vector of the electromagnetic field generated by the primary element substantially points in the direction of the track.
  • the busbar formed in the direction of the track as an elongate conductor forms a magnetic field whose field lines have the shape of closed, concentric circles or ellipses around the busbar.
  • a rotation vector of the magnetic field which is perpendicular to the concentric circles, then points in the direction of the track.
  • substantially is understood within normal manufacturing tolerances.
  • the secondary element has a main extension direction which is substantially perpendicular to the direction of the track.
  • the secondary element has one or a plurality of turns, wherein the one or the plurality of turns defines a screw vector which extends substantially perpendicular to the direction of the track.
  • the plurality of turns define a main direction of extension of the secondary element in the helical direction of the secondary element.
  • the secondary element may have a different orientation than the primary element, which allows a space-saving arrangement in the model car.
  • At least one second track is provided with at least one second busbar along which a second model car is track guided, wherein the first busbar is acted upon by an electrical current having a first frequency and the second busbar with a second electric current a second frequency is applied, wherein the first frequency is different from the second frequency.
  • the second frequency is at least one and a half times the first frequency.
  • the first frequency is 400 kHz and the second frequency is 600 kHz.
  • the at least one roadway has two busbars extending parallel in the direction of the track. Even so, an unchanged lane can be used with a particularly simple structure, in which the busbars are formed as in driving or lane extending conductor.
  • the two bus bars are electrically connected in parallel.
  • a doubled conductor cross-section is provided, so that the busbar elements can be charged with a double current.
  • the other busbar element is still traversed by electric current.
  • the two busbar elements are electrically connected in series.
  • the two busbar elements form a double loop, which further improves the energy transfer efficiency.
  • FIG. 1 shows a schematic sectional view of a preferred embodiment of a model car racing track according to the invention
  • Fig. 2 in a schematic representation of a transformer arrangement which in the in
  • FIG. 3 shows a top-side view of the first carrier element shown in FIG. 2, FIG.
  • Fig. 4 is a bottom view of the second shown in Fig. 2
  • FIG. 5 shows an operating scenario of the model car racing track shown in FIG. 1, FIG.
  • FIG. 6 shows a first interconnection variant of busbars of a two-lane roadway
  • FIG. 7 shows a second interconnection variant of busbars of a two-lane roadway
  • Fig. 1 is a model car race track 2, also slotcar or slot web (from English slot for "slot") shown.
  • the model car racing track 2 has a roadway 4 constructed from a plurality of roadway parts which can be joined together, with two tracks 6a, 6b for one model car 10 in the present exemplary embodiment. Only a model car 10 is shown in FIG. 1.
  • the roadway 4 has a respective recess 8a, 8b assigned to each track 6a, 6b, which is arranged centrally with respect to the track and into which a guide element 30, such as a guide pin or guide key, of the model car 10 can engage and so on Guiding the model car 10 along the respective track, here the track 6a causes.
  • the roadway 4 has in each case two busbars 14a, 14b, 14c, 14d which are arranged on both sides of the respective recess 8a, 8b and which are assigned to the first track 6a or the second track 6b.
  • the first and second busbars 14a, 14b, 14c, 14d have a cross-sectionally U-shaped profile in the present exemplary embodiment and are pressed into further depressions of the roadway 4.
  • the first and second busbars 14a, 14b, 14c, 14d may also have a different profile in cross section.
  • the busbars 14a, 14b, 14c, 14d are each formed in one piece and of uniform material. Further, the bus bars 14a, 14b, 14c, 14d are made of a magnetic material. Thus, the model car 10 with a permanent magnet (not shown) interacting with the bus bars 14a, 14b can be held in the track 6a by magnetic force.
  • the two pairs of busbars 14a, 14b and 14c, 14d form a primary element 18 of a transformer arrangement 16 for contactless energy transmission to the model car 10.
  • the transformer assembly 16 for non-contact power transmission to the model car 10 further includes a model 20 associated with the model car 10 for coupling an electromagnetic field, which is generated with the primary element 18.
  • the secondary element 20 is a coil arrangement 22 in the present exemplary embodiment.
  • control signals for example for accelerating or decelerating the model car 10
  • FIG. 2 which, for reasons of simplicity, shows only the first track 6a of the two tracks 6a, 6b.
  • the following description also applies analogously to the second track 6b with the recess 8b and the busbars 14c, 14d.
  • FIG. 2 shows that both the depression 8a and the two busbars 14a, 14b each have a main extension direction H pointing in the direction of travel along the track 6a, in whose direction their dimensions are significantly greater than in the direction of the other extension directions.
  • FIG. 2 shows that the coil arrangement 22 has a carrier 12.
  • the carrier 12 has a first carrier element 24a and a second carrier element 24b and a ferrite core 26 arranged between the first carrier element 24a and the second carrier element 24b.
  • the first carrier element 24a and the second carrier element 24b are printed circuit boards in the present exemplary embodiment.
  • the printed circuit boards have a flat basic shape, in the present embodiment, a cuboidal basic shape, each with an upper side and an upper side opposite the underside. They each consist of an electrically insulating material and conductor tracks arranged thereon.
  • an insulating material e.g. fiber reinforced plastic common.
  • the traces are used e.g. etched from a thin layer of copper previously applied to the insulating material.
  • Conductor tracks on the upper side of the first carrier element 24a in the present exemplary embodiment form a plurality of first coil sections 28a, while further strip conductors on the underside of the second carrier element 24b form a plurality of second coil sections 28b in the present embodiment.
  • first coil sections 28a and the second coil sections 28b each forms a coil winding of the coil arrangement 20.
  • connection lines (not shown) are provided which extend through the first support member 24a and the second support member 24b and the respective first coil sections 28a with the respective second coil sections 28b electrically conductively connect.
  • the coil sections 28a, 28b form three coil windings. But it can also be provided five to eight coil windings.
  • FIG. 2 shows that on an underside of the first carrier element 24a the ferrite core 26 is arranged with its upper side and on the underside of the ferrite core 26 an upper side of the second carrier element 24b.
  • the ferrite core 26 is a component made of ferrite, which as the core of the coil assembly 22 increases its inductance or the magnetic field.
  • ferrites are meant materials which are electrically poor or non-conductive ferrimagnetic ceramic materials of the iron oxide hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ) and / or other metal oxides. Depending on the composition, ferrites are hard magnetic or soft magnetic.
  • the coil windings formed by the respective first coil sections 28a and second coil sections 28b have a screw vector S which, as shown in FIG. 2, lies substantially in the plane of the carrier 12 and describes the helical formation of the coil windings of the coil arrangement 22.
  • screw vector S is arranged substantially at right angles to the main extension direction H of the busbars 14a, 14b.
  • FIG. 2 shows that the carrier 12 has a first extension direction I, a second extension direction II and a third extension direction III.
  • the first extension direction I extends in the height direction Z between the first carrier element 24a and the second carrier element 24b.
  • At right angles to the first direction of extension I extends the second direction of extent II in the direction of the screw vector S or in the width direction Y. Further extends at right angles to the first direction of extension I and the second extension direction II, the third extension direction III in the direction of the main extension direction H or in the depth direction X.
  • the carrier 12, the first carrier element 24a, the second carrier element 24b and the ferrite core 26 in the present embodiment in the direction of the second extension direction II and the third extension direction III each have significantly larger dimensions than in the direction of the first extension direction I. In other words, they each have a cuboid, in particular a plate-shaped basic shape.
  • Figs. 3 and 4 show that the first coil portions 28a and the second coil portions 28b have an elongated shape, i. their respective dimensions in the direction of the third extension direction III are greater than in the direction of the second extension direction II. Furthermore, the first coil sections 28a and the second coil sections 28b extend at an angle to the second extension direction II, which is not at right angles. In the present exemplary embodiment, the first coil sections 28a and the second coil sections 28b extend at an angle of 75 ° to 85 ° or 95 ° to 110 ° to the second extension direction II.
  • the busbar 14a is traversed by an alternating current having a frequency of 400 kHz.
  • a magnetic field M is formed around the busbar 14a with concentric field lines extending in the form of the busbar 14a.
  • the course of the field lines can be described by a rotation vector R which is perpendicular to the plane described by the field lines.
  • the field lines pass through the secondary element 20 and the coil assembly 22 and generate by induction an electrical voltage in the secondary element 20.
  • the voltage induced in the secondary element 20 electrical voltage can then be used to supply an electric drive of the model car 10, so that the model car 10 in through the main extension direction H of the recess 8a and the busbar 14a predetermined direction of travel F can move.
  • the direction of travel F and the rotation vector R are substantially at a right angle to each other.
  • a regulation of the speed of the model car 10 can be effected by a change in the current intensity of the electric current flowing through the busbars 14a, 14b.
  • the second track 6b is provided for a second model car (not shown) having the same construction as the first track 6a.
  • the busbars 14c, 14d of the second track 6b flows through an electric current having a frequency which is at least one and a half times as high as the first frequency.
  • the second frequency is 600 kHz.
  • FIG. 6 shows a first interconnection variant in which the two busbars 14a, 14b of the first track 6a are electrically connected in parallel.
  • the double conductor cross-section of the two busbars 14a, 14b can be used, so that a doubling of the current intensity is possible, with which the busbars 14a, 14b are acted upon.
  • FIG. 7 shows a second connection variant in which the two busbars 14a, 14b of the first track 6a are electrically connected in series.
  • the two bus bars 14a, 14b form a double conductor loop, so that the efficiency of energy transfer is improved.
  • bus bars 14a ', 14b' The structure of the bus bars 14a ', 14b' according to this embodiment will be explained with reference to the bus bar 14b 'associated with the second track 6b.
  • the busbar 14b ' has a U-shaped profile with a groove bottom 32 and two adjoining the groove bottom 32 flanges 34 which extend parallel in the present embodiment. Each of the flanges 34 is followed by a respective tongue 36, which extends in the plane of the surface of the lane 4 '.
  • the busbars 14a ', 14b' according to this embodiment are each formed in one piece and of uniform material. Further, the bus bars 14a ', 14b' according to this embodiment are made of a magnetic material.
  • the model car 10 with a permanent magnet (not shown) which interacts with the busbar 14a 'can be held in the track 6a by magnetic force.
  • the two tongues 36 provide an enlarged contact surface for the magnetic force, so that a reduced magnet can be inserted into the model car 10, which takes up less installation space.
  • the two bus bars 14a ', 14b' are inserted into the respective recesses 8a, 8b such that the U-shaped bus bars 14a ', 14b' open upwardly, so that the guide member 30, such as the guide member 30, e.g. a pin of the model car 10, in which U-shaped busbar 14a 'can engage so as to guide model car 10 along the track 6a defined by the recess 8a.
  • this lane 4 a particularly simple structure with only one, in the present embodiment, centrally located busbar 14a', 14b 'for each of the tracks 6a, 6b, wherein the busbars 14a', 14b 'each have a dual function, namely as a busbar and as a guide groove for a model car.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Toys (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft eine Modellautorennbahn (2), mit zumindest einem entlang einer Spur (6a, 6b) geführten Modellauto (10), einer die Spur (6a, 6b) definierenden Fahrbahn (4), wobei die Fahrbahn (4) zumindest eine sich in Richtung der Spur (6a, 6b) erstreckende Stromschiene (14a, 14b, 14c, 14d) aufweist, und einer Transformatoranordnung (16) mit einem Primärelement (18) und einem Sekundärelement (20) zur berührungslosen Energieübertragung von der Fahrbahn (4) zu dem Modellauto (10), wobei die Stromschiene (14a, 14b, 14c, 14d) das Primärelement (18) der Transformatoranordnung (16) ist und das Modellauto (10) das Sekundärelement (20) der Transformatoranordnung (16) zum Einkoppeln von dem vom Primärelement (18) erzeugten elektromagnetischen Feld aufweist.

Description

Modellautorennbahn
Die Erfindung betrifft eine Modellautorennbahn gemäß dem Oberbegriff des Anspruchs 1.
Eine Modellautorennbahn, auch Slotcar-Bahn oder Slot-Bahn (von englisch„Slot" für Schlitz) ist eine technische Vorrichtung, mit der elektrisch angetriebene Modellautos spurgeführt gefahren werden, wobei ein Führungskiel an dem Modellauto in einen Schlitz auf der Bahn eingreift.
Die Modellautorennbahn weist eine Fahrbahn auf, die z.B. aus einer Mehrzahl zusammensteckbarer Fahrbahnteile aufgebaut werden kann. Die Fahrbahn kann zwei Spuren aufweisen, die jeweils einen Schlitz zur Führung je eines Modellautos und je zwei Stromschienen zur Stromversorgung des elektrischen Antriebs der entlang der jeweiligen Spur bewegbaren Modellfahrzeuge besitzen. Stromabnehmer der jeweiligen Modellautos stehen dabei in Kontakt mit der jeweiligen Stromschiene, um eine Übertragung elektrischer Energie zu gewährleisten. Mit je einem Handregler können Geschwindigkeit und Bremsverhalten des jeweiligen Modellautos gesteuert werden. Allerdings kann es bei z.B. Kurvenfahrten aufgrund von an den Modellautos angreifenden Fliehkräften dazu kommen, dass der Kontakt zwischen der Stromschiene und dem Stromabnehmer des Modellautos unterbrochen wird mit der Folge, dass die Energieversorgung des elektrischen Antriebs des Modellautos unterbrochen wird und das Modellauto an Geschwindigkeit verliert. Der Erfindung liegt daher die Aufgabe zugrunde, einen Weg aufzuzeigen, wie eine unterbrechungsfreie Versorgung von Modellautos einer derartigen Modellautorennbahn mit elektrischer Energie gewährleistet werden kann.
Diese Aufgabe wird erfindungsgemäß durch eine Modellautorennbahn der o.g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen beschrieben.
Dazu ist bei einer Modellautorennbahn der o.g. Art erfindungsgemäß eine Transformatoranordnung mit einem Primärelement und einem Sekundärelement zur berührungslosen Energieübertragung von der Fahrbahn zu dem Modellauto vorgesehen, wobei das Primärelement der Transformatoranordnung die Stromschiene ist und das Modellauto das Sekundärelement der Transformatoranordnung zum Einkoppeln von dem vom Primärelement erzeugten elektromagnetischen Feld aufweist. Mit anderen Worten, weist die Modellautorennbahn eine Lufttransformatoranordnung zur berührungslosen Energieübertragung auf, wobei das Primärelement die Funktion einer Primärspule bzw. -Wicklung und das Sekundärelement die Funktion einer Sekundärspule bzw. -Wicklung übernimmt. Dies hat den Vorteil, dass es zu keiner zeitweisen Überbrechung eines elektrischen Kontaktes zwischen einer Stromschiene und einem Stromabnehmer und damit zu keiner Unterbrechung der Versorgung mit elektrischer Energie kommen kann. Ferner kann eine unveränderte Fahrbahn mit einem besonders einfachen Aufbau verwendet werden, bei der die Stromschienen als sich in Fahr- bzw. Spurrichtung erstreckende Leiter ausgebildet sind. Neben der Übertragung von Betriebsenergie können mit der Transformatoranordnung auch Steuersignale, z.B. zum Beschleunigen oder Abbremsen des Modellautos, übertragen werden, z.B. indem diese Steuersignale mit einer höheren Frequenz aufmoduliert und modellautoseitig wieder herausgefiltert werden. Gemäß einer bevorzugten Ausführungsform zeigt ein Rotationsvektor des von dem Primärelement erzeugten elektromagnetischen Feldes im Wesentlichen in Richtung der Spur. Die in Richtung der Spur als langgestreckter Leiter ausgebildete Stromschiene bildet ein Magnetfeld aus, dessen Feldlinien die Form geschlossener, konzentrischer Kreise oder Ellipsen um die Stromschiene aufweisen. Ein Rotationsvektor des Magnetfeldes, der senkrecht auf den konzentrischen Kreisen steht, zeigt dann in Richtung der Spur. Unter "im Wesentlichen" wird dabei innerhalb üblicher Fertigungstoleranzen verstanden. So kann eine unveränderte Fahrbahn mit einem besonders einfachen Aufbau verwendet werden, bei der die Stromschienen sich als in Fahr- bzw. Spurrichtung erstreckende Leiter ausgebildet sind. Fertigungstechnisch aufwändig herzustellende Fahrbahnen mit integrierten Spulenelementen sind nicht erforderlich. Gemäß einer weiteren bevorzugten Ausführungsform weist das Sekundärelement eine Haupterstreckungsrichtung auf, die im Wesentlichen rechtwinkelig zur Richtung der Spur ist.
Gemäß einer weiteren bevorzugten Ausführungsform weist das Sekundärelement eine oder eine Mehrzahl von Windungen auf, wobei die eine oder die Mehrzahl der Windungen einen Schraubenvektor definiert, der sich im Wesentlichen rechtwinkelig zur Richtung der Spur erstrecken. Die Mehrzahl der Windungen definiert eine Haupterstreckungsrichtung des Sekundärelements in Schraubenrichtung des Sekundärelements. So kann das Sekundärelement eine andere Ausrichtung als das Primärelement aufweisen, was eine bauraumsparende Anordnung im Modellauto ermöglicht.
Gemäß einer weiteren bevorzugten Ausführungsform ist zumindest eine zweite Spur mit zumindest einer zweiten Stromschiene vorgesehen ist, entlang der ein zweites Modellauto spurgeführt ist, wobei die erste Stromschiene mit einem elektrischen Strom mit einer ersten Frequenz beaufschlagt wird und die zweite Stromschiene mit einem zweiten elektrischen Strom mit einer zweiten Frequenz beaufschlagt wird, wobei die erste Frequenz von der zweiten Frequenz verschieden ist. So werden wechselseitige Beeinflussungen durch induktive Einkopplung von elektrischer Energie vermieden bzw. zumindest reduziert.
Gemäß einer weiteren bevorzugten Ausführungsform beträgt die zweite Frequenz mindestens das Eineinhalbfache der ersten Frequenz. So kann besonders wirkungsvoll eine wechselseitige Beeinflussung durch induktive Einkopplung von elektrischer Energie reduziert werden.
Gemäß einer weiteren bevorzugten Ausführungsform beträgt die erste Frequenz 400 kHz und die zweite Frequenz 600 kHz. Durch die Auswahl dieser Frequenzen kann zum einen eine besonders effektive Energieübertragung erzielt und zum anderen eine geringe Störung anderer elektrotechnischer oder elektronischer Geräte in der Nähe der Modellautorennbahn erreicht werden. Gemäß einer weiteren bevorzugten Ausführungsform weist die zumindest eine Fahrbahn zwei parallel in Richtung der Spur sich erstreckende Stromschienen auf. Auch so kann eine unveränderte Fahrbahn mit einem besonders einfachen Aufbau verwendet werden, bei der die Stromschienen als sich in Fahr- bzw. Spurrichtung erstreckende Leiter ausgebildet sind.
Gemäß einer weiteren bevorzugten Ausführungsform sind die zwei Stromschienen elektrisch parallel geschaltet. So wird ein verdoppelter Leiterquerschnitt zur Verfügung gestellt, so dass die Stromschienenelemente mit einer doppelten Stromstärke beaufschlagt werden können. Ferner wird so im Falle einer Unterbrechung einer der beiden Stromschienenelemente das andere Stromschienenelement noch von elektrischem Strom durchflössen. Somit ist die Versorgungsicherheit eines Modellautos mit elektrischer Energie gesteigert.
Gemäß einer weiteren bevorzugten Ausführungsform sind die zwei Stromschienenelemente elektrisch in Reihe geschaltet. So bilden die beiden Stromschienenelemente eine Doppelschleife, was die Effizienz der Energieübertragung nochmals verbessert. Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Diese zeigt in
Fig.1 in schematischer Schnittdarstellung einer bevorzugten Ausführungsform einer erfindungsgemäßen Modellautorennbahn,
Fig. 2 in schematischer Darstellung einer Transformatoranordnung, die in der in
Fig. 1 dargestellten Modellautorennbahn Verwendung findet, Fig. 3 eine oberseitige Ansicht des in Fig. 2 dargestellten ersten Trägerelements,
Fig. 4 eine unterseitige Ansicht des in Fig. 2 dargestellten zweiten
Trägerelements, Fig. 5 ein Betriebsszenario der in Fig. 1 dargestellten Modellautorennbahn,
Fig. 6 eine erste Verschaltungsvariante von Stromschienen einer zwei Spuren aufweisenden Fahrbahn, Fig. 7 eine zweite Verschaltungsvariante von Stromschienen einer zwei Spuren aufweisenden Fahrbahn, und ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Modellautorennbahn mit einer Fahrbahn mit einer Stromschiene für jede Spur der mehrere Spuren aufweisen Fahrbahn.
In Fig. 1 ist eine Modellautorennbahn 2, auch Slotcar-Bahn oder Slot-Bahn (von englisch Slot für„Schlitz"), dargestellt.
Die Modellautorennbahn 2 weist eine aus einer Mehrzahl von zusammensteckbaren Fahrbahnteilen aufgebaute Fahrbahn 4 mit im vorliegenden Ausführungsbeispiel zwei Spuren 6a, 6b für je ein Modellauto 10 auf. Dargestellt ist in Fig. 1 lediglich ein Modellauto 10. Die Fahrbahn 4 weist im vorliegenden Ausführungsbeispiel jeweils eine jeder Spur 6a, 6b zugeordnete Vertiefung 8a, 8b auf, die bezüglich der Spur mittig angeordnet ist und in die ein Führungselement 30, wie z.B. ein Führungsstift oder Führungskiel, des Modellautos 10 eingreifen kann und so eine Führung des Modellautos 10 entlang der jeweiligen Spur, hier der Spur 6a, bewirkt.
Ferner weist im vorliegenden Ausführungsbeispiel die Fahrbahn 4 jeweils zwei beidseitig der jeweiligen Vertiefung 8a, 8b angeordnete Stromschienen 14a, 14b, 14c, 14d auf, die der ersten Spur 6a bzw. der zweiten Spur 6b zugeordnet sind. Die ersten und zweiten Stromschienen 14a, 14b, 14c, 14d weisen ein im vorliegenden Ausführungsbeispiel im Querschnitt u-förmiges Profil auf und sind in weitere Vertiefungen der Fahrbahn 4 eingepresst. Abweichend vom vorliegenden Ausführungsbeispiel können die ersten und zweiten Stromschienen 14a, 14b, 14c, 14d auch ein anderes Profil im Querschnitt aufweisen.
Die Stromschienen 14a, 14b, 14c, 14d sind jeweils einstückig und materialeinheitlich ausgebildet. Ferner sind die Stromschienen 14a, 14b, 14c, 14d aus einem magnetischen Material gefertigt. So kann das Modellauto 10 mit einem Dauermagneten (nicht dargestellt), der mit den Stromschienen 14a, 14b wechselwirkt, durch Magnetkraft in der Spur 6a gehalten werden.
Wie noch später erläutert wird, bilden die beiden Stromschienen-Paare 14a, 14b bzw. 14c, 14d ein Primärelement 18 einer Transformatoranordnung 16 zur berührungslosen Energieübertragung zu dem Modellauto 10.
Zur Transformatoranordnung 16 zur berührungslosen Energieübertragung zu dem Modellauto 10 gehört ferner ein dem Modellauto 10 zugeordnetes Sekundärelement 20 zum Einkoppeln von einemelektromagnetischen Feld, das mit dem Primärelement 18 erzeugt wird.
Das Sekundärelement 20 ist im vorliegenden Ausführungsbeispiel eine Spulenanordnung 22. Neben der Übertragung von Betriebsenergie können mit der Transformatoranordnung 16 auch Steuersignale, z.B. zum Beschleunigen oder Abbremsen des Modellautos 10, übertragen werden, z.B. indem diese Steuersignale mit einer höheren Frequenz aufmoduliert und modellautoseitig wieder herausgefiltert werden.
Es wird nun zusätzlich auf die Fig. 2 Bezug genommen, die aus Gründen der Einfachheit nur die erste Spur 6a der beiden Spuren 6a, 6b zeigt. Die nachfolgende Beschreibung gilt jedoch auch analog für die zweite Spur 6b mit der Vertiefung 8b und den Stromschienen 14c, 14d.
Die Fig. 2 zeigt, dass sowohl die Vertiefung 8a als auch die beiden Stromschienen 14a, 14b jeweils eine in Fahrrichtung entlang der Spur 6a weisende Haupterstreckungsrichtung H aufweisen, in deren Richtung ihre Abmessungen deutlich größer als in Richtung der anderen Erstreckungsrichtungen sind.
Ferner zeigt die Fig. 2, dass die Spulenanordnung 22 einen Träger 12 aufweist. Der Träger 12 weist im vorliegenden Ausführungsbeispiel ein erstes Trägerelement 24a und ein zweites Trägerelement 24b sowie einen zwischen dem ersten Trägerelement 24a und dem zweiten Trägerelement 24b angeordneten Ferritkern 26 auf.
Das erste Trägerelement 24a und das zweite Trägerelement 24b sind im vorliegenden Ausführungsbeispiel jeweils Leiterplatten. Die Leiterplatten weisen eine sich flächig erstreckende Grundform, im vorliegenden Ausführungsbeispiel eine quaderförmige Grundform, mit jeweils einer Oberseite und einer der Oberseite gegenüberliegenden Unterseite auf. Sie bestehen jeweils aus einem elektrisch isolierenden Material und darauf angeordneten Leiterbahnen. Als isolierendes Material ist z.B. faserverstärkter Kunststoff üblich. Die Leiterbahnen werden z.B. aus einer dünnen Schicht Kupfer geätzt, die zuvor auf das isolierende Material aufgebracht wurde.
Leiterbahnen auf der Oberseite des ersten Trägerelements 24a bilden im vorliegenden Ausführungsbeispiel eine Mehrzahl von ersten Spulenabschnitten 28a, während weitere Leiterbahnen auf der Unterseite des zweiten Trägerelements 24b im vorliegenden Ausführungsbeispiel eine Mehrzahl von zweiten Spulenabschnitten 28b bilden. Jeweils einer der ersten Spulenabschnitte 28a und der zweiten Spulenabschnitte 28b bildet je eine Spulenwicklung der Spulenanordnung 20. Hierzu sind Verbindungsleitungen (nicht dargestellt) vorgesehen, die sich durch das erste Trägerelement 24a und das zweite Trägerelement 24b erstrecken und die jeweiligen ersten Spulenabschnitte 28a mit den jeweiligen zweiten Spulenabschnitten 28b elektrisch leitend verbinden. So bilden im vorliegenden Ausführungsbeispiel die Spulenabschnitte 28a, 28b drei Spulenwicklungen. Es können aber auch fünf bis acht Spulenwicklungen vorgesehen sein.
Ferner zeigt die Fig. 2, dass an einer Unterseite des ersten Trägerelements 24a der Ferritkern 26 mit seiner Oberseite und an der Unterseite des Ferritkerns 26 eine Oberseite des zweiten Trägerelements 24b angeordnet ist.
Der Ferritkern 26 ist ein Bauteil aus Ferrit, das als Kern der Spulenanordnung 22 deren Induktivität erhöht oder das magnetische Feld führt. Unter Ferrite werden dabei Werkstoffe verstanden, die elektrisch schlecht oder nicht leitende ferrimagnetische keramische Werkstoffe aus dem Eisenoxid Hämatit (Fe2O3), Magnetit (Fe3O4) und/oder aus weiteren Metalloxiden sind. Je nach Zusammensetzung sind Ferrite hartmagnetisch oder weichmagnetisch.
Die durch die jeweiligen ersten Spulenabschnitte 28a und zweiten Spulenabschnitte 28b gebildeten Spulenwicklungen weisen einen Schraubenvektor S auf, der, wie in Fig. 2 dargestellt, im Wesentlichen in der Ebene des Trägers 12 liegt und die schraubenförmige Ausbildung der Spulenwicklungen der Spulenanordnung 22 beschreibt.
Zu erkennen ist ferner, dass der Schraubenvektor S im Wesentlichen im rechten Winkel zur Haupterstreckungsrichtung H der Stromschienen 14a, 14b angeordnet ist.
Des Weiteren zeigt die Fig. 2, dass der Träger 12 eine erste Erstreckungsrichtung I, eine zweite Erstreckungsrichtung II und eine dritte Erstreckungsrichtung III hat. Im vorliegenden Ausführungsbeispiel erstreckt sich die erste Erstreckungsrichtung I in Höhenrichtung Z zwischen dem ersten Trägerelement 24a und dem zweiten Trägerelement 24b. Im rechten Winkel erstreckt sich zur ersten Erstreckungsrichtung I die zweite Erstreckungsrichtung II in Richtung des Schraubenvektors S bzw. in Breitenrichtung Y. Ferner erstreckt sich im rechten Winkel zur ersten Erstreckungsrichtung I und zur zweite Erstreckungsrichtung II die dritte Erstreckungsrichtung III in Richtung der Haupterstreckungsrichtung H bzw. in Tiefenrichtung X. Der Träger 12, das erste Trägerelement 24a, das zweite Trägerelement 24b und der Ferritkern 26 weisen im vorliegenden Ausführungsbeispiel in Richtung der zweiten Erstreckungsrichtung II und der dritten Erstreckungsrichtung III jeweils deutlich größere Abmessungen als in Richtung der ersten Erstreckungsrichtung I auf. Mit anderen Worten, weisen sie jeweils eine quaderförmige, insbesondere eine plattenförmige Grundform auf.
Es wird nun zusätzlich auf die Fig. 3 und 4 Bezug genommen.
Die Fig. 3 und 4 zeigen, dass die ersten Spulenabschnitte 28a und die zweiten Spulenabschnitte 28b eine langgestreckte Form aufweisen, d.h. ihre jeweiligen Abmessungen in Richtung der dritten Erstreckungsrichtung III sind größer als in Richtung der zweiten Erstreckungsrichtung II. Ferner verlaufen die ersten Spulenabschnitte 28a und die zweiten Spulenabschnitte 28b unter einem Winkel zur zweiten Erstreckungsrichtung II, der ungleich einem rechten Winkel ist. Im vorliegenden Ausführungsbeispiel verlaufen die ersten Spulenabschnitte 28a und die zweiten Spulenabschnitte 28b unter einem Winkel von 75° bis 85° bzw. 95° bis 110° zur zweiten Erstreckungsrichtung II.
So wird eine besonders kompakte und dabei wenig Bauraum in Anspruch nehmende Spulenanordnung 22 bereitgestellt. Ferner wird durch die jeweils flächige Ausbildung der ersten Spulenabschnitte 28a und zweiten Spulenabschnitt 28b auf der Oberbzw. Unterseite des Trägers 12 die Fertigung der Spulenanordnung 22 vereinfacht, da hierfür Planar- oder Dickschichttechniken verwendet werden können. Es wird unter zusätzliche Bezugnahme auf die Fig. 5 der Betrieb der Modellautorennbahn 2 erläutert, wobei aus Gründen der Einfachheit von dem Primärelement 18 nur die erste Stromschiene 14a von den beiden Stromschienen 14a, 14b der ersten Spur 6a dargestellt ist.
Im Betrieb wird die Stromschiene 14a von einem Wechselstrom mit einer Frequenz von 400 kHz durchströmt. Es bildet sich um die Stromschiene 14a ein Magnetfeld M mit sich in Form um die Stromschiene 14a erstreckenden konzentrischen Feldlinien aus. Der Verlauf der Feldlinien kann durch einen Rotationsvektor R beschrieben werden, der senkrecht auf der Ebene steht, die von den Feldlinien beschrieben wird.
Die Feldlinien durchsetzen das Sekundärelement 20 bzw. die Spulenanordnung 22 und erzeugen durch Induktion eine elektrische Spannung in dem Sekundärelement 20. Die in das Sekundärelement 20 induzierte elektrische Spannung kann dann zur Versorgung eines elektrischen Antriebs des Modellautos 10 verwendet werden, damit sich das Modellauto 10 in durch die Haupterstreckungsrichtung H der Vertiefung 8a bzw. der Stromschiene 14a vorgegebene Fahrtrichtung F bewegen kann. Somit stehen die Fahrtrichtung F und der Rotationsvektor R im Wesentlichen unter einem rechten Winkel zueinander. Unter "im Wesentlichen" wird dabei innerhalb von üblichen Fertigungstoleranzen verstanden.
Eine Regulierung der Geschwindigkeit des Modellautos 10 kann dabei durch eine Veränderung der Stromstärke des elektrischen Stromes erfolgen, der durch die Stromschienen 14a, 14b fließt.
Aufgrund der berührungslosen Übertragung von elektrischer Energie können Kontaktunterbrechungen, wie beim Stand der Technik, vermieden werden und es kommt nicht mehr zur Unterbrechung der Versorgung mit elektrischer Energie. Neben der in Fig. 1 dargestellten ersten Spur 6a ist im vorliegenden Ausführungsbeispiel die zweite Spur 6b für ein zweites Modellauto (nicht dargestellt) vorgesehen, die den gleichen Aufbau wie die erste Spur 6a aufweist. Um jedoch Interferenzen zwischen zwei Modellautos 10 und damit Störungen bei der Energieübertragung so weit wie möglich zu vermeiden, werden die Stromschienen 14c, 14d der zweiten Spur 6b von einem elektrischen Strom mit einer Frequenz durchströmt, die mindestens eineinhalb mal so hoch wie die erste Frequenz ist. Im vorliegenden Ausführungsbeispiel beträgt die zweite Frequenz 600 kHz. Es wird nun zusätzlich auf die Fig. 6 und 7 Bezug genommen, die Verschaltungsvarianten der zwei Stromschienen-Paare 14a, 14b bzw. 14c, 14d beispielhaft anhand der ersten Spur 6a der beiden Spuren 6a, 6b der Fahrbahn 4 zeigen. Die Fig. 6 zeigt eine erste Verschaltungsvariante, bei der die beiden Stromschienen 14a, 14b der ersten Spur 6a elektrisch parallel geschaltet sind. So kann der doppelte Leitungsquerschnitt der beiden Stromschienen 14a, 14b genutzt werden, so dass eine Verdoppelung der Stromstärke möglich wird, mit der die Stromschienen 14a, 14b beaufschlagt werden.
Die Fig. 7 zeigt eine zweite Verschaltungsvariante, bei der die beiden Stromschienen 14a, 14b der ersten Spur 6a elektrisch in Reihe geschaltet sind. So bilden die beiden Stromschienen 14a, 14b eine Doppelleiterschleife, so dass die Effizienz der Energieübertragung verbessert wird.
Es wird nun auf Fig. 8 Bezug genommen.
Dargestellt ist ein zweites Ausführungsbeispiel einer Fahrbahn 4' die im Unterschied zur in Fig. 1 dargestellten Fahrbahn 4 lediglich zwei Vertiefungen 8a, 8b aufweist, in die jeweils ein weiteres Ausführungsbeispiel einer Stromschiene 14a', 14b' eingesetzt ist.
Der Aufbau der Stromschienen 14a', 14b' gemäß dieses Ausführungsbeispiels wird anhand der der zweiten Spur 6b zugeordneten Stromschiene 14b' erläutert.
Die Stromschiene 14b' weist ein u-förmiges Profil mit einem Nutgrund 32 und zwei sich an den Nutgrund 32 anschließende Flansche 34 auf, die sich im vorliegenden Ausführungsbeispiel parallel erstrecken. An jeden der Flansche 34 schließt sich je eine Zunge 36 an, die sich in die Ebene der Oberfläche der Fahrbahn 4' erstreckt. Die Stromschienen 14a', 14b' gemäß diesem Ausführungsbeispiel sind jeweils einstückig und materialeinheitlich ausgebildet. Ferner sind die Stromschienen 14a', 14b' gemäß diesem Ausführungsbeispiel aus einem magnetischen Material gefertigt. So kann auch hier das Modellauto 10 mit einem Dauermagneten (nicht dargestellt), der mit der Stromschiene 14a' wechselwirkt, durch Magnetkraft in der Spur 6a gehalten werden. Dabei stellen insbesondere die beiden Zungen 36 eine vergrößerte Angriffsfläche für die Magnetkraft bereit, so dass ein verkleinerter Magnet in das Modellauto 10 eingesetzt werden kann, der weniger Bauraum in Anspruch nimmt.
Ferner sind die beiden Stromschienen 14a', 14b' derart in die jeweiligen Vertiefungen 8a, 8b eingesetzt, dass sich die u-förmige Stromschienen 14a', 14b'nach oben öffnen, so dass das Führungselement 30, wie z.B. ein Stift des Modellautos 10, in die u-förmige Stromschiene 14a' eingreifen kann, um so dass Modellauto 10 entlang der durch die Vertiefung 8a definierten Spur 6a zu führen. Somit weist diese Fahrbahn 4' einen besonders einfachen Aufbau mit nur einer, im vorliegenden Ausführungsbeispiel mittig angeordneten Stromschiene 14a', 14b' für jede der Spuren 6a, 6b auf, wobei die Stromschienen 14a', 14b' jeweils eine Doppelfunktion haben, nämlich als Stromschiene und als Führungsnut für ein Modellauto.

Claims

Patentansprüche:
1. Modellautorennbahn (2), mit zumindest einem entlang einer Spur (6a, 6b) geführtem Modellauto (10) und einer die Spur (6a, 6b) definierenden Fahrbahn (4),
wobei die Fahrbahn (4) zumindest eine sich in Richtung der Spur (6a, 6b) erstreckende Stromschiene (14a, 14b, 14c, 14d) aufweist,
g e k e n n z e i c h n e t
durch eine Transformatoranordnung (16) mit einem Primärelement (18) und einem Sekundärelement (20) zur berührungslosen Energieübertragung von der Fahrbahn (4) zu dem Modellauto (10), wobei die Stromschiene (14a, 14b, 14c, 14d) das Primärelement (18) der Transformatoranordnung (16) ist und das Modellauto (10) das Sekundärelement (20) der Transformatoranordnung (16) zum Einkoppeln von dem vom Primärelement (18) erzeugten elektromagnetischen Feld aufweist.
2. Modellautorennbahn (10) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Rotationsvektor (R) des von dem Primärelement (18) erzeugten elektromagnetischen Feldes im Wesentlichen in Richtung der Spur (6a, 6b) zeigt.
3. Modellautorennbahn (10) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Sekundärelement (20) eine Haupterstreckungsrichtung (H) aufweist, die im Wesentlichen rechtwinkelig zur Richtung der Spur (6a, 6b) ist.
4. Modellautorennbahn (10) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Sekundärelement (20) eine oder eine Mehrzahl von Windungen aufweist, wobei die eine oder die Mehrzahl der Windungen einen Schraubenvektor (S) definieren, der sich im Wesentlichen rechtwinkelig zur Richtung der Spur (6a, 6b) erstrecken.
5. Modellautorennbahn (10) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eine zweite Spur (6b) mit zumindest einer zweiten Stromschiene (14c, 14d) vorgesehen ist, entlang der ein zweites Modellauto spurgeführt ist, wobei die erste Stromschiene mit einem elektrischen Strom mit einer ersten Frequenz beaufschlagt wird und die zweite Stromschiene (14c, 14d) mit einem zweiten elektrischen Strom mit einer zweiten Frequenz beaufschlagt wird, wobei die erste Frequenz von der zweiten Frequenz verschieden ist.
6. Modellautorennbahn (10) nach Anspruch 5, dadurch gekennzeichnet, dass die zweite Frequenz mindestens das Eineinhalbfache der ersten Frequenz beträgt.
7. Modellautorennbahn (10) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die erste Frequenz 400 kHz und die zweite Frequenz 600 kHz beträgt.
8. Modellautorennbahn (10) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Spur (6a, 6b) zwei parallel in Richtung der Spur (6a, 6b) sich erstreckende Stromschienen (14a, 14b, 14c, 14d) aufweist.
9. Modellautorennbahn (10) nach Anspruch 8, dadurch gekennzeichnet, dass die zwei Stromschienen (14a, 14b, 14c, 14d) einer Spur elektrisch parallel geschaltet sind.
10. Modellautorennbahn (10) nach Anspruch 8, dadurch gekennzeichnet, dass die zwei Stromschienen (14a, 14b, 14c, 14d) einer Spur elektrisch in Reihe geschaltet sind.
EP17801596.2A 2016-11-22 2017-11-21 Modellautorennbahn Active EP3544707B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202016007185.9U DE202016007185U1 (de) 2016-11-22 2016-11-22 Modellautorennbahn
PCT/EP2017/001362 WO2018095568A1 (de) 2016-11-22 2017-11-21 Modellautorennbahn

Publications (2)

Publication Number Publication Date
EP3544707A1 true EP3544707A1 (de) 2019-10-02
EP3544707B1 EP3544707B1 (de) 2020-06-03

Family

ID=57583788

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17801596.2A Active EP3544707B1 (de) 2016-11-22 2017-11-21 Modellautorennbahn

Country Status (5)

Country Link
US (1) US20190270025A1 (de)
EP (1) EP3544707B1 (de)
CN (1) CN109982762B (de)
DE (1) DE202016007185U1 (de)
WO (1) WO2018095568A1 (de)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520889A (en) * 1981-03-02 1985-06-04 Shinko Electric Co., Ltd. Guidance conductor for driverless vehicle
US5175480A (en) * 1990-01-18 1992-12-29 Mckeefery James Vehicle guidance and control systems and methods for controllably guiding a vehicle along a predetermined pathway
US6421600B1 (en) * 1994-05-05 2002-07-16 H. R. Ross Industries, Inc. Roadway-powered electric vehicle system having automatic guidance and demand-based dispatch features
WO2001012283A2 (en) * 1999-08-13 2001-02-22 Bill Goodman Consulting, Llc Rf identification system for use in toys
GB0210886D0 (en) * 2002-05-13 2002-06-19 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
TWI566814B (zh) * 2008-11-21 2017-01-21 通路實業集團國際公司 感應式玩具運輸工具
FR2945133A1 (fr) * 2009-04-30 2010-11-05 Abconsulting Guidage et alimentation de vehicules miniatures
US20110034254A1 (en) * 2009-08-07 2011-02-10 Bay Tek Games, Inc. Wireless energy transfer for arcade racing game
CN102553251A (zh) * 2011-11-03 2012-07-11 天津工业大学 基于无接触电能传输技术的智能循迹玩具电动车设计
CN103259346A (zh) * 2013-05-28 2013-08-21 东南大学 一种采用轨道式无线供电系统供电的电动玩具车

Also Published As

Publication number Publication date
DE202016007185U1 (de) 2016-12-01
CN109982762A (zh) 2019-07-05
US20190270025A1 (en) 2019-09-05
CN109982762B (zh) 2020-12-22
WO2018095568A1 (de) 2018-05-31
EP3544707B1 (de) 2020-06-03

Similar Documents

Publication Publication Date Title
EP1725417B1 (de) Vorrichtung zur übertragung elektrischer energie vom fahrweg auf das fahrzeug einer magnetschwebebahn
WO1999022385A1 (de) Elektrische energieübertragungsvorrichtung
DE102013219540A1 (de) Ladeanordnung zur induktiven drahtlosen Abgabe von Energie
DE102013219542A1 (de) Ladeanordnung zur induktiven drahtlosen Abgabe von Energie
EP0170056A1 (de) Elektrischer Flachspulenantrieb
DE102011014521A1 (de) Einrichtung zur induktiven Übertragung elektrischer Energie
DE102006025460B4 (de) Anlage mit einem Primärleitersystem
EP3544706B1 (de) Spulenanordnung und modellauto mit einer derartigen spulenanordnung
WO2012163565A1 (de) Induktives kontaktloses energie- und datenübertragungssystem
DE19947368C1 (de) Unterflurschienenanlage für Flurförderfahrzeuge mit berührungsloser induktiver Stromzuführung
EP3544707B1 (de) Modellautorennbahn
WO2015144619A1 (de) Magnetischer kreis zum dynamischen laden von elektrofahrzeugen
DE19915487C1 (de) Vorrichtung zur induktiven Übertragung elektrischer Energie
DE102015103590A1 (de) Drehwinkelunabhängige Sekundäreinrichtung zur berührungslosen Energieübertragung
DE2238402C2 (de) Spurgebundenes berührungsfrei bewegtes Fahrzeug mit einem mit einem Spurführungsteil zusammenwirkenden Erregerteil am Fahrzeug
WO2010060593A1 (de) Anordnung zur berührungslosen energieübertragung
WO2016091700A1 (de) Filteranordnung, spannungswandler mit einer filteranordnung
EP0300123A1 (de) Elektrischer Antrieb oder Generator
EP3393022A1 (de) Lineare elektrische maschine
DE102021203048A1 (de) Spiraleinrichtung und Verfahren zu deren Herstellung
DE102022120691A1 (de) Induktive Ladeeinrichtung für ein Fahrzeug
DE102022107570A1 (de) Induktive Ladeeinrichtung für ein Fahrzeugladesystem
DE1947088C3 (de) Einrichtung zur Signalübertragung für Schienenfahrzeuge
EP2803074A1 (de) Hochspannungsschaltgerät mit energieversorgungseinrichtung
EP3407995A1 (de) Schaltungsanordnung für eine modellautorennbahn

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190410

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017005604

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A63H0030040000

Ipc: A63H0018120000

RIC1 Information provided on ipc code assigned before grant

Ipc: A63H 18/12 20060101AFI20191212BHEP

Ipc: A63H 30/04 20060101ALN20191212BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20200117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1276400

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005604

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200903

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200904

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201006

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005604

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

26N No opposition filed

Effective date: 20210304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201121

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017005604

Country of ref document: DE

Owner name: CARRERA TOYS GMBH, AT

Free format text: FORMER OWNER: STADLBAUER MARKETING + VERTRIEB GMBH, PUCH, AT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017005604

Country of ref document: DE

Representative=s name: KANDLBINDER, MARKUS, DIPL.-PHYS., DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1276400

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240125

Year of fee payment: 7