EP3535431B1 - Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung - Google Patents
Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung Download PDFInfo
- Publication number
- EP3535431B1 EP3535431B1 EP17798132.1A EP17798132A EP3535431B1 EP 3535431 B1 EP3535431 B1 EP 3535431B1 EP 17798132 A EP17798132 A EP 17798132A EP 3535431 B1 EP3535431 B1 EP 3535431B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- optionally
- steel
- rolling
- temperature
- steel product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 87
- 239000010959 steel Substances 0.000 title claims description 87
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000011572 manganese Substances 0.000 title description 26
- 229910052748 manganese Inorganic materials 0.000 title description 13
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title description 8
- 238000005096 rolling process Methods 0.000 claims description 37
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 30
- 229910045601 alloy Inorganic materials 0.000 claims description 26
- 239000000956 alloy Substances 0.000 claims description 26
- 238000000137 annealing Methods 0.000 claims description 26
- 229910001566 austenite Inorganic materials 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 20
- 230000000694 effects Effects 0.000 claims description 18
- 238000005266 casting Methods 0.000 claims description 15
- 229910052742 iron Inorganic materials 0.000 claims description 15
- 229910000734 martensite Inorganic materials 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000005098 hot rolling Methods 0.000 claims description 9
- 239000000155 melt Substances 0.000 claims description 9
- 239000000161 steel melt Substances 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000005246 galvanizing Methods 0.000 claims description 8
- 238000005275 alloying Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 229910000859 α-Fe Inorganic materials 0.000 claims description 7
- 238000005097 cold rolling Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 229910001563 bainite Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000009863 impact test Methods 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 238000005554 pickling Methods 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 238000009489 vacuum treatment Methods 0.000 claims description 4
- 238000009749 continuous casting Methods 0.000 claims description 3
- 238000010891 electric arc Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000003303 reheating Methods 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- 239000010936 titanium Substances 0.000 description 16
- 239000011651 chromium Substances 0.000 description 15
- 239000011575 calcium Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000010955 niobium Substances 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 244000089486 Phragmites australis subsp australis Species 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910000617 Mangalloy Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910039444 MoC Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000794 TRIP steel Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- -1 aluminum nitrides Chemical class 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000006223 plastic coating Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
- C22C38/105—Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/12—Making tubes or metal hoses with helically arranged seams
- B21C37/122—Making tubes or metal hoses with helically arranged seams with welded or soldered seams
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/02—Superplasticity
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
Definitions
- the invention relates to a medium-manganese steel product for use at low temperatures and a method for its production in the form of a flat steel product or a seamless tube.
- the invention relates to the production of a steel product from a medium-manganese steel with excellent low-temperature toughness and / or high strength, for use in temperature ranges up to at least minus 196 ° C, which optionally includes a TRIP (TR Transformation Induced Plasticity) and / or TWIP (TWinning Induced Plasticity) effect.
- steel products are understood to mean in particular flat steel products such as steel strips (hot or cold rolled) or heavy plates, as well as welded pipes made therefrom, but also seamless pipes.
- the steel has a notched impact strength of 70 J at -196 ° C and consists of the elements (contents in% by weight and based on the molten steel): C: 0.01 to 0.06; Mn: 2.0 to 8.0; Ni: 0.01 to 6.0; Mo: 0.02 to 0.6; Si: 0.03 up to 0.5; AI: 0.003 to 0.05; N: 0.0015 to 0.01; P: up to 0.02; S: up to 0.01; as well as the remainder iron and unavoidable impurities.
- a method for producing a flat steel product from the above-described high-strength steel with medium manganese content comprises the following work steps: heating a steel slab to a temperature of 1000 ° C to 1250 ° C, - rolling the slab with a final rolling temperature of 950 ° C or less with a reduction rate (Degree of rolling) of 40% or less, - cooling the rolled steel to a temperature of 400 ° C or less at a cooling rate of 2 ° K / s or more, - and, following the cooling, tempering the steel for 0.5 to 4 hours at a temperature between 550 ° C and 650 ° C.
- the structure of the steel has martensite as the main phase and 3 to 15% by volume of retained austenite.
- a medium-manganese steel for a door reinforcement tube which, in addition to iron, contains the following elements: C: 0.15 to 0.25%; Mn: 3.4 to 6.1%; P: 0.03% or less; S: 0.03% or less; Si: 0.6% or less; Al: 0.05%; Ni, Cr, Mo: 0 to 1%; V: 0 to 0.15%.
- a structural composition of the steel is not described.
- the U.S. Patent 5,310,431 discloses a corrosion-resistant, martensitic steel which, in addition to iron and impurities, contains the following elements: C: 0.05 to 0.15%; Cr: 2 to 15%; Co: 0.1 to 10%; Ni: 0.1 to 4%, Mo: 0.1 to 2%; Ti: 0.1 to 0.75%; B: ⁇ 0.1%; N: ⁇ 0.02%.
- the steel described can also contain, for example, ⁇ 5% Mn.
- the U.S. Patent 4,257,808 discloses a low-manganese steel for low-temperature applications, the composition of which does not contain any nickel.
- the Chinese patent application CN 103 422 017 A also describes a steel composition for steel pipes used in the low temperature range, the composition containing (in% by weight): C: 0.02-0.13; Si: 0.15-0.4; Mn: 0.2-0.9; P: ⁇ 0.012; S ⁇ 0.007; N ⁇ 0.012; Mo: 0.008-0.12; Ni: 8.5-9.6 with the balance iron including impurities.
- the steel sheet consists of the following elements (in% by weight): C: 0.03 to 0.35; Si: 0.5 to 3; Mn: 3.5 to 10; P: ⁇ 0.1; S: ⁇ 0.01; N: ⁇ 0.08.
- a microstructure is specified with more than 30% ferrite and more than 10% residual austenite.
- WO 2006/011503 A1 describes a steel sheet, the chemical composition of which is given in% by weight as follows: C: 0.0005 to 0.3; Si: ⁇ 2.5; Mn: 2.7 to 5; P: ⁇ 0.15; S: ⁇ 0.015; Mo: 0.15 to 1.5; B: 0.0006 to 0.01; Al: ⁇ 0.15 as well as the remainder iron and unavoidable impurities.
- Such a steel strip is characterized by a high modulus of elasticity of greater than 230 Gpa in the rolling direction.
- the European published application EP 2 055 797 A1 relates to a ferromagnetic, iron-based alloy whose composition contains one or more of the following elements in% by weight: Al: 0.01 to 11; Si: 0.01 to 7; Cr: 0.01 to 26, the remainder being iron and unavoidable impurities.
- the alloy can optionally also contain 0.01 to 5% by weight of Mn and other elements.
- TRIP steels have already been described, which have a predominantly ferritic basic structure with embedded retained austenite, which can convert to martensite during forming (TRIP effect). Because of its strong work hardening, TRIP steel achieves high values of uniform elongation and tensile strength. TRIP steels are used, among other things, in structural, chassis and crash-relevant components of vehicles as sheet metal blanks and as welded blanks.
- Hot strips made from TRIP / TWIP steels with manganese contents of 9 to 30% by weight are known, the melt being cast into a pre-strip between 6 and 15 mm via a horizontal strip caster and then rolled out into a hot strip.
- the present invention is based on the object of specifying a steel product made of a manganese-containing steel, which can be manufactured inexpensively and has an advantageous combination of strength and elongation properties at low temperatures and optionally a TRIP and / or TWIP effect. Furthermore, a method for producing such a steel product is to be specified.
- this manganese-containing steel product according to the invention with a medium manganese content based on the alloying elements C, Mn, Al, Mo and Si is cost-effective, since it relies on an increased addition of nickel of up to 9% by weight to achieve the low-temperature toughness can generally be dispensed with.
- the steel product according to the invention has a stable austenite component even at low temperatures down to at least ⁇ 196 ° C., which converts at the earliest when deformed at low temperatures, but is otherwise metastable to stable. This austenite content of at least 2% by volume, which is present at low temperatures, improves the low-temperature toughness and thus the elongation properties.
- the steel product according to the invention can advantageously be used as a substitute for steels with a high Ni content in low-temperature applications, such as in the areas of shipbuilding, boiler construction / container construction, construction machinery, transport vehicles, crane construction, mining, mechanical and plant engineering, power plant industry, oil field pipes, Petrochemicals, wind turbines, pressure pipelines, precision pipes, pipes in general and for the substitution of high-alloy steels, in particular Cr, CrN, CrMnN, CrNi, CrMnNi steels.
- the optionally alloyed elements advantageously have the following contents in% by weight: Ti: 0.002 to 0.5; V: 0.006 to 0.1; Cr: 0.05 to 4; Cu: 0.05 to 2; Nb: 0.003 to 0.1; B: 0.0005 to 0.014; Co: 0.003 to 3; W: 0.03 to 2; Zr: 0.03 to 1; Ca: ⁇ 0.004 and Sn: ⁇ 0.5
- the steel product according to the invention in particular in the form of a seamless tube, has a multiphase structure consisting of 2 to 90% by volume, preferably up to 80% by volume or up to 70% by volume of austenite, less than 40% by volume, preferably less than 20% by volume ferrite and / or bainite and the remainder martensite or tempered martensite and optionally a TRIP and / or TWIP effect.
- Some of the martensite is in the form of tempered martensite and some of the austenite of up to 90% can be in the form of annealing or deformation twins.
- the steel can optionally have both a TRIP and a TWIP effect, with part of the austenite being able to convert into martensite during a subsequent deformation / forming / processing of the steel strip, whereby at least 20% of the original austenite must be retained in order to maintain the low-temperature properties to guarantee.
- the steel product according to the invention is also characterized by an increased resistance to delayed crack formation (delayed fracture) and to hydrogen embrittlement. This is mainly achieved by precipitating molybdenum carbide, which acts as a hydrogen trap.
- the steel has a high resistance to liquid metal embrittlement (LME) during welding.
- LME liquid metal embrittlement
- the steel according to the invention is particularly suitable for producing heavy plate or hot and cold strip as well as welded and seamless tubes which can be provided with metallic or non-metallic, organic or other inorganic coatings.
- the steel product advantageously has a yield strength Rp0.2 of 450 to 1150 MPa, a tensile strength Rm of 500 to 2100 MPa and an elongation at break A50 of more than 6% to 45% at room temperature, with higher tensile strengths tending to be associated with lower elongation at break and vice versa are.
- a flat specimen with an initial measurement length of A50 was used in accordance with DIN 50 125.
- Alloy elements are usually added to steel in order to specifically influence certain properties.
- An alloy element can influence different properties in different steels. The effect and interaction generally depends considerably on the amount, the presence of other alloying elements and the state of solution in the material. The relationships are varied and complex. In the following, the effect of the alloying elements in the alloy according to the invention will be discussed in more detail.
- the positive effects of the alloying elements used according to the invention are described below:
- Carbon C C is required for the formation of carbides, stabilizes the austenite and increases the strength. Higher contents of C worsen the welding properties and lead to a deterioration in the elongation and toughness properties, which is why a maximum content of less than 0.3% by weight is specified. In order to achieve a fine precipitation of carbides, a minimum addition of 0.01% by weight is required.
- the C content is advantageously set at 0.03 to 0.15% by weight.
- Mn stabilizes the austenite, increases the strength and the toughness and optionally enables a deformation-induced martensite and / or twin formation in the alloy according to the invention. Contents of less than 4% by weight are not sufficient to stabilize the austenite and thus worsen the elongation properties, while contents of 10% by weight and more, the austenite is stabilized too strongly, so that the deformation-induced mechanisms TRIP and TWIP effect are not sufficiently effective and thereby the strength properties, in particular the 0.2% yield strength, are reduced. For the manganese steel according to the invention with medium manganese contents, a range of 4 to ⁇ 8% by weight is preferred.
- Aluminum Al is used to deoxidize the melt. An Al content of 0.003% by weight and more is used to deoxidize the melt. This results in a higher effort when potting. Al contents of more than 0.03% by weight completely deoxidize the melt, influence the transformation behavior and improve the strength and elongation properties. Al contents of more than 2.9% by weight deteriorate the elongation properties. Higher Al contents also significantly worsen the casting behavior in continuous casting. Therefore, a maximum content of 2.9% by weight and a minimum content of more than 0.003% by weight are specified. However, the steel preferably has an Al content of 0.03 to 0.4% by weight.
- Silicon Si The addition of Si in contents of more than 0.02% by weight hinders the carbon diffusion, reduces the specific density and increases the strength and the elongation and toughness properties. Furthermore, an improvement in cold rollability could be observed through the addition of Si. Contents of more than 0.8% by weight lead to embrittlement of the material and have a negative impact on hot and cold rollability and coatability, for example by galvanizing. Therefore, a maximum content of 0.8% by weight and a minimum content of 0.02% by weight are specified. Contents of 0.08 to 0.3% by weight have proven to be optimal.
- Mo acts as a carbide former, increases strength and increases resistance to hydrogen-induced delayed cracking and hydrogen embrittlement. Contents of Mo of more than 0.8% by weight deteriorate the elongation properties, which is why a maximum content of 0.8% by weight and a minimum content of 0.01% by weight, which is necessary for sufficient effectiveness, are specified. A Mo content of 0.1 to 0.5% by weight has proven to be advantageous in terms of increasing strength in combination with the lowest possible cost.
- Phosphorus P is a trace or accompanying element from iron ore and is dissolved in the iron lattice as a substitution atom. Phosphorus increases hardness through solid solution strengthening and improves hardenability. As a rule, however, attempts are made to lower the phosphorus content as much as possible, since it is, among other things, highly susceptible to segregation due to its low diffusion rate and to a great extent reduces the toughness. The accumulation of phosphorus at the grain boundaries can cause cracks to appear along the grain boundaries during hot rolling. In addition, phosphorus increases the transition temperature from tough to brittle behavior by up to 300 ° C. For the reasons mentioned above, the phosphorus content is limited to values less than 0.04% by weight.
- sulfur S is bound as a trace or accompanying element in iron ore or is introduced through coke during production via the blast furnace route. It is generally undesirable in steel because it tends to segregate strongly and has a strong embrittling effect, as a result of which the elongation and toughness properties are impaired. Attempts are therefore made to achieve the lowest possible amounts of sulfur in the melt (e.g. through deep desulphurisation). For the reasons mentioned above, the sulfur content is limited to values less than 0.02% by weight.
- N is also an accompanying element in steel production. He improves in the dissolved state for steels with a higher manganese content with greater than or equal to 4% weight% Mn, the strength and toughness properties. Lower Mn-alloyed steels with less than 4% by weight tend to have a strong aging effect in the presence of free nitrogen. The nitrogen diffuses at dislocations even at low temperatures and blocks them. It thus causes an increase in strength combined with a rapid loss of toughness.
- a setting of the nitrogen in the form of nitrides is possible, for example, by adding aluminum and / or titanium as well as Nb, V, B, aluminum nitrides in particular having a negative effect on the forming properties of the alloy according to the invention. For the reasons mentioned above, the nitrogen content is limited to less than 0.02% by weight.
- Titanium Ti When optionally added, Ti acts as a carbide former to refine the grain, which at the same time improves strength, toughness and elongation properties. Furthermore, Ti reduces intergranular corrosion. Contents of Ti of more than 0.5% by weight deteriorate the elongation properties, which is why a maximum Ti content of 0.5% by weight is specified. A minimum content of 0.002 is optionally specified in order to advantageously eliminate nitrogen with Ti.
- Vanadium V When optionally added, V acts as a carbide former to refine the grain, which at the same time improves strength, toughness and elongation properties. Contents of V of more than 0.1% by weight give no further advantages, which is why a maximum content of 0.1% by weight is specified. A minimum content of 0.006% by weight is optionally specified, which is necessary for the separation of the finest carbides.
- Chromium Cr With the optional addition, Cr increases the strength and reduces the corrosion rate, delays the formation of ferrite and pearlite and forms carbides.
- the maximum content is set at 4% by weight, since higher contents result in a deterioration in the elongation properties.
- a minimum Cr content for effectiveness is set at 0.05% by weight.
- Nickel Ni The addition of at least 0.01% by weight of nickel stabilizes the austenite, especially at lower temperatures, and improves the strength and toughness properties and reduces carbide formation. The For reasons of cost, the maximum content is set at 3% by weight. A maximum Ni content of 1% by weight has proven to be particularly economical.
- a particularly cost-effective alloy system can be achieved if the following condition is met in combination with manganese: 6 ⁇ 1.5 Mn + Ni ⁇ 8.
- Copper Cu reduces the rate of corrosion and increases strength. Contents of more than 2% by weight worsen the producibility due to the formation of low-melting phases during casting and hot rolling, which is why a maximum content of 2% by weight is specified. In order to achieve a strength-increasing effect through Cu, a minimum of 0.05% by weight is specified.
- Niobium Nb When optionally added, Nb acts as a carbide former to refine the grain, which at the same time improves strength, toughness and elongation properties. Contents of Nb of more than 0.1% by weight give no further advantages, which is why a maximum content of 0.1% by weight is specified. Optionally, a minimum content of 0.003% by weight is specified, which is necessary for the separation of the finest carbides.
- Boron B B retards the austenite transformation, improves the hot forming properties of steels and increases the strength at room temperature. It develops its effect even with very low alloy contents. Contents above 0.008% by weight increasingly deteriorate the elongation and toughness properties, which is why the maximum content is set at 0.014% by weight. A minimum content of 0.0005% by weight is optionally specified in order to take advantage of the strength-increasing effect of boron.
- Co increases the strength of the steel and stabilizes the austenite. Contents of more than 3% by weight worsen the elongation properties, which is why a maximum content of 3% by weight is optionally specified. An optional minimum content of 0.003% by weight is preferably provided, which, in addition to the strength properties, particularly advantageously influences the austenite stability.
- Tungsten W acts as a carbide former and increases strength. W contents of more than 2% by weight deteriorate the elongation properties, which is why a maximum W content of 2% by weight is specified. An optional minimum content of 0.03% by weight is specified for the effective elimination of carbides.
- Zirconium Zr acts as a carbide former and improves strength. Contents of Zr of more than 1% by weight deteriorate the elongation properties, which is why a maximum content of 1% by weight is specified. In order to enable the precipitation of carbides, an optional minimum content of 0.03% by weight is specified.
- Ca is used to modify non-metallic oxidic inclusions, which otherwise could lead to undesired failure of the alloy due to inclusions in the structure, which act as stress concentration points and weaken the metal bond. Furthermore, Ca improves the homogeneity of the alloy according to the invention. Contents above 0.004% by weight Ca do not result in any further advantage in the inclusion modification, impair the producibility and are to be avoided due to the high vapor pressure of Ca in steel melts. Therefore, an optional maximum content of 0.004% by weight is provided.
- Tin Sn increases the strength, but, like copper, accumulates under the scale and at the grain boundaries at higher temperatures. By penetrating into the grain boundaries, it leads to the formation of low-melting phases and the associated cracks in the structure and to solder brittleness, which is why a maximum content of less than 0.5% by weight is optionally provided.
- the annealing required to achieve the required low-temperature toughness and thus the setting of the final structure can not be carried out on the hot or cold strip, but optionally only after the Tube production take place, the annealing of the tube in an annealing plant with an annealing time of 0.3 to 24 h and temperatures of 500 ° C to 840 ° C, preferably 520 ° C to 600 ° C with an annealing time of 0.5 to 6 h he follows. If necessary, the tube can be given an organic or inorganic coating on one or both sides after annealing.
- the usual thickness ranges for pre-strip are 1 mm to 35 mm and for slabs and thin slabs 35 mm to 450 mm. It is preferably provided that the slab or thin slab is hot-rolled into a heavy plate with a thickness of more than 3 mm to 200 mm or a hot strip with a thickness of 0.8 mm to 28 mm, or the pre-strip, cast close to its final dimensions, is hot-rolled into a hot strip with a thickness of 0.8 mm to 3 mm is hot rolled.
- the cold strip according to the invention has a thickness of at most 3 mm, preferably 0.1 mm to 1.4 mm.
- a pre-strip produced near net dimensions using the two-roll casting method with a thickness of less than or equal to 3 mm, preferably 1 mm to 3 mm, is already understood as hot strip.
- the pre-strip produced in this way as hot strip does not have an original cast structure due to the reshaping of the two counter-rotating rolls. Hot rolling thus already takes place inline during the two-roller casting process, so that separate hot rolling can optionally be omitted.
- the cold rolling of the hot strip can take place at room temperature or advantageously at an elevated temperature before the first rolling pass, in one or more rolling passes.
- Cold rolling at elevated temperatures is advantageous in order to reduce the rolling forces and to promote the formation of deformation twins (TWIP effect).
- Advantageous temperatures of the rolling stock before the first rolling pass are 60 ° C to 450 ° C.
- the steel strip can be skin-pass after cold rolling, whereby the surface structure (topography) required for the end application is set. Passing can be done using the Pretex® process, for example.
- the flat steel product produced in this way receives a surface refinement, for example by electrolytic galvanizing or hot-dip galvanizing and, instead of galvanizing or in addition, a coating on an organic or inorganic basis.
- the coating systems can be, for example, organic coatings, plastic coatings or lacquers or other inorganic coatings such as iron oxide layers.
- the flat steel product produced according to the invention can be used both as sheet metal, sheet metal section or blank or further processed into a pipe that is welded longitudinally or helically.
- a solid block (round cast bar) is essentially understood to mean a continuously cast section produced by round casting, which section already has a desired length.
- Warm forming or warm internal high pressure forming is the term used here for forming and internal high pressure forming processes in which at least the first forming step takes place at a temperature above room temperature to below the Ac3 temperature, preferably at 60 ° C to 450 ° C.
- alloys 1 and 2 not according to the invention with regard to the Ni content and with a standard alloy.
- the standard alloy and alloys 1 and 2 contain the following elements in the listed contents in% by weight: alloy C. Ni Mn Si P. S. Mon V. B. X8Ni9 / 1.5662 (standard) Max 0.1 8.5-10.0 0.3-0.8 Max. 0.35 Max. 0.02 Max. 0.01 Max 0.1 0.05 max - Leg. 1 0.03 0.004 6.4 0.12 0.023 0.006 0.43 - 0.001 Leg. 2 0.06 0.004 6.3 0.12 0.022 0.006 0.43 - -
- the elongation at break A50 of the X8Ni9 was converted in accordance with DIN ISO 2566/1 from the elongation at break A5.65 in accordance with the standard to a sample cross-section of 20 mm.
- the elongation parameters represent the elongation in the rolling direction.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016120895 | 2016-11-02 | ||
PCT/EP2017/077628 WO2018083035A1 (de) | 2016-11-02 | 2017-10-27 | Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3535431A1 EP3535431A1 (de) | 2019-09-11 |
EP3535431B1 true EP3535431B1 (de) | 2021-06-09 |
Family
ID=60331577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17798132.1A Active EP3535431B1 (de) | 2016-11-02 | 2017-10-27 | Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung |
Country Status (10)
Country | Link |
---|---|
US (1) | US11352679B2 (ru) |
EP (1) | EP3535431B1 (ru) |
JP (1) | JP2020500262A (ru) |
KR (1) | KR20190082804A (ru) |
CN (1) | CN109923233A (ru) |
AU (1) | AU2017353259B2 (ru) |
CA (1) | CA3042120C (ru) |
DK (1) | DK3535431T3 (ru) |
RU (1) | RU2728054C1 (ru) |
WO (1) | WO2018083035A1 (ru) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3589770B1 (en) * | 2017-03-01 | 2022-04-06 | Ak Steel Properties, Inc. | Press hardened steel with extremely high strength |
CN110184543B (zh) * | 2019-07-04 | 2021-07-20 | 广西大学 | 一种低镍高强汽车钢板及其制造方法 |
CN110527908A (zh) * | 2019-09-06 | 2019-12-03 | 武汉科技大学 | 一种中碳微纳结构贝氏体钢及其热处理方法 |
WO2022018504A1 (en) | 2020-07-24 | 2022-01-27 | Arcelormittal | Hot rolled and heat-treated steel sheet and method of manufacturing the same |
CN111961982B (zh) * | 2020-09-15 | 2022-02-01 | 东北大学 | 高扩孔率高强度高延伸率的热轧中锰钢板及其制备方法 |
CN113502440A (zh) * | 2021-02-26 | 2021-10-15 | 上海交通大学 | 一种节镍型超低温用高强钢及其热处理工艺 |
US20220314377A1 (en) * | 2021-04-06 | 2022-10-06 | GM Global Technology Operations LLC | High-strength steel sheet blank having decarburized outer layers |
CN113549745B (zh) * | 2021-07-27 | 2022-09-13 | 内蒙古工业大学 | 一种低成本第三代汽车钢加工工艺 |
KR102699825B1 (ko) * | 2022-03-15 | 2024-08-27 | 한양대학교 에리카산학협력단 | 니켈(Ni)-알루미늄(Al)계 석출물을 포함하는 중망간강과 그 제조 방법 |
EP4299768A1 (de) * | 2022-06-29 | 2024-01-03 | Benteler Steel/Tube GmbH | Verfahren zur herstellung eines stahlrohres und stahlrohr |
CN118422057A (zh) * | 2024-04-30 | 2024-08-02 | 武汉科技大学 | 一种具有良好冲击磨料磨损性能的中锰钢 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3473740A1 (en) * | 2016-08-22 | 2019-04-24 | JFE Steel Corporation | Automobile member having resistance weld |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4257808A (en) * | 1979-08-13 | 1981-03-24 | The United States Of America As Represented By The United States Department Of Energy | Low Mn alloy steel for cryogenic service and method of preparation |
US5256219A (en) | 1990-10-24 | 1993-10-26 | Mannesmann Aktiengesellschaft | Steel reinforcement tube |
US5310431A (en) | 1992-10-07 | 1994-05-10 | Robert F. Buck | Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof |
JP2001192773A (ja) | 2000-01-13 | 2001-07-17 | Sumitomo Metal Ind Ltd | ラインパイプ用鋼 |
JP2005002385A (ja) * | 2003-06-10 | 2005-01-06 | Sumitomo Metal Ind Ltd | 成形性と靱性に優れた鋼管とその製造方法 |
JP4079053B2 (ja) * | 2003-08-18 | 2008-04-23 | Jfeスチール株式会社 | エアバッグ用高強度高靭性継目無鋼管の製造方法 |
US7806165B2 (en) | 2003-12-23 | 2010-10-05 | Salzgitter Flachstahl Gmbh | Method for making hot strips of lightweight construction steel |
KR100960167B1 (ko) | 2004-07-27 | 2010-05-26 | 신닛뽄세이테쯔 카부시키카이샤 | 고영율 강판, 이를 이용한 용융 아연 도금 강판, 합금화 용융 아연 도금 강판 및 고영율 강관 및 이들의 제조 방법 |
RU2269588C1 (ru) * | 2004-10-25 | 2006-02-10 | Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") | Хладостойкая сталь высокой прочности |
EP2055797A4 (en) | 2006-08-23 | 2014-12-17 | Japan Science & Tech Agency | IRON ALLOY AND METHOD FOR MANUFACTURING THE SAME |
WO2010052751A1 (en) | 2008-11-05 | 2010-05-14 | Honda Motor Co., Ltd. | High-strength steel sheet and the method for production therefor |
RU2414520C1 (ru) * | 2009-06-29 | 2011-03-20 | Открытое акционерное общество "Северсталь" (ОАО "Северсталь") | Сталь конструкционная с высокой ударной вязкостью при криогенных температурах |
JP5392717B2 (ja) * | 2009-09-18 | 2014-01-22 | 東洋鋼鈑株式会社 | 給油パイプ |
JP5287770B2 (ja) * | 2010-03-09 | 2013-09-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
EP2383353B1 (de) | 2010-04-30 | 2019-11-06 | ThyssenKrupp Steel Europe AG | Höherfester, Mn-haltiger Stahl, Stahlflachprodukt aus einem solchen Stahl und Verfahren zu dessen Herstellung |
JP5540885B2 (ja) * | 2010-05-20 | 2014-07-02 | 新日鐵住金株式会社 | 溶融めっき熱延鋼板およびその製造方法 |
KR101271974B1 (ko) * | 2010-11-19 | 2013-06-07 | 주식회사 포스코 | 극저온 인성이 우수한 고강도 강재 및 그 제조방법 |
CA2831404C (en) | 2011-03-28 | 2016-03-08 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet and production method thereof |
JP5440672B2 (ja) | 2011-09-16 | 2014-03-12 | Jfeスチール株式会社 | 加工性に優れた高強度鋼板およびその製造方法 |
DE102012013113A1 (de) | 2012-06-22 | 2013-12-24 | Salzgitter Flachstahl Gmbh | Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa |
KR101510505B1 (ko) * | 2012-12-21 | 2015-04-08 | 주식회사 포스코 | 우수한 도금성과 초고강도를 갖는 고망간 용융아연도금강판의 제조방법 및 이에 의해 제조된 고망간 용융아연도금강판 |
CN103422017A (zh) * | 2013-08-01 | 2013-12-04 | 天津钢管集团股份有限公司 | 输送温度低于-130℃环境用无缝钢管及其制造方法 |
CN104131225B (zh) * | 2014-07-30 | 2016-08-24 | 宝山钢铁股份有限公司 | 低成本超低温镍钢及其制造方法 |
-
2017
- 2017-10-27 JP JP2019522842A patent/JP2020500262A/ja active Pending
- 2017-10-27 KR KR1020197014457A patent/KR20190082804A/ko not_active IP Right Cessation
- 2017-10-27 RU RU2019116309A patent/RU2728054C1/ru active
- 2017-10-27 CN CN201780067719.9A patent/CN109923233A/zh active Pending
- 2017-10-27 DK DK17798132.1T patent/DK3535431T3/da active
- 2017-10-27 AU AU2017353259A patent/AU2017353259B2/en active Active
- 2017-10-27 EP EP17798132.1A patent/EP3535431B1/de active Active
- 2017-10-27 US US16/346,761 patent/US11352679B2/en active Active
- 2017-10-27 CA CA3042120A patent/CA3042120C/en active Active
- 2017-10-27 WO PCT/EP2017/077628 patent/WO2018083035A1/de active Search and Examination
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3473740A1 (en) * | 2016-08-22 | 2019-04-24 | JFE Steel Corporation | Automobile member having resistance weld |
Non-Patent Citations (1)
Title |
---|
AUTORENKOLLEKTIV: "Spurenelemente im Stahl - Moeglichkeiten zur Beeinflussung im Smelzbetrieb", SPURENELEMENTE IN STAEHLEN, VERLAG STAHLEISEN, DUESSELDORF, DE, 1 January 1985 (1985-01-01), pages 19 - 22, XP002433212 * |
Also Published As
Publication number | Publication date |
---|---|
KR20190082804A (ko) | 2019-07-10 |
RU2728054C1 (ru) | 2020-07-28 |
DK3535431T3 (da) | 2021-08-16 |
AU2017353259A1 (en) | 2019-05-09 |
CA3042120C (en) | 2022-08-09 |
JP2020500262A (ja) | 2020-01-09 |
US20190264297A1 (en) | 2019-08-29 |
CA3042120A1 (en) | 2018-05-11 |
EP3535431A1 (de) | 2019-09-11 |
CN109923233A (zh) | 2019-06-21 |
AU2017353259B2 (en) | 2022-12-22 |
WO2018083035A1 (de) | 2018-05-11 |
US11352679B2 (en) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3535431B1 (de) | Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung | |
EP3504349B1 (de) | Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband | |
DE69617002T4 (de) | Verfahren zur herstellung von hochfesten nahtlosen stahlrohren mit hervorragender schwefel induzierter spannungsrisskorossionsbeständigkeit | |
EP2905348B1 (de) | Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts | |
EP3221484B1 (de) | Verfahren zur herstellung eines hochfesten lufthärtenden mehrphasenstahls mit hervorragenden verarbeitungseigenschaften | |
EP3332046B1 (de) | Hochfester aluminiumhaltiger manganstahl, ein verfahren zur herstellung eines stahlflachprodukts aus diesem stahl und hiernach hergestelltes stahlflachprodukt | |
EP2366035A1 (de) | Manganstahlband mit erhöhtem phosphorgehalt und verfahren zur herstellung desselben | |
WO2017021464A1 (de) | Hochfester manganhaltiger stahl, verwendung des stahls für flexibel gewalzte stahlflachprodukte und herstellverfahren nebst stahlflachprodukt hierzu | |
EP3512968B1 (de) | Verfahren zur herstellung eines stahlflachprodukts aus einem manganhaltigen stahl und ein derartiges stahlflachprodukt | |
EP3512967B1 (de) | Verfahren zur herstellung eines umgeformten bauteils aus einem manganhaltigen stahlflachprodukt und ein derartiges bauteil | |
WO2018083028A1 (de) | Nahtloses rohr aus einem mittelmanganhaltigen stahl und verfahren zu seiner herstellung | |
WO2019115551A1 (de) | Hochfestes, warmgewalztes stahlflachprodukt mit hohem kantenrisswiderstand und gleichzeitig hohem bake-hardening potential, ein verfahren zur herstellung eines solchen stahlflachprodukts | |
EP4298255A1 (de) | Hochfestes, warmgewalztes stahlflachprodukt mit hoher lokaler kaltumformbarkeit sowie ein verfahren zur herstellung eines solchen stahlflachprodukts | |
EP3551776B1 (de) | Verfahren zur herstellung eines warm- oder kaltbandes und/oder eines flexibel gewalzten stahlflachprodukts aus einem hochfesten manganhaltigen stahl und stahlflachprodukt hiernach | |
DE102018132908A1 (de) | Verfahren zur Herstellung von thermo-mechanisch hergestellten Warmbanderzeugnissen | |
WO2018050634A1 (de) | Verfahren zur herstellung eines umgeformten bauteils aus einem mittelmanganhaltigen stahlflachprodukt und ein derartiges bauteil | |
EP3964591A1 (de) | Warmgewalztes stahlflachprodukt und verfahren zur herstellung eines warmgewalzten stahlflachprodukts | |
EP3469108B1 (de) | Verfahren zur herstellung eines kaltgewalzten stahlbandes mit trip-eigenschften aus einem hochfesten, manganhaltigen stahl | |
DE102016115618A1 (de) | Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband | |
DE102018132816A1 (de) | Verfahren zur Herstellung von thermo-mechanisch hergestellten profilierten Warmbanderzeugnissen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190521 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200511 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B21C 37/08 20060101ALN20210205BHEP Ipc: C22C 38/16 20060101ALI20210205BHEP Ipc: C21D 1/26 20060101ALI20210205BHEP Ipc: C21D 8/10 20060101ALN20210205BHEP Ipc: C22C 38/04 20060101ALI20210205BHEP Ipc: C22C 38/22 20060101ALI20210205BHEP Ipc: C22C 38/06 20060101ALI20210205BHEP Ipc: C22C 38/08 20060101ALI20210205BHEP Ipc: C22C 38/30 20060101ALI20210205BHEP Ipc: C22C 38/14 20060101ALI20210205BHEP Ipc: B21C 37/12 20060101ALN20210205BHEP Ipc: C22C 38/02 20060101ALI20210205BHEP Ipc: C22C 38/18 20060101ALI20210205BHEP Ipc: C22C 38/20 20060101ALI20210205BHEP Ipc: C22C 38/00 20060101AFI20210205BHEP Ipc: C21D 8/02 20060101ALI20210205BHEP Ipc: C21D 6/00 20060101ALI20210205BHEP Ipc: C22C 38/10 20060101ALI20210205BHEP Ipc: C21D 9/46 20060101ALN20210205BHEP Ipc: C22C 38/12 20060101ALI20210205BHEP Ipc: C21D 9/08 20060101ALN20210205BHEP |
|
INTG | Intention to grant announced |
Effective date: 20210223 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1400557 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017010631 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20210813 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210909 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210910 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210909 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211011 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017010631 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220310 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211027 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211027 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171027 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231019 Year of fee payment: 7 Ref country code: FR Payment date: 20231026 Year of fee payment: 7 Ref country code: FI Payment date: 20231020 Year of fee payment: 7 Ref country code: DK Payment date: 20231024 Year of fee payment: 7 Ref country code: DE Payment date: 20231020 Year of fee payment: 7 Ref country code: AT Payment date: 20231020 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231019 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |