EP3532425B1 - Method for the compensation of diagonal pull in cranes - Google Patents

Method for the compensation of diagonal pull in cranes Download PDF

Info

Publication number
EP3532425B1
EP3532425B1 EP17803779.2A EP17803779A EP3532425B1 EP 3532425 B1 EP3532425 B1 EP 3532425B1 EP 17803779 A EP17803779 A EP 17803779A EP 3532425 B1 EP3532425 B1 EP 3532425B1
Authority
EP
European Patent Office
Prior art keywords
tower crane
boom
sensor
load
crane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17803779.2A
Other languages
German (de)
French (fr)
Other versions
EP3532425A1 (en
Inventor
Alexander STRÄHLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Werk Biberach GmbH
Original Assignee
Liebherr Werk Biberach GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Werk Biberach GmbH filed Critical Liebherr Werk Biberach GmbH
Priority to EP21162860.7A priority Critical patent/EP3858781A1/en
Publication of EP3532425A1 publication Critical patent/EP3532425A1/en
Application granted granted Critical
Publication of EP3532425B1 publication Critical patent/EP3532425B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/20Control systems or devices for non-electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/26Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes for use on building sites; constructed, e.g. with separable parts, to facilitate rapid assembly or dismantling, for operation at successively higher levels, for transport by road or rail
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/54Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes with pneumatic or hydraulic motors, e.g. for actuating jib-cranes on tractors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • B66C23/905Devices for indicating or limiting lifting moment electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/16Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes with jibs supported by columns, e.g. towers having their lower end mounted for slewing movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/42Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes with jibs of adjustable configuration, e.g. foldable

Definitions

  • the invention relates to a device for compensating diagonal pull in tower cranes with at least one boom, a boom drive for adjusting an angle and / or a length of the boom and / or for moving a trolley, and a control / regulating device for controlling / regulating the boom drive.
  • the WO 2016/128119 A discloses a tower crane with a boom, a boom drive for adjusting an angle of the boom, a sensor for detecting the angle and a control /
  • Control device for controlling the boom drive. If the load is now lifted from the ground or at the moment when the load hardly touches the ground or no longer touches the ground at all, a pendulum movement of the now freely suspended or raised load occurs due to the inclined pull of the rope. Likewise, when weaning a load, a relaxation of the steel structure or the tower crane lead to the fact that the tower crane springs back and thus again causes a diagonal pull of the rope. This goes hand in hand with possible dangers, such as the occurrence of a swaying load, which can lead to property damage or personal injury, such as crushing, especially in confined spaces. Furthermore, the horizontal movement of the load can lead to the tower crane's permissible load torque being exceeded.
  • the object of the invention is to provide a device by means of which the compensation of the diagonal pull in tower cranes can be improved or simplified.
  • a device for compensating diagonal pull in tower cranes with the features of claim 1.
  • Advantageous designs are the subject of the subclaims. Accordingly, a device with at least one boom, a boom drive for adjusting an angle and / or a length of the boom and / or for moving a Trolley, a sensor for detecting the angle of the boom and / or the deformation of at least part of the tower crane and a control / regulating device for controlling the boom drive is provided, the sensor value detected by means of the controller when a load is lifted and / or set down by the tower crane - / control device and the boom drive is kept constant.
  • the boom drive can be, for example, a motor winch for changing the bracing of the tower crane or the position of the trolley and / or a hydraulic cylinder piston device by means of which the boom can be pivoted.
  • the device according to the invention can also be applied to or coupled to a mobile tower crane and used accordingly to reduce or prevent diagonal pull in mobile cranes.
  • the sensed sensor value can mean an angle of the boom that is spanned by the boom and the horizontal.
  • the sensor value can be a value that is proportional to a deformation of the tower crane and, for example, corresponds to a tension in the crane structure.
  • the open-loop and closed-loop control device detects a first actual value by means of the sensor and, in the event of a subsequent change in the first measured actual value, controls / regulates the boom drive so that the error or the change or deviation is minimized between an actual value measured initially and a deviating value measured afterwards.
  • the deformation of the tower crane can be, for example, the bending of the tower or the boom of the tower crane. In this way, according to the invention, diagonal pull compensation can advantageously be carried out using sensors provided in known tower cranes.
  • the boom drive is a pull-in winch or a guy winch.
  • the corresponding winch can be controlled or regulated via the control / regulating device for moving the boom so that the sensor value or parameter detected by the sensor is constant or a deviation between a sensor value measured first and a value measured during further operation of the tower crane is reduced or . is minimized.
  • the pull-in winch or the guy winch is used to change the length of the boom of the tower crane by extending or retracting the boom accordingly. As a result, the diagonal pull can also be reduced, but not fully compensated, since the deflection of the tower or the boom is not compensated.
  • the boom drive is designed as a cylinder piston device and is coupled to the boom for pivoting the boom.
  • the at least one sensor is an inclination sensor, an optical sensor, a length transmitter for measuring deformations, a GPS sensor and / or a cable sensor in or on a bracing of the tower crane. Accordingly, it is possible to use more than one sensor for recording the respective crane parameters or the geometric design or deformation of the tower crane. In particular, it is possible to use more than one sensor in combination for detecting the alignment or deformation of the tower crane.
  • control / regulating device controls the boom drive on the basis of a reference value calculated from a plurality of sensor values.
  • the calculated reference value can be, for example, the load moment, which can be derived from the weight of the load lifted by the tower crane and the corresponding outreach or from the supporting forces acting on the tower crane and the outreach.
  • the ratio of the sensor value and / or reference value to the cantilever displacement due to the deformation of the tower crane is scaled or determined and / or calculated with a test weight.
  • the rigidity and the crane structure or the geometry of the tower crane can be used for the computational determination of the relationship between the sensor value or the reference value and the projection displacement.
  • the invention is also directed to a tower crane having a device according to any one of claims 1 to 7.
  • Figure 1a shows a tower crane 1 known from the prior art with a boom 2 which does not have a device according to the invention for compensating diagonal pull.
  • the tower crane 1 comprises a boom drive 3 which can adjust the boom 2 and / or move the trolley 7.
  • the tower crane 1 is at least not loaded by the load 6 and therefore also has no deformations caused by the load 6.
  • boom drive 3 can mean a drive for moving the boom 2 or any other drive provided on the tower crane, such as a pull-in winch 8 or guy winch 9, by means of which further or other crane components can be moved.
  • the tower crane 1 When the load 6 is lifted from the ground, the tower crane 1 is correspondingly loaded, even while the load initially remains on the ground or touches the ground. This leads, among other things, to a horizontal movement of the
  • the Indian Figure 2a The tower crane 1 shown with the device according to the invention for compensating the diagonal pull initially hardly differs from that in FIG Figure 1a shown, known from the prior art tower crane 1, wherein in Figures 1a and 2a each tower cranes are shown in an unloaded state.
  • the tower crane 1 according to the invention begins according to FIG Figure 2b To lift the load 6 while it is still on the ground or still touching the ground, according to the invention the overhang of the tower crane 1 can be automatically reduced, whereby the diagonal pull is correspondingly reduced and a pendulum movement is prevented when the load 6 is raised further. If the tower crane 1 lifts as in Figure 2c If the load is shown from the ground, according to the invention there is no diagonal pull at that moment and no load oscillation occurs. As in Figure 2b the trolley 7 is shown moving and / or the boom 2 is pivoted so that the rope has no diagonal pull or is arranged vertically.
  • the sensor 5 shown for example, the inclination of the boom 2, the deformation based on a detected change in length of the boom 2 and / or the tension in the bracing of the tower crane 1 can be detected.
  • At least one corresponding sensor 5 can be provided, for example, on the boom 2 or, alternatively or in addition, on other components such as the tower of the tower crane.
  • the control / regulating device 4 can detect the values detected by the sensor 5 or by the sensors 5 and on the basis of this, determine how the boom drive 3 is to be controlled so that there is as little diagonal pull as possible.
  • a known test weight can be lifted by means of the tower crane 1, whereby the detected sensor values can be stored accordingly. This can be carried out with different boom angles or projections of the tower crane 1.
  • a correspondingly created table of values with the recorded sensor values, the test weight and / or the corresponding boom angles or projections can be used to compensate for the diagonal pull when the crane 1 is in operation.
  • Figure 3 shows a schematic representation of the active structure when using a tower crane 1 with a device according to the invention.
  • one or more reference variables are initially determined that are clearly related to the deformation of the tower crane 1 or the steel structure of the tower crane 1.
  • an in particular computational variable can be generated or recorded.
  • the following sensors can be used in any combination and number: load torque sensors, inclination sensors in the tower and / or boom 2 of the tower crane 1, force sensors or a measuring axis or a tensile force sensor in the hoist rope line, extension sensors, force sensors in the bracing, in the guy rope, in the neck rope and / or in the pull-in rope, GPS sensors, optical sensors such as a camera, force sensors and / or strain sensors and / or length sensors in the steel structure of the crane 1, force sensors and / or hydrostatic pressure sensors in the support of the tower crane 1, pressure sensors in an adjusting cylinder of the Tower crane 1 and / or absolute encoder on a cable drum or winch.
  • a transfer function can be used from the determined reference value or from the determined reference values generated or determined the deformation of the tower crane 1 become.
  • the transfer function can be mapped, for example, with a computational relationship or a map.
  • the deformation can correspond, for example, to a shift in the projection and / or to a change in the angle of the tower and / or boom 2.
  • different crane configurations or tower / boom configurations or hoisting rope reeving can be taken into account.
  • the deformation of the tower crane 1 can be measured, for example, using a payload sensor and an outreach sensor.
  • the corresponding sensors 5 for measuring the payload and the outreach can be installed in the tower crane 1.
  • the load torque which in this case represents the reference variable, is computationally determined in the crane control from these two sensors 5. It is also conceivable that in addition to Load moment the radius is a second reference value. This essentially depends on the crane structure and the resulting static relationships.
  • Figures 4a-4c make this connection clear.
  • Figure 4a shows a tower crane with a load placed on the ground, the crane not being loaded by the load.
  • Figure 4b shows a tower crane in which the load to be lifted by it is still on the ground, but has already applied part of its weight to the tower crane. In this state, a horizontal movement of the tower crane 1 or the overhead crane is effected.
  • Figure 4c shows the tower crane from Figure 4b at the moment the load is lifted from the ground, the measured cantilever magnification ⁇ s in the Figures 4b and 4c is shown.
  • the crane operator can activate the automatic correction of the diagonal pull on a display in order to compensate for an undesired diagonal pull.
  • the payload and the outreach become the, especially online Load torque calculated.
  • the outreach with the trolley 7 is automatically corrected by the correspondingly determined outreach shift.
  • the invention is used in connection with a mobile tower crane with an adjustable boom, another operating principle is also possible. So it is conceivable that the deformation of the steel structure is measured by inclination sensors in the boom and absolute encoder of the guy winch 9. In this situation, the diagonal pull can be determined by means of a transfer function that can be permanently stored in the controller. The diagonal pull is then compensated for using appropriate correction commands.
  • the boom inclination is adjusted with the guy winch 9, which is designed with an absolute encoder.
  • the guy winch 9 which is designed with an absolute encoder.
  • the inclination of the boom changes due to the deformation of the steel structure of the tower and boom and the stretching of the guy rope, while the absolute encoder of the guy winch remains constant. This changes the relationship between the boom angle and the absolute encoder. More on this is the Figure 7 removable.
  • the deflection of the tower can also be compensated for.
  • the boom angle must be set steeper than originally when there is a load. More on this is Figure 9 removable.
  • the crane operator is shown the diagonal pull visually on a display, possibly with an acoustic signal. With a button or an input on the touch display, he can then trigger the correction movement or a correction command to adjust the boom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Jib Cranes (AREA)
  • Control And Safety Of Cranes (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zur Kompensation von Schrägzug bei Turmkranen mit wenigstens einem Ausleger, einem Auslegerantrieb zum Verstellen eines Winkels und/oder einer Länge des Auslegers und/oder zum Verfahren einer Laufkatze, und einer Steuerung-/Regelungsvorrichtung zur Steuerung/Regelung des Auslegerantriebs.The invention relates to a device for compensating diagonal pull in tower cranes with at least one boom, a boom drive for adjusting an angle and / or a length of the boom and / or for moving a trolley, and a control / regulating device for controlling / regulating the boom drive.

Gemäß dem Stand der Technik ist es bekannt, dass beim Anheben von Lasten mittels eines Turmkrans aufgrund der Belastung des Turms, des Auslegers und/oder der Auslegerabspannung eine Verformung der Geometrie bzw. des Stahlbaus des Krans auftritt. Diese Verformung führt zu einem Schrägzug des Seils bzw. des Lastseils des Turmkrans.According to the prior art, it is known that when lifting loads by means of a tower crane, a deformation of the geometry or the steel structure of the crane occurs due to the load on the tower, the boom and / or the boom bracing. This deformation leads to a diagonal pull of the rope or the load rope of the tower crane.

Die WO 2016/128119 A offenbart einen Turmkran mit einem Ausleger, einem Auslegerantrieb zum verstellen eines Winkels des Auslegers, einem Sensor zur Erfassung des Winkels und einer Steuerungs-/The WO 2016/128119 A discloses a tower crane with a boom, a boom drive for adjusting an angle of the boom, a sensor for detecting the angle and a control /

Regelvorrichtung zur Steuerung des Auslegerantriebs. Wenn die Last nun vom Boden angehoben wird bzw. in dem Moment, in dem die Last den Boden kaum oder gar nicht mehr berührt, entsteht aufgrund des zuvor entstandenen Schrägzugs des Seils eine Pendelbewegung der nunmehr freihängenden bzw. angehobenen Last. Ebenso kann beim Absetzen einer Last eine Entspannung des Stahlbaus bzw. des Turmkrans dazu führen, dass der Turmkran zurückfedert und damit abermals ein Schrägzug des Seils bewirkt wird. Dies geht mit möglichen Gefahren, wie dem Entstehen eines Lastpendelns einher, was insbesondere bei engen Platzverhältnissen zu Sach- oder Personenschäden, wie beispielsweise Quetschungen, führen kann. Weiterhin kann die Horizontalbewegung der Last dazu führen, dass das zulässige Lastmoment des Turmkrans überschritten wird.Control device for controlling the boom drive. If the load is now lifted from the ground or at the moment when the load hardly touches the ground or no longer touches the ground at all, a pendulum movement of the now freely suspended or raised load occurs due to the inclined pull of the rope. Likewise, when weaning a load, a relaxation of the steel structure or the tower crane lead to the fact that the tower crane springs back and thus again causes a diagonal pull of the rope. This goes hand in hand with possible dangers, such as the occurrence of a swaying load, which can lead to property damage or personal injury, such as crushing, especially in confined spaces. Furthermore, the horizontal movement of the load can lead to the tower crane's permissible load torque being exceeded.

Bekannterweise gleichen geübte Kranfahrer den Schrägzug durch ein gezieltes Korrigieren der Ausladung, wie z.B. durch Verfahren einer Laufkatze bei Katzauslegerkranen oder durch Verstellen des Auslegerwinkels bei Verstellauslegerkranen aus. Bei Verstellauslegerkranen, bei denen für gewöhnlich ein Neigungssensor im Ausleger installiert ist, kann damit die Winkeländerung aufgrund der Belastung erfasst werden. Der Kranfahrer hat so die Möglichkeit, den Auslegerwinkel auf den ursprünglichen Wert zu korrigieren, bevor die Last vom Boden abhebt. Dies erfolgt jedoch nicht automatisch, das heißt der Kranfahrer muss zum Anheben einer Last zwei Antriebe parallel ansteuern. Außerdem wird hierbei lediglich der Biegewinkel von Turm und Ausleger, nicht jedoch die Durchbiegung des Turms bzw. ein horizontaler Weg oder eine Abweichung von der Horizontalen des Oberkrans in Folge der Turmbiegung kompensiert. Bei Katzauslegerkranen gibt es in der Regel keine Möglichkeit, die Verformung zu erfassen.As is well known, experienced crane operators compensate for the diagonal pull by correcting the outreach, e.g. by moving a trolley on trolley jib cranes or by adjusting the jib angle on luffing jib cranes. In luffing jib cranes, where an inclination sensor is usually installed in the jib, the change in angle due to the load can be detected. This gives the crane driver the opportunity to correct the boom angle to the original value before the load is lifted off the ground. However, this is not done automatically, i.e. the crane driver has to control two drives in parallel to lift a load. In addition, only the bending angle of the tower and boom is compensated for, but not the deflection of the tower or a horizontal path or a deviation from the horizontal of the overhead crane as a result of the tower bending. With trolley jib cranes, there is usually no way of detecting the deformation.

Vor diesem Hintergrund ist es Aufgabe der Erfindung eine Vorrichtung bereitzustellen, mittels der die Kompensation des Schrägzugs bei Turmkranen verbessert bzw. vereinfacht werden kann.Against this background, the object of the invention is to provide a device by means of which the compensation of the diagonal pull in tower cranes can be improved or simplified.

Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung zur Kompensation von Schrägzug bei Turmkranen mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausbildungen sind Gegenstand der Unteransprüche. Demnach ist eine Vorrichtung mit wenigstens einem Ausleger, einem Auslegerantrieb zum Verstellen eines Winkels und/oder einer Länge des Auslegers und/oder zum Verfahren einer Laufkatze, einem Sensor zur Erfassung des Winkels des Auslegers und/oder der Verformung wenigstens eines Teils des Turmkrans und einer Steuerungs-/Regelungsvorrichtung zur Steuerung des Auslegerantriebs vorgesehen, wobei beim Anheben und/oder Absetzen einer Last durch den Turmkran der erfasste Sensorwert mittels der Steuerungs-/Regelungsvorrichtung und des Auslegerantriebs konstant gehalten ist.According to the invention, this object is achieved by a device for compensating diagonal pull in tower cranes with the features of claim 1. Advantageous designs are the subject of the subclaims. Accordingly, a device with at least one boom, a boom drive for adjusting an angle and / or a length of the boom and / or for moving a Trolley, a sensor for detecting the angle of the boom and / or the deformation of at least part of the tower crane and a control / regulating device for controlling the boom drive is provided, the sensor value detected by means of the controller when a load is lifted and / or set down by the tower crane - / control device and the boom drive is kept constant.

Bei dem Auslegerantrieb kann es sich beispielsweise um eine Motorwinde zur Veränderung der Abspannung des Turmkrans oder der Position der Laufkatze und/oder um eine hydraulische Zylinderkolbenvorrichtung handeln, mittels der der Ausleger verschwenkt werden kann.The boom drive can be, for example, a motor winch for changing the bracing of the tower crane or the position of the trolley and / or a hydraulic cylinder piston device by means of which the boom can be pivoted.

Somit kann die erfindungsgemäße Vorrichtung auch bei einem mobilen Turmkran angewandt bzw. mit diesem gekoppelt werden und entsprechend zur Reduktion bzw. Verhinderung von Schrägzug bei Mobilkranen genutzt werden.Thus, the device according to the invention can also be applied to or coupled to a mobile tower crane and used accordingly to reduce or prevent diagonal pull in mobile cranes.

Mit dem erfassten Sensorwert kann ein Winkel des Auslegers gemeint sein, welcher vom Ausleger und der Horizontalen aufgespannt wird. Alternativ kann der Sensorwert ein Wert sein, der proportional zu einer Verformung des Turmkrans ist und beispielsweise einer Spannung in der Krankonstruktion entspricht. Mit dem Konstanthalten des Sensorwertes ist gemeint, dass die Steuerungs-Regelungsvorrichtung mittels des Sensors einen ersten Ist-Wert erfasst und bei im Folgenden erfasster Veränderung des zuerst gemessenen Ist-Werts den Auslegerantrieb so ansteuert/anregelt, dass der Fehler bzw. die Veränderung oder Abweichung zwischen einem zunächst gemessenen Ist-Wert und einem danach gemessenen abweichenden Wert minimiert wird. Bei der Verformung des Turmkrans kann es sich beispielsweise um die Biegung des Turm oder des Auslegers des Turmkrans handeln. Vorteilhafterweise kann so erfindungsgemäß unter Verwendung von in bekannten Turmkranen vorgesehenen Sensoren eine Schrägzugkompensation durchgeführt werden.The sensed sensor value can mean an angle of the boom that is spanned by the boom and the horizontal. Alternatively, the sensor value can be a value that is proportional to a deformation of the tower crane and, for example, corresponds to a tension in the crane structure. By keeping the sensor value constant, it is meant that the open-loop and closed-loop control device detects a first actual value by means of the sensor and, in the event of a subsequent change in the first measured actual value, controls / regulates the boom drive so that the error or the change or deviation is minimized between an actual value measured initially and a deviating value measured afterwards. The deformation of the tower crane can be, for example, the bending of the tower or the boom of the tower crane. In this way, according to the invention, diagonal pull compensation can advantageously be carried out using sensors provided in known tower cranes.

In einer bevorzugten Ausführung ist denkbar, dass der Auslegerantrieb eine Einziehwinde oder eine Abspannwinde ist. Die entsprechende Winde kann so über die Steuerungs-/Regelungsvorrichtung zum Bewegen des Auslegers angesteuert bzw. angeregelt werden, dass der vom Sensor erfasste Sensorwert bzw. Parameter konstant oder eine Abweichung zwischen einem zuerst gemessenen Sensorwert und einem dem weiteren Betrieb des Turmkrans gemessenen Wert verringert bzw. minimiert wird. Dabei ist es denkbar, dass die Einziehwinde bzw. die Abspannwinde zur Veränderung der Länge des Auslegers des Turmkrans durch entsprechendes Ein- oder Ausfahren des Auslegers genutzt wird. Hierdurch kann der Schrägzug ebenfalls verringert, allerdings nicht vollständig kompensiert werden, da die Durchbiegung des Turms bzw. des Auslegers nicht kompensiert wird. Alternativ ist auch denkbar, dass der Auslegerantrieb als Zylinderkolbenvorrichtung ausgebildet ist und zum Verschwenken des Auslegers mit diesem gekoppelt ist.In a preferred embodiment, it is conceivable that the boom drive is a pull-in winch or a guy winch. The corresponding winch can be controlled or regulated via the control / regulating device for moving the boom so that the sensor value or parameter detected by the sensor is constant or a deviation between a sensor value measured first and a value measured during further operation of the tower crane is reduced or . is minimized. It is conceivable that the pull-in winch or the guy winch is used to change the length of the boom of the tower crane by extending or retracting the boom accordingly. As a result, the diagonal pull can also be reduced, but not fully compensated, since the deflection of the tower or the boom is not compensated. Alternatively, it is also conceivable that the boom drive is designed as a cylinder piston device and is coupled to the boom for pivoting the boom.

In einer weiteren bevorzugten Ausführung ist denkbar, dass der wenigstens eine Sensor ein Neigungssensor, ein optischer Sensor, ein Längengeber zur Messung von Verformungen, ein GPS-Sensor und/oder ein Seilzugsensor in oder an einer Abspannung des Turmkrans ist. Demnach ist eine Verwendung von mehr als einem Sensor zur Erfassung der jeweiligen Kranparameter bzw. der geometrischen Ausbildung oder Verformung des Turmkrans einsetzbar. Insbesondere ist es möglich, mehr als einen Sensor zur Erfassung der Ausrichtung bzw. Verformung des Turmkrans kombiniert zu verwenden.In a further preferred embodiment, it is conceivable that the at least one sensor is an inclination sensor, an optical sensor, a length transmitter for measuring deformations, a GPS sensor and / or a cable sensor in or on a bracing of the tower crane. Accordingly, it is possible to use more than one sensor for recording the respective crane parameters or the geometric design or deformation of the tower crane. In particular, it is possible to use more than one sensor in combination for detecting the alignment or deformation of the tower crane.

In einer weiteren bevorzugten Ausführung ist denkbar, dass die Steuerungs-/Regelungsvorrichtung den Auslegerantrieb auf Grundlage eines aus mehreren Sensorwerten berechneten Bezugswerts ansteuert. Bei dem berechneten Bezugswert kann es sich beispielsweise um das Lastmoment handeln, welches von dem Gewicht der vom Turmkran gehobenen Last und der entsprechenden Ausladung oder von den auf den Turmkran einwirkenden Abstützkräften und der Ausladung abgeleitet werden kann.In a further preferred embodiment, it is conceivable that the control / regulating device controls the boom drive on the basis of a reference value calculated from a plurality of sensor values. The calculated reference value can be, for example, the load moment, which can be derived from the weight of the load lifted by the tower crane and the corresponding outreach or from the supporting forces acting on the tower crane and the outreach.

In einer weiteren bevorzugten Ausführung ist denkbar, dass das Verhältnis von Sensorwert und/oder Bezugswert zur Ausladungsverschiebung aufgrund der Verformung des Turmkrans mit einem Prüfgewicht skaliert oder bestimmt und/oder rechnerisch ermittelt ist. Zur rechnerischen Ermittlung des Verhältnisses von Sensorwert bzw. Bezugswert zur Ausladungsverschiebung kann die Steifigkeit und der Kranaufbau bzw. die Geometrie des Turmkrans herangezogen werden. Die Erfindung ist ferner auf einen Turmkran mit einer Vorrichtung nach einem der Ansprüche 1 bis 7 gerichtet.In a further preferred embodiment, it is conceivable that the ratio of the sensor value and / or reference value to the cantilever displacement due to the deformation of the tower crane is scaled or determined and / or calculated with a test weight. The rigidity and the crane structure or the geometry of the tower crane can be used for the computational determination of the relationship between the sensor value or the reference value and the projection displacement. The invention is also directed to a tower crane having a device according to any one of claims 1 to 7.

Weitere Einzelheiten und Vorteile der Erfindung sind anhand der in den Figuren beispielhaft gezeigten Ausführungen erläutert. Dabei zeigen:

  • Figur 1a: Gattungsgemäßer Turmkran mit auf dem Untergrund aufliegender Last;
  • Figur 1b: Gattungsgemäßer Turmkran kurz vor dem Anheben einer Last;
  • Figur 1c: Gattungsgemäßer Turmkran kurz nach dem Anheben einer Last;
  • Figur 2a: Turmkran mit erfindungsgemäßer Vorrichtung zur Kompensation vom Schrägzug mit auf dem Untergrund aufliegender Last;
  • Figur 2b: Turmkran mit erfindungsgemäßer Vorrichtung zur Kompensation vom Schrägzug kurz vor dem Anheben einer Last;
  • Figur 2c: Turmkran mit erfindungsgemäßer Vorrichtung zur Kompensation vom Schrägzug kurz nach dem Anheben einer Last;
  • Figur 3: Wirkstruktur bei der Nutzung eines Turmkrans mit erfindungsgemäßer Vorrichtung;
  • Figur 4a-4c: Turmkran beim Anheben einer Last;
  • Figur 5: Kennlinie des Lastmoments und der Ausladungsverschiebung eines Turmkrans;
  • Figur 6: Kennlinie des Lastmoments und der Ausladungsverschiebung eines Turmkrans mit Zeitpunkt des Abhebens einer Last;
  • Figur 7: Kennlinien der Ausgabewerte eines Absolutwertgebers und des Auslegerwinkels eines Turmkrans ohne Last und mit maximal zulässiger Last;
  • Figur 8: schematische Ansicht einer abweichenden Auslegerneigung gemäß einem ersten Ansatz; und
  • Figur 9: schematische Ansicht einer abweichenden Auslegerneigung gemäß einem zweiten Ansatz.
Further details and advantages of the invention are explained with reference to the embodiments shown by way of example in the figures. Show:
  • Figure 1a : Generic tower crane with load resting on the ground;
  • Figure 1b : Generic tower crane shortly before lifting a load;
  • Figure 1c : Generic tower crane shortly after lifting a load;
  • Figure 2a : Tower crane with a device according to the invention for compensating diagonal pull with the load lying on the ground;
  • Figure 2b : Tower crane with device according to the invention to compensate for diagonal pull shortly before lifting a load;
  • Figure 2c : Tower crane with device according to the invention for compensating diagonal pull shortly after lifting a load;
  • Figure 3 : Knitted structure when using a tower crane with a device according to the invention;
  • Figures 4a-4c : Tower crane lifting a load;
  • Figure 5 : Characteristic curve of the load torque and the radius displacement of a tower crane;
  • Figure 6 : Characteristic curve of the load moment and the radius displacement of a tower crane with the time of lifting a load;
  • Figure 7 : Characteristic curves of the output values of an absolute encoder and the jib angle of a tower crane without load and with maximum permissible load;
  • Figure 8 : a schematic view of a different boom inclination according to a first approach; and
  • Figure 9 : schematic view of a different boom inclination according to a second approach.

Figur 1a zeigt einen aus dem Stand der Technik bekannten Turmkran 1 mit einem Ausleger 2, der über keine erfindungsgemäße Vorrichtung zur Kompensation von Schrägzug verfügt. Der Turmkran 1 umfasst einen Auslegerantrieb 3, der den Ausleger 2 verstellen und/oder die Laufkatze 7 bewegen kann. Bei auf dem Boden abgelegter Last 6 ist der Turmkran 1 zumindest von der Last 6 nicht belastet und weist auch daher keine durch die Last 6 bedingten Verformungen auf. Figure 1a shows a tower crane 1 known from the prior art with a boom 2 which does not have a device according to the invention for compensating diagonal pull. The tower crane 1 comprises a boom drive 3 which can adjust the boom 2 and / or move the trolley 7. When the load 6 is placed on the ground, the tower crane 1 is at least not loaded by the load 6 and therefore also has no deformations caused by the load 6.

Mit dem Begriff des Auslegerantriebs 3 kann ein Antrieb zum Bewegen des Auslegers 2 oder auch ein sonstiger am Turmkran vorgesehener Antrieb gemeint sein, wie beispielsweise eine Einziehwinde 8 oder Abspannwinde 9, mittels der weitere oder andere Krankomponenten bewegt werden können.The term boom drive 3 can mean a drive for moving the boom 2 or any other drive provided on the tower crane, such as a pull-in winch 8 or guy winch 9, by means of which further or other crane components can be moved.

Bei Anheben der Last 6 vom Boden wird entsprechend auch der Turmkran 1 belastet, auch dann schon, während die Last zunächst noch am Boden liegen bleibt bzw. den Boden berührt. Dies führt unter anderem zu einer Horizontalbewegung desWhen the load 6 is lifted from the ground, the tower crane 1 is correspondingly loaded, even while the load initially remains on the ground or touches the ground. This leads, among other things, to a horizontal movement of the

Oberkrans bzw. insbesondere des Auslegers 2 und einem entsprechenden Schrägzug des Seils, wie Figur 1b zeigt.Upper crane or in particular the boom 2 and a corresponding diagonal pull of the rope, such as Figure 1b shows.

Hebt die Last 6, wie in Figur 1c gezeigt vom Boden ab, so ergibt sich durch die zuvor in Figur 1b gezeigte Horizontalbewegung bzw. Drehbewegung des Oberkrans im Moment des Anhebens der Last 6 eine Schräglage bzw. ein Schrägzug des Seils des Turmkrans 1, was zum Lastpendeln und entsprechend zu einer Ausladungsvergrößerung durch das Lastpendeln führen kann.Lifts the load 6 as in Figure 1c shown from the ground, it results from the previously in Figure 1b Shown horizontal movement or rotary movement of the overhead crane at the moment of lifting the load 6 an inclined position or an inclined pull of the rope of the tower crane 1, which can lead to load swing and correspondingly to an increase in the radius of the load swing.

Der in der Figur 2a gezeigte Turmkran 1 mit erfindungsgemäßer Vorrichtung zur Kompensation des Schrägzugs unterscheidet sich zunächst kaum vom in der Figur 1a gezeigten, aus dem Stand der Technik bekannten Turmkran 1, wobei in Figuren 1a und 2a jeweils Turmkrane in einem unbelasteten Zustand gezeigt sind. Beginnt allerdings der erfindungsgemäße Turmkran 1 gemäß Figur 2b die Last 6 anzuheben, während diese noch am Boden ist bzw. noch den Boden berührt, so kann erfindungsgemäß die Ausladung des Turmkrans 1 automatisch reduziert werden, wodurch der Schrägzug entsprechend reduziert und einer Pendelbewegung bei weiterem Anheben der Last 6 vorgebeugt wird. Hebt der Turmkran 1 wie in Figur 2c gezeigt die Last vom Boden ab, so liegt in dem Moment erfindungsgemäß kein Schrägzug vor und es stellt sich kein Lastpendeln ein. Hierzu wird wie in Figur 2b gezeigt die Laufkatze 7 so verfahren und/oder der Ausleger 2 so verschwenkt, dass das Seil keinen Schrägzug aufweist bzw. vertikal angeordnet ist.The Indian Figure 2a The tower crane 1 shown with the device according to the invention for compensating the diagonal pull initially hardly differs from that in FIG Figure 1a shown, known from the prior art tower crane 1, wherein in Figures 1a and 2a each tower cranes are shown in an unloaded state. However, the tower crane 1 according to the invention begins according to FIG Figure 2b To lift the load 6 while it is still on the ground or still touching the ground, according to the invention the overhang of the tower crane 1 can be automatically reduced, whereby the diagonal pull is correspondingly reduced and a pendulum movement is prevented when the load 6 is raised further. If the tower crane 1 lifts as in Figure 2c If the load is shown from the ground, according to the invention there is no diagonal pull at that moment and no load oscillation occurs. As in Figure 2b the trolley 7 is shown moving and / or the boom 2 is pivoted so that the rope has no diagonal pull or is arranged vertically.

Mittels des in den Figuren 2a bis 2c gezeigten Sensors 5 kann beispielsweise die Neigung des Auslegers 2, die Verformung auf Basis einer erfassten Längenänderung des Auslegers 2 und/oder die Spannung in der Abspannung des Turmkrans 1 erfasst werden.Using the in the Figures 2a to 2c The sensor 5 shown, for example, the inclination of the boom 2, the deformation based on a detected change in length of the boom 2 and / or the tension in the bracing of the tower crane 1 can be detected.

Wenigstens ein entsprechender Sensor 5 kann zum Beispiel am Ausleger 2 vorgesehen sein oder alternativ oder zusätzlich dazu an weiteren Komponenten wie dem Turm des Turmkrans vorgesehen sein. Die Steuerungs-/Regelungsvorrichtung 4 kann die von dem Sensor 5 oder von den Sensoren 5 erfassten Werte erfassen und auf deren Grundlage bestimmen, wie der Auslegerantrieb 3 anzusteuern ist, damit sich möglichst kein Schrägzug einstellt.At least one corresponding sensor 5 can be provided, for example, on the boom 2 or, alternatively or in addition, on other components such as the tower of the tower crane. The control / regulating device 4 can detect the values detected by the sensor 5 or by the sensors 5 and on the basis of this, determine how the boom drive 3 is to be controlled so that there is as little diagonal pull as possible.

Um die Steuerungs-/Regelungsvorrichtung 4, die beispielsweise als Teil des Turmkrans 1 ausgebildet sein kann, entsprechend zur Steuerung des Auslegerantriebs 3 einzustellen, kann mittels des Turmkrans 1 ein bekanntes Prüfgewicht angehoben werden, wobei die erfassten Sensorwerte entsprechend hinterlegt werden können. Dies kann bei unterschiedlichen Auslegerwinkeln bzw. Ausladungen des Turmkrans 1 durchgeführt werden. Eine entsprechend erstelle Wertetabelle mit den erfassten Sensorwerten, dem Prüfgewicht und/oder den entsprechenden Auslegerwinkeln bzw. Ausladungen kann im Betrieb des Krans 1 zur Kompensation des Schrägzugs herangezogen werden.In order to adjust the control / regulating device 4, which can be designed as part of the tower crane 1, for example, to control the boom drive 3, a known test weight can be lifted by means of the tower crane 1, whereby the detected sensor values can be stored accordingly. This can be carried out with different boom angles or projections of the tower crane 1. A correspondingly created table of values with the recorded sensor values, the test weight and / or the corresponding boom angles or projections can be used to compensate for the diagonal pull when the crane 1 is in operation.

Figur 3 zeigt eine schematische Darstellung der Wirkstruktur bei der Nutzung eines Turmkrans 1 mit erfindungsgemäßer Vorrichtung. Hierbei werden zunächst eine oder mehrere Bezugsgrößen ermittelt, die in einem eindeutigen Zusammenhang zur Verformung des Turmkrans 1 bzw. des Stahlbaus des Turmkrans 1 stehen. Ebenso kann durch das Zusammenwirken zweier oder mehrerer Sensoren 5 eine insbesondere rechnerische Größe generiert bzw. erfasst werden. Hierbei können die folgenden Sensoren in beliebiger Kombination und Anzahl verwendet werden: Lastmomentsensoren, Neigungssensoren im Turm und/oder Ausleger 2 des Turmkrans 1, Kraftsensoren bzw. eine Messachse oder ein Zugkraftsensor im Hubseilstrang, Ausladungssensoren, Kraftsensoren in der Abspannung, im Abspannseil, in Nackenseil und/oder im Einziehseil, GPS-Sensoren, optische Sensoren wie beispielsweise eine Kamera, Kraftsensoren und/oder Dehnungssensoren und/oder Längengeber im Stahlbau des Krans 1, Kraftsensoren und/oder hydrostatische Drucksensoren in der Abstützung des Turmkrans 1, Drucksensoren in einem Verstellzylinder des Turmkrans 1, und/oder Absolutwertgeber auf einer Seiltrommel bzw. Winde. Figure 3 shows a schematic representation of the active structure when using a tower crane 1 with a device according to the invention. In this case, one or more reference variables are initially determined that are clearly related to the deformation of the tower crane 1 or the steel structure of the tower crane 1. Likewise, through the interaction of two or more sensors 5, an in particular computational variable can be generated or recorded. The following sensors can be used in any combination and number: load torque sensors, inclination sensors in the tower and / or boom 2 of the tower crane 1, force sensors or a measuring axis or a tensile force sensor in the hoist rope line, extension sensors, force sensors in the bracing, in the guy rope, in the neck rope and / or in the pull-in rope, GPS sensors, optical sensors such as a camera, force sensors and / or strain sensors and / or length sensors in the steel structure of the crane 1, force sensors and / or hydrostatic pressure sensors in the support of the tower crane 1, pressure sensors in an adjusting cylinder of the Tower crane 1 and / or absolute encoder on a cable drum or winch.

Mit einer Übertragungsfunktion kann aus der ermittelten Bezugsgröße bzw. aus den ermittelten Bezugsgrößen die Verformung des Turmkrans 1 generiert bzw. bestimmt werden. Die Übertragungsfunktion kann zum Beispiel mit einem rechnerischen Zusammenhang oder einem Kennfeld abgebildet werden. Die Verformung kann zum Beispiel einer Ausladungsverschiebung und/oder einer Winkeländerung von Turm und/oder Ausleger 2 entsprechen. Je nach Krantyp können hier unterschiedliche Krankonfigurationen bzw. Turm-/Auslegerkonfigurationen oder Hubseileinscherungen berücksichtigt werden.A transfer function can be used from the determined reference value or from the determined reference values generated or determined the deformation of the tower crane 1 become. The transfer function can be mapped, for example, with a computational relationship or a map. The deformation can correspond, for example, to a shift in the projection and / or to a change in the angle of the tower and / or boom 2. Depending on the crane type, different crane configurations or tower / boom configurations or hoisting rope reeving can be taken into account.

Es bestehen die folgenden Möglichkeiten für die Ermittlung der Übertragungsfunktion:

  • Die Übertragungsfunktion kann fest in einer Steuerung bzw. in der Steuerungs-/Regelungsvorrichtung 4 hinterlegt sein. Vorliegend können die Begriffe der Steuerung und der Steuerungs-/Regelungsvorrichtung 4 synonym verwendet werden.
  • Die Übertragungsfunktion oder die Übertragungsfunktionen können vom Kranhersteller einmalig, zum Beispiel durch Messungen und/oder durch Berechnungen ermittelt und dann fest in der Steuerung bzw. Steuerungs-/Regelungsvorrichtung 4 hinterlegt werden.
  • Die Übertragungsfunktion kann durch Referenzmessung bzw. durch Skalieren bestimmt sein. Bei einer oder mehreren Messungen können die Bezugsgröße bzw. die Bezugsgrößen und zusätzlich die Verformung gemessen werden, um deren Zusammenhang zu ermitteln.
  • Die Übertragungsfunktion kann durch Kombination aus Rechnung und Referenzmessung bestimmt werden. Der Zusammenhang zwischen Bezugsgröße und Ausladungsverschiebung kann in der Kransteuerung hinterlegt sein, kann aber zudem durch eine Referenzmessung überprüft und/oder angepasst werden.
  • Die Übertragungsfunktion kann durch deren Berechnung in der Steuerung bzw. Steuerungs-/Regelungsvorrichtung 4 ermittelt werden.
  • Die Übertragungsfunktion kann an die Steuerung bzw. Steuerungs-/Regelungsvorrichtung 4 über beispielsweise UMTS, LTE, 4G und/oder 5G gesendet werden. Schließlich kann gemäß dem gezeigten Wirkprinzip die nun bekannte Verformung des Turmkrans und damit der Schrägzug angezeigt und korrigiert bzw. ausgeglichen werden.
  • Bei der Anzeige der Verformung wird die Verformung lediglich visualisiert, z.B. auf einem Display. Der Bediener hat damit die Möglichkeit, selber die Korrektur beispielsweise über eine manuelle Steuereinrichtung vorzunehmen.
  • Bei einer automatischen Korrektur kompensiert die Kransteuerung die Ausladungsverschiebung vollautomatisch. Dieser Modus könnte entweder dauerhaft aktiv sein oder vom Bediener nach Bedarf z.B. über einen Wahlschalter und/oder eine Displayeingabe aktiviert werden.
  • Die Korrekturbewegung kann auch vom Bediener über einen Taster, einen Steuerhebel und/oder über eine Displayeingabe gesteuert werden. Die Fahrbewegung zum Ausgleich des Schrägzugs wird damit bewusst vom Bediener vorgegeben.
There are the following options for determining the transfer function:
  • The transfer function can be permanently stored in a controller or in the control / regulating device 4. In the present case, the terms control and the control / regulating device 4 can be used synonymously.
  • The transfer function or the transfer functions can be determined once by the crane manufacturer, for example by measurements and / or by calculations, and then permanently stored in the control or control / regulating device 4.
  • The transfer function can be determined by reference measurement or by scaling. In the case of one or more measurements, the reference variable or the reference variables and, in addition, the deformation can be measured in order to determine their relationship.
  • The transfer function can be determined by a combination of calculation and reference measurement. The relationship between the reference variable and the shift in the radius can be stored in the crane control, but can also be checked and / or adjusted by means of a reference measurement.
  • The transfer function can be determined by calculating it in the control or control / regulating device 4.
  • The transfer function can be sent to the controller or control / regulating device 4 via, for example, UMTS, LTE, 4G and / or 5G. Finally, according to the operating principle shown, the now known deformation of the tower crane and thus the diagonal pull can be displayed and corrected or compensated for.
  • When the deformation is displayed, the deformation is only visualized, for example on a display. The operator thus has the option of making the correction himself, for example using a manual control device.
  • With an automatic correction, the crane control automatically compensates for the shift in the radius. This mode could either be permanently active or activated by the operator as required, for example via a selector switch and / or a display input.
  • The correction movement can also be controlled by the operator via a button, a control lever and / or via a display input. The operator consciously specifies the travel movement to compensate for the diagonal pull.

Die Verformung des Turmkrans 1 kann beispielsweise unter Nutzung eines Nutzlastsensors und eines Ausladungssensors gemessen werden.The deformation of the tower crane 1 can be measured, for example, using a payload sensor and an outreach sensor.

In einem ersten Ansatz können im Turmkran 1 die entsprechenden Sensoren 5 zum Messen der Nutzlast und der Ausladung installiert sein. Aus diesen zwei Sensoren 5 wird in der Kransteuerung rechnerisch das Lastmoment ermittelt, welches in diesem Fall die Bezugsgröße darstellt. Ebenso denkbar ist, dass zusätzlich zum Lastmoment die Ausladung eine zweite Bezugsgröße ist. Dies hängt im Wesentlichen vom Kranaufbau und den dadurch bedingten statischen Zusammenhängen ab.In a first approach, the corresponding sensors 5 for measuring the payload and the outreach can be installed in the tower crane 1. The load torque, which in this case represents the reference variable, is computationally determined in the crane control from these two sensors 5. It is also conceivable that in addition to Load moment the radius is a second reference value. This essentially depends on the crane structure and the resulting static relationships.

Der Schrägzug kann dann durch eine Referenzmessung bzw. durch Skalieren ermittelt werden. Nach der Montage des Turmkrans 1 kann mit einer Referenzmessung der Zusammenhang zwischen der Bezugsgröße "Lastmoment" und der Ausladungsverschiebung ermittelt werden. Die Ausladungsverschiebung kann hierbei der Verformung des Stahlbaus des Turmkrans 1 entsprechen. Hierfür wird eine bekannte Nutzlast bei einer bekannten Ausladung angehoben und die durch das Anheben resultierende Ausladungsvergrößerung gemessen. Die Ausladungsverschiebung Δs ergibt sich hierbei aus der folgenden Gleichung:

  • Δs = sreal - sAusladungssensor
The diagonal pull can then be determined by a reference measurement or by scaling. After the tower crane 1 has been assembled, a reference measurement can be used to determine the relationship between the reference variable “load torque” and the shift in the radius. The shift in the cantilever can correspond to the deformation of the steel structure of the tower crane 1. For this purpose, a known payload is raised at a known radius and the increase in the radius resulting from the lifting is measured. The displacement shift Δs results from the following equation:
  • Δs = s real - s extension sensor

Figuren 4a - 4c verdeutlichen diesen Zusammenhang. Figur 4a zeigt dabei einen Turmkran mit am Boden abgelegter Last, wobei der Kran nicht durch die Last belastet ist. Figur 4b zeigt einen Turmkran, bei dem die von ihm zu hebende Last zwar noch auf dem Boden aufliegt, jedoch den Turmkran bereits mit einem Teil ihrer Gewichtskraft beaufschlagt. In diesem Zustand wird eine Horizontalbewegung des Turmkrans 1 bzw. des Oberkrans bewirkt. Figur 4c zeigt den Turmkran von Figur 4b im Moment des Anhebens der Last vom Boden, wobei die gemessene Ausladungsvergrößerung Δs in den Figuren 4b und 4c gezeigt ist. Figures 4a-4c make this connection clear. Figure 4a shows a tower crane with a load placed on the ground, the crane not being loaded by the load. Figure 4b shows a tower crane in which the load to be lifted by it is still on the ground, but has already applied part of its weight to the tower crane. In this state, a horizontal movement of the tower crane 1 or the overhead crane is effected. Figure 4c shows the tower crane from Figure 4b at the moment the load is lifted from the ground, the measured cantilever magnification Δs in the Figures 4b and 4c is shown.

In diesem Beispiel wird von einem linearen Zusammenhang zwischen Lastmoment und Ausladungsverschiebung ausgegangen, der in Figur 5 gezeigt ist. Ebenso denkbar wären nichtlineare Zusammenhänge. Der oben ermittelte Zusammenhang wird in der Kransteuerung 4 abgespeichert.This example assumes a linear relationship between load torque and cantilever displacement, which is shown in Figure 5 is shown. Non-linear relationships would also be conceivable. The relationship determined above is stored in the crane control 4.

Der Kranführer kann an einem Display die automatische Korrektur des Schrägzugs aktivieren, um einen unerwünschten Schrägzug auszugleichen. Beim Anheben einer Last wird dann aus der Nutzlast und der Ausladung insbesondere online das Lastmoment berechnet. Dabei wird automatisch die Ausladung mit der Laufkatze 7 um die entsprechend ermittelte Ausladungsverschiebung korrigiert. s * = s s cor

Figure imgb0001
The crane operator can activate the automatic correction of the diagonal pull on a display in order to compensate for an undesired diagonal pull. When a load is lifted, the payload and the outreach become the, especially online Load torque calculated. The outreach with the trolley 7 is automatically corrected by the correspondingly determined outreach shift. s * = s - s cor
Figure imgb0001

Da sich der Turmkran 1 vor dem Abheben der Last 6 zunächst verformt und diese Verformung gleichzeitig oder zeitversetzt kompensiert wird, liegt zum Zeitpunkt des Abhebens der Last 6 vom Boden kein Schrägzug mehr vor. Diese Situation ist in Figur 6 und in den Figuren 2a bis 2c gezeigt.Since the tower crane 1 is initially deformed before the load 6 is lifted and this deformation is compensated for at the same time or with a time delay, there is no longer any diagonal pull at the time when the load 6 is lifted from the ground. This situation is in Figure 6 and in the Figures 2a to 2c shown.

Wird die Erfindung im Zusammenhang mit einem mobilen Turmkran mit Verstellausleger genutzt, so kommt auch ein anderes Wirkprinzip in Frage. So ist es denkbar, dass die Verformung des Stahlbaus durch Neigungssensoren im Ausleger und Absolutwertgeber der Abspannwinde 9 gemessen wird. Der Schrägzug kann in dieser Situation mittels einer Übertragungsfunktion ermittelt werden, die fest in der Steuerung hinterlegt sein kann. Das Ausgleichen des Schrägzugs erfolgt dann über entsprechende Korrekturbefehle.If the invention is used in connection with a mobile tower crane with an adjustable boom, another operating principle is also possible. So it is conceivable that the deformation of the steel structure is measured by inclination sensors in the boom and absolute encoder of the guy winch 9. In this situation, the diagonal pull can be determined by means of a transfer function that can be permanently stored in the controller. The diagonal pull is then compensated for using appropriate correction commands.

In diesem Fall wird bei einem mobilen Turmkran mit Verstellausleger die Auslegerneigung mit der Abspannwinde 9 verstellt, welche mit einem Absolutwertgeber ausgeführt ist. Zwischen den Werten des Neigungssensors im Ausleger und des Absolutwertgebers der Abspannwinde 9 besteht ein Zusammenhang. Beim Anhängen einer Nutzlast verändert sich aufgrund der Verformung des Stahlbaus von Turm und Ausleger sowie der Dehnung des Abspannseils die Neigung des Auslegers, der Absolutwertgeber der Abspannwinde bleibt hingegen konstant. Dadurch ändert sich der Zusammenhang zwischen Auslegerwinkel und Absolutwertgeber. Näheres hierzu ist der Figur 7 entnehmbar.In this case, in the case of a mobile tower crane with adjustable boom, the boom inclination is adjusted with the guy winch 9, which is designed with an absolute encoder. There is a relationship between the values of the inclination sensor in the boom and the absolute value encoder of the guy winch 9. When attaching a payload, the inclination of the boom changes due to the deformation of the steel structure of the tower and boom and the stretching of the guy rope, while the absolute encoder of the guy winch remains constant. This changes the relationship between the boom angle and the absolute encoder. More on this is the Figure 7 removable.

Der Zusammenhang zwischen den Messgrößen des Neigungssensors und des Absolutwertgebers der Abspannwinde sind bei unbelastetem Zustand (ohne Nutzlast) in diesem Beispiel fest hinterlegt. Damit wird jedem Wert des Absolutwertgebers ein erwarteter Neigungswinkel zugeordnet. Beim Anheben einer Nutzlast kommt es nun zu einer Abweichung zwischen erwarteter und tatsächlicher Auslegerneigung. Im ersten Ansatz kann diese Abweichung korrigiert werden, indem der Auslegerwinkel mit der Abspannwinde 9 wieder auf den ursprünglichen Wert korrigiert wird. Hierbei wird jedoch lediglich der Biegewinkel von Turm und Ausleger, nicht jedoch die Durchbiegung des Turms (horizontaler Weg des Oberkrans infolge der Turmbiegung) kompensiert. Näheres ist hierzu Figur 8 entnehmbar.The relationship between the measured variables of the inclination sensor and the absolute value encoder of the guy winch are permanently stored in this example in the unloaded state (without payload). In this way, an expected angle of inclination is assigned to each value of the absolute encoder. When lifting a Payload, there is now a discrepancy between the expected and actual boom inclination. In the first approach, this deviation can be corrected by correcting the boom angle with the guy winch 9 to the original value. Here, however, only the bending angle of the tower and boom is compensated, but not the deflection of the tower (horizontal path of the overhead crane as a result of the tower bending). More information is available on this Figure 8 removable.

In einem zweiten Ansatz kann zusätzlich zur Kompensation des Winkels auch die Durchbiegung des Turms ausgeglichen wird. In diesem Fall muss der Auslegerwinkel bei einer Belastung steiler als ursprünglich eingestellt werden. Näheres hierzu ist Figur 9 entnehmbar.In a second approach, in addition to compensating for the angle, the deflection of the tower can also be compensated for. In this case, the boom angle must be set steeper than originally when there is a load. More on this is Figure 9 removable.

Zum Ausgleichen des Schrägzugs wird dem Kranführer an einem Display der Schrägzug visuell dargestellt, eventuell mit akustischem Signal. Mit einem Taster oder einer Eingabe am Touchdisplay kann er dann die Korrekturbewegung bzw. einen Korrekturbefehl zum Verstellen des Auslegers auslösen.To compensate for the diagonal pull, the crane operator is shown the diagonal pull visually on a display, possibly with an acoustic signal. With a button or an input on the touch display, he can then trigger the correction movement or a correction command to adjust the boom.

Claims (7)

  1. Tower crane (1) comprising a device for compensation of diagonal pull in a tower crane (1) comprising at least one boom (2), at least one boom drive (3) for adjusting an angle and/or a length of the boom (2) and/or for displacing a trolley (7), comprising at least one sensor (5) for recording the angle of the boom (2) and or the deformation of at least a portion of the tower crane (1), and comprising at least one control/regulating device (4) for controlling the boom drive (3), wherein the recorded sensor value is kept constant by means of the control/regulating device (4) and the boom drive (3) during raising and/or lowering of a load (6) by the tower crane (1).
  2. Tower crane (1) according to claim 1, characterised in that the boom drive (3) is at least one retracting winch (8) or guying winch (9).
  3. Tower crane (1) according to claim 1, characterised in that the boom drive (3) is a hydraulic piston-cylinder apparatus.
  4. Tower crane (1) according to any of the preceding claims, characterised in that the sensor (5) is a tilt sensor, an optical sensor, a length sensor for measuring deformations, a GPS sensor, and/or a cable sensor in or on a guy of the tower crane (1).
  5. Tower crane (1) according to any of the preceding claims, characterised in that the control/regulating device (4) actuates the boom drive (3) on the basis of a reference value calculated from a plurality of sensor values.
  6. Tower crane (1) according to claim 5, characterised in that the reference value is the load torque calculated from the outreach of the tower crane (1) and the weight of the load (6) or the supporting forces.
  7. Tower crane (1) at least according to claim 5, characterised in that the ratio of the sensor value and/or reference value to the outreach shift on account of the deformation of the tower crane (1) is scaled or determined and/or calculated mathematically using a test weight.
EP17803779.2A 2016-11-09 2017-11-09 Method for the compensation of diagonal pull in cranes Active EP3532425B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21162860.7A EP3858781A1 (en) 2016-11-09 2017-11-09 Device for compensation of skew pull in cranes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016013320 2016-11-09
DE102017125715.2A DE102017125715A1 (en) 2016-11-09 2017-11-03 Device for compensation of diagonal tension in cranes
PCT/EP2017/001305 WO2018086740A1 (en) 2016-11-09 2017-11-09 Method for the compensation of diagonal pull in cranes

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP21162860.7A Division-Into EP3858781A1 (en) 2016-11-09 2017-11-09 Device for compensation of skew pull in cranes
EP21162860.7A Division EP3858781A1 (en) 2016-11-09 2017-11-09 Device for compensation of skew pull in cranes

Publications (2)

Publication Number Publication Date
EP3532425A1 EP3532425A1 (en) 2019-09-04
EP3532425B1 true EP3532425B1 (en) 2021-04-21

Family

ID=62003123

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17803779.2A Active EP3532425B1 (en) 2016-11-09 2017-11-09 Method for the compensation of diagonal pull in cranes
EP21162860.7A Pending EP3858781A1 (en) 2016-11-09 2017-11-09 Device for compensation of skew pull in cranes

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21162860.7A Pending EP3858781A1 (en) 2016-11-09 2017-11-09 Device for compensation of skew pull in cranes

Country Status (7)

Country Link
US (1) US11174134B2 (en)
EP (2) EP3532425B1 (en)
CN (1) CN110167865A (en)
DE (1) DE102017125715A1 (en)
DK (1) DK3532425T3 (en)
ES (1) ES2877702T3 (en)
WO (1) WO2018086740A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK180746B1 (en) * 2020-08-18 2022-02-10 Hmf Group As Control system for cantilever crane and method for controlling a cantilever crane
EP4015436A1 (en) 2020-12-15 2022-06-22 Schneider Electric Industries SAS Method to optimize an anti-sway function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016128119A1 (en) * 2015-02-09 2016-08-18 Liebherr-Werk Biberach Gmbh Crane and method for monitoring the overload protection of such a crane

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86203711U (en) * 1986-06-09 1987-02-11 张文胜 Tower crane with cable
JPH01167199A (en) 1987-12-22 1989-06-30 Kobe Steel Ltd Vertical lifting method of crane
JPH01256496A (en) * 1988-04-04 1989-10-12 Tadano Ltd Load vibration preventer at time of ungrounding of slinging load of crane with boom
JPH01256497A (en) 1988-04-04 1989-10-12 Tadano Ltd Load vibration preventer at time of ungrounding of slinging load of crane with telescopic boom
DE4409153A1 (en) 1994-03-17 1995-09-21 Faun Gmbh Method for detecting the change in the radius of a boom of a crane under load
DE19842436A1 (en) * 1998-09-16 2000-03-30 Grove Us Llc Shady Grove Method and device for compensating for the deformation of a crane boom when lifting and lowering loads
JP2005306602A (en) * 2004-03-23 2005-11-04 Tadano Ltd Load lift-off device used for boom type crane
US7489098B2 (en) 2005-10-05 2009-02-10 Oshkosh Corporation System for monitoring load and angle for mobile lift device
DE102007039408A1 (en) 2007-05-16 2008-11-20 Liebherr-Werk Nenzing Gmbh Crane control system for crane with cable for load lifting by controlling signal tower of crane, has sensor unit for determining cable angle relative to gravitational force
NO337712B1 (en) 2010-03-24 2016-06-06 Nat Oilwell Varco Norway As Device and method for reducing dynamic loads in cranes
CN101920914A (en) * 2010-06-19 2010-12-22 张培霞 Vehicle-type upper rotating tower crane
DE102012004803A1 (en) * 2012-03-09 2013-09-12 Liebherr-Werk Nenzing Gmbh Crane control with drive limitation
JP5889688B2 (en) * 2012-03-26 2016-03-22 株式会社タダノ Work machine
DE102014012457A1 (en) * 2014-08-20 2016-02-25 Liebherr-Werk Ehingen Gmbh Automatic erection of a crane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016128119A1 (en) * 2015-02-09 2016-08-18 Liebherr-Werk Biberach Gmbh Crane and method for monitoring the overload protection of such a crane

Also Published As

Publication number Publication date
US20200180917A1 (en) 2020-06-11
DE102017125715A1 (en) 2018-05-09
EP3532425A1 (en) 2019-09-04
DK3532425T3 (en) 2021-06-28
WO2018086740A1 (en) 2018-05-17
CN110167865A (en) 2019-08-23
US11174134B2 (en) 2021-11-16
ES2877702T3 (en) 2021-11-17
EP3858781A1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
DE102011107754B4 (en) Angle-related procedure for monitoring crane safety during the set-up process, as well as crane and crane control
EP3256414B1 (en) Crane, as well as process for monitoring the overload protection of such a crane
DE60103451T2 (en) Method and device for simulating loads on hoists
EP3259222B1 (en) Crane with adjusting unit for influencing a deformation of the jib system
EP2636634B1 (en) Crane and method for crane control
EP3256415B1 (en) Crane, as well as process for monitoring the overload protection of such a crane
DE102010020016B4 (en) Crane and method of erecting the crane
DE102017126386B4 (en) Construction machine with boom
AT516981A1 (en) transport means
EP0985629B1 (en) Crane
EP3532425B1 (en) Method for the compensation of diagonal pull in cranes
WO2016142038A1 (en) Machine
EP3562775B1 (en) Lifting gear and method for starting up the lifting mechanism of such a lifting gear
DE19931302B4 (en) Continuously adjustable crane
EP3336050A1 (en) Industrial truck with a control unit for regulating the movement of a piston rod of a hydraulic cylinder and such a method
DE19842436A1 (en) Method and device for compensating for the deformation of a crane boom when lifting and lowering loads
EP3428112B1 (en) Lifting device, in particular a mobile crane or a cable dredger, having a device for monitoring the alignment and depositing process of a boom system and corresponding method
DE2509641A1 (en) OVERLOAD DETECTOR FOR A CRANE
DE4405525A1 (en) Crane with drive for horizontal transfer of cable-suspended load
EP3613903A1 (en) Method for monitoring the structural load of a carrier machine with a drilling and ramming device, and working machine comprising a ramming and drilling device
DE2214289B2 (en) Device for keeping the load height constant while the boom is pivoted on luffing cranes
DE102017202009A1 (en) crane
DE29924978U1 (en) Continuous adjustable crane e.g. for crane, has ballast element which is adjustable as function of load condition of crane and position of arm elements in ballast radius under load of crane
EP4261182A1 (en) Industrial truck with a load carrying control device
DE1943275A1 (en) Electronic load moment limiter for cranes and similar equipment with telescopic boom

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017010158

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B66C0023260000

Ipc: B66C0013080000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B66C 23/90 20060101ALI20201021BHEP

Ipc: B66C 13/08 20060101AFI20201021BHEP

Ipc: B66C 13/46 20060101ALI20201021BHEP

INTG Intention to grant announced

Effective date: 20201116

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010158

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1384438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210621

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2877702

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210823

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210821

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010158

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210821

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211109

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171109

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231129

Year of fee payment: 7

Ref country code: FR

Payment date: 20231127

Year of fee payment: 7

Ref country code: DK

Payment date: 20231122

Year of fee payment: 7

Ref country code: DE

Payment date: 20231121

Year of fee payment: 7

Ref country code: CH

Payment date: 20231201

Year of fee payment: 7

Ref country code: AT

Payment date: 20231124

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421