EP3532088A1 - Utilisation d'un sirna pour le traitement des cancers - Google Patents

Utilisation d'un sirna pour le traitement des cancers

Info

Publication number
EP3532088A1
EP3532088A1 EP17771797.2A EP17771797A EP3532088A1 EP 3532088 A1 EP3532088 A1 EP 3532088A1 EP 17771797 A EP17771797 A EP 17771797A EP 3532088 A1 EP3532088 A1 EP 3532088A1
Authority
EP
European Patent Office
Prior art keywords
sirna
composition
siar
administration
sitsp1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17771797.2A
Other languages
German (de)
English (en)
Inventor
Florence Cabon
Hilary BROOKS
Maud CHUSSEAU
Stéphanie DELMAS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Selexel
Original Assignee
Selexel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Selexel filed Critical Selexel
Publication of EP3532088A1 publication Critical patent/EP3532088A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1858Platelet-derived growth factor [PDGF]
    • A61K38/1866Vascular endothelial growth factor [VEGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1891Angiogenesic factors; Angiogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/39Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Definitions

  • the present invention relates to a new use of double-stranded oligonucleotides, and more particularly a use according to a new formulation and a new mode of administration.
  • Micro RNAs are small RNAs encoded by the genome of all eukaryotic organisms. After transcription and maturation, they are loaded into a protein complex: RNA Induced Silencing Complex (RISC). When they hybridize with a messenger RNA (mRNA) or they induce its cleavage, leading to the degradation of the mRNA, or they inhibit its translation into protein.
  • RISC RNA Induced Silencing Complex
  • Interfering RNAs or Small Interfering RNAs are synthetic double-stranded oligoribonucleotides that when introduced into cells mimic the action of miRNAs and trigger the RNA interference mechanism. Their mechanism of action is therefore not comparable to any other type of oligonucleotide.
  • a “double-stranded oligonucleotide” in the following refers more particularly to a siRNA. More precisely, when the double-stranded oligonucleotide is an siRNA, it is loaded into the RISC complex. One of the two strands, said “passenger” is cut and degraded, the other strand, said “guide”, remains in the RISC complex. This guide strand hybridizes with a region of an mRNA which it is complementary. This mRNA is called “siRNA target mRNA” and by extension, the gene that is transcribed to generate this RNA is called the “siRNA target gene”. This target mRNA can be coding or non-coding.
  • siRNA cleaves the target mRNA with which it hybridizes and causes its degradation, or it prevents its translation. This results in a decrease in the amount of the target mRNA, and / or in a decrease in the amount of protein encoded by the mRNA if the mRNA is an encoding mRNA.
  • siRNA The major obstacle that must be overcome in order to be able to use a siRNA for a therapeutic purpose, in particular in humans, is to obtain that the siRNA penetrates the tissue (s) of interest, that it stays there in an active state in sufficient concentration and long enough to produce the inhibition of the desired gene expression.
  • the method of administration of siRNA should additionally be clinically acceptable, nontoxic and not trigger an adverse immune response.
  • the method must be usable to deliver any type of siRNA, regardless of the siRNA target mRNA and its level of expression.
  • oligonucleotides such as, for example, antisense oligodeoxynucleotides (ODNs), ribozymes, aptamers, morpholinos, or triple helix oligonucleotides.
  • ODNs antisense oligodeoxynucleotides
  • ribozymes oligodeoxynucleotides
  • aptamers aptamers
  • morpholinos morpholinos
  • triple oligonucleotides Several of these oligonucleotides enter cells via a receptor-mediated mechanism of endocytosis (Vlassov et al, 1994), but such mechanisms have not been demonstrated for siRNAs.
  • siRNA RNA single-stranded oligonucleotides
  • systemic means that the siRNA is conveyed in the body to act at a distance from the place where it is administered, as opposed to a local or loco-regional administration, in particular as opposed to an administration. intratumoral.
  • the systemic distribution in the body is obtained by any method that results in a passage of siRNA in extracellular fluids such as blood, lymph or cerebrospinal fluid, that the compound containing the siRNA is ingested (orally). ), or injected (parenterally), or through the skin or mucous membranes.
  • Nucleic acids in general and siRNAs in particular are negatively charged. When they are outside the cells, this negative charge limits their penetration into the cells. For this reason, many methods, such as electroporation, liposomes, nanoparticles, polymers of different kinds, have been developed to make a siRNA penetrate into a cell in culture. However, these tools are not applicable to administer a siRNA systemically in a living organism.
  • the negative charge of siRNAs facilitates their association with cationic molecules such as lipid or polymeric compositions.
  • siRNAs have been chemically conjugated or incorporated into different targeting agents.
  • a “targeting agent” in the following refers to an agent that aims to convey the oligonucleotide in the biological fluids from the point of administration to target tissue and penetrate the cell interior, either by penetrating the oligonucleotide into the interior of the cell, or by fusing with the plasma membrane of the cell and releasing the oligonucleotide to the cell. inside of it.
  • targeting agents are on the one hand compounds containing macromolecules which form complexes with the oligonucleotides, in the form of a particle having a size greater than 20 nm, and on the other hand chemical conjugates associating via a link covalent one and / or the other strand of a siRNA to a compound intended to make it enter the cell, such as for example cholesterol or a penetrating peptide.
  • “Penetrating peptides” are peptides capable of penetrating spontaneously inside the cells and retain this property when they are conjugated with a molecule, causing the crossing of the latter.
  • the targeting agents can be composed of different types of macromolecules, such as micellar lipids, cholesterol, liposomes, polymers, polyplexes, chitosans, quantum dots, penetrating peptides, dendrimers, derivatives of the polyethylenimine, nanoparticles, magnetic or super-magnetic spheres, or inorganic or organic nanostructures.
  • macromolecules such as micellar lipids, cholesterol, liposomes, polymers, polyplexes, chitosans, quantum dots, penetrating peptides, dendrimers, derivatives of the polyethylenimine, nanoparticles, magnetic or super-magnetic spheres, or inorganic or organic nanostructures.
  • targeting agents either because of their chemical or structural nature, or because of their association with an oligonucleotide, have been shown to exhibit toxic effects or trigger an undesirable immune response in animals or humans ( Robbins et al, 2009), which is not the case with non-vectorized siRNAs (Heidel et al, 2004).
  • these targeting agents often preferentially distribute the siRNAs in certain organs, in particular the liver, which limits their therapeutic use in other organs. An administration method that does not require the addition of vectorization agents is therefore advantageous.
  • the intraperitoneal route is effective in animals but it is complex to use in humans, especially if it must be used repeatedly, especially because of infectious risks because it requires the surgical installation of a catheter and its use is generally restricted to the treatment of pathologies developing in the peritoneum or in intraperitoneal organs such as the ovaries. Even in these therapeutic indications, this route of administration presents significant obstacles which limit its use and effectiveness and it is therefore necessary to have alternative solutions (Zeimet et al, 2009).
  • siRNAs The administration of non-intravenous siRNAs was also tested. However, like other oligonucleotides, intravenously injected siRNAs are eliminated by renal filtration (van de Water et al, 2006).
  • siRNA mode of administration compatible with human clinical use, without a vectoring agent, making it possible to address them effectively in numerous target organs, in particular in the prostate, and / or in tumors and / or tumor metastases, for the purpose of preventing and / or treating pathologies.
  • One of the aims of the invention is thus to provide modes of administration which make it possible to efficiently distribute siRNAs in numerous target organs, in particular in the prostate, and / or in tumors and / or in the metastases of these tumors.
  • the siRNA targeting mRNA transcribed from this gene in order to prevent and / or treat pathologies resulting directly or indirectly from the expression of a gene, the siRNA targeting mRNA transcribed from this gene.
  • an "addressing molecule” is a molecule targeting the oligonucleotide to a particular cell type, such as endothelial cells or cancer cells.
  • An addressing molecule is not intended to penetrate the oligonucleotide inside the cell or to penetrate with the oligonucleotide but to increase its concentration in the outer membrane of the cell of interest.
  • an addressing molecule may be an aptamer, an antibody, transferrin, an RGD peptide, the ligand of a receptor, this addressing molecule interacting or binding to a molecule expressed at the targeted cell surface, such as a receptor, an integrin, a membrane antigen such as for example PSMA (Prostate Specifies Membrane Antigen).
  • the targeting molecule is usually either covalently coupled to the oligonucleotide, or incorporated into a targeting agent, for example a nanoparticle or a liposome containing the oligonucleotide, so as to address the targeting agent to the cell or the target tissue.
  • the CD36 receptor is a membrane receptor expressed on the membrane of vascular and lymphatic endothelial cells and expressed by many types of cells, especially tumor cells, for example leukemic cells.
  • the CD36 receptor binds molecules of different natures. It is in particular a long chain fatty acid receptor, in particular C16 or C18 fatty acids, an oxidized low density lipoprotein receptor, or oxidized LDL receptor, an oxidized phospholipid receptor, a Thrombospondin receptor , a receptor of the hexarelin peptide, a fibril amyloid receptor.
  • the inhibitory effect of the gene expression of a siRNA is transient: when an siRNA enters a cell, it inhibits the expression of its target gene for a period that is shorter as the cells divide frequently. , which is particularly the case of most cancer cells. The amount of mRNA transcribed from this target gene and / or the protein encoded by this mRNA is then restored, creating a "peaks and valleys" effect (Bartlett and Davis, 2006).
  • the effectiveness of an siRNA is dependent on its concentration in the cells of the targeted tissue and its residence time in that tissue. This concentration itself depends on the dose of siRNA administered, the stability of the latter in the extracellular media, its ability to penetrate the cells of the target tissues, the kinetics of this penetration, and that of its elimination. .
  • One of the aims of the invention is to provide methods of systemic administration of siRNA, and in particular formulations, which increase the concentration of siRNA in serum and / or tissues and / or prolong the duration of its effects. avoiding the effects of peaks and valleys.
  • the invention thus relates to a composition
  • a composition comprising at least one siRNA, said siRNA hybridizing with a mRNA, coding or non-coding, of which it induces the degradation or of which it inhibits the translation, the expression of said mRNA or of the protein for which it being involved in a pathology, the composition being used for the prevention and / or treatment of said pathology, said composition being formulated for a continuous systemic mode of administration.
  • siRNA according to the present invention is a pair of two oligoribonucleotides which hybridize with each other, each oligoribonucleotide comprising from 2 to 100, in particular 5 to
  • said siRNA may present chemical modifications such as chemical modifications on the guide strand or the passenger strand, on one or more nucleotides located at the 3 'or 5' terminal ends, and / or on one or more nucleotides constituting the internal skeleton.
  • Said chemical modifications according to the invention are on ribose and / or base and / or phosphoric acid.
  • Said chemical modifications according to the invention comprise at least one substitution of the 2 'OH group of the ribose with a 2'-O-methyl RNA (2'OMe) or 2' - ⁇ 9-methoxyethyl (2'MOE) group or 2 fluoro (2T) or 2'-fluoro-P-arabinonucleotide (FANA), an allylation of 2'-oxygen to aminoethyl, guanidinoethyl-, cyanoethyl- or alkyl, replacement of the phosphodiester group by phosphorothioate, alkylation or thiolation of one or more nucleotides of siRNA, replacement of a ribonucleotide by a deoxyribonucleotide, or replacement of a nucleotide with a Locked Nucleic Acid (LNA).
  • said siRNA is devoid of chemical modification.
  • said siRNA is devoid of chemical modification, and comprises two deoxynucleotides overflowing at the 3 'end, in particular two deoxythymidines.
  • said siRNA is devoid of chemical modification, and does not comprise two deoxynucleotides overflowing at the 3 'end, in particular two deoxythymidines.
  • the invention relates to a composition for its above-mentioned use, wherein said siRNA can be any type of siRNA.
  • said siRNA can be any type of siRNA.
  • the formulation and the method of administration, object of the present invention does not depend on the siRNA administered nor the siRNA target as illustrated by Examples 3 and 9.
  • the invention relates to a composition for its aforementioned use (systemic and continuous), wherein at least one siRNA comprises or consists of one of the pairs of oligonucleotides as defined in Table 1.
  • the invention relates to a composition for its above-mentioned use, wherein said at least one siRNA is one of the following siRNAs: siAR-1, siAR-1b, siAR-2, siAR-2b, siAR-3 , siAR-3b, siAR-4, siAR4b, siAR-5, siAR-5b, siVEGF-1, siVEGF-lb, siTSP1-1, siTSP1-lb, siTSP1-2, siTSPl-2b, siTSP1-3, siTSP1-3b , siTSP1-4, siTSP1-4b, siTSP1-5, siTSP1-5b, siFoxP3-1, siFoxP3-1b, siFoxP3-2, siFoxP3-2b, as shown in Table 1, and SEQ ID NO: 1 to SEQ sequences. ID NO 52.
  • the present invention is also based on the unexpected results of the inventors who have discovered new siRNAs targeting the FoxP3 transcription factor.
  • the FoxP3 targeting siRNAs are more particularly used to target suppressive or immunosuppressive cells, particularly suppressor T cells, also called regulatory T cells, and in particular in all types of cancers or in autoimmune diseases. FoxP3 targeting oligonucleotides are also used to target cancer cells expressing this transcription factor.
  • the present invention also relates to a siRNA inhibiting the synthesis of the FoxP3 transcription factor, wherein said siRNA is one of the following siRNAs: siFoxP3-1, siFoxP3-1b, siFoxP3-2 or siFoxP3-2b such as defined in Table 1 for use as a medicament or for use in the prevention and / or treatment of a condition associated with the expression of the FoxP3 transcription factor in combination with a pharmaceutically acceptable carrier.
  • siRNA is one of the following siRNAs: siFoxP3-1, siFoxP3-1b, siFoxP3-2 or siFoxP3-2b such as defined in Table 1 for use as a medicament or for use in the prevention and / or treatment of a condition associated with the expression of the FoxP3 transcription factor in combination with a pharmaceutically acceptable carrier.
  • said siRNA presents chemical modifications.
  • said composition for its use in the prevention and / or treatment of a pathology associated with the expression of the FoxP3 transcription factor, said siRNAis devoid of chemical modification.
  • said composition for use in the prevention and / or treatment of a pathology associated with the expression of the FoxP3 transcription factor said siRNA is devoid of chemical modification and comprises two deoxynucleotides bridging at the 3 'end , including two deoxythymidines.
  • said composition for its use in the prevention and / or treatment of a pathology associated with the expression of the FoxP3 transcription factor said siRNAis devoid of chemical modification and does not comprise two deoxynucleotides overflowing at the end. 3 ', in particular two deoxythymidines.
  • siRNA siAR-1, siAR-1b, siAR-2, siAR-2b, siAR-3, siAR-3b, siAR-4, siAR-4b, siAR-5 , siAR-5b are collectively referred to as the siRNA-AR family.
  • siVEGF-1, siVEGF-11 siRNAs are collectively referred to as the siRNA-VEGF family.
  • siTSP1-5b are collectively referred to as the siRNA-TSP1 family.
  • SiFOXP3-1, SiFOXP3-1b, SiFOXP3-2, siFOXP3-2b siRNA are collectively referred to as the siRNA-FoxP3 family.
  • the expression "at least 75% identity with a sequence” in Table 1 means 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% and 100%, including 79%, 81%, 84%, 86%, 90% %, 95% and 99%.
  • the invention relates to a composition for its above-mentioned use, wherein said at least one siRNA is a mixture of siRNA.
  • the invention relates to a composition for its above-mentioned use, wherein said mixture is a mixture of two siRNAs.
  • the invention relates to a composition for its above-mentioned use, wherein said mixture is a mixture of three siRNAs.
  • the invention relates to a composition for its above-mentioned use, wherein said siRNA mixture comprises or consists of the following siRNAs:
  • siRNA belonging to the siRNA-AR family with a siRNA belonging to the siRNA-VEGF family, and in particular siAR-1 siRNA and siVEGF-1 siRNA;
  • siRNA belonging to the siRNA-AR family with a siRNA belonging to the siRNA-TSP 1 family, and in particular siARNA siRNA and siTSP 1-1 siRNA;
  • siRNA belonging to the siRNA-AR family with a siRNA belonging to the siRNA-FoxP3 family, and in particular siAR-1 siRNA and siFNA siFNA3-2;
  • siRNA belonging to the siRNA-VEGF family with a siRNA belonging to the siRNA-TSP1 family, and in particular siVEGF-1 siRNA and siTS1-1 siRNA;
  • siRNA belonging to the siRNA-VEGF family with a siRNA belonging to the siRNA-FoxP3 family, and in particular the siVEGF-1 siRNA and the siFNA siFoxP3-2 siRNA;
  • siRNA belonging to the siRNA-TSP1 family with a siRNA belonging to the siRNA-FoxP3 family, and in particular the siRNA siTS1-1 and the siFNA siFoxP3-2;
  • An advantageous aspect of the invention relates to a composition wherein said siRNA is siAR-1, of SEQ ID No. 1 and 2, for its use as a medicament or for its use for the prevention and / or treatment of an associated pathology to the expression of androgen receptor, in particular for the prevention and / or treatment of prostate cancer or metastases of this cancer, in association with a pharmaceutically acceptable vehicle, according to a continuous systemic administration mode.
  • the pathology according to the invention is a human or animal pathology.
  • the pathology according to the invention is more particularly associated with the expression of the mRNA encoding the androgen receptor (AR), or the Thrombospondin-1 (TSP1), or the transcription factor. FoxP3, or the Vascular Endothelial Growth Factor A (VEGF).
  • AR androgen receptor
  • TSP1 Thrombospondin-1
  • FoxP3 or the Vascular Endothelial Growth Factor A (VEGF).
  • VEGF Vascular Endothelial Growth Factor A
  • the pathology according to the invention is more particularly a primary tumor, a metastatic tumor, or a pathology associated with the presence of suppressive or immuno suppressive cells.
  • a "primary tumor” according to the invention is especially and without limitation a cancer of the anus, the appendix, the mouth, the bronchi and / or the upper airways, the bile duct, the nasal cavity and paranasal, brain, heart, cervix, colon, uterine body, stomach, liver, salivary glands, throat, tongue, lips, nasopharynx, esophagus, bones, ovary, pancreas, parathyroid, penis, pleura, lung, prostate, rectum, kidney, breast, adrenals, testes , head and neck, thymus, thyroid, urethra, vagina, gallbladder, bladder, vulva, gastrointestinal cancer, lymphoma, melanoma or cancer non-melanoma skin, myeloma, sarcoma, leukemia, mesothelioma, cholangiocarcinoma, osteosarcoma, glioblastoma,
  • Metastases represent a frequent and major complication of cancer and therapeutic failures in oncology are mainly related to the development of metastases.
  • a primary tumor can disseminate to form one or more metastases, in one or more types of tissues such as bones, liver, spleen, ganglia or brain.
  • pathology associated with the presence of suppressive or immunosuppressive cells means that said suppressive or immunosuppressive cells facilitate the development of a pathology and in particular the initiation, implantation or development of a tumor or its metastatic dissemination.
  • This term includes in particular regulatory T cells, also called T suppressors, Th17 lymphocytes and MDSCs (myeloid-derived suppressor cells).
  • the invention relates to a composition for its above-mentioned use, wherein said siRNA is used in combination with at least one anti-angiogenic agent and / or an anti-tumor agent and / or an immunotherapeutic agent, for use simultaneous, separate or spread over time.
  • anti-angiogenic agent means an agent for inhibiting the formation of blood vessels, in particular by inhibiting the expression or the function of VEGF, FGF2, PDGF, HGF, MET, FLT3, VEGFR1, VEGFR2, VEGFR3 , KIT, TIE1, TIE2, RET, TRKB, AXL.
  • an immunotherapeutic agent is an agent whose objective is to stimulate, in particular by vaccination and / or to restore an immune response, in particular by the inhibition of immunosuppressive or suppressive cells, and / or by inhibition of lymphocyte anergy.
  • Immunotherapies within the meaning of the invention include therapies involving the administration of cytokines, antibodies targeting the control points and regulation of the immune system (immune checkpoint, for example PD1, PDL1, CTLA4, Tigit ), treatment with T lymphocytes, genetically modified (Car-T) or not, or by dendritic cells, vaccination, antihelminth treatments.
  • Such an agent is especially chosen from Ipilimumab, nivolimumab, T-Vec, Sipuleucel-T, Blinatumomab, and Pembrolizumab, or from the agents of Table 3.
  • an anti-tumor or chemotherapeutic agent is an agent possessing anti-inflammatory properties.
  • -cancerous agents chosen from: alkylating agents, antimetabolic agents, cytotoxic antibiotics, topoisomerase I inhibitors, inhibitors topoisomerase II, anti-tumor antibiotics, genotoxic agents, PARP inhibitors, anti-microtubule agents.
  • Such an agent is for example chosen from: Bendamustine, Temozolomide, Mechlorethamine, Cyclophosphamide, Carmustine, Cisplatin, Busulfan, Thiotepa, Decarbazine, Pentostatin, Methotrexate, Pemetrexed, Floxuridine, Fluorouracil, Cytarabine, Mercaptopurine, Thiguanine, Rubitecan, Mitomycin C, Daunorubicin, Doxorubicin, Bleomycin, Plicamycin, Mitoxantrone HCl, Oxaliplatin, Vinorelbine, BMS 184476, Vincristine sulfate, Vinblastine, Taxotere, Taxol, or the agents listed in Table 4.
  • the invention relates to a composition for its above-mentioned use, wherein said composition comprises a siRNA belonging to the siRNA-AR family in association with an anti-tumor agent and / or an immunotherapeutic agent and / or an agent antiangiogenic.
  • the invention relates to a composition for its above-mentioned use, wherein said composition comprises a siRNA belonging to the siRNA-VEGF family in association with an antitumor agent and / or an immunotherapeutic agent and / or an agent antiangiogenic.
  • the invention relates to a composition for its above-mentioned use, wherein said composition comprises a siRNA belonging to the siRNA-TSP1 family in association with an anti-tumor agent and / or an immunotherapeutic agent and / or an agent antiangiogenic.
  • the invention relates to a composition for its above-mentioned use, wherein said composition comprises a siRNA belonging to the siRNA-FoxP3 family in association with an anti-tumor agent and / or an immunotherapeutic agent and / or an agent antiangiogenic.
  • said systemic administration mode according to the invention is chosen from the group comprising or consisting of one of the following modes of administration: subcutaneous, intraperitoneal, intravenous, intra-arterial, intracardiac, intramuscular, intradermal, intranasal, intravaginal, intrarectal, sublingual, oral, intrathecal, intraspinal, epidural, respiratory, cutaneous, transdermal, transmucosal.
  • the invention relates to a composition for its above-mentioned use, wherein said composition is formulated for a mode of administration at a therapeutically effective dose, and especially at doses of 0.005 mg / kg / day to 30 mg / ml. kg / day, in particular 0.01 mg / kg / day at 10 mg / kg / day, and more particularly from 0.01 mg / kg / day to 2 mg / kg / day in humans.
  • 0.005 mg / kg / day to 30 mg / kg / day means all doses ranging from 0.005 mg / kg / day to 30 mg / kg / day, eg 0.008; 0.01; 0.05; 0.1; 0.5; 1.0; 1.5; 10.0; 10.5; 14.0; 14.5; 20; 20.5; 25; 25.5; 29.5 mg / kg / day.
  • the present invention is based on the unexpected results of the
  • a siRNA administered by a continuous systemic mode of administration is better than when the same siRNA, formulated in the same solution, is administered by a bolus systemic administration mode, "in bolus” being defined as the administration of the full dose at one time, which dose may be repeated during treatment, for example every day or several times a day.
  • the continuous mode of administration is defined as a mode that avoids the effects of peaks and valleys observed on siRNA concentration in blood, serum and various organs when said siRNA is administered as a bolus.
  • the purpose of continuous administration is to maintain substantially constant siRNA concentration in the blood and peripheral tissues throughout the siRNA administration period.
  • the phrase "maintain substantially constant" means that the concentration of siRNA in the blood and peripheral tissues may vary slightly depending on the metabolism of the individual receiving said composition.
  • the administration time may vary from a few hours to several weeks depending on the device used to administer the siRNA.
  • This device may be a pump or any composition for a slow release and prolonged release of siRNA.
  • the siRNA delivered according to a continuous systemic mode of administration is delivered without the administration being interrupted beyond the time necessary to recharge or exchange the device delivering the siRNA, for example 4 hours, for a period ranging from 2 days to 1 year, for example 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days days, 15 days, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 9 months, 1 year.
  • siRNA delivered in a continuous systemic mode of delivery is delivered in successive cycles, interrupted by a period without treatment ranging from more than 24 hours to a few weeks, each cycle being defined by the administration. systemic continues without interruption greater than the time required to recharge or exchange the device delivering the siRNA, for example 4 hours, and for a period ranging from 2 days to 1 month.
  • said mode of continuous systemic administration is subcutaneous.
  • the invention relates to a composition for its above-mentioned use, wherein said composition is formulated for a mode of administration, continuously and subcutaneously, at a therapeutically effective dose, and especially at doses of 0.005. mg / kg / day at 30 mg / kg / day, especially 0.01 mg / kg / day at 10 mg / kg / day and more particularly 0.01 mg / kg / day at 2 mg / kg / day.
  • the invention relates to a composition for its above-mentioned use, wherein the sequence of one of the strands of said oligonucleotide is different from:
  • the invention relates to a composition for its above-mentioned use, wherein said continuous systemic mode of administration is one of the following modes of administration: intraperitoneal, intravenous, intramuscular, intradermal, intranasal, intravaginal, intrarectal, sublingual, oral, intrathecal, AND said at least one siRNA belongs to one of the following four siRNA families: siRNA-AR family, siRNA-VEGF family, siRNA-TSP1 family, FoxP3 siRNA family.
  • the invention relates to a composition for its above-mentioned use, wherein said continuous systemic mode of administration is subcutaneous and said at least one siRNA belongs to one of the following four siRNA families: siRNA family AR, siRNA-VEGF family, siRNA-TSP1 family, FoxP3 siRNA family.
  • the invention relates to a composition for its above-mentioned use, wherein said pathology is any of the aforementioned primary tumors, or metastases of one of these primary tumors developing in other organs, and said at least one siRNA belongs to one of the following four siRNA families: siRNA-AR family, siRNA-VEGF family, siRNA-TSPl family, FoxP3 siRNA family.
  • the invention relates to a composition for its aforementioned use, wherein said pathology is breast cancer, or melanoma, or glioblastoma, or kidney cancer, or liver cancer, or cancer of the liver. bladder, or cancer of the colon or metastases of one of these cancers developing in other organs, or leukemia or myeloma, and said at least one siRNA belongs to one of the following 4 siRNA families: siRNA-AR family, siRNA-VEGF family, siRNA-TSP1 family, FoxP3 siRNA family, and in particular siAR-1 siRNA, or siVEGF-1 siRNA, or siTS-1 siRNA, or siFNA-3 siRNA -l alone or in combination two to two or three to three.
  • the invention relates to a composition for its aforementioned use, wherein said pathology is a prostate cancer or metastases of this cancer developing in other organs, and said at least one siRNA belongs to the one of the following 4 siRNA families: siRNA-AR family, siRNA-VEGF family, siRNA-TSP1 family, siRNA FoxP3 family, and in particular siAR-1 siRNA, or siRNA siVEGF-1, or the siRNA siTSPl-1, or siFNA siFoxP3-2, alone or in combination two by two or three to three, and more particularly the siRNA siAR-1.
  • the invention also relates to a device providing a means of systemic and continuous administration of a composition formulated for a continuous systemic mode of administration comprising at least one siRNA said siRNA hybridizing with a mRNA encoding or not coding which it induces degradation or of which it inhibits translation, the expression of said mRNA or protein for which code said mRNA being involved in a pathology, and the composition being used for the prevention and / or treatment of said pathology.
  • said continuous systemic administration means is in particular an osmotic pump, a syringe pump, an elastomeric pump, a peristaltic pump, a multi-channel pump, a pump controlled by the patient, a "smart” pump, or a "patch” pump, or a polymeric matrix or a hydrogel, or any other biodegradable compound for slowly and continuously releasing the siRNA so that it is systemically distributed in the body.
  • Some of these devices can be used in other therapeutic indications, to deliver a therapeutic agent discontinuously, especially in bolus. In the present aspect, they are used to release the aforementioned composition with a substantially constant flow rate and continuously for several days to several weeks or more.
  • substantially constant flow rate means that the flow rate may vary slightly depending on the precision of the device used. For example, the variation may be about plus or minus 10% with respect to the set flow rate.
  • the device can be mechanical or electronic. It can be worn outside or implanted surgically, for example under the skin, or in the peritoneum, or intramuscularly.
  • these devices that can be used in the human clinic are: osmotic pumps, composed of a flexible reservoir surrounded by a compartment containing a salt gel which, by moisturizing, compresses the internal reservoir by forcing the expulsion of the liquid.
  • This mechanism which is used, for example, in Duras Durect pumps used in human clinics, is similar to that of Alzet pumps which are only authorized for use in animals;
  • automated syringes such as: McKinley T34 or T60, Bodyguard 323, AD syringe driver (Cardinal health), MS drivers (Smiths Medical); - elastomer pumps: the product is contained in a compressible reservoir contained in a balloon exerting a controlled pressure on the inner tank and forcing the expulsion of the liquid such as: Accufuser (WOO YOUNG Medical), Dosi-fuser (medical spirit), Exacta (Gamastech), Myfuser;
  • - Peristaltic pumps a flexible tubing is mechanically compressed to deliver the content such as: iPrecio, SP100 (APT instruments);
  • the product reservoir adheres directly to the skin and contains an integrated system, without tubing, of administration as for example: CeQurPaQ,
  • miniMed 530G miniMed 530G
  • Veo medtronics
  • Vibe Animas
  • the dried oligonucleotides into a device that once put under the skin captures tissue water, and releases the siRNA that is solubilized in the extracellular fluids. It is also conceivable to incorporate the siRNA in a polymeric matrix, a gel or any other compound that releases the siRNA in a slow and prolonged manner over time.
  • This device may be a mucosally adhering tablet and releasing the siRNA therethrough.
  • said siRNA administered by the aforementioned device is associated with an addressing molecule.
  • said siRNA administered by the aforementioned device is not associated with an addressing molecule.
  • said at least one oligonucleotide which is administered by said device comprises or consists of one of the siRNAs belonging to the following siRNA families: siRNA-AR family, siRNA-VEGF family, siRNA-TSPl family , FoxP3 siRNA family, and in particular siAR-1 siRNA, or siVEGF-1 siRNA, or siTS-1 siRNA, or siFNA siFNA-3.
  • siRNA delivered in a continuous systemic mode of administration is diluted in an aqueous solution containing 154mM NaCl.
  • the siRNA delivered according to a continuous subcutaneous systemic administration mode diluted in an aqueous solution containing 154 mM NaCl belongs to one of the following four siRNA families: siRNA-family AR, siRNA-VEGF family, siRNA-TSP1 family, FoxP3 siRNA family, and in particular siAR-1 siRNA, or siVEGF-1 siRNA, or siTS-1 siRNA, or siFNA siFoxP3-1, alone. or in combination two to two or three to three.
  • the present invention is based on the unexpected results of the inventors, according to which the concentration of siRNA in serum, in many tissues and / or in tumors is higher when the siRNA is administered systemically while being formulated.
  • an acid pH buffer solution only when this same siRNA is formulated in an aqueous solution containing 154 mM NaCl.
  • the presence of cations such as Zn2 + or Mg2 + in an aqueous solution of siRNA leads to their degradation and when the siRNA is administered systemically, the presence of such cations in the injection solution reduces the concentration of siRNA in the serum and in the organs.
  • the inventors have observed that the addition of cations in an acid pH buffer solution increases the concentration of siRNA in serum, in many tissues and / or in tumors, when said siRNA is administered systemically.
  • a buffer solution according to the present invention provides the pH stability of the siRNA dilution solution. Examples of such buffers are given in Table 5.
  • the invention thus relates to a composition
  • a composition comprising at least one siRNA, said siRNA hybridizing with a mRNA, coding or non-coding, of which it induces the degradation or of which it inhibits the translation, the expression of said mRNA or of the protein for which it encodes being involved in a pathology, the composition being used for the prevention and / or treatment of said pathology, said composition being formulated for a continuous systemic mode of administration in which said at least one siRNA is in a buffer solution at acidic pH.
  • the pH of the buffer solution is acidic, ranging from pH
  • pH 7 at pH 7, preferably pH 5 at pH 6.5 and preferentially at pH 6.
  • the buffer solution is a citrate or histidine buffer at pH 6.
  • the present invention is also based on unexpected results of the inventors according to which the concentration of siRNA in serum, in many tissues and / or in tumors is higher when the siRNA is administered continuously systemically by being formulated in a buffer solution.
  • a buffer solution at acidic pH containing cations from inorganic or organic salts, that when the same siRNA is formulated in an acidic buffer solution without cations or in a solution of 154 mM NaCl.
  • these cations are, for example and without limitation, polyamines, notably putrescine, and / or spermidine, and / or spermine, and / or salts whose cation is chosen from metal cations such as, for example, Zn 2+, Co 2+ , Cu2 +, Mn2 +, Ca2 +, Mg2 +, Fe2 +, the counterion being of any nature, for example a chloride, nitrate, sulfate or carbonate ion.
  • the buffer solution contains MgCl 2, ZnCl 2, MnCl 2, or a two-by-two mixture of these salts, or a mixture of the three salts.
  • the concentration of each cation is from 0.02 mM to 200 mM, preferably from 0.05 to 100 mM and preferably from 1 to 50 mM.
  • the cations are added to a buffer solution which is a citrate buffer or a histidine buffer.
  • the pH of this solution is 6.
  • siRNA delivered in a continuous systemic mode of administration is diluted in citrate or histidine buffer at pH 6 containing 10 mM MgCl 2.
  • the siRNA delivered in a continuous systemic mode of administration, diluted in an acidic buffer containing cations belongs to one of the
  • siRNA-AR family siRNA-VEGF family, siRNA-TSPl family, FoxP3 siRNA family, and particularly siARNA siRNA, or siRNA siVEGF-1, or the siRNA siTSPl-1, or siFNA siFoxP3-1, alone or in combination two by two or three to three.
  • the present invention is based on the unexpected results of the inventors according to which the concentration of siRNA in serum, many tissues and / or tumors is higher when the siRNA is administered continuously systemically containing a molecule of addressing.
  • said composition contains an addressing agent, in particular, said composition contains an addressing agent not covalently coupled to siRNA.
  • said composition does not contain an addressing agent.
  • said composition is formulated for a continuous systemic mode of administration wherein said at least one siRNA is in an acidic pH buffer solution, said composition contains an addressing agent, in particular, said composition contains an addressing agent not covalently coupled to siRNA.
  • said composition is formulated for a continuous systemic mode of administration in which said at least one siRNA is in an acidic pH buffer solution, said composition does not contain an addressing agent.
  • this targeting molecule is a CD36 receptor ligand, for example oxidized LDLs, hexarelin or a long-chain fatty acid (more than 16 carbons), or a mixture of these. components two by two or three to three.
  • the above-mentioned composition contains oxidized LDLs in a weight: weight ratio of 1 siRNA for 0.01 to 10 oxidized LDLs and preferentially 0.1 to 1, or hexarelin, in a weight: weight ratio. of 1 siRNA for 0.01 to 10 hexarelin, preferably 0.1 to 1.
  • the above-mentioned composition contains oxidized LDLs in a weight: weight ratio of 1 siRNA for 0.01 to 10 oxidized LDLs and preferentially 0.1 to 1, or hexarelin, in a weight: weight ratio. from 1 siRNA for 0.01 to 10 hexarelin, preferably 0.1 to 1 and is administered systemically.
  • the aforementioned composition is formulated for a continuous systemic mode of administration in which said at least one siRNA is in a buffer solution at acidic pH, in particular in a citrate or histidine buffer, and said composition contains a an addresser not covalently coupled to siRNA, said targeting agent being a CD36 receptor ligand, said CD36 receptor ligand preferably being oxidized LDL, hexarelin, a long chain fatty acid, or a mixing these components two by two or three to three
  • the aforementioned composition is formulated for a continuous systemic mode of administration wherein said at least one siRNA is in a citrate buffer and said composition contains an agent for addressing, said addressing agent being oxidized LDLs
  • said composition comprises at least one siRNA, said siRNA hybridizing with a mRNA, coding or non-coding, of which it induces the degradation or of which it inhibits the translation, the expression of said mRNA or of the protein for which it being involved in a pathology code, the composition being used for the prevention and / or treatment of said pathology, said siRNA being in a solution containing or not containing vectorization agent.
  • the invention relates to an abovementioned composition comprising at least one siRNA, said siRNA being in a solution containing no targeting agent or wherein said siRNA is not associated with a targeting agent.
  • the invention relates to an aforementioned composition comprising at least one siRNA, said siRNA being in a solution containing a targeting agent.
  • the invention in another aspect, relates to a composition
  • a composition comprising at least one siRNA, said siRNA hybridizing with a mRNA, coding or non-coding, of which it induces the degradation or of which it inhibits the translation, the expression of said mRNA or the protein for which he code being involved in a pathology, the composition being used for the prevention and / or treatment of said pathology, said composition being formulated for a systemic mode of administration other than a continuous mode of administration.
  • Single or repeated bolus administration or slow infusion administration over a period of minutes to hours are non-limiting examples of a systemic mode of administration other than a continuous mode of administration.
  • systemic administration other than a continuous mode of administration of said composition comprising at least one siRNA may be associated with continuous systemic administration of said composition, simultaneously, separately or spread in the weather.
  • said composition may be formulated for a systemic mode of administration other than a continuous mode of administration in which said at least one siRNA is in a buffer solution at acidic pH, in particular in a citrate or histidine buffer.
  • the acidic pH buffer solution may be supplemented with inorganic or organic salts, in particular salts whose cation is chosen from polyamines, in particular chosen from spermine, spermidine or putrescine or in particular salt whose cation is chosen from metal cations, in particular chosen from salts of zinc, cobalt, copper, manganese, calcium, magnesium or iron, in particular of manganese, zinc, magnesium alone or in combination two to two or three to three
  • said composition may contain an addressing agent
  • said composition contains an addressing agent, preferably not covalently coupled to siRNA.
  • said composition does not contain an addressing agent.
  • Said targeting molecule may, for example, be a CD36 receptor ligand, such as oxidized LDL, hexarelin, a long chain fatty acid, or a mixture of these two to two or three to three component
  • said siRNA is in a solution that does not contain a vectorization agent or in which said siRNA is not associated with a vectorization agent.
  • said siRNA is in a solution containing a vectorization agent.
  • the invention relates to a composition for use according to a systemic mode of administration, wherein said siRNA is used in combination with at least one anti-angiogenic agent and / or an anti-tumor agent and / or a immunotherapeutic agent, for simultaneous, separate or spread use over time.
  • the present invention is also based on the unexpected results of the inventors according to which the administration of siRNA targeting Thrombospondin-1 or VEGF, by a continuous mode of administration, intracerebral or intrathecal, also makes it possible to deliver these siRNAs effectively and thereby inhibit gene expression of the siRNA target gene.
  • the present invention relates to a composition
  • a composition comprising at least one siRNA, said siRNA hybridizing with a coding or non-coding mRNA which it induces the degradation or of which it inhibits the translation, the expression of said mRNA or of the protein for which it encodes being involved in a pathology, the composition being used for the prevention and / or treatment of said pathology, said composition being formulated for a continuous, intracerebral or intrathecal mode of administration.
  • said composition for its aforementioned continuous and intracerebral use is especially used for the prevention and / or treatment of a brain cancer, in particular a glioblastoma.
  • a brain cancer in particular a glioblastoma
  • siRNAs are more particularly chosen from one of the following two siRNA families: siRNA-VEGF family, siRNA-TSP1 family, and in particular siVEGF-1 siRNA , or the siRNA siTSPl-1, alone or in combination.
  • said composition for its above-mentioned use is formulated for a mode of administration at a therapeutically effective dose in continuous intracerebral or intrathecal, particularly at doses of 0.01 mg / kg / day to 10 mg / kg / day, in particular 0.01 mg / kg / day to 2 mg / kg / day
  • the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising as active substance at least one siRNA, said siRNA hybridizing with a mRNA, coding or non-coding, of which it induces the degradation or of which it inhibits the translation, the expression of said MRNA or of the protein for which it encodes being involved in a pathology, said at least one siRNA being in association with a pharmaceutically acceptable vehicle in a buffer solution at acidic pH, in particular in a citrate or histidine buffer, whether or not supplemented with mineral salts or organic, in particular salt whose cation is chosen from polyamines, especially chosen from spermine, spermidine or putre
  • said at least one siRNA is in a solution that does not contain a targeting agent and is associated with an addressing molecule, or is in a solution containing a targeting agent and is associated with a molecule of addressing, or is in a solution containing a targeting agent and is not associated with an addressing molecule, or is in a solution that does not contain a targeting agent and is not associated with an addressing molecule
  • the second column indicates the name of the oligonucleotide.
  • the third column indicates the composition of the siRNA, constituted by the combination of a strand-type oligonucleotide (resp.
  • oligonucleotide 2 (respectively 2b) or an oligonucleotide whose sequence has at least 75% identity with c
  • strand-type oligonucleotide 2 (respectively 2b).
  • the fourth column indicates the numbering of the oligonucleotide as filed
  • the fifth column indicates the sequence in the 5 'to 3' orientation.
  • the notation [dT] [dT] is used to indicate the presence of
  • the sixth column indicates whether the siRNA constituted by the combination of the two oligonucleotides whose sequence is 100% identical to that of the cell.
  • siRNAs shown in Table 1 consist of two single-stranded oligonucleotides whose sequence is 100% identical
  • siRNAs furthermore have the following characteristics:
  • SiAR-2 siRNA is described in application PCT / FR2002 / 003843.
  • the target sequence i.e., the sequence of the mRNA to which the target sequence is described.
  • siRNA is present in humans in all mRNAs encoding the androgen receptor, that
  • receptor is either wild-type, mutated, or has splice variations leading to partial or complete deletion of the binding domain of the
  • SiAR-1 siRNA corresponds to siAR-2 deleted from 2 nucleotides at the 3 'end.
  • siRNA siARNA, SiAR-1b, siAR-2, siAR-2b siRNA mRNA target sequences are conserved in many species, including humans, rats, mice, monkeys and dogs. .
  • siARNA and SiAR-3b siRNA target sequence is located on the human androgen receptor-encoding mRNA. This target sequence is only partially conserved in other species.
  • siARNA and siAR-4b siRNA target sequence is located on the human mRNA coding for the androgen receptor V7 variant, expressed in particular in castration-resistant prostate cancers. This target sequence is only partially conserved in other species.
  • siRNA AR-5 is described in application PCT / FR2002 / 003843.
  • the target sequence of this siRNA and the AR-5b siRNA is located in the human mRNA encoding the androgen receptor with the T877A mutation frequently found in prostate cancers. This target sequence is only partially conserved in other species. .
  • SiVEGF-1 siRNA is described in patent application PCT / FR2002 / 003843.
  • the target sequence of siVENA siVEGF-1, siVEGF-1 on the mRNA encoding VEGF is conserved in many species, including humans, rats, mice, monkeys and dogs.
  • siTS1-siTS, siTSP1b1, siTSP1-2 and siTSP1-2b have been described in application PCT / EP2010 / 061156.
  • the siRNA siTSPl-1 siTSP1b1 target sequence on the Thrombospondin-1 mRNA is conserved in many species including humans, rats, mice, monkeys and dogs.
  • siRNA siTSPl-2 and siTSPl-2b on human mRNA encoding Thrombospondin-1 is partially conserved in other species.
  • siRNA siTSPl-3, siTSP1-3b, siTSP1-4, siTSP1-4b, siTSP1-5, siTSP1-5b are the siRNAs corresponding to the shRNAs mentioned in the patent application US2011 / 0166199.
  • SiFOs siFOXP3-1, siFoxP3-1b, siFOXP3-2 and siFoxP3-2b are new and are described for the first time in this patent application.
  • the target sequences of these siRNAs are located on the human mRNA encoding the FoxP3 transcription factor and are conserved in many species including humans, rats, mice, monkeys and dogs.
  • Thrombospondin-1 Triggers Cell Migration and Development of Advanced Prostate Tumors. Cancer Res earch 71: 7649-7658.
  • Figure 1 Schematic representation of the method of quantification of a siRNA by RT-qPCR. Example of reference range.
  • Figure 2 Intravenous injection of siARNA siAR-1 does not inhibit the growth of a prostate tumor xenografted in mice.
  • FIG 4 FoxP3-I and FoxP3-2 siRNAs inhibit FoxP3 expression in tumor cells.
  • C4-2 prostate cells were transfected with siFoxP3-1 or siFoxP3-2 or with a control siRNA (cont). Two days after transfection, the amount of FoxP3 mRNA in the cells, relative to the amount of Cyclophilin A mRNA considered invariant (delta-delta CT method), was measured and compared to the value measured in the control condition.
  • Figure 5 siFNA siFoxP3-2 administered systemically subcutaneously is distributed in serum and various organs.
  • Figure 6 Daily administration of siFNA siFoxP3-2 for 3 consecutive days in male mice reduces the amount of FoxP3-encoding mRNA in the testes. Quantification of FoxP3-encoding mRNA, relative to the amount of mRNA encoding cyclophilin A in the testes of mice treated daily for 4 consecutive days in bolus subcutaneously with siRNA siFoxP3-2 diluted or in a citrate buffer containing 10 mM MgCl 2 , administered at a dose of 0.12 mg / kg (denoted siFoxP3-2), or by the vehicle (denoted "cont").
  • Figure 7 The simultaneous administration of 3 siRNAs allows their distribution in serum and different organs. Concentration of siRNA siAR-1 (black bars), siTSP1-1 (dark gray bars) and siLuc (light gray bars) in serum, prostate and bone 10 minutes after subcutaneous injection of a mixture of these 3 siRNAs diluted in a 10 mM citrate buffer at pH 6 containing 10 mM MgCl 2. For each siRNA, the serum concentration was considered to be 1 and the organ concentrations were reported at this value in the serum.
  • Figure 8 The continuous administration for 4 weeks of siAR-1 allows to maintain substantially constant its serum concentration in monkeys.
  • Time concentration of siAR-1 formulated in 154mM NaCl administered continuously subcutaneously for 4 weeks to monkeys (n 4) at a dose of 0.05 mg / kg / day.
  • the mean serum concentration measured at the end of the second, third and fourth week of treatment is based on the average of that measured at the end of the first week of treatment.
  • Figure 9 Comparison of the pharmacokinetics in the serum of a siRNA after subcutaneous bolus administration or continuously.
  • the same animals received a single bolus subcutaneous injection of 0.05 mg / kg of saline-formulated siAR-1 (154 mM NaCl) and the concentration was been measured over time.
  • the solid line indicates the average of the values reported in FIG. observes that the serum concentration of siRNA increases rapidly after the bolus injection and that the siRNA is rapidly eliminated, undetectable from the 3rd hour.
  • Figure 10 Subcutaneous continuous systemic administration of saline-formulated siRNA inhibits target expression in tissues more efficiently than with bolus administration.
  • Osmotic pumps delivering a siRNA dose siTSPl-1 of 0.12 mg / kg / day formulated in saline solution (154 mM NaCl) were implanted subcutaneously for 1 week in mice ("continuous" group, black bars).
  • siRNA siTSP1-1 was quantified in different tissues (panel A) and mRNA encoding TSP1 measured in the prostate (panel B).
  • a control group (white symbols) received a daily injection of the vehicle (154 mM NaCl).
  • Panel B Alzet implantable osmotic pumps were filled either with saline solution (vehicle group, 154mM NaCl, white diamonds), or with siRNA siAR-1 formulated in saline (154 mM NaCl).
  • the siRNA concentration was adjusted according to pump flow to deliver a daily dose of 0.02 mg / kg / day (light gray diamonds), 0.2 mg / kg / day (dark gray diamonds) or 2 mg / kg / day (black diamonds).
  • Figure 12 Inhibition of bone metastases of prostate cancer by continuous systemic administration of siAR-1.
  • Right panel Metastatic load in bone as measured by the expression of human HPRT mRNA in both groups of animals. Each bar represents bone metastatic load in a mouse. "0" indicates that HPRT mRNA was not detected in this animal.
  • Figure 14 Immunodetection of the androgen receptor in the prostate of rats treated with siAR-1 by continuous subcutaneous administration for 2 weeks.
  • the photos are representative of vehicle-treated rat prostates (154 mM NaCl) "cont", or siAR-1 at doses of 0.1 mg / kg / day or 0.9 mg / kg / day.
  • the limit of detection of the ELISA (LLOQ or lower limit of quantification) indicated by a dotted, is 120 pg / ml. Values below this value are arbitrarily indicated as 119 ⁇ g / ml.
  • FIG. 17 Immunodetection of TSP1 and blood vessels (CD31 staining) in U87 glioblastoma tumors implanted in nude mouse brain treated for 15 days by continuous intracerebral administration, of siTSPl-1 (denoted siRNA TSP1) or a siRNA control (siRNA-cont), the catheter delivering the siRNA being implanted at a distance from the tumor.
  • siTSPl-1 denoted siRNA TSP1
  • siRNA-cont siRNA control
  • Figure 18 Acrylamide gel electrophoresis analysis of the integrity of a siRNA incubated under different conditions.
  • Lanes 1, 5, and 7 siTSP1-1 in aqueous solution
  • Lane 2 mixture (1: 1, weight: weight) of oxidized SiTSP1-1 and LDL
  • Lane 3 mixture (1: 10, weight: weight) of oxidized siTSP1-1 and LDL
  • Lane 4 mixture (1: 1, weight: weight) of siTSP1-1 and hexarelin
  • Lane 6 siTSP1-1 in an aqueous solution adjusted to pH 6 containing 0.1 mM ZnCl2
  • Lane 8 siTSP1-1 in 10 mM citrate buffer pH 6
  • Lane 9-11 siTSPl-1 in 10 mM citrate buffer pH 6 supplemented with 1 mM ZnC12 incubated at 37 ° C for 10 minutes (lane 9), lffle (lane 10) or 6h (lane 11).
  • M molecular weight marker (25 bp DNA ladder Invitrogen).
  • mice Groups of adult mice were given a subcutaneous bolus injection of the SiTSP-1 siRNA at a dose of 0.12 mg / kg formulated either in a solution containing 154 mM NaCl (gray bar control group) or in an aqueous solution. containing 0.165 mM ZnC12 (black bars).
  • the siRNA concentration measured in the serum and prostate of these different groups of mice was measured 20 minutes after injection and compared to the value of the control group considered as 1.
  • Figure 20 Concentration of siAR-1 in the serum and various organs depending on the formulation of the siRNA administered.
  • siRNA siAR-1 Concentration of siAR1 in serum or tissues of mice injected subcutaneously with siRNA siAR-1 formulated in one of the following solutions: 154 mM NaCl (NaCl, control group); 10 mM citrate buffer pH 6 (Cit); lOmM pH 6 citrate buffer supplemented with 0.1 ml of MnCl 2 (Cit / Mn), or 0.1 mM of MgCl 2 (Cit / Mg), or 0.1 mM of ZnCl 2 (Cit / Zn), or 0.1 ml of ZnCl 2 and 0.1 mM MnC12 (Cit / ZnMn), or O.lmM of ZnCl2 and O.
  • Panel A Measured values in the serum of male animals given the indicated treatment.
  • Panel B measured values in the prostate (dark gray bars) or spleen (light gray bars) of male animals given the indicated treatment.
  • Panel C Measured values in the spleen of female animals that received the indicated treatment.
  • Figure 21 A mixture of the following 3 siRNAs: siAR-1, siTSP1-1 and siLuc was prepared either in saline (154 mM NaCl) or 10 mM citrate buffer pH 6 containing 7.5 mM MgCl 2 and administered subcutaneously continued for 3 days to mice bearing 4T1 tumors, each siRNA being delivered at a rate of 2 mg / kg / day.
  • the siRNA has been assayed in serum and different organs, including 4T1 tumors.
  • the concentrations of each siRNA, measured in serum, organs (panel A) and tumors (panel B), were reported to that measured for the siRNA considered in the serum of control group mice (154 mM NaCl).
  • FIG. 22 siRNA siRNA siAR-1, at the dose of 0.12 mg / kg, formulated in a solution of 154 mM NaCl (control group, denoted NaCl) or in a 10 mM citrate buffer pH 6 added either with (siRNA: hexarelin, 1: 0.2 weight: weight) Cit / Hexarelin), either oxidized LDL (siRNA: LDL oxidized, 1: 1: weight: weight) (Cit / LDL) was administered subcutaneously to groups of adult mice. The concentration of siRNA measured in the serum (panel A), prostate (panel B, dark gray bars) or spleen (panel B, light gray bars) of these different groups of mice was measured 20 minutes after injection and reported to that of the control group (NaCl).
  • Figure 23 The concentration in serum, tissues and tumors of a systemically administered and continuous subcutaneous siRNA is increased when formulated in citrate buffer containing oxidized LDL.
  • Osmotic pumps were implanted subcutaneously into 22RV1 tumor-bearing mice in order to deliver systemically and continuously for 2 days 2 mg / kg / day of SiAR-1 and 0.2 mg / kg / day of oxidized LDL, formulated either in 154 mM NaCl in 10 mM citrate buffer at pH 6.
  • the concentrations of siAR-1 in serum, organs and tumors measured after injection of the citrate buffer composition were reported to those measured after injection of the NaCl composition.
  • RT-qPCR quantitative PCR
  • a specific stem-loop primer with 8 protruding nucleotides is synthesized, the 8 nucleotides being complementary to the 8 nucleotides of the 3 'end of the siRNA (antisense) guide strand.
  • the product obtained is amplified by PCR using two primers, one hybridizing with the region corresponding to the loop of the reverse transcription primer.
  • the 12 nucleotides at 3 'of the second primer having a DNA sequence corresponding to the 12 nucleotides of the 5' end of the newly synthesized cDNA after reverse transcription of the siRNA guide strand. Detection of the amplification is carried out continuously by the degradation of a Taqman fluorescent probe or by incorporation of SybrGreen.
  • FIG. 1 shows schematically the RT-qPCR method and an exemplary range showing the relationship between the number of copies present in the reaction and the CT (cycle threshold or amplification threshold) obtained.
  • the biological samples in which siRNAs are quantified come from different sources:
  • RNAs extracted from known weight tissue fragments thought to contain siRNA are extracted by conventional methods such as by the phenol-chloroform method (trizol extraction). After extraction, they are diluted in water;
  • RNAse inhibitor a known volume of serum is diluted in water containing an RNAse inhibitor at 1/100 ° or more diluted if the siRNA concentration is very high.
  • the CT values obtained for each sample are compared with those obtained for the range. This makes it possible to calculate the number of siRNA copies present in the assayed sample.
  • the values are then reported firstly to the amount of total transcribed reverse RNA, then to the tissue weight from which the RNAs were extracted or to the serum volume, and the final results are expressed in moles / L (M) considering that the density of all tissues is 1 g / cm 3 .
  • the cell lines used in the examples are cell lines derived from prostate tumors in humans, resistant to castration and expressing the androgen receptor (lines C4-2 and 22RV1), mouse mammary tumors (4T1), or of human glioblastoma U87.
  • the tumors are obtained by subcutaneous injection of tumor cells into the flank of Nude mice (22RV1, C4-2 tumors) or BalB / C mice (4T1 tumors). Only animals on which tumor uptake is found are included in the study and randomized to receive treatment or control treatment.
  • Bolus siRNA injections are given once a day, 5 days a week.
  • U87 cells were implanted into the Nude mouse brain parenchyma by stereotaxic injection. All siRNAs are diluted in water containing 154mM NaCl or in the indicated buffer.
  • the osmotic pumps eg Alzet pumps
  • the osmotic pumps are implanted subcutaneously on the back of the mice on the opposite side of the tumor if the mouse is wearing one.
  • the osmotic pump is implanted under the skin and a catheter placed at the outlet of the pump is connected to a device fixed on the cranial box by a cement and delivering the compound into the brain. distance from the previously implanted tumor.
  • the animals are sacrificed, the serum, the tumors and different tissues are dissected, the extracted RNAs and the siRNAs present in these RNAs are quantified. All the experimental protocols used have been validated by the French ethics committees and regulatory authorities. They are implemented in such a way as to limit the number of animals used and to avoid unnecessary suffering.
  • siRNAs used are those of Table 1.
  • siRNA Control a siRNA that does not hybridize with any known mRNA (siRNA Control) was used.
  • the sequence of this siRNA is:
  • siRNA targeting luciferase a gene that does not exist in mammals, was also used.
  • the sequence of this siRNA is:
  • siRNAs are diluted in saline solution (water for injection supplemented with 154mM
  • NaCl NaCl
  • concentration is calculated taking into account the hourly volume delivered by the pump, as indicated by the manufacturer (Alzet).
  • the pump is filled sterilely and implanted under the skin of treated animals (mice, rats, monkeys).
  • the cathether placed at the outlet of the pump releases its contents either under the skin or in another location in order to obtain intrathecal or intracerebral administration.
  • the pumps are held in place for a few days and up to 4 weeks according to the protocol indicated.
  • Example 2 Absence of inhibition of tumor growth by intravenously injected siRNAs in bolus.
  • mice 9 week old male nude mice were subcutaneously xenografted on the flank with 22RV1 cells. After tumor initiation and randomization, mice received daily intravenous injection of siRNA control or siAR-1 at a dose of 0.12 mg / kg for 13 days. The tumor volume was measured daily. The results are shown in Figure 2. It is found that the IV injection of siAR-1 has no effect on the growth of tumors.
  • Example 3 It is not necessary for siRNA to target mRNA expressed in the body for distribution. A siRNA directed against firefly luciferase siLuc, at a dose of 2 mg / kg / day, formulated in a 154 mM NaCl solution was administered to mice subcutaneously continuously for 3 days using implanted osmotic pumps. Quantification of the siRNA siLuc in the serum and various organs shown in Figure 3 shows that it is efficiently distributed systemically even though there is no target mRNA of this siRNA in these tissues.
  • Example 4 Identification of siRNA inhibiting FoxP3 and distributing in tissues in vivo.
  • C4-2 cells were transfected with a siRNA control or siFNA siFoxP3-1 or siFoxP3-2. 48 hours after transfection, the cells were lysed, the extracted RNAs and FoxP3 expression measured by RT-qPCR. The values are normalized by the expression of the RNA encoding cyclophilin-A (delta delta CT method). The results are shown in Figure 4 which shows that both FoxP3-l and FoxP3-2 siRNAs inhibit FoxP3 expression.
  • the siFNA siFoxP3-2 is distributed in serum and different organs and inhibits the expression of FoxP3.
  • mice received daily for 4 consecutive days subcutaneously or 0.12 mg / kg of siFNA siFoxP3-2 formulated in citrate buffer at pH 6 containing 10 mM MgCl2, or only this buffer (control group).
  • Figure 5 shows that siFoxP3-2 is systemically distributed in serum and in different organs
  • Figure 6 shows that in the testes, siFoxP3-2 strongly inhibits the expression of FoxP3-encoding mRNA relative to the group. control.
  • the siFNA siFoxP3-2 Administered in the absence of a vectorization agent, the siFNA siFoxP3-2 is therefore capable of systemically distributing itself in vivo and of inhibiting the expression of its target gene.
  • Example 5 Simultaneous administration of 3 siR As allows their systemic distribution in serum and various organs.
  • the siRNA siAR-1, siTSP1-1 and siLuc were diluted in 10 mM citrate buffer at pH 6 containing 10 mM MgCl 2.
  • the mixture was administered subcutaneously to mice such that the mice received a dose of 0.12 mg / kg each of the 3 siRNAs.
  • the mice were sacrificed 10 minutes after injection and each siRNA was assayed separately in serum and different tissues. It is observed that the 3 siRNAs are present in the serum and in the various organs tested (FIG. 7).
  • the administration of a cocktail of several siRNAs therefore allows their simultaneous systemic distribution in different tissues.
  • Example 6 Administration of a siRNA formulated in saline solution subcutaneously continuous.
  • the siRNAs are formulated in saline solution (154 mM NaCl).
  • Osmotic pumps delivering a dose of SiAR-1 siRNA of 0.05 mg / kg / day formulated in 154 mM NaCl solution were implanted subcutaneously for 4 weeks in Cynomolgus monkeys.
  • the serum siRNA concentration was measured weekly for the duration of the treatment. It is observed that the serum concentration varies by less than 20% compared to the first measurement (considered to have the value 1) ( Figure 8).
  • subcutaneous bolus injection of the 0.05 mg / kg dose results in rapid elimination ( Figure 9) which, if repeated over time, for example daily, leads to to an effect of peaks and valleys which is avoided by continuous administration.
  • mice were injected subcutaneously daily for 4 days with siTS-1 siTS, 0.12 mg / kg / day, formulated in saline (154 mM NaCl), or the same siRNA formulated in the same solution but administered in a controlled manner. continue for 4 days with an osmotic pump at the dose of 0.2 mg / kg / day.
  • siRNA siTSP1-1 distributes in multiple organs at comparable levels after continuous or bolus subcutaneous administration (Figure 10A).
  • Administration of siTSP1-1 produces better tissue inhibition of TSP1 mRNA expression when siRNA is administered continuously than when administered as a bolus ( Figure 10B).
  • mice were grafted into mice. Once the tumor was noted, the mice were treated by administering siAR-1 siRNA formulated in saline (154 mM NaCl) at different doses or by vehicle.
  • siRNA was administered subcutaneously, either discontinuously, by daily injection, or continuously, by implantation of an osmotic pump for 1 month.
  • 22RV1 cells were implanted in Nude mice. Once the tumor was detected, Alzet pumps administering 0.2 mg / kg / day of SiAR-1 siRNA formulated in saline (154 mM NaCl), or the vehicle alone were implanted for 3 weeks. At the end of treatment, the bones (tibia) were recovered to quantify siAR-1, and the mRNAs of human origin coding for the androgen receptor and the HPRT.
  • the continuous systemic administration of a siRNA therefore makes it possible to deliver it in the metastases of a cancer developing in the bone, to inhibit the expression of the target gene of the siRNA in the bone and to limit the implantation and / or the development of metastases.
  • Osmotic pumps delivering SiAR-1 siRNA formulated in saline (154 mM NaCl) were implanted subcutaneously in mice for 1 month or in rats for 2 weeks.
  • This administration to mice at a dose greater than or equal to 0.2 mg / kg (FIG. 13) or to rats at a dose greater than or equal to 0.1 mg / kg (FIG. 14) effectively inhibits the protein expression of the androgen receptor. in the prostate of these animals.
  • Prostate-specific antigen or PSA is detected in the serum of mature male monkeys, even in the absence of prostatic pathology.
  • Continuous subcutaneous administration of siARNA siAR-1 for 4 weeks at a dose of 5 mg / kg / day leads to a decrease in PSA expression in animal serum, below the detection limit of the ELISA test used. for the assay ( Figure 16).
  • the continuous subcutaneous administration of a siRNA in monkeys therefore makes it possible to distribute it systemically in numerous organs where it exerts its gene expression inhibitory effect.
  • Example 7 Inhibition of TSP1 expression in glioblastoma by continuous intracerebral administration of siRNA formulated in saline solution (154 mM NaCl).
  • Female nude mice were grafted orthotopically with U87 glioblastoma cells. The animals were implanted with an osmotic pump placed subcutaneously in the back, the output of the pump being connected to a catheter delivering in the brain, at a distance from the tumor, a control siRNA or the siRNA siTSPl-1 contained in the pump, at a rate of 2mg / kg of brain weight / day. After 8 days, the mice were sacrificed, and the expression of TSP1 detected by immuno fluorescence on brain sections. The results are shown in Figure 17.
  • TSP1 is a protein that inhibits the formation of blood vessels (angiogenesis).
  • angiogenesis angiogenesis
  • Example 8 An acid buffer prevents the degradation of a siRNA in the presence of cations.
  • siRNA is degraded in the presence of ZnCh in an aqueous solution whose pH has been adjusted to 6.
  • a citrate buffer at pH 6 preserves the siRNA.
  • siRNA siTSPl-1 degradation was measured after formulation of this siRNA under different conditions.
  • the integrity of siTS1-siRNA was verified by deposition on an acrylamide gel of an amount equivalent to 300 ng of siRNA from a siRNA solution that underwent the following treatments:
  • siTSP1-1 incubation for 10 minutes, hourly or 6 hours at 37 ° C. of siTSP1-1 in a solution of 1 mM ZnCl2 in a 10 mM Citrate buffer at pH 6.
  • siRNA is degraded when incubated in an aqueous solution of ZnCl2. This degradation does not occur in citrate buffer at pH 6 containing up to 6 times more ZnC12. No degradation of siRNA is observed when mixed in water with oxidized LDL or hexarelin.
  • siRNA in an aqueous solution containing ZnCl2 reduces its concentration in the serum and its distribution in the tissues.
  • siTS-1 siRNA formulated either in 154 mM NaCl or in water containing 0.165 mM ZnCl 2 and administered subcutaneously to mice at a dose of 0.12 mg / kg.
  • the siRNA concentration measured in serum and tissues is reduced when the siRNA is formulated in an aqueous solution containing cations compared to the results obtained when the same siRNA is administered at the same dose and in the same way but formulated in saline (154 mM NaCl) ( Figure 19).
  • the concentration in serum and tissues of a systemically administered siRNA is increased when formulated in citrate buffer and even more in citrate buffer containing different cations.
  • the formulation of SiAR-1 siRNA in 10 mM Citrate buffer pH 6 increases the concentration of this siRNA in the serum (FIG. 20A). This concentration is further increased in serum and tissues when 10 mM citrate buffer pH 6 is supplemented with ZnCl2, MnCl2.
  • the concentration of a systemically administered, continuous siRNA is increased when formulated in a citrate buffer containing cations.
  • siRNAs siAR-1, siTSP1-1 and siLuc
  • Each siRNA was administered at a dose of 2 mg / kg / day.
  • the mixture was formulated either in a solution of 154 mM NaCl or in 10 mM Citrate buffer pH 6 containing 10 mM MgCl 2 .
  • the concentration of each siRNA in serum, tumors and different organs was measured and the values measured when the siRNA had been formulated in citrate-MgCl 2 buffer was reported to the measured values with the administration of solution-formulated siRNA.
  • saline 154 mM NaCl
  • the results reported in Figs. 21A and 21B show that the formulation of siRNAs in citrate-MgCl 2 buffer increases by up to more than 250 their systemic distribution in tissues compared to their saline formulation.
  • mice received a subcutaneous injection of siAR-1 at a dose of 0.12 mg / kg formulated either in saline solution (154 mM NaCl) or in 10 mM citrate buffer pH 6 containing hexarelin (siRNA ratio: Hexarelin; weight: 1: 0.2), or in 10 mM citrate buffer pH6 containing oxidized LDL (siRNA ratio: oxidized LDL, weight: weight, 1: 1).
  • the concentration of siAR-1 was measured and related to the measured concentration when the siRNA was formulated in saline (154 mM NaCl) in the same tissue.
  • the results observed in the serum are shown in FIG. 22A, in the prostate and the spleen in FIG. 22B. They show that the addition of hexarelin or oxidized LDL increases the concentration of siRNA in serum or tissues.
  • osmotic pumps were implanted in mice bearing 22RV1 tumors, the pumps delivering for 3 days continuously 2mg / kg / day of siAR-1 formulated in saline solution (NaCl 154mM), or 2mg / kg / day of siAR-1 and 0.2 mg / kg / day of oxidized LDL formulated in 10mM citrate buffer pH 6.
  • the siRNA and the oxidized LDL were simply mixed in the citrate buffer, without additional manipulation.
  • the concentrations of siAR-1 formulated in citrate buffer containing oxidized LDL measured in serum, tissues or tumors were related to the value measured in the same tissue when the siRNA was formulated in saline (154 mM NaCl). It can be seen in FIG. 23 that the presence of oxidized LDL increases the concentration of siAR-1 in serum tissues and tumors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Plant Pathology (AREA)
  • Anesthesiology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente invention concerne une composition comprenant au moins un siRNA, ledit siRNA s'hybridant avec un ARNm, codant ou non codant, dont il induit la dégradation ou dont il inhibe la traduction, l'expression dudit ARNm ou de la protéine pour laquelle il code étant impliquée dans une pathologie, pour son utilisation dans la prévention et/ou le traitement de ladite pathologie, ladite composition étant formulée pour un mode d'administration systémique continue, ainsi qu'un dispositif comprenant un tel mode d'administration.

Description

UTILISATION D'UN SIRNA POUR LE TRAITEMENT DES CANCERS
La présente invention concerne une nouvelle utilisation d'oligonucléotides double brin, et plus particulièrement une utilisation selon une nouvelle formulation et un nouveau mode d'administration.
Depuis la découverte du mécanisme d'ARN interférence en 1998, des efforts considérables ont été entrepris pour développer le potentiel thérapeutique de cet outil pour les maladies humaines. Les micro RNAs (miRNAs) sont des petits ARN codés par le génome de tous les organismes eucaryotes. Après transcription et maturation, ils sont chargés dans un complexe protéique : RNA Induced Silencing Complex (RISC). Lorsqu'ils s'hybrident avec un ARN messagers (ARNm) soit ils induisent sa coupure, conduisant à la dégradation de l'ARNm, soit ils inhibent sa traduction en protéine. Les ARN interférents ou Small Interfering RNA (siRNA) sont des oligoribonucléotides double brins synthétiques qui une fois introduits dans les cellules miment l'action des miRNAs et déclenchent le mécanisme d'ARN interférence. Leur mécanisme d'action n'est donc comparable à aucun autre type d'oligonucléotide.
Un « oligonucléotide double brin » dans ce qui suit s'entend plus particulièrement d'un siRNA. Plus précisément, lorsque l'oligonucléotide double brin est un siRNA, il est chargé dans le complexe RISC. L'un des deux brins, dit "passager" est coupé puis dégradé, l'autre brin, dit "guide", reste dans le complexe RISC. Ce brin guide s'hybride avec une région d'un ARNm dont il est complémentaire. Cet ARNm est nommé "ARNm cible" du siRNA et par extension, le gène qui est transcrit pour générer cet ARN est appelé le "gène cible" du siRNA. Cet ARNm cible peut être codant ou non codant. Un siRNA coupe l'ARNm cible avec lequel il s'hybride et entraîne sa dégradation, ou bien il en empêche sa traduction. Ceci se traduit par une diminution de la quantité de l'ARNm cible, et/ou par une diminution de la quantité de protéine codée par l'ARNm si celui-ci est un ARNm codant. Ces effets d'un siRNA sont collectivement nommés dans la suite de la description "effet inhibiteur de l'expression génique".
L'obstacle majeur qu'il faut surmonter pour pouvoir utiliser un siRNA dans un but thérapeutique, en particulier chez l'homme, est d'obtenir que le siRNA pénètre dans le ou les tissus d'intérêt, qu'il s'y maintienne dans un état actif en concentration suffisante et suffisamment longtemps pour y produire l'inhibition de l'expression génique recherchée. La méthode d'administration du siRNA doit de plus être cliniquement acceptable, non toxique et ne pas déclencher de réaction immunitaire indésirable. La méthode doit être utilisable pour délivrer tout type de siRNA, quel que soit l'ARNm cible du siRNA et son niveau d'expression.
Par le passé des méthodes ont été développées pour distribuer dans l'organisme d'autres types d'oligonucléotides tels que par exemple des oligodeoxynucléotides antisens (ODN), des ribozymes, des aptamères, des morpholinos, ou des oligonucléotides formant triple hélice. Plusieurs de ces oligonucléotides pénètrent dans les cellules par un mécanisme d'endocytose médiée par un récepteur (Vlassov et al, 1994) mais de tels mécanismes n'ont pas été mis en évidence pour les siRNA. Les méthodes développées pour administrer des oligonucléotides simple brins ARN ou ADN, notamment en absence d'agents de vectorisation, ne sont donc pas transposables aux siRNA et d'autres méthodes ont dû être développées dans ce but (Tatiparti et al, 2017). La plupart des utilisations thérapeutiques nécessitent que le siRNA soit délivré de façon systémique dans l'organisme. Dans ce qui suit, on entend par systémique le fait que le siRNA est véhiculé dans l'organisme pour agir à distance de l'endroit où il est administré, par opposition à une administration locale ou loco-régionale, notamment par opposition à une administration intratumorale. La distribution de façon systémique dans l'organisme est obtenue par toute méthode qui entraîne un passage du siRNA dans les fluides extracellulaires comme par exemple le sang, la lymphe ou le liquide céphalo-rachidien, que le composé contenant le siRNA soit ingéré (voie orale), ou injecté (voie parentérale), ou qu'il pénètre à travers la peau ou les muqueuses.
Les acides nucléiques en général et les siRNAs en particulier sont chargés négativement. Lorsqu'ils sont à l'extérieur des cellules, cette charge négative limite leur pénétration dans les cellules. Pour cette raison, de nombreuses méthodes, comme par exemple l'électroporation, des liposomes, des nanoparticules, des polymères de différentes natures, ont été développées pour faire pénétrer un siRNA dans une cellule en culture. Cependant ces outils ne sont pas applicables pour administrer un siRNA de façon systémique dans un organisme vivant. La charge négative des siRNA facilite leur association avec des molécules cationiques telles que des compositions lipidiques ou polymériques. Pour utiliser des siRNA dans des organismes vivants, les siRNA ont été chimiquement conjugués ou incorporés dans différents agents de vectorisation. Un « agent de vectorisation » dans ce qui suit s'entend d'un agent qui a pour but de véhiculer l'oligonucléotide dans les fluides biologiques du point d'administration jusqu'au tissu cible et de le faire pénétrer à l'intérieur de la cellule, soit en pénétrant avec l'oligonucléotide jusqu'à l'intérieur de la cellule, soit en fusionnant avec la membrane plasmique de la cellule et en libérant l'oligonucléotide à l'intérieur de celle-ci. Ces agents de vectorisation sont d'une part des composés contenant des macro molécules qui forment des complexes avec les oligonucléotides, sous forme d'une particule d'une taille supérieure à 20 nm, et d'autre part des conjugués chimiques associant par une liaison covalente l'un et/ou l'autre brin d'un siRNA à un composé destiné à le faire pénétrer dans la cellule, comme par exemple du cholestérol ou un peptide pénétrant. Les "peptides pénétrants" sont des peptides capables de pénétrer spontanément à l'intérieur des cellules et conservent cette propriété lorsqu'ils sont conjugués avec une molécule, entraînant la traversée de cette dernière. Ainsi, les agents de vectorisation peuvent être composés de différents types de macromolécules, comme des lipides micellaires, du cholestérol, des liposomes, des polymères, des polyplexes, des chitosans, des quantum dots, des peptides pénétrants, des dendrimères, des dérivés de la polyéthylènimine, des nanoparticules, des sphères magnétiques ou supra magnatiques, ou des nanostructures inorganiques ou organiques.
Le consensus le plus général dans la communauté scientifique et médicale est de dire que les siRNA non vectorisés sont inefficaces, et qu'ils doivent être stabilisés et vectorisés pour être actifs (Scomparin et al, 2015). De très nombreux agents de vectorisation ont ainsi été développés pour les siRNA. Plusieurs sont utilisés dans des essais thérapeutiques chez l'homme, dans différentes indications. La mise en oeuvre de ces outils de vectorisation est généralement complexe, nécessitant des étapes successives et des processus bien contrôlés et/ou le couplage covalent de l'oligonucléotide à un autre composant. Il a été montré que plusieurs classes d'agents de vectorisation, du fait de leur nature chimique ou structurale, ou du fait de leur association avec un oligonucléotide, présentaient des effets toxiques ou déclenchaient une réponse immunitaire indésirable chez l'animal ou les humains (Robbins et al, 2009) ce qui n'est pas le cas avec des siRNAs non vectorisés (Heidel et al, 2004). De plus, ces agents de vectorisation distribuent souvent préférentiellement les siRNAs dans certains organes, en particulier le foie, ce qui limite leur utilisation thérapeutique dans d'autres organes. Une méthode d'administration ne nécessitant pas d'ajouter des agents de vectorisation est donc avantageuse.
Différentes méthodes ont ainsi déjà été proposées pour administrer des siRNAs non vectorisés de façon systémique et inhiber l'expression d'un gène dans un tissu ou dans une tumeur. La première méthode proposée, dite hydrodynamique, a été d'injecter par voie intraveineuse une solution saline contenant le siRNA en quelques secondes et dans un grand volume : 1.8 mL chez la souris, correspondant à plus de la moitié de son volume sanguin (McCaffrey et al, 2002). Cette méthode est inapplicable à l'homme et aux animaux de grande taille.
D'autres auteurs ont utilisé une administration de siRNAs non vectorisés par voie intrapéritonéale chez la souris. Cette méthode est efficace et permet d'inhiber l'expression de la cible du siRNA, et d'inhiber la croissance de tumeurs xenogreffées chez des souris. Ceci est illustré dans la littérature (Delloye-Bourgeois et al, 2009; Pannequin et al, 2007). L'injection intrapéritonéale de siRNAs dirigés contre le récepteur des androgènes (siAR-1) (Compagno et al, 2007) ou contre la thrombospondine-1 (siTSPl-1) (Firlej et al, 2011) inhibe efficacement la croissance de tumeurs prostatiques xenogreffées chez des souris.
La voie intrapéritonéale est efficace chez l'animal mais elle est complexe à utiliser chez l'homme, surtout si elle doit être utilisée de façon répétée, notamment du fait de risques infectieux car elle nécessite la pose chirurgicale d'un cathéther et son usage est généralement restreint au traitement de pathologies se développant dans le péritoine ou dans des organes intrapéritonéeaux comme les ovaires. Même dans ces indications thérapeutiques, cette voie d'administration présente des obstacles importants qui en limitent l'usage et l'efficacité et il est donc nécessaire de disposer de solutions alternatives (Zeimet et al, 2009).
L'administration de siRNA non vectorisés par voie intraveineuse a également été testée. Cependant, comme d'autres oligonucléotides, les siRNA injectés par voie intraveineuse sont éliminés par fîltration rénale (van de Water et al, 2006).
Il n'existe donc pas à ce jour de mode d'administration de siRNA compatible avec un usage en clinique humaine, sans agent de vectorisation, permettant de les adresser efficacement dans de nombreux organes cibles, notamment dans la prostate, et/ou dans des tumeurs et/ou les métastases de tumeurs, dans le but de prévenir et/ou traiter des pathologies. Il existe un réel besoin de fournir un tel moyen. L'un des buts de l'invention est ainsi de fournir des modes d'administration permettant de distribuer efficacement des siRNA dans de nombreux organes cibles, notamment dans la prostate, et/ou dans des tumeurs et/ou dans les métastases de ces tumeurs, afin de prévenir et/ou traiter des pathologies résultant directement ou indirectement de l'expression d'un gène, le siRNA ciblant l'ARNm transcrit à partir de ce gène.
Des solutions ont été décrites pour adresser des oligonucléotides vers des cellules particulières de l'organisme. Dans ce qui suit, une "molécule d'adressage" est une molécule adressant l'oligonucléotide vers un type cellulaire particulier, comme par exemple les cellules endothéliales ou les cellules cancéreuses. Une molécule d'adressage n'est pas destinée à faire pénétrer l'oligonucléotide à l'intérieur de la cellule ou à pénétrer avec l'oligonucléotide mais à augmenter sa concentration à la membrane externe de la cellule d'intérêt. Par exemple et de façon non exhaustive, une molécule d'adressage peut être un aptamère, un anticorps, la transferrine, un peptide RGD, le ligand d'un récepteur, cette molécule d'adressage interagissant ou se liant à une molécule exprimée à la surface des cellules ciblées, comme par exemple un récepteur, une intégrine, un antigène membranaire comme par exemple le PSMA (Prostate Spécifie Membrane Antigen). La molécule d'adressage est usuellement soit couplée de façon covalente avec l'oligonucléotide, soit incorporée dans un agent de vectorisation, par exemple une nanoparticule ou un liposome contenant l'oligonucléotide, de façon à adresser l'agent de vectorisation vers la cellule ou le tissu cible. Il n'y a pas de solution décrivant le mélange d'un siRNA avec un composé dans une mise en œuvre simple, notamment sans couplage covalent ou sans incorporation dans un agent de vectorisation, et permettant d'adresser un siRNA vers un type cellulaire particulier.
Le récepteur CD36 est un récepteur membranaire exprimé à la membrane des cellules endothéliales vasculaires et lymphatiques et exprimé par de nombreux types de cellules, notamment des cellules tumorales, par exemple des cellules leucémiques. Le récepteur CD36 lie des molécules de différentes natures. C'est en particulier un récepteur des acides gras à longues chaînes, en particulier des acides gras en C16 ou Cl 8, un récepteur des lipoprotéines de basse densité oxydées, ou LDL oxydées, un récepteur des phospho lipides oxydés, un récepteur de la Thrombospondine, un récepteur du peptide hexaréline, un récepteur de l'amyloide fïbrillaire.
L'effet inhibiteur de l'expression génique d'un siRNA est transitoire : lorsqu'un siRNA pénètre dans une cellule, il inhibe l'expression de son gène cible pendant une durée qui est d'autant plus courte que les cellules se divisent fréquemment, ce qui est notamment le cas de la plupart des cellules cancéreuses. On observe ensuite une restauration de la quantité d'ARNm transcrite à partir de ce gène cible et/ou de la protéine codée par cet ARNm, créant un effet de "pics et de vallées" (Bartlett and Davis, 2006). L'efficacité d'un siRNA est dépendante de sa concentration dans les cellules du tissu ciblé et de son temps de résidence dans ce tissu. Cette concentration dépend elle-même de la dose de siRNA administrée, de la stabilité de celui-ci dans les milieux extracellulaires, de sa capacité à pénétrer dans les cellules des tissus cibles, de la cinétique de cette pénétration, et de celle de son élimination. L'un des buts de l'invention est de fournir des méthodes d'administration systémique de siRNA, et notamment des formulations, qui augmentent la concentration du siRNA dans le sérum et/ou dans les tissus et /ou prolongent la durée de ses effets en évitant les effets de pics et de vallées.
L'invention concerne ainsi une composition comprenant au moins un siRNA, ledit siRNA s'hybridant avec un ARNm, codant ou non codant, dont il induit la dégradation ou dont il inhibe la traduction, l'expression dudit ARNm ou de la protéine pour laquelle il code étant impliquée dans une pathologie, la composition étant utilisée pour la prévention et/ou le traitement de ladite pathologie, ladite composition étant formulée pour un mode d ' administration systémique continue .
Un siRNA selon la présente invention s'entend d'un couple de deux oligoribonucléotides qui s'hybrident entre eux, chaque oligoribonucléotide comprenant de 2 à 100, notamment 5 à
50, de préférence 13 à 25 et plus particulièrement 19, 20 ou 21 ribonucléotides. De « 2 à 100 » signifie 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 , 42, 43, 44, 45, 46, 47, 48, 49, 50,
51 , 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100.
Selon l'invention, et dans un aspect particulier, ledit siRNA peut présenter des modifications chimiques telles que des modifications chimiques sur le brin guide ou le brin passager, sur un ou plusieurs nucléotides situés aux extrémités terminales 3' ou 5', et/ou sur un ou plusieurs nucléotides constituant le squelette interne.
Lesdites modifications chimiques selon l'invention se situent sur le ribose et/ou la base et/ou l'acide phosphorique. Lesdites modifications chimiques selon l'invention comprennent au moins une substitution du groupement OH en 2' du ribose par un groupement 2'-0-methyl RNA (2'OMe) ou 2'-<9-methoxyethyl (2'MOE) ou 2'-fluoro (2T) ou 2'-fluoro-P- arabinonucleotide (FANA), une allylation de l'oxygène en 2' en aminoethyl-, guanidinoethyl- , cyanoethyl- ou alkyl, un remplacement du groupement phosphodiester par un phosphorothioate, une alkylation ou une thiolation de un ou plusieurs nucléotides du siRNA, le remplacement d'un ribonucléotide par un desoxyribonucléotide, ou le remplacement d'un nucléotide par un Locked Nucleic Acid (LNA).
Dans un autre aspect particulier, ledit siRNA est dépourvu de modification chimique. Dans un aspect particulier, ledit siRNA est dépourvu de modification chimique, et comporte deux désoxynucléotides débordant à l'extrémité 3', notamment deux désoxythymidines .
Dans un autre aspect particulier, ledit siRNA est dépourvu de modification chimique, et ne comporte pas deux désoxynucléotides débordant à l'extrémité 3', notamment deux désoxythymidines.
L'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ledit siRNA peut être n'importe quel type de siRNA. En effet, la formulation et la méthode d'administration, objet de la présente invention, ne dépend ni du siRNA administré ni de la cible du siRNA comme illustré par les exemples 3 et 9.
Dans un aspect particulièrement préféré, l'invention concerne une composition pour son utilisation susmentionnée (systémique et continue), dans laquelle au moins un siRNA comprend ou est constitué par l'un des couples d'oligonucléotides tels que définis dans le Tableau 1.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ledit au moins un siRNA est l'un des siRNA suivants: siAR-1 , siAR-lb, siAR-2, siAR-2b, siAR-3, siAR-3b, siAR-4, siAR4b, siAR-5, siAR-5b, siVEGF-1 , siVEGF-lb, siTSPl-1, siTSPl-lb, siTSPl-2, siTSPl-2b, siTSPl-3, siTSPl-3b, siTSPl-4, siTSPl-4b, siTSPl-5, siTSPl-5b, siFoxP3-l, siFoxP3-lb, siFoxP3-2, siFoxP3-2b, tels qu'indiqués dans le Tableau 1 et de séquences SEQ ID NO 1 à SEQ ID NO 52 .
La présente invention repose également sur les résultats inattendus des Inventeurs qui ont mis en évidence de nouveaux siRNA ciblant le facteur de transcription FoxP3.
Les siRNA ciblant FoxP3 sont plus particulièrement utilisés pour cibler les cellules suppressives ou immunosuppressives en particulier les lymphocytes T suppresseurs également appelés lymphocytes T régulateurs, et en particulier dans tous les types de cancers ou dans les maladies auto immunes. Les oligonucléotides ciblant FoxP3 sont aussi utilisés pour cibler des cellules cancéreuses exprimant ce facteur de transcription. Dans un aspect particulier, la présente invention concerne également un siRNA inhibant la synthèse du facteur de transcription FoxP3, dans lequel ledit siRNA est l'un des siRNA suivants : siFoxP3-l, siFoxP3-lb, siFoxP3-2 ou siFoxP3-2b tels que définis dans le Tableau 1 pour son utilisation comme médicament ou pour son utilisation pour la prévention et/ou le traitement d'une pathologie associée à l'expression du facteur de transcription FoxP3 en association avec un véhicule pharmaceutiquement acceptable.
Dans un aspect particulier, dans ladite composition pour son utilisation dans la prévention et/ou le traitement d'une pathologie associée à l'expression du facteur de transcription FoxP3, ledit siRNAprésente des modifications chimiques.
Dans un aspect particulier, ladite composition pour son utilisation dans la prévention et/ou le traitement d'une pathologie associée à l'expression du facteur de transcription FoxP3, ledit siRNAest dépourvu de modification chimique.
Dans un aspect particulier, ladite composition pour son utilisation dans la prévention et/ou le traitement d'une pathologie associée à l'expression du facteur de transcription FoxP3, ledit siRNAest dépourvu de modification chimique et comporte deux désoxynucléotides débordant à l'extrémité 3', notamment deux désoxythymidines.
Dans un aspect particulier, ladite composition pour son utilisation dans la prévention et/ou le traitement d'une pathologie associée à l'expression du facteur de transcription FoxP3, ledit siRNAest dépourvu de modification chimique et ne comporte pas deux désoxynucléotides débordant à l'extrémité 3', notamment deux désoxythymidines.
Tels que définis dans le Tableau 1, dans l'invention, les siRNA siAR-1, siAR-lb, siAR-2, siAR-2b, siAR-3, siAR-3b, siAR-4, siAR-4b, siAR-5, siAR-5b sont collectivement dénommés famille des siRNA- AR.
Tels que définis dans le Tableau 1, dans l'invention, les siRNA siVEGF-1, siVEGF- lb sont collectivement dénommés famille des siRNA- VEGF.
Tels que définis dans le Tableau 1, dans l'invention, les siRNA siTSPl-1, siTSPl-lb, siTSPl-2, siTSPl-2b, siTSPl-3, siTSPl-3b, siTSPl-4, siTSPl-4b, siTSPl-5, siTSPl-5b sont collectivement dénommés famille des siRNA-TSPl .
Tels que définis dans le Tableau 1, dans l'invention, les siRNA siFOXP3-l, SÏFOXP3- lb, SÏFOXP3-2, siFOXP3-2b, sont collectivement dénommés famille des siRNA-FoxP3.
L'expression « au moins 75% d'identité avec une séquence » dans le Tableau 1 signifie 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% et 100%, notamment 79%, 81%, 84%, 86%, 90%, 95% et 99%.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ledit au moins un siRNA est un mélange de siRNA.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ledit mélange est un mélange de deux siRNA.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ledit mélange est un mélange de trois siRNA.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ledit mélange de siRNA comprend ou est constitué des siRNA suivants :
- un siRNA appartenant à la famille des siRNA-AR avec un siRNA appartenant à la famille des siRNA- VEGF, et en particulier le siRNA siAR-1 et le siRNA siVEGF-1 ;
- un siRNA appartenant à la famille des siRNA-AR avec un siRNA appartenant à la famille des siRNA-TSP 1 , et en particulier le siRNA siAR- 1 et le siRNA siTSP 1 - 1 ;
- un siRNA appartenant à la famille des siRNA-AR avec un siRNA appartenant à la famille des siRNA-FoxP3, et en particulier le siRNA siAR-1 et le siRNA siFoxP3-2 ;
- un siRNA appartenant à la famille des siRNA- VEGF avec un siRNA appartenant à la famille des siRNA-TSPl, et en particulier le siRNA siVEGF-1 et le siRNA siTSPl-1 ;
- un siRNA appartenant à la famille des siRNA- VEGF avec un siRNA appartenant à la famille des siRNA-FoxP3, et en particulier le siRNA siVEGF-1 et le siRNA siFoxP3-2 ;
- un siRNA appartenant à la famille des siRNA-TSPl avec un siRNA appartenant à la famille des siRNA-FoxP3, et en particulier le siRNA siTSPl-1 et le siRNA siFoxP3-2 ;
- un siRNA appartenant à la famille des siRNA- VEGF avec un siRNA appartenant à la famille des siRNA-TSPl, et avec un siRNA appartenant à la famille des siRNA-FoxP3, et en particulier le siRNA siVEGF-1 avec le siRNA siTSPl-1 et avec le siRNA siFoxP3-2 ; un siRNA appartenant à la famille des siRNA- VEGF avec un siRNA appartenant à la famille des siRNA-TSPl, avec un siRNA appartenant à la famille des siRNA- AR, et en particulier le siRNA siVEGF-1 avec le siRNA siTSPl-1 et avec le siRNA siAR-1.
Un aspect avantageux de l'invention concerne une composition dans laquelle ledit siRNA est le siAR-1, de SEQ ID NO 1 et 2, pour son utilisation comme médicament ou pour son utilisation pour la prévention et/ou le traitement d'une pathologie associée à l'expression du récepteur des androgènes, notamment pour la prévention et/ou le traitement du cancer de la prostate ou des métastases de ce cancer, en association avec un véhicule pharmaceutiquement acceptable, selon un mode d'administration systémique continue.
Dans tous les aspects de la présente invention, la pathologie selon l'invention est une pathologie humaine ou animale.
Selon un aspect particulier de l'invention, la pathologie selon l'invention est plus particulièrement associée à l'expression de l'ARNm codant le récepteur des androgènes (AR), ou la Thrombospondine-1 (TSP1), ou le facteur de transcription FoxP3, ou le Vascular Endothelial Growth Factor A (VEGF) .
La pathologie selon l'invention, qu'elle soit associée ou non à l'expression dAR, ou de la TSP1 , ou de FoxP3, ou du VEGF, est plus particulièrement une tumeur primaire, une tumeur métastatique, ou une pathologie associée à la présence de cellules suppressives ou immuno suppressives . Une "tumeur primaire" selon l'invention est notamment et de façon non limitative un cancer de l'anus, de l'appendice, de la bouche, des bronches et/ou des voies aériennes supérieures, du canal biliaire, de la cavité nasale et paranasale, du cerveau, du cœur, du col de l'utérus, du colon, du corps de l'utérus, de l'estomac, du foie, des glandes salivaires, de la gorge, de la langue, des lèvres, du nasopharynx, de l'œsophage, des os, de l'ovaire, du pancréas, de la parathyroïde, du pénis, de la plèvre, du poumon, de la prostate, du rectum, du rein, du sein, des surrénales, des testicules, de la tête et du cou, du thymus, de la thyroïde, de l'urètre, du vagin, de la vésicule biliaire, de la vessie, de la vulve, un cancer gastro-intestinal, un lymphome, un mélanome ou un cancer de la peau hors mélanome, un myélome, un sarcome, une leucémie, un mésotheliome, un cholangiocarcinome, un ostéosarcome, un glioblastome, un astrocytome, un oligodendrogliome, un chondrosarcome, un liposarcome, un rhabdomyosarcome, ou un pheochromocytome, collectivement nommés tumeurs primaires dans la suite de la description, ou les métastases de n'importe laquelle de ces tumeurs primaires se développant dans d'autres organes. Les métastases représentent une complication fréquente et majeure des cancers et les échecs thérapeutiques en cancérologie sont majoritairement liés au développement de métastases. Une tumeur primaire peut se disséminer pour former une ou plusieurs métastases, dans un seul ou dans plusieurs types de tissus tels que les os, le foie, la rate, les ganglions ou le cerveau. Pour traiter les cancers avec un siRNA ou une combinaison de siRNA, il est donc particulièrement utile et avantageux de disposer de méthodes d'administration qui distribuent le ou les siRNAs dans plusieurs tissus.
L'expression « pathologie associée à la présence de cellules suppressives ou immunosuppressives » signifie que lesdites cellules suppressives ou immunosupressives facilitent le développement d'une pathologie et notamment l'initiation, l'implantation ou le développement d'une tumeur ou sa dissémination métastatique. Ce terme regroupe en particulier les lymphocytes T régulateurs, également appelés T suppresseurs, les lymphocytes Thl7 et les MDSC (myeloid-derived suppressor cells).
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ledit siRNA est utilisée en association avec au moins un agent anti-angiogénique et/ou un agent anti-tumoral et/ou un agent immunothérapeutique, pour une utilisation simultanée, séparée ou étalée dans le temps. L'expression « séparée ou étalée dans le temps » signifie également « successives ». Selon l'invention, le terme agent anti-angiogénique signifie un agent destiné à inhiber la formation de vaisseaux sanguins, notamment en inhibant l'expression ou la fonction de VEGF, FGF2, PDGF, HGF, MET, FLT3, VEGFR1, VEGFR2, VEGFR3, KIT, TIE1, TIE2, RET, TRKB, AXL. De tels agents sont notamment Cilengitide, Vandetanib, Lenalidomide, Thalidomide, Arsenic Trioxide, Bevacizumab, ou encore des agents listés dans le Tableau 2. Selon l'invention, un agent immunothérapeutique est un agent qui a pour objectif de stimuler, notamment par une vaccination, et/ou de rétablir une réponse immunitaire, notamment par l'inhibition des cellules immunosuppressives ou suppressives, et/ou par inhibition de l'anergie des lymphocytes. Les immunothérapies au sens de l'invention sont notamment les thérapies mettant en œuvre l'administration de cytokines, d'anticorps ciblant les points de contrôle et de régulation du système immunitaire (check-point immunitaires, par exemple PD1, PDL1, CTLA4, Tigit), le traitement par des lymphocytes T, génétiquement modifiés (Car-T) ou non, ou par des cellules dendritiques, la vaccination, les traitements antihelminthes. Un tel agent est notamment choisi parmi Ipilimumab, nivolimumab, T-Vec, Sipuleucel-T, Blinatumomab, Pembrolizumab, ou parmi les agents du Tableau 3. Selon l'invention, un agent anti-tumoral ou chimiothérapeutique est un agent possédant des propriétés anti-cancéreuses choisi parmi : les agents alkylants, les agents anti- métabolites, les antibiotiques cytotoxiques, les inhibiteurs de topoisomérase I, les inhibiteurs de topoisomérase II, les antibiotiques anti-tumoraux, les agents génotoxiques, les inhibiteurs de la PARP, les agents anti-microtubules. Un tel agent est par exemple choisi parmi : Bendamustine, Temozolomide, Mechlorethamine, Cyclophosphamide, Carmustine, Cisplatine, Busulfan, Thiotepa, Decarbazine, Pentostatine, Methotrexate, Pemetrexed, Floxuridine, Fluorouracil, Cytarabine, Mercaptopurine, Thiguanine, Rubitecan, Mitomycine C, Daunorubicin, Doxorubicine, Bleomycin, Plicamycin, Mitoxantrone HC1, Oxaliplatine, Vinorelbine, BMS 184476, Vincristine sulfate, Vinblastine, Taxotere, Taxol, ou encore les agents mentionnés dans le Tableau 4.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ladite composition comprend un siRNA appartenant à la famille des siRNA-AR en association avec un agent anti-tumoral et/ou un agent immunothérapeutique et/ou un agent antiangiogénique.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ladite composition comprend un siRNA appartenant à la famille des siRNA- VEGF en association avec un agent anti-tumoral et/ou un agent immunothérapeutique et/ou un agent antiangiogénique.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ladite composition comprend un siRNA appartenant à la famille des siRNA-TSPl en association avec un agent anti-tumoral et/ou un agent immunothérapeutique et/ou un agent antiangiogénique.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ladite composition comprend un siRNA appartenant à la famille des siRNA-FoxP3 en association avec un agent anti-tumoral et/ou un agent immunothérapeutique et/ou un agent antiangiogénique.
Dans tous les aspects de la présente invention, ledit mode d'administration systémique selon l'invention est choisi parmi le groupe comprenant ou étant constitué de l'un des modes d'administration suivants: sous-cutané, intrapéritonéal, intraveineux, intra artériel, intracardiaque, intramusculaire, intradermique, intranasal, intravaginal, intrarectal, sublingual, oral, intrathécal, intra rachidien, épidural, respiratoire, cutanée, transdermique, transmuqueux. Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ladite composition est formulée pour un mode d'administration à une dose thérapeutiquement efficace, et notamment à des doses de 0.005 mg/kg/jour à 30 mg/kg/jour, notamment 0.01 mg/kg/jour à 10 mg/kg/jour, et plus particulièrement de 0.01 mg/kg/jour à 2 mg/kg/jour chez l'homme.
De « 0.005 mg/kg/jour à 30 mg/kg/jour » s'entend de toutes les doses allant de 0.005 mg/kg/jour à 30 mg/kg/jour, par exemple 0.008 ; 0.01 ; 0.05 ; 0.1 ; 0.5 ; 1.0 ; 1.5 ; 10.0 ; 10.5 ; 14.0 ; 14.5 ; 20 ; 20.5 ; 25 ; 25.5 ; 29.5 mg/kg/jour.
Dans un premier aspect, la présente invention repose sur les résultats inattendus des
Inventeurs selon lesquels l'efficacité d'un siRNA administré par un mode d'administration systémique continue est meilleure que lorsque le même siRNA, formulé dans la même solution, est administré par un mode d'administration systémique en bolus, "en bolus" étant défini comme l'administration de la dose complète en une seule fois, cette dose pouvant être répétée au cours du traitement, par exemple chaque jour ou plusieurs fois par jour. Le mode d'administration continu est défini comme étant un mode qui évite les effets de pics et de vallées observés sur la concentration de siRNA dans le sang, le sérum et les différents organes lorsque ledit siRNA est administré en bolus. Le mode d'administration continu a pour objectif de maintenir sensiblement constante la concentration du siRNA dans le sang et les tissus périphériques pendant tout le temps d'administration du siRNA. L'expression « maintenir sensiblement constante » signifie que la concentration du siRNA dans le sang et les tissus périphériques peut légèrement varier selon le métabolisme de l'individu qui reçoit ladite composition.
Le temps d'administration peut varier de quelques heures à plusieurs semaines suivant le dispositif utilisé pour administrer le siRNA. Ce dispositif peut être une pompe ou toute composition visant une libération lente et prolongée dans le temps du siRNA.
Dans cet aspect particulier, l'invention concerne ainsi une composition comprenant au moins un siRNA, ledit siRNA s'hybridant avec un ARNm, codant ou non codant, dont il induit la dégradation ou dont il inhibe la traduction, l'expression dudit ARNm ou de la protéine pour laquelle il code étant impliquée dans une pathologie, la composition étant utilisée pour la prévention et/ou le traitement de ladite pathologie, ladite composition étant formulée pour un mode d'administration systémique continue. Dans un aspect préféré de l'invention, le siRNA délivré suivant un mode d'administration systémique continue est délivré sans interruption de l'administration pendant une durée supérieure ou égale à 2 jours. Dans un aspect préféré de l'invention, le siRNA délivré suivant un mode d'administration systémique continue est délivré sans que l'administration ne soit interrompue au delà du temps nécessaire pour recharger ou échanger le dispositif délivrant le siRNA, par exemple 4 heures, pendant une durée allant de 2 jours à 1 an, par exemple 2 jours, 3 jours, 4 jours, 5 jours, 6 jours, 7 jours, 8 jours, 9 jours, 10 jours, 11 jours, 12 jours, 13 jours, 14 jours, 15 jours, 3 semaines, 1 mois, 2 mois, 3 mois, 4 mois, 5 mois, 6 mois, 9 mois, 1 an.
Dans un aspect préféré de l'invention, le siRNA délivré suivant un mode d'administration systémique continue est délivré par cycles successifs, interrompus par une période sans traitement allant de plus de 24 heures à quelques semaines, chaque cycle étant défini par l'administration systémique continue sans interruption supérieure au temps nécessaire pour recharger ou échanger le dispositif délivrant le siRNA, par exemple 4 heures, et pendant une durée allant de 2 jours à 1 mois.
Dans un aspect préféré selon l'invention, ledit mode d'administration systémique continue est sous-cutané.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ladite composition est formulée pour un mode d'administration, en continu et en sous-cutané, à une dose thérapeutiquement efficace, et notamment à des doses de 0.005 mg/kg/jour à 30 mg/kg/jour, notamment 0.01 mg/kg/jour à 10 mg/kg/jour et plus particulièrement de 0.01 mg/kg/jour à 2 mg/kg/jour.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle la séquence de l'un des brins dudit oligonucléotide est différente de :
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ledit mode d'administration systémique continue est l'un des modes d'administration suivants : intrapéritonéal, intraveineux, intramusculaire, intradermique, intranasal, intravaginal, intrarectal, sublingual, oral, intrathécal, ET ledit au moins un siRNA appartient à l'une des 4 familles de siRNA suivantes : famille des siRNA- AR, famille des siRNA- VEGF, famille des siRNA-TSPl, famille des siRNA FoxP3.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ledit mode d'administration systémique continue est sous- cutané et ledit au moins un siRNA appartient à l'une des 4 familles de siRNA suivantes : famille des siRNA- AR, famille des siRNA- VEGF, famille des siRNA-TSPl, famille des siRNA FoxP3.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ladite pathologie est n'importe laquelle des tumeurs primaires susmentionnées, ou des métastases d'une de ces tumeurs primaires se développant dans d'autres organes, et ledit au moins un siRNA appartient à l'une des 4 familles de siRNA suivantes : famille des siRNA- AR, famille des siRNA- VEGF, famille des siRNA-TSPl, famille des siRNA FoxP3.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ladite pathologie est un cancer du sein, ou un mélanome, ou un glioblastome, ou un cancer du rein, ou un cancer du foie, ou un cancer de la vessie, ou un cancer du colon ou des métastases d'un de ces cancers se développant dans d'autres organes, ou une leucémie ou un myélome, et ledit au moins un siRNA appartient à l'une des 4 familles de siRNA suivantes : famille des siRNA-AR, famille des siRNA- VEGF, famille des siRNA- TSPl, famille des siRNA FoxP3, et en particulier le siRNA siAR-1, ou le siRNA siVEGF-1 , ou le siRNA siTSPl-1, ou le siRNA siFoxP3-l, seuls ou en association deux à deux ou trois à trois.
Dans un aspect particulier, l'invention concerne une composition pour son utilisation susmentionnée, dans laquelle ladite pathologie est un cancer de la prostate ou des métastases de ce cancer se développant dans d'autres organes, et ledit au moins un siRNA appartient à l'une des 4 familles de siRNA suivantes : famille des siRNA-AR, famille des siRNA- VEGF, famille des siRNA-TSPl, famille des siRNA FoxP3, et en particulier le siRNA siAR-1, ou le siRNA siVEGF-1, ou le siRNA siTSPl-1, ou le siRNA siFoxP3-2, seuls ou en association deux à deux ou trois à trois et plus particulièrement le siRNA siAR-1.
Dans un autre aspect, l'invention concerne également un dispositif fournissant un moyen d'administration systémique et continue d'une composition formulée pour un mode d'administration systémique continue comprenant au moins un siRNA ledit siRNA s'hybridant avec un ARNm codant ou non codant dont il induit la dégradation ou dont il inhibe la traduction, l'expression dudit ARNm ou de la protéine pour laquelle code ledit ARNm étant impliquée dans une pathologie, et la composition étant utilisée pour la prévention et/ou le traitement de ladite pathologie.
Dans un aspect particulier, ledit moyen d'administration systémique continu est notamment une pompe osmotique, une pompe-seringue, une pompe élastomérique, une pompe péristaltique, une pompe multi-canaux, une pompe contrôlée par le patient, une pompe « intelligente », ou une pompe « patch », ou une matrice polymérique ou un hydrogel, ou tout autre composé biodégradable visant à libérer de façon lente et continue le siRNA de telle sorte qu'il soit distribué de façon systémique dans l'organisme. Certains de ces dispositifs peuvent être utilisés dans d'autres indications thérapeutiques, pour délivrer un agent thérapeutique de façon discontinue, notamment en bolus. Dans le présent aspect, ils sont utilisés pour libérer la composition sus mentionnée avec un débit sensiblement constant et sans interruption pendant plusieurs jours à plusieurs semaines ou d'avantage. L'expression « débit sensiblement constant » signifie que le débit peut légèrement varier selon la précision du dispositif utilisé. Par exemple, la variation peut être d'environ plus ou moins 10% par rapport au débit fixé.
Le dispositif peut être mécanique ou électronique. Il peut être porté à l'extérieur ou implanté chirurgicalement, par exemple sous la peau, ou dans le péritoine, ou en intramusculaire. De façon non exhaustive ces dispositifs utilisables en clinique humaine sont : des pompes osmotiques, composées d'un réservoir souple entouré d'un compartiment contenant un gel salin qui en s 'hydratant compresse le réservoir interne en forçant l'expulsion du liquide. Ce mécanisme, qui est utilisé par exemple dans les pompes Duras de la société Durect utilisées en clinique humaine, est similaire à celui des pompes Alzet qui sont uniquement autorisés pour une utilisation chez les animaux ;
- des seringues automatisées comme par exemple : McKinley T34 ou T60, Bodyguard 323, AD syringe driver (Cardinal health), MS drivers (Smiths Médical) ; - des pompes en élastomère : le produit est contenu dans un réservoir compressible lui- même contenu dans un ballon exerçant une pression contrôlée sur le réservoir interne et forçant l'expulsion du liquide comme par exemple : Accufuser (WOO YOUNG Médical), Dosi-fuser (spirit médical), Exacta (Gamastech), Myfuser ;
- des pompes péristaltiques : une tubulure flexible est comprimée mécaniquement pour délivrer le contenu comme par exemple : iPrecio, SP100 (APT instruments) ;
- des pompes multicanaux ou simple canal contrôlées par le patient comme par exemple : Accucheck, one touch ping (Animas), Accufuser ;
- des pompes « patch » : le réservoir de produit adhère directement à la peau et contient un système intégré, sans tubulure, d'administration comme par exemple : CeQurPaQ,
Omnipod (Insulet), Finesse (Calibra), V-Go (Valeritas) ;
- des pompes dites « intelligentes » équipées de dispositifs de sécurité qui modulent l'administration du produit en fonction de paramètres prédéfinis ou mesurés chez le patient comme par exemple : miniMed 530G, paradigm Veo (medtronics), Vibe (Animas);
- des pompes implantables comme par exemple : Replenish minipump, Medtronic, Duras
Durect, Infusaid, promedos. Ces pompes permettent de délivrer de faibles volumes du produit thérapeutique, à des débits précis ou de façon automatique à des intervalles de temps prédéfinis.
Il peut également être envisagé de mettre les oligonucléotides secs dans un dispositif qui une fois mis sous la peau capture l'eau des tissus, et libère le siRNA qui est solubilisé dans les fluides extracellulaires. On peut également envisager d'incorporer le siRNA dans une matrice polymérique, un gel ou tout autre composé qui libère le siRNA de façon lente et prolongée dans le temps. Ce dispositif peut être un comprimé adhérant à la muqueuse et libérant le siRNA à travers celle-ci. Dans un aspect particulier, ledit siRNA administré par le dispositif susmentionné est associé à une molécule d'adressage.
Dans un aspect particulier, ledit siRNA administré par le dispositif susmentionné n'est pas associé à une molécule d'adressage.
Dans un aspect particulier, ledit au moins un oligonucléotide qui est administré par ledit dispositif comprend ou est constitué par l'un des siRNA appartenant aux familles de siRNA suivantes : famille des siRNA- AR, famille des siRNA- VEGF, famille des siRNA-TSPl, famille des siRNA FoxP3, et en particulier le siRNA siAR-1, ou le siRNA siVEGF-1, ou le siRNA siTSPl-1, ou le siRNA siFoxP3-2.
Dans un aspect préféré de l'invention, le siRNA délivré suivant un mode d'administration systémique continue est dilué dans une solution aqueuse contenant 154mM de NaCl.
Dans un aspect préféré de l'invention, le siRNA délivré suivant un mode d'administration systémique continue par voie sous cutanée dilué dans une solution aqueuse contenant 154 mM de NaCl appartient à l'une des 4 familles de siRNA suivantes : famille des siRNA-AR, famille des siRNA- VEGF, famille des siRNA-TSPl, famille des siRNA FoxP3, et en particulier le siRNA siAR-1, ou le siRNA siVEGF-1, ou le siRNA siTSPl-1, ou le siRNA siFoxP3-l, seuls ou en association deux à deux ou trois à trois.
Dans un autre aspect, la présente invention repose sur les résultats inattendus des Inventeurs, selon lesquels la concentration de siRNA dans le sérum, dans de nombreux tissus et/ou dans des tumeurs est plus élevée lorsque le siRNA est administré par voie systémique en étant formulé dans une solution tampon à pH acide que lorsque ce même siRNA est formulé dans une solution aqueuse contenant 154 mM de NaCl. La présence de cations comme le Zn2+ ou le Mg2+ dans une solution aqueuse de siRNA conduit à leur dégradation et lorsque le siRNA est administré de façon systémique, la présence de tels cations dans la solution d'injection réduit la concentration du siRNA dans le sérum et dans les organes. De façon inattendue, les Inventeurs ont observé que l'addition de cations dans une solution tampon à pH acide augmentait la concentration de siRNA dans le sérum, dans de nombreux tissus et/ou dans des tumeurs, lorsque ledit siRNA est administré par voie systémique.
Une solution tampon suivant la présente invention assure la stabilité du pH de la solution de dilution du siRNA. Des exemples de tels tampons sont donnés dans le Tableau 5.
Dans cet autre aspect, l'invention concerne ainsi une composition comprenant au moins un siRNA, ledit siRNA s'hybridant avec un ARNm, codant ou non codant, dont il induit la dégradation ou dont il inhibe la traduction, l'expression dudit ARNm ou de la protéine pour laquelle il code étant impliquée dans une pathologie, la composition étant utilisée pour la prévention et/ou le traitement de ladite pathologie, ladite composition étant formulée pour un mode d'administration systémique continue dans laquelle ledit au moins siRNA est dans une solution tampon à pH acide. Dans un aspect préféré de l'invention, le pH de la solution tampon est acide, allant de pH
3 à pH 7, préférentiellement de pH 5 à pH 6.5 et préférentiellement à pH 6.
Dans un aspect préféré de l'invention la solution tampon est un tampon citrate ou histidine à pH 6.
La présente invention repose également sur des résultats inattendus des Inventeurs selon lesquels la concentration de siRNA dans le sérum, dans de nombreux tissus et/ou dans des tumeurs est plus élevée lorsque le siRNA est administré par voie systémique continue en étant formulé dans une solution tampon à pH acide contenant des cations provenant de sels minéraux ou organiques, que lorsque ce même siRNA est formulé dans une solution tampon à pH acide sans cations ou dans une solution de NaCl 154mM. Ces cations au sens de l'invention ne sont pas des constituants de la solution tampon, ils ne sont pas destinés à assurer un effet tampon, mais ils sont ajoutés à cette solution tampon. Ces cations sont par exemple et de façon non limitative des polyamines, notament la putrescine, et/ou la spermidine, et/ou la spermine, et/ou des sels dont le cation est choisi parmi les cations métalliques tels que par exemple Zn2+, Co2+, Cu2+, Mn2+, Ca2+, Mg2+, Fe2+, le contre ion pouvant être d'une nature quelconque, par exemple un ion chlorure, nitrate, sulfate, ou carbonate. Dans un aspect préféré de l'invention, la solution tampon contient du MgC12, du ZnC12, du MnC12, ou un mélange deux à deux de ces sels, ou un mélange des trois sels.
Dans un aspect particulier, qu'ils soient utilisés seuls ou en combinaison, la concentration de chaque cation est comprise de 0.02 mM à 200 mM, préférentiellement de 0.05 à 100 mM et préférentiellement de 1 à 50mM. Dans un aspect préféré de l'invention, les cations sont ajoutés à une solution tampon qui est un tampon citrate ou un tampon histidine. Dans un aspect préféré de l'invention, le pH de cette solution est de 6.
Dans un aspect préféré de l'invention, le siRNA délivré suivant un mode d'administration systémique continue est dilué dans un tampon citrate ou histidine à pH 6 contenant du MgC12 à lOmM.
Dans un aspect préféré de l'invention, le siRNA délivré suivant un mode d'administration systémique continue, dilué dans un tampon acide contenant des cations appartient à l'une des
4 familles de siRNA suivantes : famille des siRNA-AR, famille des siRNA- VEGF, famille des siRNA-TSPl, famille des siRNA FoxP3, et en particulier le siRNA siAR-1, ou le siRNA siVEGF-1, ou le siRNA siTSPl-1, ou le siRNA siFoxP3-l, seuls ou en association deux à deux ou trois à trois.
Dans un autre aspect, la présente invention repose sur les résultats inattendus des Inventeurs selon lesquels la concentration de siRNA dans le sérum, de nombreux tissus et/ou des tumeurs est plus élevée lorsque le siRNA est administré par voie systémique continue contenant une molécule d'adressage.
Ainsi, selon l'invention et dans un aspect particulier, ladite composition contient un agent d'adressage, en particulier, ladite composition contient un agent d'adressage non couplé de façon covalente au siRNA.
Selon l'invention et dans un aspect particulier, ladite composition ne contient pas d'agent d'adressage.
Selon l'invention et dans un aspect particulier, ladite composition est formulée pour un mode d'administration systémique continue dans laquelle ledit au moins siRNA est dans une solution tampon à pH acide, ladite composition contient un agent d'adressage, en particulier, ladite composition contient un agent d'adressage non couplé de façon covalente au siRNA.
Selon l'invention et dans un aspect particulier, ladite composition est formulée pour un mode d'administration systémique continue dans laquelle ledit au moins siRNA est dans une solution tampon à pH acide, ladite composition ne contient pas d'agent d'adressage.
Dans un aspect particulier de l'invention, cette molécule d'adressage est un ligand du récepteur CD36, par exemple des LDL oxydés, de l'hexareline ou un acide gras à longue chaîne (plus de 16 carbones), ou un mélange de ces composants deux à deux ou trois à trois.
Dans un aspect préféré de l'invention, la composition susmentionnée contient des LDL oxydés dans un rapport poids:poids de 1 siRNA pour 0.01 à 10 LDL oxydés et préférentiellement de 0.1 à 1, ou de l'hexaréline, dans un rapport poids :poids de 1 siRNA pour 0.01 à 10 hexaréline, préférentiellement de 0.1 à 1.
Dans un aspect préféré de l'invention, la composition susmentionnée contient des LDL oxydés dans un rapport poids:poids de 1 siRNA pour 0.01 à 10 LDL oxydés et préférentiellement de 0.1 à 1, ou de l'hexaréline, dans un rapport poids :poids de 1 siRNA pour 0.01 à 10 hexaréline, préférentiellement de 0.1 à 1 et est administrée par voie systémique continue.
Dans un aspect préféré de l'invention, la composition susmentionnée est formulée pour un mode d'administration systémique continue dans laquelle ledit au moins siRNA est dans une solution tampon à pH acide, notamment dans un tampon citrate ou histidine, et ladite composition contient un agent d'adressage non couplé de façon covalente au siRNA, ledit agent d'adressage étant un ligand du récepteur CD36, ledit ligand au récepteur CD36 étant de préférence des LDL oxydés, de l' hexaréline, un acide gras à longue chaîne, ou un mélange de ces composant deux à deux ou trois à trois Dans un aspect préféré de l'invention, la composition susmentionnée est formulée pour un mode d'administration systémique continue dans laquelle ledit au moins siRNA est dans un tampon citrate et ladite composition contient un agent d'adressage, ledit agent d'adressage étant des LDL oxydés
Selon l'invention, ladite composition comprend au moins un siRNA, ledit siRNA s'hybridant avec un ARNm, codant ou non codant, dont il induit la dégradation ou dont il inhibe la traduction, l'expression dudit ARNm ou de la protéine pour laquelle il code étant impliquée dans une pathologie, la composition étant utilisée pour la prévention et/ou le traitement de ladite pathologie, ledit siRNA étant dans une solution contenant ou ne contenant pas d'agent de vectorisation.
Dans un aspect particulier, l'invention concerne une composition susmentionnée comprenant au moins un siRNA, ledit siRNA étant dans une solution ne contenant pas d'agent de vectorisation ou dans laquelle ledit siRNA n'est pas associé à un agent de vectorisation. Dans un aspect particulier, l'invention concerne une composition susmentionnée comprenant au moins un siRNA, ledit siRNA étant dans une solution contenant un agent de vectorisation.
Dans autre aspect, l'invention concerne une composition comprenant au moins un siRNA, ledit siRNA s'hybridant avec un ARNm, codant ou non codant, dont il induit la dégradation ou dont il inhibe la traduction, l'expression dudit ARNm ou de la protéine pour laquelle il code étant impliquée dans une pathologie, la composition étant utilisée pour la prévention et/ou le traitement de ladite pathologie, ladite composition étant formulée pour un mode d'administration systémique autre qu'un mode d'administration continue. Une administration en bolus unique ou répétée dans le temps ou une administration en infusion lente sur une durée allant de quelques minutes à quelques heures sont des exemples non limitatifs de mode d'administration systémique autre qu'un mode d'administration continue.
Dans un aspect particulier de l'invention, l'administration systémique autre qu'un mode d'administration continue de ladite composition comprenant au moins un siRNA peut être associée à une administration systémique continue de ladite composition, de façon simultanée, séparée ou étalée dans le temps.
Dans un aspect particulier, ladite composition peut être formulée pour un mode d'administration systémique autre qu'un mode d'administration continue dans laquelle ledit au moins siRNA est dans une solution tampon à pH acide, notamment dans un tampon citrate ou histidine. Dans un aspect particulier de l'administration systémique autre qu'un mode d'administration continue, la solution tampon à pH acide peut être additionnée de sels minéraux ou organiques, notamment de sel dont le cation est choisi parmi les polyamines, notamment choisi parmi la spermine, la spermidine ou la putrescine ou notamment de sel dont le cation est choisi parmi les cations métalliques, notamment choisi parmi les sels de zinc, cobalt, cuivre, manganèse, calcium, magnésium ou de fer, en particulier de manganèse, zinc, magnésium, seuls ou en combinaison deux à deux ou trois à trois
Dans un aspect particulier de l'administration systémique autre qu'un mode d'administration continue, ladite composition peut contenir un agent d'adressage,
Dans un aspect particulier de l'administration systémique autre qu'un mode d'administration continue, ladite composition contient un agent d'adressage, de préférence non couplé de façon covalente au siRNA.
Dans un aspect particulier de l'administration systémique autre qu'un mode d'administration continue, ladite composition ne contient pas d'agent d'adressage.
Ladite molécule d'adressage peut, par exemple, être un ligand du récepteur CD36, tels que des LDL oxydés, de l'hexaréline, un acide gras à longue chaîne, ou un mélange de ces composant deux à deux ou trois à trois Dans un aspect particulier, ledit siRNA est dans une solution ne contenant pas d'agent de vectorisation ou dans laquelle ledit siRNA n'est pas associé à un agent de vectorisation.
Dans un aspect particulier, ledit siRNA est dans une solution contenant un agent de vectorisation. Dans un aspect particulier, l'invention concerne une composition pour son utilisation selon un mode d'administration systémique, dans laquelle ledit siRNA est utilisé en association avec au moins un agent anti-angiogénique et/ou un agent anti-tumoral et/ou un agent immunothérapeutique, pour une utilisation simultanée, séparée ou étalée dans le temps.
Dans un autre aspect, la présente invention repose également sur les résultats inattendus des Inventeurs selon lesquels l'administration de siRNA ciblant la Thrombospondine-1 ou le VEGF, par un mode d'administration continue, en intracérébral ou en intrathécal, permet également de délivrer efficacement lesdits siRNA et d'inhiber ainsi l'expression génique du gène cible di siRNA. Ainsi, et dans cet aspect, la présente invention concerne une composition comprenant au moins un siRNA, ledit siRNA s'hybridant avec un ARNm codant ou non codant dont il induit la dégradation ou dont il inhibe la traduction, l'expression dudit ARNm ou de la protéine pour laquelle il code étant impliquée dans une pathologie, la composition étant utilisée pour la prévention et/ou le traitement de ladite pathologie, ladite composition étant formulée pour un mode d'administration continue, en intracérébral ou en intrathécal.
Dans un aspect de l'invention, ladite composition pour son utilisation susmentionnée en continue et en intracérébral, est notamment utilisée pour la prévention et/ou le traitement d'un cancer du cerveau, notamment un glioblastome. Lorsque la pathologie est un cancer du cerveau, notamment un glioblastome, les siRNA sont plus particulièrement choisis parmi l'une des 2 familles de siRNA suivantes : famille des siRNA- VEGF, famille des siRNA-TSPl, et en particulier le siRNA siVEGF-1, ou le siRNA siTSPl-1, seuls ou en association.
Dans un aspect particulier de l'invention, ladite composition pour son utilisation susmentionnée, est formulée pour un mode d'administration à une dose thérapeutiquement efficace en intracérébral ou intrathécal continue, en particulier à des doses de 0,01 mg/kg/jour à 10 mg/kg/jour, notamment 0,01 mg/kg/jour à 2 mg/kg/jour Dans autre aspect, l'invention concerne une composition pharmaceutique comprenant comme substance active au moins un siRNA, ledit siRNA s'hybridant avec un ARNm, codant ou non codant, dont il induit la dégradation ou dont il inhibe la traduction, l'expression dudit ARNm ou de la protéine pour laquelle il code étant impliquée dans une pathologie, ledit au moins siRNA étant en association avec un véhicule pharmaceutiquement acceptable dans une solution tampon à pH acide, notamment dans un tampon citrate ou histidine, additionnée ou non de sels minéraux ou organiques, notamment de sel dont le cation est choisi parmi les polyamines, notamment choisi parmi la spermine, la spermidine ou la putrescine ou notamment de sel dont le cation est choisi parmi les cations métalliques, notamment choisi parmi les sels de zinc, cobalt, cuivre, manganèse, calcium, magnésium ou de fer, en particulier de manganèse, zinc, magnésium, seuls ou en combinaison deux à deux ou trois à trois
Dans un aspect particulier, ledit au moins un siRNA est dans une solution ne contenant pas d'agent de vectorisation et est associé à une molécule d'adressage, ou est dans une solution contenant un agent de vectorisation et est associé à une molécule d'adressage, ou est dans une solution contenant un agent de vectorisation et n'est pas associé à une molécule d'adressage, ou est dans une solution ne contenant pas d'agent de vectorisation et n'est pas associé à une molécule d'adressage
La deuxième colonne indique la dénomination de l'oligonucléotide.
La troisième colonne indique la composition du siRNA, constitué par l'association d'un oligonucléotide de type brin 1 (respectiveme
lb) ou d'un oligonucléotide dont la séquence présente au moins 75% d'identité avec cet oligonucléotide de type brin 1 et d'u
oligonucléotide de type brin 2 (respectivement 2b) ou d'un oligonucléotide dont la séquence présente au moins 75% d'identité avec c
oligonucléotide de type brin 2 (respectivement 2b).
La quatrième colonne indique la numérotation de l'oligonucléotide telle que déposée
La cinquième colonne indique la séquence dans l'orientation 5' vers 3'. La notation [dT][dT] est utilisée pour indiquer la présence d
deux désoxythymidines débordantes.
La sixième colonne indique si le siRNA constitué par l'association des deux oligonucléotides dont la séquence est à 100% identique à cell
inscrite en colonne 5 s'hybride avec un ARNm humain (h), de rat (r), de souris (s), de singe (si) ou de chien (c). La conservation de la séquenc
cible d'un siRNA entre l'homme et d'autres espèces animales est avantageuse car elle augmente fortement la probabilité que les résultats de
études précliniques, notamment celles de toxicologie, soient prédictives des effets chez l'humain.
Lorsque les siRNA indiqués dans le Tableau 1 sont constitués de deux oligonucléotides simple brin dont la séquence est à 100% identique
celle inscrite dans le Tableau, ces siRNA ont de plus les caractéristiques suivantes :
- Le siRNA siAR-2 est décrit dans la demande PCT/FR2002/003843. La séquence cible (c'est-à-dire la séquence de l'ARNm à laquelle l
brin guide de ce siRNA s'hybride) de ce siRNA est présente chez l'homme dans tous les ARNm codant pour le récepteur des androgènes, que c
récepteur soit sauvage, muté, ou qu'il présente des variations d'épissage conduisant à la délétion partielle ou totale du domaine de liaison de
hormones (variant AR-V7 par exemple). Le siRNA siAR-1 correspond au siAR-2 délété de 2 nucléotides à l'extrémité 3'.
- Les séquences cibles des siRNA siAR-1, siAR-lb, siAR-2, siAR-2b sur lARNm codant le récepteur des androgènes sont conservée chez de nombreuses espèces dont l'homme, le rat, la souris, le singe, le chien.
- La séquence cible des siRNA siAR-3 et siAR-3b est située sur l'ARNm humain codant pour le récepteur des androgènes. Cette séquenc cible n'est que partiellement conservée chez les autres espèces.
- La séquence cible des siRNA siAR-4 et siAR-4b est située sur l'ARNm humain codant pour le variant V7 du récepteur des androgène exprimé notamment dans les cancers de la prostate résistants à la castration. Cette séquence cible n'est que partiellement conservée chez le autres espèces.
- Le siRNA AR-5 est décrit dans la demande PCT/FR2002/003843. La séquence cible de ce siRNA et du siRNA AR-5b est située s l'ARNm humain codant pour le récepteur des androgènes présentant la mutation T877A fréquemment retrouvée dans les cancers de la prostat Cette séquence cible n'est que partiellement conservée chez les autres espèces.
- Le siRNA siVEGF-1 est décrit dans la demande de brevet PCT/FR2002/003843. La séquence cible des siRNA siVEGF-1, siVEGF-l sur l'ARNm codant le VEGF est conservée chez de nombreuses espèces dont l'homme, le rat, la souris, le singe, le chien.
- Les siRNA siTSPl-1, siTSPl-lb, siTSPl-2 et siTSPl-2b ont été décrits dans la demande PCT/EP2010/061156. La séquence cible de siRNA siTSPl-1, siTSPl-lb sur l'ARNm codant la Thrombospondine-1 est conservée chez de nombreuses espèces dont l'homme, le rat, l souris, le singe, le chien.
- La séquence cible des siRNA siTSPl-2 et le siTSPl-2b sur l'ARNm humain codant la Thrombospondine-1 est partiellement conservé chez les autres espèces.
- Les siRNA siTSPl-3, siTSPl-3b, siTSPl-4, siTSPl-4b, siTSPl-5, siTSPl-5b sont les siRNA correspondant aux shRNAs mentionné dans la demande de brevet US2011/0166199.
- Les siRNA siFOXP3-l, siFoxP3-lb, siFOXP3-2 et siFoxP3-2b sont nouveaux et sont décrits pour la première fois dans la présent demande de brevet. Les séquences cible de ces siRNA sont situées sur l'ARNm humain codant le facteur de transcription FoxP3 et so conservées chez de nombreuses espèces dont l'homme, le rat, la souris, le singe, le chien.
Tableau 2 : Exemples d'agents anti-angiogéniques (Drug name) pouvant être utilisés dans la
présente invention
Tableau 3 : Exemples d'agents immunothérapeutiques (colonne "Modality") pouvant être utilisés dans la présente invention
Tableau 4 : Exemples d'agents anti-tumoraux (Drug Name) pouvant être utilisés dans la présente invention Références :
Bartlett, D.W., and M.E. Davis. 2006. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bio luminescent imaging. Nucleic Acids Res 34:322-333.
Compagno, D., C. Merle, A. Morin, C. Gilbert, J. Mathieu, A. Bozec, C. Mauduit, M.
Benhamed, and F. Cabon. 2007. SIRNA-Directed In Vivo Silencing of Androgen Receptor Inhibits the Growth of Castration-Résistant Prostate Carcinomas. PLoS ONE 2:el006.
Delloye-Bourgeois, C, E. Brambilla, M. -M. Coissieux, C. Guenebeaud, R. Pedeux, V. Firlej, F. Cabon, C. Brambilla, P. Mehlen, and A. Bernet. 2009. Interférence With Netrin-1 and Tumor Cell Death in Non-Small Cell Lung Cancer. J. Natl. Cancer Inst. 101 :237- 247.
Draper, D.E. 2004. A guide to ions and RNA structure. Rna 10:335-343.
Firlej, V., J.R.R. Mathieu, C. Gilbert, L. Lemonnier, j. Nakhlé, C. Gallou-Kabani, B.
Guarmit, A. Morin, N. Prevarskaya, N.B. Delongchamps, and F. Cabon. 2011.
Thrombospondin-1 Triggers Cell Migration and Development of Advanced Prostate Tumors. Cancer res earch 71 :7649-7658.
Forconi, M., and D. Herschlag. 2009. Métal Ion-Based RNA Cleavage as a Structural Probe.
Methods in Enzymology 468:91-106.
Heidel, J.D., S. Hu, X.F. Liu, T.J. Triche, and M.E. Davis. 2004. Lack of interferon response in animais to naked siRNAs. Nat Biotechnol 22:1579-1582.
McCaffrey, A.P., L. Meuse, T.T. Pham, D.S. Conklin, G.J. Hannon, and M.A. Kay. 2002.
RNA interférence in adult mice. Nature 418:38-39.
Pannequin, J., N. Delaunay, M. Buchert, F. Surrel, J.-F. Bourgaux, J. Ryan, S. Boireau, J.
Coelho, A. Pélegrin, P. Singh, A. Shulkes, M. Yim, G.S. Baldwin, C. Pignodel, G.
Lambeau, P. Jay, D. Joubert, and F. Hollande. 2007. [beta]-Catenin/Tcf-4 Inhibition After Progastrin Targeting Reduces Growth and Drives Differentiation of Intestinal Tumors. Gastroenterology 133: 1554-1568.
Robbins, M., A. Judge, and I. MacLachlan. 2009. siRNA and Innate Immunity.
Oligonucleotides 19:89-102.
Scomparin, A., D. Polyak, A. Krivitsky, and R. Satchi-Fainaro. 2015. Achieving successful delivery of oligonucleotides— From physico-chemical characterization to in vivo évaluation. Biotechnology Advances 33: 1294-1309.
Tatiparti, K., S. Sau, S.K. Kashaw, and A.K. Iyer. 2017. siRNA Delivery Stratégies: A Comprehensive Review of Récent Developments. Nanomaterials (Basel) 7:
van de Water, F.M., O.C. Boerman, A.C. Wouterse, J.G.P. Peters, F. G. M. Russel, and R.
Masereeuw. 2006. Intravenously administered short interfering rna accumulâtes in the kidney and selectively suppresses gene function in rénal proximal tubules. Drug metab dispos 34: 1393-1397.
Vlassov, V.V., L.A. Blakireva, and L.A. Yakubov. 1994. Transport of oligonucleotides across natural and model membranes. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes 1197:95-108. Zeimet, A.G., D. Reimer, A.C. Radl, A. Reinthaller, C. Schauer, E. Petru, N. Concin, S. Braun, and C. Marth. 2009. Pros and cons of intraperitoneal chemotherapy in the treatment of epithelial ovarian cancer. Anticancer Res 29:2803-2808.
L'invention sera mieux illustrée par les exemples et les figures suivantes. Les exemples ci-après visent à éclaircir l'objet de l'invention et illustrer des modes de réalisation avantageux, mais en aucun cas vise à restreindre la portée de l'invention.
Légende des figures :
Figure 1 : Représentation schématique de la méthode de quantification d'un siRNA par RT-qPCR. Exemple de gamme de référence. Figure 2 : L'injection intraveineuse du siRNA siAR-1 ne permet pas d'inhiber la croissance d'une tumeur prostatique xénogreffée chez la souris.
Croissance des tumeurs 22RV1 xenogreffées sur des souris traitées quotidiennement par voie intraveineuse par un siRNA contrôle (cont ; courbe grise) ou par siAR-1 à 0.12 mg/kg (courbe noire). Moyenne ± SEM, n=4 souris par groupe. Figure 3 : L'administration systémique continue d'un siRNA Luciférase (siLuc), qui ne cible pas d'ARNm exprimé chez la souris, permet sa distribution dans le sérum et différents organes.
Concentration moyenne (moles/L) du siRNA siLuc dans le sérum et différents organes de souris (n=3) ayant reçu par administration sous cutanée continue pendant 3 jours le siLuc à la dose de 2mg/kg/jour dilué dans une solution de NaCl 154mM.
Figure 4 : Les siRNA FoxP3-l et FoxP3-2 inhibent l'expression de FoxP3 dans des cellules tumorales. Les cellules prostatiques C4-2 ont été transfectées par siFoxP3-l ou par siFoxP3-2 ou par un siRNA contrôle (cont). Deux jours après transfection, la quantité d'ARNm FoxP3 dans les cellules, rapportée à la quantité de l'ARNm de la Cyclophiline A considérée comme invariable (méthode delta-delta CT) a été mesurée et rapportée à la valeur mesurée dans la condition contrôle. Figure 5 : le siRNA siFoxP3-2 administré de façon systémique par voie sous cutanée se distribue dans le sérum et différents organes. Concentration (moles/L, moyenne ± SEM, n=4 souris par groupe) dans le sérum et différents organes du siRNA siFoxP3-2 chez des souris ayant reçu quotidiennement pendant 4 jours consécutifs le siRNA siFoxP3-2 dilué dans un tampon citrate contenant lOmM de MgC12, administré à la dose de 0.12mg/kg en bolus par voie sous cutanée.
Figure 6 : l'administration quotidienne du siRNA siFoxP3-2 pendant 3 jours consécutifs à des souris mâles réduit la quantité dARNm codant FoxP3 dans les testicules. Quantification de lARNm codant FoxP3, rapporté à la quantité d'ARNm codant la cyclophiline A dans les testicules des souris traitées quotidiennement pendant 4 jours consécutifs en bolus par voie sous cutanée par le siRNA siFoxP3-2 dilué soit dans un tampon citrate contenant lOmM de MgC12, administré à la dose de 0.12mg/kg (noté siFoxP3-2), soit par le véhicule (noté "cont").
Figure 7 : L'administration simultanée de 3 siRNAs permet leur distribution dans le sérum et différents organes. Concentration des siRNA siAR-1 (barres noires), siTSPl-1 (barres gris foncé) et siLuc (barres gris clair) dans le sérum, la prostate et les os 10 minutes après injection sous cutanée d'un mélange de ces 3 siRNA dilués dans un tampon citrate lOmM à pH 6 contenant lOmM de MgC12. Pour chaque siRNA, la concentration sérique a été considérée comme ayant une valeur 1 et les concentrations dans les organes ont été rapportées à cette valeur dans le sérum.
Figure 8 : L'administration continue pendant 4 semaines du siAR-1 permet de maintenir sensiblement constante sa concentration sérique chez des singes. Concentration au cours du temps du siAR-1 formulé en NaCl 154mM administré de façon continue par voie sous cutanée pendant 4 semaines à des singes (n=4) à la dose de 0.05 mg/kg/jour. La concentration sérique moyenne mesurée à la fin de la seconde, troisième et quatrième semaine de traitement est rapportée à la moyenne de celle mesurée à la fin de la première semaine de traitement.
Figure 9 : Comparaison de la pharmacocinétique dans le sérum d'un siRNA après administration sous cutanée en bolus ou en continu.
Vingt-quatre heures avant implantation des pompes osmotiques comme décrit à la figure 8, les mêmes animaux ont reçu une injection sous cutanée unique en bolus de 0.05 mg/kg de siAR-1 formulé en solution saline (NaCl 154 mM) et la concentration a été mesurée au cours du temps. Le trait continu indique la moyenne des valeurs reportées dans la figure 8. On observe que la concentration sérique de siRNA augmente rapidement après l'injection en bolus puis que le siRNA est rapidement éliminé, indétectable dès la 3ème heure.
Figure 10 : L'administration systémique continue par voie sous cutanée d'un siRNA formulé en solution saline inhibe l'expression de sa cible dans les tissus plus efficacement qu'avec une administration en bolus.
Des pompes osmotiques délivrant une dose de siRNA siTSPl-1 de 0.12mg/kg/jour formulé en solution saline (NaCl 154mM) ont été implantées en sous cutané pendant 1 semaine chez des souris (groupe "continu", barres noires). Un autre groupe de souris a reçu chaque jour pendant 7 jours une injection sous cutanée en bolus de siRNA TSP1-1 à la dose de 0.12mg/kg formulé en solution saline (groupe "bolus", barres grises) (n=5 souris par groupe). En fin de traitement, dans chaque groupe, le siRNA siTSPl-1 a été quantifiés dans différents tissus (panneau A) et l'ARNm codant la TSP1 mesuré dans la prostate (panneau B). Dans le panneau A, pour chaque organe, les concentrations moyennes de siTSPl-1 mesurées dans le groupe "bolus" ont été rapportées à la moyenne de celles mesurées dans le groupe "continu" considérées comme ayant la valeur 1. Panneau B : L'expression de l'ARNm codant la TSP1 mesurée par RT-qPCR dans les différents organes et dans les groupes "continu" (barres grises) ou bolus (barres noires) a été rapportée à celle mesurée dans les organes d'un groupe de souris traitées par la solution de NaCl 154mM ne contenant pas le siRNA (groupe "véhicule", barres blanches). Figure 11 : Effet de l'administration de siRNA en bolus ou en continu sur la croissance tumorale. Des souris Nude ont été greffées avec des cellules prostatiques C4-2. Une fois la prise tumorale constatée, les souris ont été traitées par le siRNA siAR-1.
Panneau A : Mesure au cours du temps du volume des tumeurs (moyenne ± SEM, n= 10 animaux par groupe) chez les souris ayant reçu le siAR-1 formulé en solution saline (NaCl 154 mM) et administré par voie sous cutanée quotidiennement à la dose de 0.12mg/kg/jour (symboles noirs, traits discontinus) ou de lmg/kg (symboles noirs, traits continus). Un groupe contrôle (symboles blancs) a reçu une injection quotidienne du véhicule (NaCl 154mM).
Panneau B : Des pompes osmotiques implantables Alzet ont été remplies soit avec une solution saline (groupe véhicule, 154mM NaCl, losanges blancs), soit avec le siRNA siAR-1 formulé en solution saline (154 mM NaCl). La concentration du siRNA a été ajustée en fonction du débit de la pompe pour délivrer une dose quotidienne de 0.02 mg/kg/jour (losanges gris clair), 0.2 mg/kg/jour (losanges gris foncés) ou 2 mg/kg/jour (losanges noirs). Les pompes ont été implantées en sous cutané chez les animaux et les tumeurs mesurées au cours du temps (moyenne ± SEM, n= 8 animaux par groupe).
Figure 12 : Inhibition des métastases osseuses de cancers de la prostate par administration systémique continue de siAR-1. Panneau de gauche : Niveau d'expression de l'ARNm de AR humain, dans le tibia de souris nude porteuses de tumeurs prostatiques humaines 22RV1 chez des souris traitées par le véhicule (NaCl 154 mM, barre noire) ou par le siAR-1 dilué dans ce véhicule (barre grise) et administré par voie sous cutanée de façon continue pendant 3 semaines (moyenne ± SEM, n=7 valeurs rapportées à la valeur de la moyenne du groupe NaCl). Panneau de droite : Charge métastatique dans l'os, mesurée par l'expression de l'ARNm de l'HPRT humain dans les deux groupes d'animaux. Chaque barre représente la charge métastatique osseuse dans une souris. "0" indique que l'ARNm de l'HPRT n'a pas été détecté chez cet animal.
Figure 13 : Immunodétection du récepteur des androgènes dans la prostate de souris traités par siAR-1 par administration sous cutanée continue pendant 1 mois. De gauche à droite les photos sont représentatives des prostates de groupes de souris (n=10) traitées par le véhicule (NaCl 154 mM), ou siAR-1 aux doses de 0.2 mg/kg/jour, 2 mg/kg/jour, 10 mg/kg/jour.
Figure 14 : Immunodétection du récepteur des androgènes dans la prostate de rats traités par siAR-1 par administration sous cutanée continue pendant 2 semaines. Les photos sont représentatives des prostates de rats traitées par le véhicule (NaCl 154 mM) "cont", ou siAR-1 aux doses de 0.1 mg/kg/jour ou 0.9 mg/kg/jour.
Figure 15 : Quantification de siAR-1 dans différents organes de singes ayant reçu une administration continue sous cutanée de ce siRNA pendant un mois à la dose de 5 mg/kg/jour (n=4 animaux). La concentration de siAR-1 dans les organes a été rapportée à la concentration mesurée dans le sérum.
Figure 16 : Quantification du PSA (Prostate Spécifie Antigen) dans le sérum de singes Cynomolgus (n=6 par groupe) avant traitement, ou après traitement pendant 1 mois par administration sous cutanée continue d'une solution saline (NaCl 154mM) ou de siAR-1 dans solution saline à la dose de 5 mg/kg/jour. Ordonnée : PSA sanguin en pg/ml. La limite de détection du test ELISA (LLOQ ou lower limit of quantification) indiquée par un trait pointillé, est de 120 pg/ml. Les valeurs inférieures à cette valeur sont arbitrairement indiquées comme 119 pg/ml.
Figure 17 : Immunodétection de la TSPl et des vaisseaux sanguins (marquage CD31) dans des tumeurs de glioblastome U87 implantées dans le cerveau de souris nude traitées pendant 15 jours par administration intracérébrale continue, de siTSPl-1 (noté siRNA TSPl) ou d'un siRNA contrôle (siRNA-cont), le cathéther délivrant le siRNA étant implanté à distance de la tumeur.
Figure 18 : Analyse par électrophorèse en gel d'acrylamide de l'intégrité d'un siRNA incubé dans différentes conditions. Pistes 1, 5, et 7 : siTSPl-1 en solution aqueuse; Piste 2 : mélange (1 : 1, poids:poids) de siTSPl-1 et de LDL oxydés; Piste 3 : mélange (1 : 10, poids:poids) de siTSPl-1 et de LDL oxydés ; Piste 4 : mélange (1 : 1, poids:poids) de siTSPl-1 et d'hexaréline ; Piste 6 : siTSPl-1 dans une solution aqueuse ajustée à pH 6 contenant 0.1 mM de ZnC12; Piste 8 : siTSPl-1 en tampon citrate 10 mM pH 6 ; Piste 9-11 : siTSPl-1 en tampon citrate 10 mM pH 6 additionné de 1 mM de ZnC12 incubé à 37°C pendant 10 minutes (piste 9), lheure (piste 10) ou 6h (piste 11). M : marqueur de poids moléculaire (25 pb DNA ladder Invitrogen).
Figure 19 : Concentration de siTSPl-1 dans le sérum et la prostate après administration de ce siRNA par voie sous cutanée en bolus ; Effet de la formulation.
Des groupes de souris adultes ont reçu une administration en bolus par voie sous cutanée du siRNA siTSP-1 à la dose de 0.12 mg/kg formulé soit dans une solution contenant 154 mM de NaCl (groupe contrôle barres grises), soit dans une solution aqueuse contenant 0.165 mM de ZnC12 (barres noires). La concentration de siRNA mesurée dans le sérum et la prostate de ces différents groupes de souris a été mesurée 20 minutes après injection et rapportée à la valeur du groupe contrôle considérée comme 1. Figure 20 : Concentration du siAR-1 dans le sérum et différents organes en fonction de la formulation du siRNA administré.
Concentration de siARl dans le sérum ou les tissus de souris ayant été injectés par voie sous cutanée avec le siRNA siAR-1 formulé dans l'une des solutions suivantes : NaCl 154mM (NaCl, groupe contrôle) ; tampon citrate lOmM pH 6 (Cit) ; tampon citrate lOmM pH 6 additionné de O. lmM de MnC12 (Cit/Mn), ou de 0.1 mM de MgC12 (Cit/Mg), ou de 0.1 mM de ZnC12 (Cit/Zn), ou de O. lmM de ZnC12 et de 0.1 mM de MnC12 (Cit/ZnMn), ou de O.lmM de ZnC12 et de O. lmM de MnC12 et de O. lmM de MgC12 (Cit/ZnMnMg), ou de 10 mM de ZnC12 (Cit/ZnlO) ou de 0.05 mM de spermidine (Cit/Sperm).
Panneau A : valeurs mesurées dans le sérum d'animaux mâles ayant reçu le traitement indiqué. Panneau B : valeurs mesurées dans la prostate (barres gris foncé) ou la rate (barres gris clair) d'animaux mâles ayant reçu le traitement indiqué.
Panneau C : valeurs mesurées dans la rate d'animaux femelles ayant reçu le traitement indiqué.
Figure 21 : Un mélange des 3 siRNA suivants : siAR-1, siTSPl-1 et siLuc a été préparé soit en solution saline (NaCl 154mM), soit en tampon citrate lOmM pH 6 contenant 7.5 mM de MgC12 et administré par voie sous-cutanée continue pendant 3 jours à des souris porteuses de tumeurs 4T1, chaque siRNA étant délivré à raison de 2mg/kg/jour. Le siRNA a été dosé dans le sérum et différents organes, y compris les tumeurs 4T1. Les concentrations de chaque siRNA, mesurées dans le sérum, les organes (panneau A) et les tumeurs (panneau B), ont été rapportées à celle mesurée pour le siRNA considéré dans le sérum des souris du groupe contrôle (NaCl 154mM). Barres noires : siAR-1, barres gris foncé, siTSPl-1, barres gris clair : siLuc.
Figure 22 : Le siRNA siRNA siAR-1, à la dose de 0.12 mg/kg, formulé dans une solution de 154 mM de NaCl (groupe contrôle, noté NaCl) ou dans un tampon citrate 10 mM pH 6 additionné soit de (siRNA:hexaréline, 1 :0,2 poids:poids) Cit/Hexarelin), soit de LDL oxydés (siRNA:LDL oxydés, 1 : 1 : poids :poids) (Cit/LDL) a été administré par voie sous cutanée à des groupes de souris adultes. La concentration du siRNA mesurée dans le sérum (panneau A), dans la prostate (panneau B, barres gris foncé) ou la rate (panneau B, barres gris clair) de ces différents groupes de souris a été mesurée 20 minutes après injection et rapportée à celle du groupe contrôle (NaCl).
Figure 23 : La concentration dans le sérum, les tissus et tumeurs d'un siRNA administré de façon systémique et continue par voie sous cutanée est augmentée lorsqu'il est formulé dans un tampon citrate contenant des LDL oxydés. Des pompes osmotiques ont été implantées en sous cutanée sur des souris porteuses de tumeur 22RV1 afin de délivrer de façon systémique et continue pendant 3 jours 2mg/kg/jour de siAR-1 et 0.2 mg/kg/jour de LDL oxydés, formulés soit dans du NaCl 154mM soit dans un tampon citrate lOmM à pH 6. Les concentrations de siAR-1 dans le sérum, les organes et les tumeurs mesurées après injection de la composition en tampn citrate ont été rapportées à celles mesurées après injection de la composition en NaCl.
EXEMPLES Exemple 1 : Matériel et Méthodes
1. Quantification de siRNA par une méthode de RT-PCR quantitative modifiée
Pour quantifier un siRNA dans les échantillons biologiques, les inventeurs ont développé une méthode de réverse transcription suivie d'une PCR quantitative (RT-qPCR). Pour chaque siRNA, une amorce tige-boucle spécifique, présentant 8 nucléotides débordants est synthétisée, les 8 nucléotides étant complémentaires des 8 nucléotides de l'extrémité 3' du brin guide (antisens) du siRNA. Après une étape de reverse transcription, le produit obtenu est amplifié par PCR à l'aide de deux amorces, l'une s'hybridant avec la région correspondant à la boucle de l'amorce de reverse transcription. Les 12 nucléotides en 3 ' de la seconde amorce ayant une séquence ADN correspondant aux 12 nucléotides de l'extrémité 5' du cDNA nouvellement synthétisé après reverse transcription du brin guide du siRNA. La détection de l'amplification est réalisée de façon continue par la dégradation d'une sonde fluorescente Taqman ou par incorporation de SybrGreen.
Une gamme de siRNA double brins, de 103 à 109 copies dans la réaction de RT, diluées dans de l'eau est réalisée et traitée en même temps que les échantillons par RT-qPCR. La Figure 1 représente schématiquement la méthode de RT-qPCR et un exemple de gamme montrant la relation entre le nombre de copies présentes dans la réaction et le CT (cycle threshold ou seuil d'amplification) obtenu.
Les échantillons biologiques dans lesquels les siRNA sont quantifiés sont de différentes origines :
- Des ARN totaux extraits à partir de fragments de tissus de poids connu supposés contenir le siRNA. Ces ARN sont extraits par des méthodes conventionnelles telles que par la méthode au phénol-chloroforme (extraction au trizol). Après extraction, ils sont dilués dans de l'eau ;
- Du sérum. Dans ce cas, un volume connu de sérum est dilué dans de l'eau contenant un inhibiteur de RNAse au 1/100° ou davantage dilué si la concentration de siRNA est très élevée. Les valeurs des CT obtenus pour chaque échantillon sont comparées à celles obtenues pour la gamme. Ceci permet de calculer le nombre de copies de siRNA présent dans l'échantillon dosé. Les valeurs sont alors rapportées d'abord à la quantité d'ARN total réverse transcrit, puis au poids de tissu dont les ARN ont été extraits ou au volume de sérum, et les résultats finaux sont exprimés en moles/L (M) en considérant que la densité de tous les tissus est de lg/cm3.
2. Lignées cellulaires
Les lignées cellulaires utilisées dans les exemples sont des lignées cellulaires issues de tumeurs de prostate chez l'homme, résistantes à la castration et exprimant le récepteur des androgènes (lignées C4-2 et 22RV1), de tumeurs mammaires de souris (4T1), ou de glioblastome humain U87.
3. Greffe de cellules tumorales chez les souris
Les tumeurs sont obtenues par injection sous cutanée de cellules tumorales dans le flanc de souris Nude (tumeurs 22RV1, C4-2) ou de souris BalB/C (tumeurs 4T1). Seuls les animaux sur lesquels la prise tumorale est constatée sont inclus dans l'étude et randomisés pour recevoir le traitement ou le traitement contrôle. Les injections de siRNA en bolus sont effectuées à raison de 1 fois par jour, 5 jours par semaine. Dans d'autres expériences, les cellules U87 ont été implantées dans le parenchyme cérébral de souris Nude par injection stéréotaxique. Tous les siRNA sont dilués dans de l'eau contenant 154mM de NaCl ou dans le tampon indiqué. Lorsqu'elles sont utilisées, les pompes osmotiques (par exemple pompes Alzet) sont implantées en sous cutané sur le dos des souris, du côté opposé à la tumeur si la souris en porte une. Dans le cas des tumeurs U87 implantées en orthotopique, la pompe osmotique est implantée sous la peau et un cathéter placé à la sortie de la pompe est relié à un dispositif fixé sur la boite crânienne par un ciment et délivrant le composé dans le cerveau, à distance de la tumeur implantée précédemment.
Le volume des tumeurs sous cutanées est estimé en mesurant à l'aide d'un pied à coulisse le plus grand (D) et le plus petit (d) diamètre des tumeurs. Le volume est calculé par la formule V= Dxdxdx0.5. En fin d'expérience, les animaux sont sacrifiés, le sérum, les tumeurs et différents tissus sont disséqués, les ARN extraits et les siRNA présents dans ces ARN sont quantifiés. Tous les protocoles expérimentaux utilisés ont été validés par les comités d'éthique et autorités réglementaires françaises. Ils sont mis en œuvre de façon à limiter le nombre d'animaux utilisés et à éviter toute souffrance inutile.
4. siRNA utilisés Les siRNA utilisés dans les exemples sont ceux du Tableau 1.
Dans certaines expériences un siRNA ne s'hybridant avec aucun ARNm connu (siRNA Contrôle) a été utilisé. La séquence de ce siRNA est :
SEQ ID NO 55 : 5*UAGCAAUGACGAAUGCGUA[dT][dT]
SEQ ID NO 56 : 5*UACGCAUUCGUCAUUGCUA[dT][dT] Un siRNA ciblant la luciférase, gène qui n'existe pas chez les mammifères, a également été utilisé. La séquence de ce siRNA est :
SEQ ID NO 57 : 5'-CUUACGCUGAGUACUUCGA[dT][dT]
SEQ ID NO 58 : 5'-UCGAAGUACUCAGCGUAAG[dT][dT]
5. Préparation des pompes osmotiques Les siRNA sont dilués en solution saline (eau pour injection additionnée de 154mM de
NaCl) ou dans le tampon indiqué à la concentration nécessaire pour atteindre l'administration de la quantité désirée sur une période de 24h. Cette concentration est calculée en tenant compte du volume horaire délivré par la pompe, comme indiqué par le fabricant (Alzet). La pompe est remplie stérilement et implantée sous la peau des animaux traités (souris, rats, singes). Le cathéther placé en sortie de la pompe libère son contenu soit sous la peau, soit dans une autre localisation afin d'obtenir une administration intrathécale ou intracérébrale. Les pompes sont maintenues en place, de quelques jours et jusqu'à 4 semaines suivant le protocole indiqué.
Une étude préalable a montré que des solutions stériles de siRNA sont stables pendant au moins 4 semaines à 37°C.
Exemple 2 : Absence d'inhibition de la croissance tumorale par des siRNA injectés par voie intraveineuse en bolus.
Des souris nude mâles de 9 semaines ont été xénogreffées en sous cutané sur le flanc avec des cellules 22RV1. Après constation de la prise tumorale et randomisation, les souris ont reçu une injection intraveineuse quotidienne de siRNA contrôle ou de siAR-1 à la dose de 0.12 mg/kg pendant 13 jours. Le volume tumoral a été mesuré quotidiennement. Les résultats sont présentés dans la Figure 2. On constate que l'injection IV du siAR-1 est sans effet sur la croissance des tumeurs. Exemple 3 : Il n'est pas nécessaire que le siRNA cible un ARNm exprimé dans l'organisme pour qu'il se distribue. Un siRNA dirigé contre la luciferase de luciole siLuc, à la dose de 2mg/kg/jour, formulé dans une solution de NaCl 154mM a été administré à des souris par voie sous cutanée continue pendant 3 jours à l'aide de pompes osmotiques implantées. La quantification du siRNA siLuc dans le sérum et différents organes présentée dans la figure 3 montre qu'il s'y distribue efficacement de façon systémique alors même qu'il n'y a pas d'ARNm cible de ce siRNA dans ces tissus.
Exemple 4 : Identification de siRNA inhibant FoxP3 et se distribuant dans les tissus in vivo.
1. Inhibition de l'expression du facteur de transcription FoxP3 dans les cellules C4-2.
Des cellules C4-2 ont été transfectées par un siRNA contrôle ou par les siRNA siFoxP3-l ou siFoxP3-2. 48h après transfection, les cellules ont été lysées, les ARN extraits et l'expression de FoxP3 mesurée par RT-qPCR. Les valeurs sont normalisées par l'expression de l'ARN codant pour la cyclophiline-A (méthode delta delta CT). Les résultats sont présentés dans la Figure 4 qui montre que les deux siRNA FoxP3-l et FoxP3-2 inhibent l'expression de FoxP3.
2. Le siRNA siFoxP3-2 se distribue dans le sérum et différents organes et inhibe l'expression de FoxP3.
Des souris (4 par groupe) ont reçu quotidiennement pendant 4 jours consécutifs par voie sous cutanée soit 0.12 mg/kg du siRNA siFoxP3-2 formulé dans du tampon citrate à pH 6 contenant lOmM de MgC12, soit seulement ce tampon (groupe contrôle). La figure 5 montre que le siFoxP3-2 se distribue de façon systémique dans le sérum et dans différents organes et la Figure 6 montre que dans les testicules, le siFoxP3-2 inhibe fortement l'expression de l'ARNm codant FoxP3 par rapport au groupe contrôle. Administré en absence d'agent de vectorisation, le siRNA siFoxP3-2 est donc capable de se distribuer in vivo de façon systémique et d'inhiber l'expression de son gène cible. Exemple 5 : L'administration simultanée de 3 siR As permet leur distribution systémique dans le sérum et différents organes. Les siRNA siAR-1 , siTSPl-1 et siLuc ont été dilués dans un tampon citrate lOmM à pH 6 contenant lOmM de MgC12. Le mélange a été administré par voie sous cutanée à des souris de telle sorte que les souris reçoivent une dose de 0.12mg/kg de chacun des 3 siRNA. Les souris ont été sacrifiées 10 minutes après injection et chaque siRNA a été dosé séparément dans le sérum et différents tissus. On observe que les 3 siRNA sont présents dans le sérum et dans les différents organes testés (Figure 7). L'administration d'un cocktail de plusieurs siRNAs permet donc leur distribution systémique simultanée dans différents tissus.
Exemple 6 : Administration d'un siRNA formulé en solution saline par voie sous cutanée continue. Dans cet exemple, les siRNAs sont formulés en solution saline (NaCl 154 mM).
1. La concentration sérique d'un siRNA administré de façon continue reste
sensiblement constante. Des pompes osmotiques délivrant une dose de siRNA siAR-1 de 0.05mg/kg/jour formulé en solution de NaCl 154mM ont été implantées en sous cutané pendant 4 semaines chez des singes Cynomolgus. La concentration sérique du siRNA a été mesurée chaque semaine pendant toute la durée du traitement. On observe que la concentration sérique varie de moins de 20% par rapport à la première mesure (considérée comme ayant la valeur 1) (Figure 8). Vingt-quatre heures avant implantation des pompes osmotiques, les animaux ont reçu une injection sous cutanée unique en bolus de 0.05 mg/kg de siAR-1 formulé en solution saline (NaCl 154 mM) et la concentration a été mesurée au cours du temps. Par comparaison avec l'administration systémique continue, l'injection par voie sous cutanée en bolus de la dose de 0.05 mg/kg aboutit à une élimination rapide (Figure 9) qui, si elle est répétée dans le temps, par exemple quotidiennement, aboutit à un effet de pics et de vallées qui est évité par l'administration continue.
2. L 'administration par voie sous cutanée continue est plus efficace que la voie sous cutanée en bolus pour inhiber l'expression du gène cible du siRNA.
Des souris ont reçu une injection sous cutanée quotidienne pendant 4 jours du siRNA siTSPl-1 à la dose de 0.12 mg/kg/jour, formulé en solution saline (NaCl 154mM), ou le même siRNA formulé dans la même solution mais administré de façon continue pendant 4 jours par une pompe osmotique, à la dose de 0.2 mg/kg/jour. On observe que le siRNA siTSPl-1 se distribue dans plusieurs organes à des niveaux comparables après administration par voie sous cutanée de façon continue ou en bolus (Figure 10A). L'administration du siTSPl-1 produit une meilleure inhibition dans les tissus de l'expression de l'ARNm de la TSP1, lorsque le siRNA est administré en continu que lorsqu'il est administré en bolus (Figure 10B).
3. L 'administration par voie sous cutanée continue est plus efficace que la voie sous cutanée en bolus pour inhiber la croissance tumorale
Des cellules C4-2 ont été greffées chez des souris. Une fois la prise tumorale constatée, les souris ont été traitées par administration du siRNA siAR-1 formulé en solution saline (NaCl 154mM) à différentes doses ou par le véhicule. Le siRNA a été administré par voie sous cutanée, soit de façon discontinue, par une injection quotidienne, soit de façon continue, par implantation d'une pompe osmotique pendant 1 mois. On observe que la croissance de tumeurs C4-2 chez des souris n'est pas inhibée par l'administration par voie sous cutanée en bolus du siRNA siAR-1 à la dose de 0.12 mg/kg/jour ou même de 1 mg/kg/jour répétée quotidiennement (Figure 11 A), alors qu'elle est inhibée lorsque le même siRNA est administré par voie sous cutanée de façon continue par implantation d'une pompe osmotique, délivrant la dose de 0.2 mg/kg/jour. L'inhibition n'est pas améliorée en augmentant la dose administrée d'un facteur 10 (2 mg/kg/jour) (Figure 11B). L'administration systémique d'un même siRNA est donc plus efficace pour inhiber la croissance tumorale lorsque ce siRNA est administré de façon continue que de façon discontinue.
4. Inhibition de métastases osseuses d'une tumeur
Des cellules 22RV1 ont été implantées chez des souris Nude. Une fois la prise tumorale constatée, des pompes Alzet administrant 0.2 mg/kg/jour du siRNA siAR-1 fomulé dans une solution saline (NaCl 154mM), ou le véhicule seul ont été implantées pendant 3 semaines. En fin de traitement, les os (tibia) ont été récupérés pour y quantifier le siAR-1, et les ARNm d'origine humaine codant pour le récepteur des androgènes et l'HPRT.
L'administration du siRNA siAR-1 par voie sous cutanée continue à des souris porteuses de tumeurs prostatiques humaines 22RV1 permet d'inhiber l'expression du récepteur des androgènes dans les os des souris (Figure 12 panneau de gauche). Cette inhibition s'accompagne d'une diminution du nombre de souris développant spontanément des métastases osseuses de ces tumeurs et d'une diminution de la taille de ces tumeurs, évaluée par le niveau d'expression d'un ARNm humain (HRPT) dans les os (Figure 12 panneau de droite).
L'administration systémique continue d'un siRNA permet donc de le délivrer dans les métastases d'un cancer se développant dans l'os, d'inhiber l'expression du gène cible du siRNA dans l'os et de limiter l'implantation et/ou le développement des métastases.
5. Inhibition de l'expression du récepteur des androgènes dans la prostate de souris et de rats
Des pompes osmotiques délivrant le siRNA siAR-1 formulé en solution saline (NaCl 154mM) ont été implantées en sous cutané chez souris pendant 1 mois ou chez des rats pendant 2 semaines. Cette administration, à des souris à une dose supérieure ou égale à 0.2 mg/kg (Figure 13) ou à des rats à une dose supérieure ou égale à 0.1 mg/kg (Figure 14) inhibe efficacement l'expression protéique du récepteur des androgènes dans la prostate de ces animaux.
6. Distribution d'un siRNA dans les tissus chez le singe Des singes mâles adultes ont reçu pendant 4 semaines une injection sous-cutanée continue de siAR-1 formulé en solution saline (NaCl 154mM) à la dose de 5 mg/kg/jour, à l'aide d'une pompe osmotique. Les animaux ont été sacrifiés et siAR-1 quantifié dans différents organes.
Les résultats sont présentés à la Figure 15. Il est constaté que le siRNA siAR-1 se distribue efficacement de façon systémique dans les différents organes analysés.
7. Inhibition de la production de PSA chez des singes
L'antigène Spécifique de la Prostate ou PSA est détecté dans le sérum de singes mâles matures, même en l'absence de pathologie prostatique. L'administration par voie sous cutanée continue du siRNA siAR-1 pendant 4 semaines à la dose de 5mg/kg/jour conduit à une diminution de l'expression du PSA dans le sérum des animaux, sous le seuil de détection du test ELISA utilisé pour le dosage (Figure 16). L'administration par voie sous cutanée continue d'un siRNA chez les singes permet donc de le distribuer de façon systémique dans de nombreux organes où il exerce son effet inhibiteur de l'expression génique.
Exemple 7 : Inhibition de l'expression de la TSP1 dans un glioblastome par administration intracérébrale continue de siRNA formulés en solution saline (NaCl 154mM). Des souris nude femelles ont été greffées en orthotopique avec des cellules de glioblastome U87. Les animaux ont été implantés avec une pompe osmotique placée en sous cutané dans le dos, la sortie de la pompe étant reliée à un cathéther délivrant dans le cerveau, à distance de la tumeur, un siRNA contrôle ou le siRNA siTSPl-1 contenu dans la pompe, à raison de 2mg/kg de poids de cerveau/jour. Après 8 jours, les souris ont été sacrifiées, et l'expression de la TSPl détectée par immuno fluorescence sur coupes des cerveaux. Les résultats sont présentés dans la Figure 17.
On observe une forte diminution de l'expression de la TSPl chez les animaux traités par rapport aux contrôles. La TSPl est une protéine qui inhibe la formation des vaisseaux sanguins (angiogenèse). On observe chez les animaux traités une augmentation de la densité des vaisseaux sanguins détectés sur une coupe adjacente par immuno marquage de l'antigène CD31.
L'administration intracérébrale continue d'un siRNA permet donc d'inhiber efficacement l'expression du gène cible du siRNA dans une tumeur se développant dans cet organe et d'y produire les effets biologiques attendus.
Exemple 8: Un tampon acide évite la dégradation d'un siRNA en présence de cations.
1. Un siRNA est dégradé en présence de ZnCh dans une solution aqueuse dont le pH a été ajusté à 6. Un tampon citrate à pH 6 préserve le siRNA.
La dégradation du siRNA siTSPl-1 a été mesurée après formulation de ce siRNA dans différentes conditions. L'intégrité du siRNA siTSPl-1, a été vérifiée par dépôt sur un gel d'acrylamide d'une quantité équivalente à 300 ng de siRNA à partir d'une solution de siRNA ayant subi les traitements suivants :
- mélange (1 : 1, poids:poids) de siTSPl-1 et d'hexaréline ; - mélange (1 : 1 ou 1 : 10, poids:poids dans de l'eau) de siTSPl-1 et de LDL oxydés ; incubation 4h à 37°C.
- incubation 1 heure à température ambiante de siTSPl-1 dans une solution aqueuse de 0.164 mM de ZnC12
- incubation 10 minutes, lheure ou 6heures à 37°C de siTSPl-1 dans une solution de 1 mM de ZnC12 dans un tampon lOmM Citrate à pH 6.
On constate sur la Figure 18 que le siRNA est dégradé lorsqu'il est incubé dans une solution aqueuse de ZnC12. Cette dégradation ne se produit pas dans un tampon citrate à pH 6 contenant jusqu'à 6 fois plus de ZnC12. Aucune dégradation du siRNA n'est constatée lorsqu'il est mélangé dans de l'eau avec des LDL oxydés ou de l'hexareline.
La présence d'un tampon à pH acide permet donc de maintenir l'intégrité d'un siRNA en présence de cations.
2. La formulation d'un siRNA dans une solution aqueuse contenant du ZnCl2 réduit sa concentration dans le sérum et sa distribution dans les tissus.
Le siRNA siTSPl-1 formulé soit dans du NaCl 154mM, soit dans de l'eau contenant 0.165 mM de ZnCl2 et administré par voie sous cutané à des souris à la dose de 0.12 mg/kg. La concentration du siRNA mesurée dans le sérum et les tissus est réduite lorsque le siRNA est formulé dans une solution aqueuse contenant des cations par rapport aux résultats obtenus lorsque le même siRNA est administré à la même dose et de la même façon mais formulé en solution saline (154 mM NaCl) (Figure 19).
Exemple 9 : Formulations améliorant la biodistribution d'un siRNA in vivo
1. La concentration dans le sérum et les tissus d'un siRNA administré de façon systémique est augmentée lorsqu 'il est formulé dans un tampon citrate et plus encore dans un tampon citrate contenant différents cations.
Le siRNA siAR-1 à la dose de 0.12 mg/kg, formulé dans différentes solutions a été administré par voie sous cutanée à des souris. La concentration de siAR-1 mesurée dans le sérum ou organes de ces différents groupes de souris a été mesurée 20 minutes après injection et comparée à celle du groupe contrôle, consitué d'animaux ayant reçu le siRNA dilué dans une solution aqueuse contenant 154 mM de NaCl (noté NaCl).
En comparaison avec une formulation dans une solution saline (NaCl 154 mM), la formulation du siRNA siAR-1 dans un tampon Citrate lOmM pH 6 augmente la concentration de ce siRNA dans le sérum (Figure 20A). Cette concentration est encore augmentée dans le sérum et les tissus lorsque le tampon citrate lOmM pH 6 est additionné de ZnC12, MnC12,
MgC12, ou d'une combinaison de ces sels (Figure 20B).
2. Dans le sérum les tissus et tumeur, la concentration d'un siRNA administré de façon systémique et continue est augmentée lorsqu 'il est formulé dans un tampon citrate contenant des cations.
Un mélange de 3 siRNA, siAR-1, siTSPl-1 et siLuc, a été administré par voie sous cutanée continue pendant 3 jours à des souris porteuses de tumeurs mammaires murines 4T1 à l'aide d'une pompe osmotique implantée en sous cutané. Chaque siRNA a été administré à la dose de 2mg/kg/jour. Le mélange a été formulé soit dans une solution de NaCl 154mM soit dans un tampon Citrate lOmM pH 6 contenant lOmM de MgCl2. Après 3 jours, la concentration de chaque siRNA dans le sérum, les tumeurs et différents organes a été mesurée et les valeurs mesurées lorsque le siRNA avait été formulé en tampon citrate-MgCl2 a été rapporté aux valeurs mesurées avec administration du siRNA formulé en solution saline (NaCl 154mM) dans le même tissu. Les résultats reportés dans les figures 21A et 21B montrent que la formulation des siRNA dans le tampon citrate-MgCl2 augmente d'un facteur allant jusqu'à plus de 250 leur distribution systémique dans les tissus par rapport à leur formulation en solution saline.
Exemple 10 : Ciblage d'un siRNA par ajout d'un ligand de CD36
Des souris ont reçu une injection sous cutanée de siAR-1 à la dose de 0.12mg/kg formulé soit en solution saline (NaCl 154mM) soit en tampon citrate lOmM pH 6 contenant de l'hexaréline, (rapport siRNA :Hexaréline ; poids/poids; 1 :0,2), soit en tampon citrate lOmM pH6 contenant des LDL oxydés (rapport siRNA:LDL oxydés ; poids:poids ; 1 : 1). La concentration de siAR-1 a été mesurée et rapportée à la concentration mesurée lorsque le siRNA était formulé en solution saline (NaCl 154mM) dans le même tissu. Les résultats observés dans le sérum sont reportés dans la figure 22A, dans la prostate et la rate dans la figure 22B. Ils montrent que l'ajout d'hexaréline ou de LDL oxydés augmentent la concentration du siRNA dans le sérum ou les tissus.
Dans une autre expérience, des pompes osmotiques ont été implantées chez des souris porteuses de tumeurs 22RV1, les pompes délivrant pendant 3 jours de façon continue 2mg/kg/jour de siAR-1 formulé en solution saline (NaCl 154mM), ou 2mg/kg/jour de siAR-1 et 0.2 mg/kg/jour de LDL oxydés formulés en tampon citrate lOmM pH 6. Dans ce dernier cas, le siRNA et les LDL oxydés ont été simplement mélangés dans le tampon citrate, sans manipulation additionnelle. Les concentrations du siAR-1 formulé en tampon citrate contenant des LDL oxydés mesurées dans le sérum, les tissus ou les tumeurs ont été rapportée à la valeur mesurée dans le même tissu lorsque le siRNA était formulé en solution saline (NaCl 154mM). On constate sur la figure 23 que la présence de LDL oxydés augmente la concentration du siAR-1 dans le sérum les tissus et les tumeurs.

Claims

REVENDICATIONS
1. Composition comprenant au moins un siRNA, ledit siRNA s'hybridant avec un ARNm, codant ou non codant, dont il induit la dégradation ou dont il inhibe la traduction, l'expression dudit ARNm ou de la protéine pour laquelle il code étant impliquée dans une pathologie, la composition étant utilisée pour la prévention et/ou le traitement de ladite pathologie, ladite composition étant formulée pour un mode d'administration systémique continue.
2. Composition pour son utilisation selon la revendication 1, ladite composition étant formulée pour un mode d'administration systémique continue dans laquelle ledit au moins siRNA est dans une solution tampon à pH acide, notamment dans un tampon citrate ou histidine.
3. Composition pour son utilisation selon la revendication 2, dans laquelle ledit au moins siRNA est dans une solution tampon à pH acide, additionnée de sels minéraux ou organiques, notamment de sel dont le cation est choisi parmi les polyamines, notamment choisi parmi la spermine, la spermidine ou la putrescine ou notamment de sel dont le cation est choisi parmi les cations métalliques, notamment choisi parmi les sels de zinc, cobalt, cuivre, manganèse, calcium, magnésium ou de fer, en particulier de manganèse, zinc, magnésium, seuls ou en combinaison deux à deux ou trois à trois
4. Composition pour son utilisation selon l'une quelconque des revendications 1 à 3, ladite composition contenant ou ne contenant pas d'agent d'adressage, de préférence contenant un agent d'adressage non couplé de façon covalente au siRNA
5. Composition pour son utilisation selon la revendication 4, ladite molécule d'adressage étant un ligand du récepteur CD36, ledit ligand au récepteur CD36 étant de préférence des LDL oxydés, de l'hexaréline, un acide gras à longue chaîne, ou un mélange de ces composant deux à deux ou trois à trois, lesdits LDL oxydés étant dans un rapport poids:poids de 1 siRNA pour 0.01 à 10 LDL oxydés et préférentiellement de 0.1 à 1, ou ladite hexaréline étant dans un rapport poids:poids de 1 siRNA pour 0.01 à 10 hexaréline, préférentiellement de 0.1 à 1.
6. Composition pour son utilisation selon l'une quelconque des revendications 1 à 5, dans laquelle ledit au moins un siRNA est dans une solution contenant un agent de vectorisation
7. Composition pour son utilisation selon l'une quelconque des revendications 1 à 5, dans laquelle ledit au siRNA est dans une solution ne contenant pas d'agent de vectorisation
8. Dispositif fournissant un moyen d'administration systémique et continue d'une composition selon l'une quelconque des revendications précédentes, ledit moyen d'administration systémique et continue étant notamment une pompe osmotique, une pompe- seringue, une pompe élastomérique, une pompe péristaltique, une pompe « intelligente », une pompe « patch », ou une matrice polymérique ou un hydrogel, ou tout autre composé biodégradable visant à libérer de façon lente et continue le siRNA de telle sorte qu'il soit distribué de façon systémique dans l'organisme.
9. Composition pour son utilisation selon l'une quelconque des revendications précédentes, dans laquelle ladite pathologie est associée à l'expression de l'ARNm codant le récepteur des androgènes, la Thrombospondine-1 (TSP1), le facteur de transcription FoxP3 ou le Vascular Endothelial Growth Factor A (VEGF).
10. Composition pour son utilisation selon l'une quelconque des revendications précédentes, dans laquelle ledit au moins un siRNA est l'un des siRNA suivants : siAR-1 , siAR-lb, siAR-2, siAR-2b, siAR-3, siAR-3b, siAR-4, siAR4b, siAR-5, siAR-5b, siVEGF-1 , siVEGF-lb, siTSPl-1, siTSPl-lb, siTSPl-2, siTSPl-2b, siTSPl-3, siTSPl-3b, siTSPl-4, siTSPl-4b, siTSPl-5, siTSPl-5b, siFoxP3-l, siFoxP3-lb, siFoxP3-2, siFoxP3-2b, de SEQ ID NO 1 à 52.
11. Composition pour son utilisation selon l'une quelconque des revendications précédentes dans laquelle ledit siRNA est l'un des siRNA suivants: siFoxP3-l, siFoxP3-lb, siFoxP3-2 ou siFoxP3-2b, de SEQ ID NO 45 à 52, pour son utilisation comme médicament ou pour son utilisation pour la prévention et/ou le traitement d'une pathologie associée à l'expression du facteur de transcription FoxP3 en association avec un véhicule pharmaceutiquement acceptable.
12. Composition pour son utilisation selon l'une quelconque des revendications précédentes dans laquelle ledit siRNA est le siAR-1, de SEQ ID NO 1 et 2, pour son utilisation comme médicament ou pour son utilisation pour la prévention et/ou le traitement d'une pathologie associée à l'expression du récepteur des androgènes, notamment pour la prévention et/ou le traitement du cancer de la prostate, en association avec un véhicule pharmaceutiquement acceptable.
13. Composition pour son utilisation selon l'une quelconque des revendications précédentes, dans laquelle ledit au moins un siRNA est dépourvu de modifications chimiques ou présente des modifications chimiques
14. Composition pour son utilisation selon l'une quelconque des revendications précédentes, dans laquelle ledit siRNA est utilisé en association avec au moins un agent anti- angiogénique ou un agent anti-tumoral ou un agent immunothérapeutique ou avec une combinaison de ces différentes classes d'agents.
15. Composition pour son utilisation selon l'une quelconque des revendications précédentes, dans lesquelles ledit mode d'administration systémique est choisi parmi le groupe comprenant ou étant constitué du mode d'administration sous-cutané, intrapéritonéal, intraveineux, intra artériel, intracardiaque, intramusculaire, intradermique, intranasal, intravaginal, intrarectal, sublingual, oral, intrathécal, intra rachidien, épidural, respiratoire, cutanée, transdermique, transmuqueux
16. Composition pour son utilisation selon l'une quelconque des revendications précédentes, dans laquelle ladite composition est formulée pour un mode d'administration à une dose thérapeutiquement efficace, et notamment de 0.005 mg/kg/jour à 30 mg/kg/jour, notamment de 0,01 mg/kg/jour à 10 mg/kg/jour et plus particulièrement de 0.01 mg/kg/jour à 2 mg/kg/jour.
17. Composition pour son utilisation selon l'une quelconque des revendications précédentes, dans laquelle ladite pathologie est une tumeur primaire, une tumeur métastatique, ou une pathologie associée à la présence de cellules suppressives ou immunosuppressives, et est notamment un cancer de l'anus, de l'appendice, de la bouche, des bronches et/ou des voies aériennes supérieures, du canal biliaire, de la cavité nasale et paranasale, du cerveau, du cœur, du col de l'utérus, du colon, du corps de l'utérus, de l'estomac, du foie, des glandes salivaires, de la gorge, de la langue, des lèvres, du nasopharynx, de l'œsophage, des os, de l'ovaire, du pancréas, de la parathyroïde, du pénis, de la plèvre, du poumon, de la prostate androgéno- indépendant, du rectum, du rein, du sein, des surrénales, des testicules, de la tête et du cou, du thymus, de la thyroïde, de l'urètre, du vagin, de la vésicule biliaire, de la vessie, de la vulve, un cancer gastro-intestinal, un lymphome, un mélanome ou un cancer de la peau hors mélanome, un myélome, un sarcome, une leucémie, un mésotheliome, un cholangiocarcinome, un ostéosarcome, un glioblastome, un astrocytome, un oligodendrogliome, un chondrosarcome, un liposarcome, un rhabdomyosarcome, ou un pheochromocytome, ou les métastases de ces cancers se développant dans d'autres organes, et est notamment le cancer de la prostate.
EP17771797.2A 2016-10-27 2017-08-08 Utilisation d'un sirna pour le traitement des cancers Withdrawn EP3532088A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1660439A FR3058061A1 (fr) 2016-10-27 2016-10-27 Nouvelle utilisation d'oligonucleotides double brin
PCT/FR2017/052214 WO2018078225A1 (fr) 2016-10-27 2017-08-08 Utilisation d'un sirna pour le traitement des cancers

Publications (1)

Publication Number Publication Date
EP3532088A1 true EP3532088A1 (fr) 2019-09-04

Family

ID=58547564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17771797.2A Withdrawn EP3532088A1 (fr) 2016-10-27 2017-08-08 Utilisation d'un sirna pour le traitement des cancers

Country Status (7)

Country Link
US (1) US20190336520A1 (fr)
EP (1) EP3532088A1 (fr)
JP (1) JP2019535816A (fr)
CN (1) CN110352069A (fr)
CA (1) CA3041624A1 (fr)
FR (1) FR3058061A1 (fr)
WO (1) WO2018078225A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102321426B1 (ko) * 2017-02-21 2021-11-05 올릭스 주식회사 남성형 탈모 표적 유전자의 발현을 억제하는 비대칭 siRNA
CA3112809A1 (fr) * 2018-09-26 2020-04-02 AUM LifeTech, Inc. Oligonucleotides antisens foxp3 modifies par 2'-fana et leurs methodes d'utilisation
TW202028222A (zh) * 2018-11-14 2020-08-01 美商Ionis製藥公司 Foxp3表現之調節劑
WO2022225737A1 (fr) * 2021-04-20 2022-10-27 Purdue Research Foundation Excipient immunofonctionnel, méthodes d'utilisation et compositions en guise d'immunothérapie antitumorale

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040220128A1 (en) * 1995-10-26 2004-11-04 Sirna Therapeutics, Inc. Nucleic acid based modulation of female reproductive diseases and conditions
US20050148530A1 (en) * 2002-02-20 2005-07-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
AU2003206865B2 (en) * 2002-02-08 2007-10-04 D. Collen Research Foundation Vzw A novel target to inhibit angiogenesis
WO2005019422A2 (fr) * 2003-08-13 2005-03-03 The Board Of Trustees Of The University Of Illinois Extinction du recepteur tgf-beta de type ii par des arnsi
US20050265927A1 (en) * 2004-05-17 2005-12-01 Yale University Intranasal delivery of nucleic acid molecules
US8093369B2 (en) * 2005-10-11 2012-01-10 Ben Gurion University Of The Negev Research And Development Authority Ltd. Compositions for silencing the expression of VDAC1 and uses thereof
EP2064350B1 (fr) * 2006-11-27 2013-01-02 Ludwig Institute for Cancer Research Ltd. Expression de foxp3 par des cellules cancereuses
US20110206673A1 (en) * 2007-06-27 2011-08-25 Liu Dongxu Polypeptides and polynucleotides for artemin and related ligands, and methods of use thereof
US20110117125A1 (en) * 2008-01-02 2011-05-19 Tekmira Pharmaceuticals Corporation Compositions and methods for the delivery of nucleic acids
EP2283870A1 (fr) * 2009-07-31 2011-02-16 Centre National de la Recherche Scientifique Oligonucléotides inhibant la migration cellulaire
EP2592146A3 (fr) * 2011-11-14 2013-07-24 Silenseed Ltd Procédés et compositions pour le traitement du cancer de la prostate
RS56783B9 (sr) * 2012-12-05 2021-12-31 Alnylam Pharmaceuticals Inc Sastavi pcsk9 irnk i postupci njihovih primena
EP3184506B1 (fr) * 2014-08-18 2019-07-24 NOF Corporation Lipide cationique destiné à l'administration d'acides nucléiques
WO2016103042A1 (fr) * 2014-12-25 2016-06-30 Guangzhou Ribobio Co., Ltd. Compositions et procédés pour inhiber l'expression de adamts-5 et adam17
EP3241903A4 (fr) * 2014-12-29 2018-07-04 Bonac Corporation Composition contenant de façon stable une molécule d'acide nucléique

Also Published As

Publication number Publication date
CA3041624A1 (fr) 2018-05-03
US20190336520A1 (en) 2019-11-07
CN110352069A (zh) 2019-10-18
FR3058061A1 (fr) 2018-05-04
JP2019535816A (ja) 2019-12-12
WO2018078225A1 (fr) 2018-05-03

Similar Documents

Publication Publication Date Title
Alshaer et al. Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model
US20220273566A1 (en) Nanomaterials containing constrained lipids and uses thereof
WO2018078225A1 (fr) Utilisation d&#39;un sirna pour le traitement des cancers
Sureban et al. Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism
JP5571308B2 (ja) 両性リポソームにおけるまたはそれに関する改善
US8906874B2 (en) Bi-functional shRNA targeting Stathmin 1 and uses thereof
EP2791336B1 (fr) Procédés, systèmes et compositions pour l&#39;administration de microarn issu de cellules/à base de vésicules
KR20180017119A (ko) 질환의 치료를 위한 엑소좀의 용도
US11697813B2 (en) Pharmaceutical compositions and methods of use for activation of human fibroblast and myofibroblast apoptosis
US10781446B2 (en) RNA nanoparticle for treatment of gastric cancer
van den Brand et al. siRNA in ovarian cancer–Delivery strategies and targets for therapy
US20220054633A1 (en) Nanoparticles, controlled-release dosage forms, and methods for delivering an immunotherapeutic agent
US9642872B2 (en) Treatment of B-cell lymphoma with microRNA
Silva‑Cázares et al. Lipid‑based nanoparticles for the therapeutic delivery of non‑coding RNAs in breast cancer
Neri et al. Tuning the Loading and Release Properties of MicroRNA-Silencing Porous Silicon Nanoparticles by Using Chemically Diverse Peptide Nucleic Acid Payloads
KR102301572B1 (ko) 신규한 핵산 분자 전달용 조성물 및 그 용도
EP3532086A1 (fr) Nouvel oligonucleotide double brin bisquecifiques pour le traitement des cancers
US11407786B2 (en) Compositions and methods for the delivery of nucleic acids
Rocchi et al. 599: Antisense Heat Shock Protein 27 Oligodeoxynucleotides Inhibit Progression to Androgen-Independence After Castration in the Lncap Tumor Model
EP3600308A1 (fr) Procédés pour le traitement de maladies génétiques mitochondriales
Schwaninger et al. 598: Does Expression of BMP Antagonists Noggin and SOST Determine the Bone Metastatic Phenotype in Prostate Cancer?
Rapini et al. Nanocarriers of Antisense Oligonucleotides in Diabetes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 20220524

18W Application withdrawn

Effective date: 20220607