EP3527903B1 - Climatiseur et son procédé de commande - Google Patents

Climatiseur et son procédé de commande Download PDF

Info

Publication number
EP3527903B1
EP3527903B1 EP17863047.1A EP17863047A EP3527903B1 EP 3527903 B1 EP3527903 B1 EP 3527903B1 EP 17863047 A EP17863047 A EP 17863047A EP 3527903 B1 EP3527903 B1 EP 3527903B1
Authority
EP
European Patent Office
Prior art keywords
compressor
superheat degree
gas supply
air conditioner
continuous duration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17863047.1A
Other languages
German (de)
English (en)
Other versions
EP3527903A1 (fr
EP3527903A4 (fr
Inventor
Feng Wei
Haidong LIN
Si Sun
Chuanhua WANG
Enquan ZHANG
Pengju ZHAO
Pu Zhao
Huaben LI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gree Electric Appliances Inc of Zhuhai
Original Assignee
Gree Electric Appliances Inc of Zhuhai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gree Electric Appliances Inc of Zhuhai filed Critical Gree Electric Appliances Inc of Zhuhai
Publication of EP3527903A1 publication Critical patent/EP3527903A1/fr
Publication of EP3527903A4 publication Critical patent/EP3527903A4/fr
Application granted granted Critical
Publication of EP3527903B1 publication Critical patent/EP3527903B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/04Clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to the field of air conditioner equipment, and particularly, to an air conditioner and a control method thereof.
  • the air-source heat pump absorbs the low-temperature heat energy from the air, which is transformed into high-temperature heat energy through the compressor.
  • Conventional air-cooling air-source heat pumps most have a minimum environmental temperature of -15°C for heating operations.
  • Enhanced Vapor Injection technology is often used.
  • the air-cooling heat pump using Enhanced Vapor Injection technology has a heating operation range as low as -25 °C to -30 °C.
  • the throttling mechanism of an air-source heat pump typically is an electronic expansion valve.
  • the electronic expansion valve is a throttling device, which controls the action of the valve needle by controlling the voltage or current applied to the expansion valve, to change the circulation area of the valve port, thereby achieving automatic regulation of flow volume.
  • a common failure of the electronic expansion valve includes a jam, which will result in no flow or uncontrolled flow in the relevant flow path.
  • the cause of the jam of the electronic expansion valve is usually that there are impurities in the system.
  • the jam of the electronic expansion valve has a strong influence on the reliability of the unit. When there is no flow in the event of a jam, there will be a low-voltage protection or a high-temperature exhaust protection, and the unit can usually be protected quickly, thereby effectively protecting the compressor.
  • the electronic expansion valve for enhanced enthalpy injection of the air-cooling heat pump system using enhanced vapor injection technology is arranged in the sub pipeline of vapor injection increasing enthalpy, which is located downstream of the condenser, and performs functions of throttling and depressurizing the refrigerant in the enhanced vapor injection loop.
  • the electronic expansion valve for enhanced enthalpy injection is jammed at 0B or at a small number of steps, the superheat degree of the injected vapor will be a little larger, and the performance of the unit will be reduced, and the effects of lowering the exhaust temperature of the unit through increasing the injected vapor amount will be affected.
  • the long-term operation of vapor injection will not affect the reliability of the compressor.
  • the exhaust high temperature protection occurs, it can prompt the operation and maintenance personnel of the unit to promptly analyze and check the cause of the failure, and the compressor will not be damaged.
  • the electronic expansion valve for enhanced enthalpy injection is jammed at a larger number of steps, the refrigerant in the enhanced vapor injection loop increases, which will cause liquid injection to run and make the superheat degree of the vapor injected to be negative. Long-term running of the liquid injection will cause hydraulic hit in the compressor, and result in abrasion due to insufficient lubrication as a result of diluted lubricant film of the compressor.
  • the main objective of the present invention is to provide an air conditioner and a control method thereof, as defined by the appended independent claims, so as to solve the problem that the compressor in the prior art is easily damaged.
  • a control method comprises following steps: controlling a compressor of an air conditioner to be in an operating state or a shutdown state according to a superheat degree of injected vapor of the compressor and a continuous duration of superheat degree of the injected vapor, and controlling the compressor to be in a shutdown state for maintenance according to the number of shutdown times of the compressor, so as to maintain a gas supply pipeline of the compressor, where the continuous duration of the superheat degree further comprises a negative value continuous duration, which is defined as the duration during which the superheat degree is less than or equal to an offset value of the superheat degree; when the negative value continuous duration of the superheat degree of the injected vapor reaches a second preset value, and during the negative value continuous duration, an exhaust temperature of the compressor remains less than a critical value of the exhaust temperature of the compressor, then the compressor is restored automatically to the operating state after being shut down.
  • control method comprises: controlling the compressor to be in the operating state continuously when the number of shutdown times of the compressor is less than or equal to a first preset value; and controlling the compressor to be in the shutdown state for maintenance when the number of shutdown times of the compressor is greater than the first preset value,
  • the continuous duration of superheat degree further comprises an offset value continuous duration; if the offset value continuous duration, in which the superheat degree of the injected vapor is greater than the offset value of the superheat degree continuously, is less than or equal to a third preset value, the offset value continuous duration is included into the negative value continuous duration.
  • the third preset value is t, wherein, 0 ⁇ t ⁇ 60s.
  • the first preset value is N, wherein, 0 ⁇ N ⁇ 2.
  • the continuous duration is reset to zero; and the reset continuous duration is counted from a time instant when the superheat degree of the injected vapor begins to be less than or equal to the offset value of the superheat degree.
  • an air conditioner which is the air conditioner as defined by appended independent claim 9.
  • the air conditioner comprises: a compressor, a first heat exchanger, a second heat exchanger, a gas supply device, which are in communication with each other; and a gas supply pipeline, wherein: a first end of the gas supply pipeline is in communication with an outlet end of the first heat exchanger; a second end of the gas supply pipeline is in communication with a gas supply port of the compressor; and at least part of the gas supply pipeline is configured to perform heat exchange with the gas supply device, to increase temperature of a refrigerant in the gas supply pipeline.
  • the air conditioner according to the present invention comprises means configured for controlling the air conditioner according to the control method defined by appended independent claim 1 or its dependent claims.
  • the gas supply pipeline is provided with at least one of an electronic expansion valve, a pressure sensor and a first temperature sensor.
  • a second temperature sensor is arranged in a discharge pipeline of the compressor.
  • a third temperature sensor is arranged in the gas supply pipeline; and the third temperature sensor is disposed between the outlet end of the first heat exchanger and the gas supply device.
  • the control method inter alia includes controlling a compressor of an air conditioner to be in an operating state or a shutdown state according to a superheat degree of injected vapor of the compressor and a continuous duration of superheat degree of the injected vapor; and controlling the compressor to be in a shutdown state for maintenance according to the number of shutdown times of the compressor, so as to maintain a gas supply pipeline of the compressor.
  • Such a method can effectively judge the working conditions of the compressor, so that the compressor can be timely maintained and be protected from being damaged for operating under severe working conditions, thereby improving the operation reliability of the compressor and the air conditioner.
  • the above figures include the following reference numerals: 10. compressor; 20. first heat exchanger; 30. second heat exchanger; 40. gas supplying device; 50. gas supplying pipeline; 51. electronic expansion valve; 52. pressure sensor; 53. first temperature sensor; 54. second temperature sensor.
  • a process, a method, a system, a product, or a device that includes a series of steps or units is not limited to those steps or units listed clearly, but may include other steps or units, which are not clearly listed, or which are inherent to such a process, a method, a product or a device.
  • spatial relations such as “above”, “over”, “on a top surface”, “upper”, etc., may be used herein to describe the spatial position relationships of a device or a feature with other devices or features shown in the drawings. It should be understood that the terms of spatial relations are intended to include other different orientations in use or operation in addition to the orientation of the device described in the drawings. For example, if the device in the drawings is placed upside down, the device described as “above other devices or structures” or “over other devices or structures” will be positioned as “below other devices or structures” or “under other devices or structures”. Thus, the exemplary term “above” may include both “above” and "below”.
  • the device can also be positioned in other different ways (rotating 90 degrees or at other orientations), and the corresponding explanations for the description of the spatial relations will be provided herein.
  • a control method of the air conditioner is provided.
  • control method of the air conditioner inter alia includes controlling the compressor of the air conditioner to be in an operating state or a shutdown state according to a superheat degree of injected vapor of the compressor and a continuous duration of superheat degree of the injected vapor; and controlling the compressor to be in a shutdown state for maintenance according to the number of shutdown times of the compressor, so as to maintain a gas supply pipeline of the compressor.
  • such a method can effectively judge the working conditions of the compressor, so that the compressor can be timely maintained and be protected from being damaged for operating under severe working conditions, thereby improving the operation reliability of the compressor and the air conditioner.
  • the method further includes: the compressor is controlled to be in an operating state when the number of shutdown times of the compressor is less than or equal to the first preset value; and the compressor is controlled to be in a shutdown state for maintenance when the number of shutdown times of the compressor is greater than the first preset value.
  • the compressor is controlled to be in an operating state continuously when the number of shutdown times of the compressor is less than or equal to the first preset value; and the compressor is controlled to be in a shutdown state for maintenance when the number of shutdown times of the compressor is greater than the first preset value.
  • the first preset value is N, wherein 0 ⁇ N ⁇ 2. That is, when the compressor is shut down for the second time or for the first time, it can be controlled to be in the shutdown state for maintenance or in the operating state continuously.
  • the continuous duration includes a negative value continuous duration.
  • the compressor is restored automatically to the operating state after being shut down.
  • the continuous duration tc of the superheat degree of the injected vapor if a time period, in which the superheat degree of the injected vapor is greater than the offset value of the superheat degree, is less than or equal to the third preset value, the time period is included into the negative value continuous duration of the superheat degree.
  • TG is the superheat degree of the injected vapor
  • TP is the offset value of the superheat degree
  • t0 is the time instant when the superheat degree of the injected vapor begins to be less than or equal to the offset value of the superheat degree
  • t1 is the time instant when the superheat degree of the vapor injection begins to be greater than the offset value of the superheat degree after t0; it is known that t1>t0, that is, tc is counted from the time instant t0 when TG ⁇ TP.
  • the continuous duration is reset to zero, and the reset continuous duration is counted from the time instant when the superheat degree of the injected vapor is less than or equal to the offset value of the superheat degree.
  • the compressor when the compressor is in the shutdown protection state, maintenance on the electronic expansion valve disposed in the gas supply pipeline of the compressor is performed, which can improve the reliability of gas supply in the pipeline of the compressor, thereby effectively improving the compression performance of the compressor.
  • an air conditioner which is the air conditioner in the above embodiment.
  • the air conditioner includes a compressor 10, a first heat exchanger 20, a second heat exchanger 30 and a gas supply device 40, which are in communication with each other.
  • the first end of the gas supply pipeline 50 is in communication with the outlet end of the first heat exchanger 20; the second end of the gas supply pipeline 50 is in communication with the gas supply port of the compressor 10; and at least part of the gas supply pipeline 50 performs heat exchange with the gas supply device 40, to increase the temperature of the refrigerant in the gas supply pipeline 50.
  • the operational reliability and the service life of the air conditioner can effectively be improved.
  • the gas supply pipeline 50 is provided with an electronic expansion valve 51, a pressure sensor 52 and a first temperature sensor 53.
  • the electronic expansion valve 51 is configured to control the gas supply opening in the gas supply pipeline 50;
  • the pressure sensor 52 is configured to detect the pressure in the gas supply pipeline 50;
  • the first temperature sensor 53 is configured to detect the temperature in the gas supply pipeline 50.
  • the superheat degree of the injected vapor of the compressor is calculated according to a conventional computational method.
  • a second temperature sensor 54 is further arranged in the discharge pipeline of the compressor 10 to detect the exhaust temperature at the discharge pipeline of the compressor. The nearer the second temperature sensor 54 is to the gas vent of the compressor, the more accurate the measurement is.
  • the gas supply pipeline 50 may not be provided with the pressure sensor 52, and alternatively, a third temperature sensor is arranged in the gas supply pipeline 50.
  • the third temperature sensor is disposed between the electronic expansion valve 51 and the gas supply device 40.
  • a temperature sensor T3, namely the third temperature sensor, is disposed in the pipeline entering the plate heat exchanger namely the air supply device 40.
  • the temperature sensor T1 namely the first temperature sensor 53, is arranged at the outlet of the plate heat exchanger and before the gas supply opening of the compressor.
  • the judgment method which determines the state of the refrigerant of the enhanced vapor injection according to the temperature difference between the gas supply pipeline 50 entering and the gas supply pipeline 50 leaving the heat exchanger in the enhanced vapor injection loop, is applicable for a compressor system which is more resistant to the liquid injection.
  • a temperature sensor T1 and a pressure sensor P1 are disposed between the outlet of the gas supply device 40 and the inlet of the compressor, and a temperature sensor T2 is disposed in the discharge pipe at the compressor outlet.
  • the zero-degree celsius offset value of the superheat degree is TP, and the value is from 0.5°C to 2°C, which is based on the accuracy of the temperature sensor T1 and the actual situations.
  • the critical value of the exhaust temperature is TL. When the exhaust temperature is too high, it can be reduced by increasing the vapor injection amount. However, the reduced exhaust temperature should not be lower than the critical value of the exhaust temperature.
  • the critical value of the exhaust temperature is determined by the compressor type or recommended by the compressor manufacturer, and it is usually greater than 90 °C.
  • the negative value continuous duration of the superheat degree of the injected vapor is t1-t0.
  • the control program controls the electronic expansion valve according to the optimum superheat degree (3°C - 8°C in this embodiment) of the vapor injection, and the steps of the electronic expansion valve for the enhanced vapor injection is continuously adjusted, so as to maintain the optimum superheat degree of the injected vapor.
  • the superheat degree of the injected vapor can be quickly controlled to be within the optimal range, and usually, the adjustment time is less than 15 minutes. At this time, the enhanced vapor injection effect is optimum.
  • the electronic expansion valve for the vapor injection is jammed at a larger number of steps, liquid injection will occur. At this time, the failure behavior is judged by the following processing method.
  • the calculated tc is cleared; if the unit operating in the defrosting mode enters the heating mode, tc is counted again from the time instant when TG ⁇ TP, and then calculate it according to the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Claims (12)

  1. Procédé de commande d'un climatiseur, caractérisé en ce qu'il comprend les étapes suivantes:
    commander un compresseur (10) d'un climatiseur pour qu'il soit dans un état de fonctionnement ou un état d'arrêt en fonction d'un degré de surchauffe (TG) de vapeur injectée du compresseur et une durée continue (tc) du degré de surchauffe (TG) de la vapeur injectée ; et
    commander le compresseur (10) pour qu'il soit dans un état d'arrêt pour entretien en fonction d'un nombre de périodes d'arrêt du compresseur (10), de manière à entretenir une conduite d'alimentation en gaz (50) du compresseur (10), dans lequel : la durée continue (tc) du degré de surchauffe (TG) comprend en outre une durée continue (11-t0) de valeur négative, qui est définie comme étant la durée pendant laquelle le degré de surchauffe (TG) est inférieur ou égal à une valeur de décalage (TP) du degré de surchauffe ; lorsque la durée continue de valeur négative (t1-t0) du degré de surchauffe de la vapeur injectée atteint une deuxième valeur prédéfinie (tMAX), et pendant la durée continue de valeur négative (t1-t0), une température de refoulement (T2) du compresseur (10) reste inférieure à une valeur critique (TL) de la température de refoulement du compresseur (10), alors le compresseur (10) est automatiquement ramené à l'état de fonctionnement après avoir été arrêté.
  2. Procédé de commande selon la revendication 1, caractérisé en ce que le procédé de commande comprend :
    commander le compresseur (10) pour qu'il soit en état de fonctionnement lorsque le nombre de périodes d'arrêt du compresseur (10) est inférieur ou égal à une première valeur prédéfinie (N) ; et la commande du compresseur (10) pour qu'il soit dans l'état d'arrêt pour entretien lorsque le nombre de périodes d'arrêt du compresseur est supérieur à la première valeur prédéfinie (N).
  3. Procédé de commande selon la revendication 1 ou 2, caractérisé en ce que la durée continue (tc) du degré de surchauffe comprend en outre une valeur de décalage de la durée continue; si la valeur de décalage de la durée continue, dans laquelle le degré de surchauffe de la vapeur injectée est supérieur en continu à la valeur de décalagedu degré de surchauffe, est inférieure ou égale à une troisième valeur prédéfinie (t), la valeur de décalage de la durée continue est incluse dans la durée continue de valeur négative.
  4. Procédé de commande selon la revendication 3, caractérisé en ce que la troisième valeur prédéfinie est t, dans lequel 0 < t ≤ 60 s.
  5. Procédé de commande selon la revendication 2, caractérisé en ce que la première valeur prédéfinie est N, dans lequel 0 < N ≤ 2.
  6. Procédé de commande selon la revendication 1, caractérisé en ce que, dans un mode de chauffage et/ou dans un mode de refroidissement du climatiseur, la durée continue (tc) du degré de surchauffe est tc, dans lequel tc = t1-t0, dans lequel t1 > t0 et t0 est un instant où le degré de surchauffe (TG) de la vapeur injectée commence à être inférieur à une valeur de décalage du degré de surchauffe ; ou
    tc = (t1-t0+t), dans lequel t1 est un instant où le degré de surchauffe (TG) de l'injection en vapeur commence à être supérieur à la valeur de décalage du degré de surchauffe (TG) après t0 ; t est une période de temps pendant laquelle le degré de surchauffe de l'injection en vapeur est supérieur à la valeur de décalage du degré de surchauffe ; si t est supérieur à une quatrième valeur prédéfinie, tc est réinitialisé à zéro et compté à nouveau à partir d'un prochain instant où le degré de surchauffe (TG) de l'injection de vapeur commence à être inférieur à la valeur de décalage du degré de surchauffe.
  7. Procédé de commande selon la revendication 6, caractérisé en ce que, dans un mode de refroidissement, lorsque le climatiseur réalise un mode de dégivrage, la durée continue (tc) est remise à zéro ; et la durée continue réinitialisée (tc) est comptée à partir d'un instant où le degré de surchauffe de la vapeur injectée commence à être inférieur ou égal à la valeur de décalage du degré de surchauffe.
  8. Procédé de commande selon la revendication 1, caractérisé en ce que, lorsque le compresseur (10) est dans un état d'arrêt de protection, un entretien d'une vanne de détente électronique (51) disposée dans la conduite d'alimentation en gaz (50) du compresseur (10) est réalisé.
  9. Climatiseur, comprenant : un compresseur (10), un premier échangeur de chaleur (20), un deuxième échangeur de chaleur (30), un dispositif d'alimentation en gaz (40), qui sont en communication les uns avec les autres ;
    et une conduite d'alimentation en gaz (50), dans lequel : une première extrémité de la conduite d'alimentation en gaz (50) est en communication avec une extrémité de sortie du premier échangeur de chaleur (20) ; une deuxième extrémité de la conduite d'alimentation en gaz (50) est en communication avec un orifice d'alimentation en gaz du compresseur (10) ; et au moins une partie de la conduite d'alimentation en gaz (50) est configurée pour réaliser un échange de chaleur avec le dispositif d'alimentation en gaz (40), afin d'augmenter la température d'un réfrigérant dans la conduite d'alimentation en gaz (50), le climatiseur étant caractérisé par des moyens configurés pour commander le climatiseur selon le procédé de commande tel que défini dans l'une quelconque des revendications 1 à 8.
  10. Climatiseur selon la revendication 9, caractérisé en ce que la conduite d'alimentation en gaz (50) est dotée d'au moins un parmi une vanne de détente électronique (51), un capteur de pression (52) et un premier capteur de température (53).
  11. Climatiseur selon la revendication 9, caractérisé en ce qu'un deuxième capteur de température (54) est disposé dans une conduite de refoulement du compresseur (10).
  12. Climatiseur selon la revendication 9, caractérisé en ce qu'un troisième capteur de température est disposé dans la conduite d'alimentation en gaz (50) ; et le troisième capteur de température est disposé entre l'extrémité de sortie du premier échangeur de chaleur (20) et le dispositif d'alimentation en gaz (40).
EP17863047.1A 2016-10-17 2017-09-26 Climatiseur et son procédé de commande Active EP3527903B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610903627.7A CN106403193B (zh) 2016-10-17 2016-10-17 空调器及其控制方法
PCT/CN2017/103464 WO2018072601A1 (fr) 2016-10-17 2017-09-26 Climatiseur et son procédé de commande

Publications (3)

Publication Number Publication Date
EP3527903A1 EP3527903A1 (fr) 2019-08-21
EP3527903A4 EP3527903A4 (fr) 2020-06-24
EP3527903B1 true EP3527903B1 (fr) 2024-04-10

Family

ID=58013531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17863047.1A Active EP3527903B1 (fr) 2016-10-17 2017-09-26 Climatiseur et son procédé de commande

Country Status (5)

Country Link
US (1) US20190242603A1 (fr)
EP (1) EP3527903B1 (fr)
CN (1) CN106403193B (fr)
ES (1) ES2980277T3 (fr)
WO (1) WO2018072601A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403193B (zh) * 2016-10-17 2018-12-07 珠海格力电器股份有限公司 空调器及其控制方法
CN109827285B (zh) * 2019-02-27 2020-11-06 奥克斯空调股份有限公司 防止空调器超期服役的控制方法、装置及空调器
CN112178976A (zh) * 2019-07-03 2021-01-05 开利公司 热交换单元,热交换系统及其中确定控制阀故障的方法
CN110486917B (zh) * 2019-08-23 2021-06-22 广东美的暖通设备有限公司 运行控制装置及方法、空调器和计算机可读存储介质
US11268721B2 (en) * 2020-06-22 2022-03-08 Lennox Industries Inc. HVAC system prognostics and diagnostics based on temperature rise or drop
CN112902403B (zh) * 2021-03-05 2022-05-27 合肥美的暖通设备有限公司 空调器及其防凝露控制方法和装置
CN113701322B (zh) * 2021-09-02 2023-06-23 佛山市顺德区美的电子科技有限公司 空调器控制方法、控制器、空调器和计算机可读存储介质
CN115371302B (zh) * 2022-07-14 2024-04-19 浙江中广电器集团股份有限公司 一种热泵evi多联机制冷模式喷焓控制的控制方法
CN116105412B (zh) * 2023-04-04 2023-07-18 宁波奥克斯电气股份有限公司 压缩机控制方法、装置、空调器及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3334507B2 (ja) * 1996-09-13 2002-10-15 三菱電機株式会社 冷凍システム装置および冷凍システム装置の制御方法
US6578373B1 (en) * 2000-09-21 2003-06-17 William J. Barbier Rate of change detector for refrigerant floodback
US8539786B2 (en) * 2007-10-08 2013-09-24 Emerson Climate Technologies, Inc. System and method for monitoring overheat of a compressor
JP6095353B2 (ja) * 2012-12-13 2017-03-15 三菱電機株式会社 冷凍サイクル装置
KR102103360B1 (ko) * 2013-04-15 2020-05-29 엘지전자 주식회사 공기조화기 및 그 제어방법
CN203432025U (zh) * 2013-08-30 2014-02-12 海信(山东)空调有限公司 一种膨胀阀喷射控制系统
CN104296413A (zh) * 2014-09-24 2015-01-21 广东欧科空调制冷有限公司 一种变频低温强热空调系统
CN205373189U (zh) * 2015-12-24 2016-07-06 青岛海尔新能源电器有限公司 低温热泵系统及空调
CN106403193B (zh) * 2016-10-17 2018-12-07 珠海格力电器股份有限公司 空调器及其控制方法

Also Published As

Publication number Publication date
EP3527903A1 (fr) 2019-08-21
EP3527903A4 (fr) 2020-06-24
CN106403193A (zh) 2017-02-15
CN106403193B (zh) 2018-12-07
WO2018072601A1 (fr) 2018-04-26
US20190242603A1 (en) 2019-08-08
ES2980277T3 (es) 2024-09-30

Similar Documents

Publication Publication Date Title
EP3527903B1 (fr) Climatiseur et son procédé de commande
US20220228767A1 (en) Air Conditioner, Control Method and Control Device Thereof
JP5506770B2 (ja) 空気調和機
JP5405161B2 (ja) 空気調和装置およびエネルギー機器
RU2722319C1 (ru) Способ и устройство управления кондиционером
JP6341808B2 (ja) 冷凍空調装置
CN109556232A (zh) 四通阀异常检测方法、装置及空调机组
US20050126190A1 (en) Loss of refrigerant charge and expansion valve malfunction detection
US9605893B2 (en) Heat source device
CN104344622B (zh) 风冷热泵冷热水机及其换热器防冻方法、系统
CN106016621B (zh) 一种多联机空调系统的泄漏检测控制方法
CN107289599A (zh) 一种检测空调冷媒泄露量的装置和方法
CN102538300B (zh) 风冷热泵机组、板式换热器的防冻方法
CN110486917B (zh) 运行控制装置及方法、空调器和计算机可读存储介质
CN106196469B (zh) 一种空调的控制装置及控制方法
CN211372822U (zh) 一种防冻热泵冷热水机组
CN111174336B (zh) 空调外机、空调及空调控制方法
CN103791594B (zh) 热泵空调系统及防止系统内漏的控制方法
WO2020035993A1 (fr) Dispositif de commande, réfrigérateur, procédé de commande et procédé de détection d&#39;anomalie
CN112303827B (zh) 组合式空调系统的控制方法
CN115789963B (zh) 热泵热水机组及其漏水检测方法和检测装置
CN109855337A (zh) 一种有效保护压缩机的压差控制方法、装置及设备
KR101504003B1 (ko) 히트 펌프식 공기 조화 장치
CN115930397B (zh) 一种制冷剂回收控制方法、装置及空调
CN109764568A (zh) 冷水机组及控制方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190417

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20200526

RIC1 Information provided on ipc code assigned before grant

Ipc: F24F 11/00 20180101AFI20200518BHEP

Ipc: F24F 11/89 20180101ALI20200518BHEP

Ipc: F24F 110/00 20180101ALI20200518BHEP

Ipc: F24F 11/62 20180101ALI20200518BHEP

Ipc: F24F 11/70 20180101ALI20200518BHEP

Ipc: F24F 11/30 20180101ALI20200518BHEP

Ipc: F24F 1/00 20190101ALI20200518BHEP

Ipc: F25B 49/02 20060101ALI20200518BHEP

Ipc: F25B 41/00 20060101ALI20200518BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220512

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

INTG Intention to grant announced

Effective date: 20230710

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20231128

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017080947

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240410

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1675260

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240410

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2980277

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240410

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240924

Year of fee payment: 8