EP3524357A1 - Abscheidevorrichtung - Google Patents

Abscheidevorrichtung Download PDF

Info

Publication number
EP3524357A1
EP3524357A1 EP18155889.1A EP18155889A EP3524357A1 EP 3524357 A1 EP3524357 A1 EP 3524357A1 EP 18155889 A EP18155889 A EP 18155889A EP 3524357 A1 EP3524357 A1 EP 3524357A1
Authority
EP
European Patent Office
Prior art keywords
separation
secondary separator
inlet
dip tube
hydrocyclone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18155889.1A
Other languages
English (en)
French (fr)
Inventor
Michael KRAXNER
Thomas SENFTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MCI Management Center Innsbruck - Internationale Hochschule GmbH
Original Assignee
MCI Management Center Innsbruck - Internationale Hochschule GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MCI Management Center Innsbruck - Internationale Hochschule GmbH filed Critical MCI Management Center Innsbruck - Internationale Hochschule GmbH
Priority to EP18155889.1A priority Critical patent/EP3524357A1/de
Publication of EP3524357A1 publication Critical patent/EP3524357A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C7/00Apparatus not provided for in group B04C1/00, B04C3/00, or B04C5/00; Multiple arrangements not provided for in one of the groups B04C1/00, B04C3/00, or B04C5/00; Combinations of apparatus covered by two or more of the groups B04C1/00, B04C3/00, or B04C5/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations

Definitions

  • the invention relates to a device for separating solid particles from a suspension or for concentration of densely divergent substances in a suspension comprising a hydrocyclone with at least one feed for the raw liquid, a cylindrical segment, a conical segment, at least one overflow nozzle and at least one underflow nozzle ( discharge). Furthermore, the invention relates to a method for the separation of solid particles from the underflow stream of a hydrocyclone or for the concentration of densely divergent substances in a suspension.
  • hydrocyclones For the separation or classification of solid particles contained in suspensions, for concentration and for the separation of emulsions such as oil-water mixtures often hydrocyclones are used.
  • This separation method is based on the interaction of mass-dependent centrifugal and flow forces.
  • the raw liquid flowing tangentially into the cylindrical part of the hydrocyclone is forced onto a circular path, with mass denser solid particles being conveyed to the outer wall of the hydrocyclone and to the discharge direction.
  • a tapering of the cylinder (cone) leads to a displacement of the less mass-dense liquid in particular, resulting in an inner, upwardly directed vortex.
  • the loss of liquid poses no problem, since only an enrichment of the solid particles in the underflow is required.
  • the enrichment is determined by the design and the operation of the hydrocyclone. Difficult to influence are the properties of the concentrated suspension, which, however, should be designed selectively in many technical applications. In other applications, the loss of liquid effluent from the underflow stream should be minimized as much as possible. For example, in waterjet cutting, the separation of solid particles without loss of water is required for the jet.
  • the underflow stream can be fed to downstream separation processes.
  • a hydrocyclone is followed by another hydrocyclone.
  • the underflow stream coming from the first hydrocyclone is in turn passed tangentially into the second hydrocyclone, the centrifugal force being used again for separation.
  • the US 3928186 A describes the sequential deposition of light paper fibers from a paper waste suspension. In this case, instead of the underflow stream of a hydrocyclone, the overflow stream and thus particle-poor liquid are fed to a second separation process.
  • the object of the present invention is to separate separated particles located in the underflow (discharge), which have been concentrated by a hydrocyclone in the discharge, from the underflow. Furthermore, the composition of the concentrated suspension can be selectively influenced.
  • a device for separating solid particles from suspensions comprising a hydrocyclone with at least a) a hydrocyclone feed for raw liquid, b) a cylindrical segment, c) a conical segment, d) an overflow nozzle and e) an underflow nozzle, characterized by a secondary separator, comprising a secondary separator inlet, a separation chamber and a dip tube, wherein the underflow nozzle is fluidly connected to a secondary separator inlet, wherein at least one lateral separation wall with the separation lid and a separation bottom delimits the separation space, wherein a dip tube into the separation chamber protrudes and acts as a spout for a secondary current.
  • a secondary separator characterized by a secondary separator inlet, a separation chamber and a dip tube, wherein the underflow nozzle is fluidly connected to a secondary separator inlet, wherein at least one lateral segregation wall with the separation cover and a separation bottom delimits the separation space, a dip tube protruding into the separation space and acting as outlet for a secondary flow.
  • a secondary separator is connected downstream of the hydrocyclone.
  • the hydrocyclone has at least one hydrocyclone inlet for the raw liquid, at least one segment in the form of a straight circular cylinder jacket and a conical segment, at least one overflow nozzle and at least one underflow nozzle.
  • the underflow nozzle is fluidly connected to a secondary separator inlet, wherein the underflow stream flows through a secondary separator inlet into the secondary separator.
  • the secondary separator according to the invention is characterized by a separation chamber, wherein at least one lateral separation wall with the separation lid and a separation bottom delimits the separation space, a dip tube protruding into the separation space and functioning as outlet for a secondary flow.
  • the secondary separator preferably has a circular hollow cylindrical shape, but the shape is not limited to a circular hollow cylinder.
  • a secondary separator according to the invention may also have the shape of a general cylinder or a conical shape and also be spherical.
  • the lateral separation wall forms the lateral surface and is preferably made of aluminum, steel or plastic.
  • the separating lid closes the secondary separator at the top in a substantially fluid-tight manner, an opening being provided for an inlet.
  • the Abscheidedeckel can be permanently connected to the lateral Abscheidewand, as well as it can be made removable.
  • the separation bottom closes the secondary separator downwards in a substantially fluid-tight manner, whereby an opening for the immersion tube is preferably provided.
  • the separation bottom like the cover, can be permanently connected to the lateral separation wall, as well as being removable.
  • the secondary separator according to the invention makes use of the angular momentum of the underflow stream coming from the hydrocyclone.
  • An optional fluid diffuser in the area of the secondary separator inlet can additionally strengthen the swirl.
  • the centrifugal force acting on the particles is used for solid-liquid separation.
  • no additional external electrical or mechanical energy is needed for this separation process.
  • the dip tube is arranged such that the underflow nozzle facing the opening of the dip tube and the opening of the underflow nozzle are arranged substantially concentric.
  • the dip tube is preferably continuously straight but not necessarily running continuously straight and can only be performed piecewise straight.
  • the dip tube may have a bend or bent in one embodiment.
  • the dip tube can be displaceable relative to the separation chamber in the direction of separation bottom and / or separation cover.
  • a particular embodiment provides for a dip tube with a diving tube cover, wherein this is provided at the underflow nozzle facing the dip tube fluid-permeable.
  • the diving tube cover can for example be flat, conical or curved.
  • a bent or bent immersion tube makes it possible for a secondary flow to be guided laterally out of the separation space through the lateral surface or out of the separation space obliquely through the separation bottom.
  • particles can be removed from the separation chamber as a particle stream by periodic or continuous actuation of a valve in the axial flow direction.
  • the axial displacement of the dip tube and its geometric proportions (diameter, length, shape, mounting position) allows optimization of the secondary flow in terms of volume flow, continuity, selectivity and separation efficiency.
  • a diving tube cover prevents the direct entry of particles into the dip tube and brings additional advantages in terms of purity and suspension properties of the secondary stream.
  • the separation bottom is preferably flat. In a special design, this has a converging in the direction Abscheidedeckel and from the lateral separation wall to the dip tube towards cone. Alternatively, it is conceivable that the separation bottom has a cone which extends in the direction of the deposition cover and from the dip tube to the lateral separation wall.
  • a conical design of the separation bottom can have advantageous effect in terms of separation efficiency.
  • the flow behavior of the secondary flow is positively influenced.
  • the separation bottom has a depression in each region of the transition to the lateral separation wall, the depression functioning as a trough or as a discharge trough.
  • the recess is designed annular.
  • a special design provides a removable part of the separation bottom in the area of the tub in order to remove dirt manually.
  • At least one rinsing inlet and at least one rinsing outlet are provided, wherein these are connected in a fluid-conducting manner to the secondary separator.
  • the at least one flushing inlet and the at least one flushing sequence can be arranged substantially tangentially to the lateral separation wall and orthogonal to the longitudinal axis of the secondary separator inlet.
  • the at least one flushing inlet and the at least one flushing outlet can be arranged substantially parallel to the secondary separator inlet, wherein the at least one flushing inlet is connected to the separating lid and the at least one flushing outlet is connected to the separating plate.
  • Such a flushing unit has the advantage that the manual cleaning of a person maintaining a device according to the invention can be largely removed.
  • the object of the separation of solid particles from the underflow stream of a hydrocyclone or the concentration of a suspension is achieved by a method in which a raw liquid flows as an inlet stream into a hydrocyclone, wherein at least a first solid-liquid separation takes place in the hydrocyclone, wherein an overflow stream and an underflow stream from the hydrocyclone flows.
  • the method is also characterized in that the underflow stream flows into a secondary separator according to the invention, wherein in the secondary separator at least a second solid-liquid separation or concentration takes place and a secondary stream flows from at least one secondary separator.
  • One variant of the method provides for recirculating the secondary flow coming from the secondary separator into the at least one hydrocyclone inlet.
  • the secondary stream can be returned to the overflow stream, for example continuously, discontinuously or after any number of deposition cycles.
  • the recycling of the secondary stream into the at least one hydrocyclone feed has the advantage that the total separation efficiency or selectivity can be increased. Thereby the purity or composition of the secondary flow can be controlled according to the requirements.
  • a flow sensor can be provided, whereby the mass flow or volume flow of the secondary flow can be measured in a special process variant.
  • the measurement result of the flow sensor thereby provides a variable for controlling a valve or a pump.
  • the flow conditions in the secondary separator can thereby be dynamically adapted in order to positively influence the separation efficiency or selectivity as required.
  • Regardless of the embodiment is taken to ensure that separated particles are removed from the separation chamber as a particle stream or concentrated suspension. This can be done periodically or continuously. In general, different process variants can be combined with each other.
  • An essential object of the invention is to provide an apparatus and method for the effective separation of solid particles from the underflow stream 5 of a hydrocyclone 10 to minimize the loss of liquid. Another objective is the selective concentration of a suspension emerging from the underflow of a hydrocyclone.
  • a secondary separator 20 according to the invention has a special geometry for optimum operation. Without restricting the design to it, in the following preferred embodiments according to Fig. 1 to 11 described.
  • Fig. 1 shows a secondary separator 20 according to the invention, wherein this is a hydrocyclone 10 directly downstream.
  • the raw liquid in the form of a suspension flows through a hydrocyclone inlet 11 tangentially into an upper, cylindrical segment 14 'of the hydrocyclone 10.
  • the raw liquid is thereby forced onto a circular path and there is subsequently a downwardly directed vortex.
  • An axial taper of the cylindrical segment 14 ' forms a conical segment 14. This causes bulk denser solid particles to be promoted to the wall of the conical segment 14, thereby driving low-particle liquid into the center of the hydrocyclone.
  • the lower mass density of the particle-poorer liquid leads to an upward flow and consequently to the outflow of a part of the particle-poor liquid through an overflow nozzle 12 as overflow stream 2 (FIG. Fig. 2 ).
  • Particles, residual liquid or concentrated suspension leave the hydrocyclone 10 as underflow stream 3 (FIG. Fig. 2 ) via the underflow nozzle 13 and flows into a secondary separator 20 according to the invention, wherein the underflow nozzle 13 is correspondingly fluid-conductively connected to a secondary separator inlet 21.
  • the secondary separator inlet 21 is preferably a tube with a circular cross-section.
  • the dimensioning can be adjusted depending on the volume flow and viscosity of the raw fluid.
  • the twist can be additionally reinforced.
  • the secondary separator inlet 21 is connected to a separating lid 22, for example by welding, gluing or screwing. Via the inlet 21 passes the still present as a suspension underflow stream 3 ( Fig. 2 ) in a separation chamber 24.
  • This is essentially formed by a circular cylindrical lateral surface or lateral separation wall 23, for example, aluminum, steel or plastic.
  • a variant may be designed to be transparent in at least one region of the lateral separation wall 23 and / or the deposition cover 22 and / or the deposition base 26, wherein this is intended to serve as a viewing window at least one region.
  • the Abscheidedeckel 22 and the Abscheideière 26 closes the hollow cylinder at its end faces substantially fluid-tight, wherein openings for the at least one inlet 21 and the at least one dip tube 25 are provided.
  • the tightness can be produced by a welded connection.
  • a releasable screw or clamp connection can be provided with corresponding sealing elements, whereby the Abscheidedeckel 22 and Abscheideière 26 are removable.
  • the dip tube 25 and the outlet 27 are preferably formed from the same tube. That part of the tube which extends into the separating space substantially filled with suspension is designated accordingly as dip tube 25. That part of the tube which leads away from the separation chamber 24 in the flow direction is referred to as outlet 27.
  • the tube may be formed like the tube for the secondary separator inlet 21.
  • FIG Fig. 4 A schematic representation of the flow course within a secondary separator 20 according to the invention is shown in FIG Fig. 4 shown.
  • the underflow stream 3 coming from the hydrocyclone 10 has an angular momentum which originates from the mode of operation of the hydrocyclone 10.
  • Sekundärabscheider inlet 21 mass density particles or suspension components are pressed due to the centrifugal force against the inside of the tube.
  • the centripetal force counteracting the inner side of the pipe is eliminated, as a result of which more dense particles are forced against the lateral separation wall 23 and finally come to rest on the separation bottom.
  • the less mass-dense liquid remains in the inner region of the separation chamber 24 and experiences a buoyancy.
  • the freed of solid particles liquid flows through the dip tube 25 and via the outlet 27 as a secondary flow 5 from.
  • a dip tube cover 25 ' may be provided to prevent the direct entry of a bulk dense solid particle into the dip tube 25.
  • Fig. 5 shows a particular embodiment of a secondary separator according to the invention 20.
  • the dip tube 25 in this case has a kink, so that it either penetrates the conically shaped Abscheideière 26 to one side, or above the cylindrical part of the separation wall (23) leaves.
  • the secondary flow 5 flows through the outlet 27.
  • the separated particles or the concentrated suspension can be discharged downwards.
  • the introduction of a valve into the particle stream allows the periodic or preferably continuous discharge of solid particles or concentrated suspension.
  • FIG. 6a A special design of the separation bottom is in Fig. 6a and 6b shown.
  • the conical separation bottom 28 runs together from the lower region of the lateral separation wall 23 in the direction of separation cover 22 and dip tube 25. This influences the course of the flow in the lower region of the separating chamber 24 in such a way that the buoyancy of the less dense liquid is favored.
  • Fig. 6b the variant of a conical separation bottom 28 "with opposite inclination is shown, which also allows the flow within the secondary separator 20 to be influenced positively depending on the viscosity of a suspension or a gas mixture.
  • Fig. 6c shows a special design of the Abscheidedeckels 22.
  • the secondary divider inlet 21 in the direction of lateral separation wall 23 downwardly divergent cone 29 thereby acts on the prevailing in the upper region of the separation chamber 24 flow.
  • an abrupt flow which in the case of highly viscous masses desirably leads to loosening, can be contained, in order to counteract turbulence and a concomitant reduced deposition of solid particles on the separation wall 23.
  • Such a cone 29 may be provided for any conceivable embodiment of a secondary separator 20 according to the invention.
  • Fig. 6d shows a special design of the secondary separator, wherein the separation bottom can be partially perforated, open or run completely open.
  • This embodiment has advantageous properties in terms of concentration, in particular in the case of freely discharging systems against ambient pressure.
  • the Abscheidedeckel can also diverge conically ( Fig. 6e ).
  • FIG Fig. 7 Another particular embodiment of the deposition tray 26 is shown in FIG Fig. 7 shown.
  • the design has a recess 26 'in the separation bottom in the region of the lateral separation wall.
  • the recess preferably forms an annular trough.
  • the separation bottom can be made completely removable or identify a removable element only in the region of the depression 26 '. This should facilitate cleaning.
  • the advantage of the depression 26 'per se is that solid particles deposit in this region in particular, as a result of which the formation of particle accumulations on the otherwise flat deposition soil 26 can largely be avoided or at least retarded. Such accumulations can be obstacles to the flow, in the worst case already deposited solid particles are entrained by the particle-poor liquid.
  • FIG. 8a shows tangential rinsing inlets and outlets 30, 31.
  • the rinsing feeds are preferably positioned horizontally and tangentially to the lateral separation wall 23 in the upper area of the secondary separator 20 and connected in a fluid-conducting manner to the separation space 24.
  • Two flushing inlets 30 ', 30 are preferably provided, which are parallel to each other in addition to the arrangement mentioned, that inflowing liquid flows in the same direction through both inlets on the circular path of the lateral separation wall 23.
  • the flow entrains previously separated particles, wherein the flushing liquid flows tangentially with the contaminants in the lower region via preferably two flushing outlets 31 ', 31 ".
  • These are arranged analogously to the scavenging inlets 30, but offset in the lower region of the secondary separator and according to the flow direction.
  • flushing inlets 30 ", 30" and outflows 31 ', 31 ", and three inlets or outlets, which are each offset by an angle of 120 °, or more, are conceivable
  • the flushing inlets can also be used as flushing outlets and the flushing outlets can be used as flushing inlets
  • each flushing inlet can be used as a flushing outlet, and vice versa.
  • Fig. 8b shows axially arranged flushing inlets and outlets 32, 33.
  • two feeds 32 ', 32 "" are provided, which are arranged vertically and parallel to the secondary separator inlet 21, the inlets 32 attached to the separating lid 22 and to the separating chamber 24 fluidly connected.
  • two processes are preferred 33 ', 33 "provided, which are arranged analogously to the inlets 32, but attached to the separation bottom and the separation chamber 24 are fluid-conductively connected.
  • rinsing feeds can be used as rinsing processes and the rinsing processes as rinsing feeds.
  • Fig. 9 Possible variants of a method according to the invention with regard to recycling the secondary stream are in Fig. 9 shown.
  • a feedback to influence the selectivity in the hydrocyclone inlet 11 with an inlet stream 1 Fig. 9a ).
  • the return of the secondary flow 5 can be carried out in a second inlet, which is arranged below the one hydrocyclone inlet 11. In both cases, the secondary flow 5 is returned to the separation process.
  • the secondary flow 5 can also be returned directly to the overflow stream 2 ( Fig. 9c ).
  • particles or suspension continuously for example with a in Fig. 5 illustrated design, or periodically, with a in Fig. 8 illustrated embodiment, are discharged from the secondary separator 20 according to the invention as a particle stream or suspension 4.
  • the pressure-driven operation provides ( Fig. 10a ), to influence the delivery rate of the secondary flow 5 with a pump 6.
  • a control valve 7 is provided instead of the pump 6.
  • a flow sensor 8 can be connected downstream, with its measurement result thereby providing a variable for regulating the pumping power or the position of the valve 7.
  • the return of the secondary flow into the hydrocyclone inlet ( Fig. 9a ), into a second hydrocyclone feed ( Fig. 9b ) or in the overflow stream ( Fig. 9c ).
  • the waiting times and the respective pressures of the rinsing streams can be adapted to the degree of soiling or to the nature of the solid particles.

Landscapes

  • Cyclones (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Abscheidung von Feststoffpartikeln aus Suspensionen bzw. Aufkonzentrierung von Suspensionen, umfassend einen Hydrozyklon (10) sowie einen Sekundärabscheider (20), gekennzeichnet durch einen Sekundärabscheider-Zulauf, einen Abscheideraum und ein Tauchrohr, wobei die Unterlaufdüse (13) mit einem Sekundärabscheider-Zulauf fluidleitend verbunden ist, wobei zumindest eine seitliche Abscheidewand mit dem Abscheidedeckel und einem Abscheideboden den Abscheideraum begrenzt, wobei ein Tauchrohr in den Abscheideraum hineinragt und als Auslauf für einen Sekundärstrom fungiert. Außerdem betrifft die Erfindung ein Verfahren zur Abscheidung von Feststoffpartikeln aus dem Unterlaufstrom eines Hydrozyklons (10) bzw. zur Aufkonzentrierung einer Suspension, wobei der Unterlaufstrom in einen Sekundärabscheider (20) strömt, wobei im Sekundärabscheider (20) zumindest eine zweite Fest-Flüssig-Trennung bzw. Aufkonzentrierung erfolgt und ein Sekundärstrom aus zumindest einem Sekundärabscheider (20) strömt.

Description

  • Die Erfindung betrifft eine Vorrichtung zur Abscheidung von Feststoffpartikeln aus einer Suspension bzw. zur Aufkonzentrierung von dichtedivergenten Stoffen in einer Suspension, umfassend einen Hydrozyklon mit zumindest einem Zulauf für die Rohflüssigkeit, einem zylindrischen Segment, einem konischen Segment, zumindest einer Überlaufdüse sowie zumindest einer Unterlaufdüse (Austrag). Ferner betrifft die Erfindung ein Verfahren zur Abscheidung von Feststoffpartikeln aus dem Unterlaufstrom eines Hydrozyklons bzw. zur Aufkonzentrierung von dichtedivergenten Stoffen in einer Suspension.
  • HINTERGRUND DER ERFINDUNG UND STAND DER TECHNIK
  • Zur Abtrennung bzw. Klassierung von in Suspensionen enthaltenen Feststoffpartikeln, zur Aufkonzentrierung sowie zur Trennung von Emulsionen wie beispielsweise Öl-WasserGemische kommen häufig Hydrozyklone zum Einsatz.
  • Die Funktionsweise dieses Trennverfahrens beruht auf dem Zusammenspiel von massenabhängigen Zentrifugal- und Strömungskräften. Die tangential in den zylindrischen Teil des Hydrozyklons einströmende Rohflüssigkeit wird auf eine Kreisbahn gezwungen, wobei massendichtere Feststoffpartikel zur Außenwand des Hydrozyklons sowie Richtung Austrag befördert werden. Eine Verjüngung des Zylinders (Konus) führt zu einer Verdrängung insbesondere der weniger massendichten Flüssigkeit nach innen, resultierend in einem inneren, aufwärtsgerichteten Wirbel.
  • Dies führt in der Regel dazu, dass feststoffarme Flüssigkeit über eine Überlaufdüse als Überlaufstrom abfließt. Da durch den Hydrozyklon jedoch häufig keine vollständige Fest-Flüssig-Trennung möglich ist, fließt neben den abzutrennenden Feststoffpartikeln auch Flüssigkeit als Unterlaufstrom ungenützt ab.
  • In vielen Fällen stellt der Verlust von Flüssigkeit kein Problem dar, da lediglich eine Anreicherung der Feststoffpartikel im Unterlauf gefordert wird. Die Anreicherung wird hierbei durch die Bauform sowie die Betriebsweise des Hydrozyklons bestimmt. Schwer beeinflussbar sind dabei die Eigenschaften der aufkonzentrierten Suspension, welche jedoch in vielen technischen Anwendungen selektiv gestaltet werden sollen. Bei anderen Anwendungen ist der Verlust von mit Feststoffpartikeln über den Unterlaufstrom abfließender Flüssigkeit weitestgehend zu minimieren. So wird beispielsweise beim Wasserstrahlstrahlschneiden die Abtrennung von Feststoffpartikeln ohne Verlust von Wasser für den Strahl gefordert.
  • Um eine vollständige Fest-Flüssig-Trennung zu erreichen, kann der Unterlaufstrom nachgeschalteten Trennprozessen zugeführt werden. Im nächstliegenden Stand der Technik GB 1,130,339 A wird einem Hydrozyklon ein weiterer Hydrozyklon nachgeschaltet. Der vom ersten Hydrozyklon kommende Unterlaufstrom wird dabei wiederum tangential in den zweiten Hydrozyklon geleitet, wobei zur Trennung erneut die Zentrifugal- bzw. Fliehkraft genützt wird.
  • Weitere im Stand der Technik verwendeten Vorrichtungen wie beispielsweise Sedimenter haben Nachteile wie großen Platzbedarf oder lange Verweilzeiten aufgrund geringer Sinkgeschwindigkeit von Feststoffpartikeln in höherviskosen Flüssigkeiten. Filtereinheiten verursachen hohe Kosten durch den erhöhten Wartungsbedarf, resultierend in längeren Stillstandzeiten. Ein weiterer Nachteil von Filtern sind mitunter große Druckverluste.
  • Die US 3928186 A beschreibt die hintereinander erfolgende Abscheidung von leichten Papierfasern aus einer Papierabfall-Suspension. Dabei wird anstelle des Unterlaufstromes eines Hydrozyklons der Überlaufstrom und somit partikelarme Flüssigkeit einem zweiten Trennprozess zugeführt.
  • KURZE BESCHREIBUNG DER ERFINDUNG
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, abgeschiedene und im Unterlauf (Austrag) befindliche Partikel, welche durch einen Hydrozyklon im Austrag aufkonzentriert wurden, aus dem Unterlauf abzutrennen. Des Weiteren kann die Zusammensetzung der aufkonzentrierten Suspension selektiv beeinflusst werden.
  • Diese Aufgaben werden gelöst durch eine Vorrichtung zur Abscheidung von Feststoffpartikeln aus Suspensionen, umfassend einen Hydrozyklon mit zumindest a) einem Hydrozyklon-Zulauf für Rohflüssigkeit, b) einem zylindrischen Segment, c) einem konischen Segment, d) einer Überlaufdüse sowie e) einer Unterlaufdüse, gekennzeichnet durch einen Sekundärabscheider, umfassend einen Sekundärabscheider-Zulauf, einen Abscheideraum und ein Tauchrohr, wobei die Unterlaufdüse mit einem Sekundärabscheider-Zulauf fluidleitend verbunden ist, wobei zumindest eine seitliche Abscheidewand mit dem Abscheidedeckel und einem Abscheideboden den Abscheideraum begrenzt, wobei ein Tauchrohr in den Abscheideraum hineinragt und als Auslauf für einen Sekundärstrom fungiert.
  • Diese Aufgaben werden weiters gelöst durch einen Sekundärabscheider, gekennzeichnet durch einen Sekundärabscheider-Zulauf, einen Abscheideraum und ein Tauchrohr, wobei die Unterlaufdüse mit einem Sekundärabscheider-Zulauf fluidleitend verbunden ist, wobei zumindest eine seitliche Abscheidewand mit dem Abscheidedeckel und einem Abscheideboden den Abscheideraum begrenzt, wobei ein Tauchrohr in den Abscheideraum hineinragt und als Auslauf für einen Sekundärstrom fungiert.
  • Bei einer gattungsgemäßen Vorrichtung ist ein Sekundärabscheider dem Hydrozyklon nachgeschaltet. Der Hydrozyklon weist zumindest einen Hydrozyklon-Zulauf für die Rohflüssigkeit, zumindest ein Segment in Form eines geraden Kreiszylindermantels und ein konisches Segment, zumindest eine Überlaufdüse sowie zumindest eine Unterlaufdüse auf. Die Unterlaufdüse ist mit einem Sekundärabscheider-Zulauf fluidleitend verbunden, wobei der Unterlaufstrom über einen Sekundärabscheider-Zulauf in den Sekundärabscheider strömt. Der erfindungsgemäße Sekundärabscheider ist gekennzeichnet durch einen Abscheideraum, wobei zumindest eine seitliche Abscheidewand mit dem Abscheidedeckel und einem Abscheideboden den Abscheideraum begrenzt, wobei ein Tauchrohr in den Abscheideraum hineinragt und als Auslauf für einen Sekundärstrom fungiert.
  • Der Sekundärabscheider hat bevorzugt Kreishohlzylinderform, die Form ist jedoch nicht auf einen Kreishohlzylinder beschränkt. Ein erfindungsgemäßer Sekundärabscheider kann auch die Form eines allgemeinen Zylinders oder konische Form aufweisen und auch kugelförmig ausgebildet sein. Die seitliche Abscheidewand bildet die Mantelfläche und ist vorzugsweise aus Aluminium, Stahl oder Kunststoff gefertigt.
  • Der Abscheidedeckel schließt den Sekundärabscheider nach oben hin im Wesentlichen fluiddicht ab, wobei eine Öffnung für einen Zulauf vorgesehen ist. Der Abscheidedeckel kann mit der seitlichen Abscheidewand dauerhaft verbunden sein, ebenso kann er abnehmbar ausgeführt sein. Der Abscheideboden schließt den Sekundärabscheider nach unten hin im Wesentlichen fluiddicht ab, wobei bevorzugt eine Öffnung für das Tauchrohr vorgesehen ist. Der Abscheideboden kann wie der Deckel mit der seitlichen Abscheidewand dauerhaft verbunden sein, ebenso kann er abnehmbar ausgeführt sein.
  • Der erfindungsgemäße Sekundärabscheider nützt den Drehimpuls des vom Hydrozyklon kommenden Unterlaufstroms. Durch einen optionalen Fluid-Leitapparat im Bereich des Sekundärabscheider-Zulaufs kann der Drall zusätzlich verstärkt werden. Die auf die Partikel wirkende Fliehkraft wird dabei zur Fest-Flüssig-Trennung genutzt. Vorteilhafterweise wird keine zusätzliche externe elektrische bzw. mechanische Energie für diesen Trennprozess benötigt.
  • Das Tauchrohr ist derart angeordnet, dass die der Unterlaufdüse zugewandten Öffnung des Tauchrohres und die Öffnung der Unterlaufdüse im Wesentlichen konzentrisch angeordnet sind. Das Tauchrohr ist vorzugweise durchgehend gerade aber nicht zwingend durchgehend gerade ausgeführt und kann nur stückweise gerade ausgeführt sein. Das Tauchrohr kann in einer Ausführungsvariante einen Knick aufweisen oder gebogen sein. Ferner kann das Tauchrohr relativ zum Abscheideraum in Richtung Abscheideboden und/oder Abscheidedeckel verschiebbar sein. Eine besondere Ausführungsvariante sieht ein Tauchrohr mit einer Tauchrohrabdeckung vor, wobei diese am der Unterlaufdüse zugewandten Tauchrohrende fluiddurchlässig angebracht ist. Die Tauchrohrabdeckung kann beispielsweise eben, konisch oder gekrümmt ausgeführt sein.
  • Ein geknicktes bzw. gebogenes Tauchrohr ermöglicht, dass ein Sekundärstrom seitlich durch die Mantelfläche aus dem Abscheideraum oder schräg durch den Abscheideboden aus dem Abscheideraum geführt werden kann. In Kombination mit einem zum Sekundärabscheider-Auslauf hin konisch zusammenlaufenden Abscheideboden können Partikel durch periodisches oder kontinuierliches Betätigen eines Ventils in axialer Strömungsrichtung aus dem Abscheideraum als Partikel-Strom abgeführt werden. Die axiale Verschiebung des Tauchrohrs sowie dessen geometrische Proportionen (Durchmesser, Länge, Form, Einbaulage) ermöglicht eine Optimierung des Sekundärstromes hinsichtlich Volumenstrom, Kontinuität, Selektivität und Abscheideleistung. Eine Tauchrohrabdeckung verhindert das direkte Eintreten von Partikeln in das Tauchrohr und bringt zusätzliche Vorteile hinsichtlich der Reinheit bzw. der Suspensionseigenschaften des Sekundärstromes.
  • Der Abscheideboden ist bevorzugt eben ausgeführt. In einer besonderen Bauform weist dieser einen in Richtung Abscheidedeckel und von der seitlichen Abscheidewand zum Tauchrohr hin zusammenführenden Konus auf. Alternativ ist denkbar, dass der Abscheideboden einen in Richtung Abscheidedeckel und vom Tauchrohr zur seitlichen Abscheidewand hin auseinanderlaufenden Konus aufweist.
  • Eine konische Ausführung des Abscheidebodens kann vorteilhafte Wirkung hinsichtlich der Abscheideleistung haben. Dabei wird das Strömungsverhalten des Sekundärstromes positiv beeinflusst.
  • Ebenfalls kann vorgesehen sein, dass der Abscheideboden in jedem Bereich des Übergangs zur seitlichen Abscheidewand eine Vertiefung aufweist, wobei die Vertiefung als Wanne bzw. als Austragswanne fungiert. Bevorzugt ist die Vertiefung ringförmig ausgestaltet.
  • Damit wird erreicht, dass die im Bereich der Austragswanne angelagerten Partikel bzw. aufkonzentrierte Suspension von der vorherrschenden Strömung nicht so leicht mitgerissen werden können. Eine besondere Bauform sieht einen abnehmbaren Teil des Abscheidebodens im Bereich der Wanne vor, um Verschmutzungen händisch entfernen zu können.
  • In einer besonderen Ausführungsvariante ist zumindest ein Spül-Zulauf und zumindest ein Spül-Ablauf vorgesehen, wobei diese mit dem Sekundärabscheider fluidleitend verbunden sind. Dabei kann der zumindest eine Spül-Zulauf und der zumindest eine Spül-Ablauf im Wesentlichen tangential zur seitlichen Abscheidewand und orthogonal zur Längsachse des Sekundärabscheider-Zulaufs angeordnet sein. Alternativ kann der zumindest eine Spül-Zulauf und der zumindest eine Spül-Ablauf im Wesentlichen parallel zum Sekundärabscheider-Zulauf angeordnet sein, wobei der zumindest eine Spül-Zulauf mit dem Abscheidedeckel verbunden ist und der zumindest eine Spül-Ablauf mit dem Abscheideboden verbunden ist.
  • Eine solche Spüleinheit hat den Vorteil, dass die händische Reinigung einer eine erfindungsgemäße Vorrichtung instand haltenden Person zum größten Teil abgenommen werden kann.
  • Ferner wird die Aufgabe der Abscheidung von Feststoffpartikeln aus dem Unterlaufstrom eines Hydrozyklons bzw. der Aufkonzentrierung einer Suspension gelöst durch ein Verfahren, wobei eine Rohflüssigkeit als Einlaufstrom in einen Hydrozyklon strömt, wobei im Hydrozyklon zumindest eine erste Fest-Flüssig-Trennung erfolgt, wobei ein Überlaufstrom und ein Unterlaufstrom aus dem Hydrozyklon strömt. Das Verfahren ist außerdem dadurch gekennzeichnet, dass der Unterlaufstrom in einen erfindungsgemäßen Sekundärabscheider strömt, wobei im Sekundärabscheider zumindest eine zweite Fest-Flüssig-Trennung bzw. Aufkonzentrierung erfolgt und ein Sekundärstrom aus zumindest einem Sekundärabscheider strömt.
  • Eine Verfahrensvariante sieht vor, den vom Sekundärabscheider kommenden Sekundärstrom in den zumindest einen Hydrozyklon-Zulauf zurückzuführen. In einer weiteren Ausführungsvariante kann der Sekundärstrom in den Überlaufstrom zurückgeführt werden, beispielsweise kontinuierlich, diskontinuierlich oder nach einer beliebigen Anzahl von Abscheidezyklen.
  • Die Rückführung des Sekundärstroms in den zumindest einen Hydrozyklon-Zulauf hat den Vorteil, dass die gesamte Abscheideleistung bzw. Selektivität erhöht werden kann. Dadurch kann die Reinheit bzw. Zusammensetzung des Sekundärstromes den Anforderungen entsprechend gesteuert werden.
  • In einer weiteren Bauform kann ein Durchflusssensor vorgesehen sein, wodurch in einer speziellen Verfahrensvariante der Massen- bzw. Volumenstrom des Sekundärstroms gemessen werden kann. Das Messergebnis des Durchflusssensors stellt dabei eine Größe zur Regelung eines Ventils oder einer Pumpe bereit.
  • Vorteilhafterweise können dadurch die Strömungsbedingungen im Sekundärabscheider dynamisch adaptiert werden, um die Abscheideleistung bzw. Selektivität je nach Anforderung positiv zu beeinflussen.
  • Unabhängig von der Ausführungsform wird darauf geachtet, dass abgeschiedene Partikel aus dem Abscheideraum als Partikel-Strom bzw. aufkonzentrierte Suspension abgeführt werden. Dies kann periodisch oder kontinuierlich erfolgen. Generell können unterschiedliche Verfahrensvarianten miteinander kombiniert werden.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
    • Fig. 1 zeigt einen Hydrozyklon 10 mit einem nachgeschalteten erfindungsgemäßen Sekundärabscheider 20 in der Vorderansicht, Seitenansicht und Perspektive.
    • Fig. 2 zeigt einen Hydrozyklon 10 mit erfindungsgemäßem Sekundärabscheider 20, Einlaufstrom 1 (Rohflüssigkeit), Überlaufstrom 2, Unterlaufstrom 3, Partikel-Strom bzw. aufkonzentrierte Suspension 4 und Sekundärstrom 5.
    • Fig. 3 zeigt einen erfindungsgemäßen Sekundärabscheider in der Vorderansicht und Perspektive mit Sekundärabscheider-Zulauf 21, Abscheidedeckel 22, seitliche Abscheidewand 23, Abscheideraum 24, Tauchrohr 25, Abscheideboden 26 und Auslauf 27.
    • Fig. 4 zeigt den schematischen Strömungsverlauf in einem erfindungsgemäßen Sekundärabscheider.
    • Fig. 5 zeigt eine besondere Bauform eines erfindungsgemäßen Sekundärabscheiders mit gekrümmtem Tauchrohr und einem Ventil zum kontrollierten Ablassen von Feststoffpartikeln bzw. aufkonzentrierter Suspension.
    • Fig. 6 zeigt eine besondere Ausführung des Abscheidebodens sowie des Abscheidedeckels
      • 6a Abscheideboden, welcher einen in Richtung Abscheidedeckel 22 und von der seitlichen Abscheidewand 23 zum Tauchrohr 25 hin zusammenführenden Konus 28' aufweist.
      • 6b Abscheideboden, welcher einen in Richtung Abscheidedeckel 22 und vom Tauchrohr 25 zur seitlichen Abscheidewand 23 hin auseinanderlaufenden Konus 28" aufweist.
      • 6c Abscheidedeckel, welcher einen in Richtung Abscheideboden 26 und vom Sekundärabscheider-Zulauf 21 zur seitlichen Abscheidewand 23 auseinanderlaufenden Konus 29' aufweist.
      • 6d Abscheideboden, welcher teilweise perforiert ist, geöffnet ist oder ganz entfällt, sodass die abgeschiedenen Partikel bzw. aufkonzentrierte Suspension frei ausgetragen wird.
      • 6e Abscheideboden, welcher teilweise perforiert ist, geöffnet ist oder ganz entfällt, wobei der Abscheidedeckel konisch vom Sekundärabscheider-Zulauf 21 zur seitlichen Abscheidewand 23 auseinanderläuft, sodass die abgeschiedenen Partikel bzw. aufkonzentrierte Suspension frei ausgetragen wird.
    • Fig. 7 zeigt eine weitere Ausführungsvariante des Abscheidebodens, wobei eine Vertiefung eine ringförmige Austragswanne 26' bildet.
    • Fig. 8 zeigt zwei Varianten eines erfindungsgemäßen Sekundärabscheiders mit Spül-Zuläufen und Spül-Abläufen in jeweils zwei Ansichten, welche auch auf alle angeführten Bauformen des Sekundärabscheiders angewendet werden können.
      • 8a zeigt tangentiale Spül-Zuläufe 30 (30', 30"), welche auch als Abläufe verwendet werden können und tangentiale Spül-Abläufe 31 (31', 31"), welche auch als Zuläufe verwendet werden können.
      • 8b zeigt axiale Spül-Zuläufe 32 (32', 32"), welche auch als Abläufe verwendet werden können und Spül-Abläufe 33 (33', 33""), welche auch als Zuläufe verwendet werden können.
    • Fig. 9 zeigt Varianten der Rückführung des Sekundärstromes 5.
      • 9a zeigt die Rückführung in den Einlaufstrom 1.
      • 9b zeigt, dass der Sekundärstrom 5 als zusätzlicher Einlaufstrom zurückgeführt wird.
      • 9c zeigt, die Rückführung in den Überlaufstrom 2.
    • Fig. 10 zeigt eine Ausführungsform mit einer in den Sekundärstrom 5 eingebrachten a) Pumpe 6 oder b) Regelventil 7 mit einem Durchflusssensor 8.
    • Fig. 11 zeigt einen denkbaren Aufbau mit Spüleinrichtung und Ventilen zur Steuerung eines Spülprozesses.
    DETAILLIERTE BESCHREIBUNG DER ERFINDUNG
  • Ein wesentliches Ziel der Erfindung ist die Bereitstellung einer Vorrichtung und eines Verfahrens für die effektive Abscheidung von Feststoffpartikeln aus dem Unterlaufstrom 5 eines Hydrozyklons 10, um den Verlust von Flüssigkeit, zu minimieren. Ein weiteres Ziel ist die selektive Aufkonzentrierung einer aus dem Unterlauf eines Hydrozyklons austretenden Suspension. Ein erfindungsgemäßer Sekundärabscheider 20 weist für eine optimale Betriebsweise eine spezielle Geometrie auf. Ohne die Bauform darauf einzuschränken, werden im Folgenden bevorzugte Ausführungsvarianten gemäß Fig. 1 bis 11 beschrieben.
  • Fig. 1 zeigt einen erfindungsgemäßen Sekundärabscheider 20, wobei dieser einem Hydrozyklon 10 direkt nachgeschaltet ist. Die Rohflüssigkeit in Form einer Suspension strömt über einen Hydrozyklon-Zulauf 11 tangential in ein oberes, zylindrisches Segment 14' des Hydrozyklons 10. Die Rohflüssigkeit wird dadurch auf eine Kreisbahn gezwungen und es entsteht im Weiteren ein abwärts gerichteter Wirbel. Eine axiale Verjüngung des zylindrischen Segments 14' bildet ein konisches Segment 14 aus. Dies bewirkt, dass massendichtere Feststoffpartikel verstärkt an die Wand des konischen Segments 14 befördert werden, wodurch partikelarme Flüssigkeit in die Mitte des Hydrozyklons getrieben wird. Die geringere Massendichte der partikelärmeren Flüssigkeit führt zu einem aufwärtsgerichteten Strom und folglich zum Abfluss eines Teiles der partikelarmen Flüssigkeit durch eine Überlaufdüse 12 als Überlaufstrom 2 (Fig. 2). Partikel, restliche Flüssigkeit oder aufkonzentrierte Suspension verlassen den Hydrozyklon 10 als Unterlaufstrom 3 (Fig. 2) über die Unterlaufdüse 13 und strömt in einen erfindungsgemäßen Sekundärabscheider 20, wobei die Unterlaufdüse 13 mit einem Sekundärabscheider-Zulauf 21 entsprechend fluidleitend verbunden ist.
  • In Fig. 3 ist ein erfindungsgemäßer Sekundärabscheider 20 im Detail gezeigt. Der Sekundärabscheider-Zulauf 21 ist vorzugsweise ein Rohr mit kreisrundem Querschnitt. Die Dimensionierung kann abhängig von Volumenstrom und Viskosität der Rohflüssigkeit angepasst werden. Optional kann durch einen Fluid-Leitapparat im Bereich des Sekundärabscheider-Zulaufs 21 der Drall zusätzlich verstärkt werden. Der Sekundärabscheider-Zulauf 21 ist mit einem Abscheidedeckel 22 beispielsweise durch Schweißen, Kleben oder durch Verschrauben verbunden. Über den Zulauf 21 gelangt der nach wie vor als Suspension vorliegende Unterlaufstrom 3 (Fig. 2) in einen Abscheideraum 24. Dieser wird im Wesentlichen durch eine kreiszylinderförmige Mantelfläche bzw. seitliche Abscheidewand 23 aus beispielsweise Aluminium, Stahl oder Kunststoff gebildet.
  • Eine Variante kann in zumindest einem Bereich der seitlichen Abscheidewand 23 und/oder des Abscheidedeckels 22 und/oder des Abscheidebodens 26 transparent ausgeführt sein, wobei dieser zumindest eine Bereich als Sichtfenster dienen soll. Der Abscheidedeckel 22 und der Abscheideboden 26 schließt den Hohlzylinder an seinen Stirnseiten im Wesentlichen fluiddicht ab, wobei Öffnungen für den zumindest einen Zulauf 21 und das zumindest eine Tauchrohr 25 vorgesehen sind. Die Dichtheit kann durch eine Schweißverbindung hergestellt werden. Ebenso kann eine lösbare Schraub- oder Klemmverbindung mit entsprechenden Dichtelementen vorgesehen sein, wodurch der Abscheidedeckel 22 und Abscheideboden 26 abnehmbar sind.
  • Das Tauchrohr 25 und der Auslauf 27 sind bevorzugt aus demselben Rohr gebildet. Jener Teil des Rohres, welcher in den im Wesentlichen mit Suspension angefüllten Abscheideraum hineinreicht wird entsprechend als Tauchrohr 25 bezeichnet. Jener Teil des Rohres, welcher vom Abscheideraum 24 in Strömungsrichtung wegführt wird als Auslauf 27 bezeichnet. Das Rohr kann wie das Rohr für den Sekundärabscheider-Zulauf 21 ausgebildet sein.
  • Eine schematische Darstellung des Strömungsverlaufs innerhalb eines erfindungsgemäßen Sekundärabscheiders 20 ist in Fig. 4 dargestellt. Der vom Hydrozyklon 10 kommende Unterlaufstrom 3 weist einen Drehimpuls auf, welcher von der Funktionsweise des Hydrozyklons 10 herrührt. Im Sekundärabscheider-Zulauf 21 werden massedichtere Partikel bzw. Suspensionsanteile aufgrund der Zentrifugalkraft gegen dessen Rohrinnenseite gedrückt. Bei Eintritt in den Abscheideraum 24 entfällt die von der Rohrinnenseite entgegenwirkende Zentripetalkraft, wodurch massedichtere Partikel an die seitliche Abscheidewand 23 gedrängt werden und schließlich am Abscheideboden zu liegen kommen. Die weniger massedichte Flüssigkeit bleibt dabei im inneren Bereich des Abscheideraums 24 und erfährt einen Auftrieb. Die von Feststoffpartikeln befreite Flüssigkeit strömt über das Tauchrohr 25 bzw. über den Auslauf 27 als Sekundärstrom 5 ab. Optional kann eine Tauchrohrabdeckung 25' vorgesehen sein, um das direkte Eintreten eines massedichten Feststoffpartikels in das Tauchrohr 25 zu verhindern.
  • Der Vorteil gegenüber dem Stand der Technik, in welchem einem Hydrozyklon 10 ein weiterer Hydrozyklon nachgeschaltet wird, ist unter anderem das abrupte Ausbleiben der Zentripetalkraft direkt bei Eintritt der Suspension in den Abscheideraum 24. Dies bewirkt eine Auflockerung der Masse, was insbesondere bei hochviskosen Suspensionen wie partikelreiche Biomasse bzw. Schlamm Klumpenbildung verhindert und somit maßgeblich zur Steigerung der Abscheideeffizient beiträgt. Testversuche haben gezeigt, dass ein erfindungsgemäßer Sekundärabscheider 20 auch zur Gas-Feststoff- oder Gas-Flüssig-Trennung geeignet ist.
  • Fig. 5 zeigt eine besondere Ausführung eines erfindungsgemäßen Sekundärabscheiders 20. Das Tauchrohr 25 weist dabei einen Knick auf, sodass es entweder den konisch geformten Abscheideboden 26 zu einer Seite hin durchdringt, oder oberhalb den zylindrischen Teil der Abscheidewand (23) verlässt. Der Sekundärstrom 5 fließt über den Auslauf 27 ab. In axialer Strömungsrichtung können die abgeschiedenen Partikel bzw. die aufkonzentrierte Suspension nach unten abgeleitet werden. Die Einbringung eines Ventils in den Partikelstrom ermöglicht dabei das periodische oder bevorzugt kontinuierliche Austragen von Feststoffpartikeln bzw. aufkonzentrierter Suspension.
  • Eine besondere Bauform des Abscheidebodens ist in Fig. 6a und 6b gezeigt. In 6a läuft der konische Abscheideboden 28' vom unteren Bereich der seitlichen Abscheidewand 23 in Richtung Abscheidedeckel 22 und Tauchrohr 25 zusammen. Dies beeinflusst den Strömungsverlauf im unteren Bereich des Abscheideraums 24 derart, dass der Auftrieb der weniger massedichten Flüssigkeit begünstigt wird. In Fig. 6b ist die Variante eines konischen Abscheideboden 28" mit entgegengesetzter Neigung dargestellt. Auch dadurch kann die Strömung innerhalb des Sekundärabscheiders 20 abhängig von der Viskosität einer Suspension oder eines Gasgemisches positiv beeinflusst werden.
  • Fig. 6c zeigt zusätzlich eine besondere Bauform des Abscheidedeckels 22. Der vom Sekundärabscheider-Zulauf 21 in Richtung seitlicher Abscheidewand 23 nach unten auseinanderlaufende Konus 29 wirkt sich dabei auf die im oberen Bereich des Abscheideraumes 24 vorherrschende Strömung aus. Insbesondere für niederviskose Suspensionen kann ein abrupter Strömungsabris, welcher im Falle von hochviskosen Massen in erwünschter Weise zur Auflockerung führt, eingedämmt werden, um Turbulenzen und eine damit einhergehende verminderte Abscheidung von Feststoffpartikeln an der Abscheidewand 23 entgegenzuwirken. Ein solcher Konus 29 kann für jegliche denkbare Ausführungsform eines erfindungsgemäßen Sekundärabscheiders 20 vorgesehen sein.
  • Fig. 6d zeigt eine besondere Bauform des Sekundärabscheiders, wobei der Abscheideboden teilweise perforiert, geöffnet oder ganz geöffnet ausgeführt sein kann. Diese Ausführung hat insbesondere bei frei austragenden Systemen gegen Umgebungsdruck vorteilhafte Eigenschaften hinsichtlich der Aufkonzentrierung. Damit beim Eintritt in den Sekundärabscheider weniger Turbulenzen entstehen bzw. weniger Vermischung des aufkonzentrierten Schlammes resultiert, kann der Abscheidedeckel auch konisch auseinanderlaufen (Fig. 6e).
  • Eine weitere besondere Ausführungsform des Abscheidebodens 26 ist in Fig. 7 gezeigt. Die Bauform weist eine Vertiefung 26' im Abscheideboden im Bereich der seitlichen Abscheidewand auf. Die Vertiefung bildet dabei vorzugsweise eine ringförmige Wanne. Der Abscheideboden kann dabei vollständig abnehmbar ausgeführt sein oder nur im Bereich der Vertiefung 26' ein abnehmbares Element ausweisen. Dadurch soll die Reinigung erleichtert werden. Der Vorteil der Vertiefung 26' an sich ist, dass sich Feststoffpartikel besonders in diesem Bereich ablagern, wodurch die Bildung von Partikelanhäufungen am ansonsten ebenen Abscheideboden 26 weitgehend vermieden oder zumindest hinausgezögert werden können. Solche Anhäufungen können Hindernisse für die Strömung darstellen, wobei im schlimmsten Fall bereits abgelagerte Feststoffpartikel von der partikelarmen Flüssigkeit mitgerissen werden.
  • Eine besondere Ausführungsvariante sieht eine Spüleinrichtung für einen erfindungsgemäßen Sekundärabscheider 20 vor. Fig. 8a zeigt tangentiale Spül-Zuläufe und -Abläufe 30, 31. Die Spül-Zuläufe sind vorzugsweise im oberen Bereich des Sekundärabscheiders 20 horizontal und tangential zur seitliche Abscheidewand 23 positioniert und mit dem Abscheideraum 24 fluidleitend verbunden. Bevorzugt sind zwei Spül-Zuläufe 30', 30" vorgesehen, welche neben genannter Anordnung derart parallel zueinander sind, dass einströmende Flüssigkeit durch beide Zuläufe auf der Kreisbahn der seitlichen Abscheidewand 23 in dieselbe Richtung strömt. Die Strömung reißt dabei zuvor abgeschiedene Partikel mit, wobei die Spül-Flüssigkeit mit den Verschmutzungen im unteren Bereich tangential über bevorzugt zwei Spül-Ausläufe 31', 31" abströmt. Diese sind analog zu den Spül-Zuläufen 30 angeordnet, jedoch im unteren Bereich des Sekundärabscheiders und entsprechend der Strömungsrichtung versetzt.
  • Anstelle von zwei Spül-Zuläufen 30", 30" und -Abläufen 31', 31" kann nur jeweils einer vorgesehen sein. Ebenso sind jeweils drei Zuläufe bzw. Abläufe, welche je um einen Winkel von 120° versetzt angeordnet sind, oder mehrere denkbar. Ebenso können die Spül-Zuläufe als Spül-Abläufe und die Spül-Abläufe als Spül-Zuläufe verwendet werden. Ferner kann jeder Spül-Zulauf als Spül-Ablauf genutzt werden, und umgekehrt.
  • Fig. 8b zeigt axial angeordnete Spül-Zuläufe und -Abläufe 32, 33. Vorzugsweise sind zwei Zuläufe 32', 32"" vorgesehen, welche vertikal und parallel zum Sekundärabscheider-Zulauf 21 angeordnet sind, wobei die Zuläufe 32 am Abscheidedeckel 22 befestigt und mit dem Abscheideraum 24 fluidleitend verbunden sind. Entsprechend sind bevorzugt zwei Abläufe 33', 33" vorgesehen, welche analog zu den Zuläufen 32 angeordnet sind, jedoch am Abscheideboden befestigt und dem Abscheideraum 24 fluidleitend verbunden sind.
  • Wiederum kann anstelle von zwei Spül-Zuläufen 32', 32" und -Abläufen 33', 33" nur jeweils einer vorgesehen sein. Ebenso sind jeweils drei Zuläufe bzw. Abläufe, welche je um einen Winkel von 120° versetzt angeordnet sind, oder mehrere denkbar. Ebenso können die Spül-Zuläufe als Spül-Abläufe und die Spül-Abläufe als Spül-Zuläufe verwendet werden.
  • Mögliche Varianten eines erfindungsgemäßen Verfahrens hinsichtlich Rückführung des Sekundärstroms sind in Fig. 9 dargestellt. Beispielsweise kann eine Rückführung zur Beeinflussung der Selektivität in den Hydrozyklon-Zulauf 11 mit einem Einlaufstrom 1 erfolgen (Fig. 9a). Alternativ kann die Rückführung des Sekundärstroms 5 in einen zweiten Zulauf erfolgen, welcher unterhalb des einen Hydrozyklon-Zulaufs 11 angeordneten ist. In beiden Fällen wird der Sekundärstrom 5 in den Trennprozess zurückgeführt. Je nach Anforderung kann der Sekundärstrom 5 auch direkt in den Überlaufstrom 2 zurückgeführt werden (Fig. 9c).
  • Für jede Ausführung kann vorgesehen sein, dass Partikel bzw. Suspension kontinuierlich, beispielsweise mit einer in Fig. 5 dargestellten Bauform, oder periodisch, mit einer in Fig. 8 dargestellten Ausführungsvariante, aus dem erfindungsgemäßen Sekundärabscheider 20 als Partikelstrom bzw. Suspension 4 abgeführt werden.
  • Um den Volumen- bzw. Massenstrom den Anforderungen entsprechend anpassen zu können, sind unterschiedliche Betriebsarten möglich. Der druckgetriebene Betrieb sieht vor (Fig. 10a), die Fördermenge des Sekundärstroms 5 mit einer Pumpe 6 zu beeinflussen. Im selbstgetriebenen Betrieb (Fig. 10b) ist anstelle der Pumpe 6 ein Regelventil 7 vorgesehen. Für beide Varianten kann optional ein Durchflusssensor 8 nachgeschaltet werden, wobei dessen Messergebnis dabei eine Größe zur Regelung der Pumpleistung bzw. der Stellung des Ventils 7 bereitstellt. Für alle Betriebsarten kann die Rückführung des Sekundärstromes in den Hydrozyklon-Zulauf (Fig. 9a), in einen zweiten Hydrozyklon-Zulauf (Fig. 9b) bzw. in den Überlaufstrom (Fig. 9c) ausgeführt werden.
  • Fig. 11 zeigt eine Bauform mit Ventilen, mit welcher Ablauflauf-Sequenzen für Spüldurchgänge realisiert werden können. Die Ventile beeinflussen dabei den Unterlaufstrom 3, den Sekundärstrom 5 sowie die Zu- und Ablaufströme der Spüleinrichtung. Eine Bevorzugte Ablauflaufsequenz kann folgende Schritte umfassen:
    • Sekundärstromventil schließen, Unterlaufstromventil schließen, Spül-Ablaufventil(e) öffnen, Spül-Zulaufventil(e) öffnen, Wartezeit, Spül-Zulaufventil(e) schließen, Spül-Ablaufventil(e) schließen, Sekundärstromventil öffnen, Unterlaufstromventil öffnen.
  • Die Wartezeiten und die jeweiligen Drücke der Spülströme können an den Verschmutzungsgrad bzw. an die Beschaffenheit der Feststoffpartikel angepasst werden.

Claims (15)

  1. Vorrichtung zur Abscheidung von Feststoffpartikeln aus Suspensionen bzw. Aufkonzentrierung von Suspensionen, umfassend einen Hydrozyklon (10) mit zumindest
    a) einem Hydrozyklon-Zulauf (11) für Rohflüssigkeit,
    b) einem zylindrischen Segment (14'),
    c) einem konischen Segment (14),
    d) einer Überlaufdüse (12) sowie
    e) einer Unterlaufdüse (13),
    gekennzeichnet durch einen Sekundärabscheider 20, umfassend einen Sekundärabscheider-Zulauf (21), einen Abscheideraum (24) und ein Tauchrohr (25),
    wobei die Unterlaufdüse (13) mit einem Sekundärabscheider-Zulauf (21) fluidleitend verbunden ist,
    wobei zumindest eine seitliche Abscheidewand (23) mit dem Abscheidedeckel (22) und einem Abscheideboden (26) den Abscheideraum (24) begrenzt,
    wobei ein Tauchrohr (25) in den Abscheideraum (24) hineinragt und als Auslauf (27) für einen Sekundärstrom (5) fungiert.
  2. Sekundärabscheider (20), gekennzeichnet durch einen Sekundärabscheider-Zulauf (21), einen Abscheideraum (24) und ein Tauchrohr (25),
    wobei die Unterlaufdüse (13) mit einem Sekundärabscheider-Zulauf (21) fluidleitend verbunden ist,
    wobei zumindest eine seitliche Abscheidewand (23) mit dem Abscheidedeckel (22) und einem Abscheideboden (26) den Abscheideraum (24) begrenzt,
    wobei ein Tauchrohr (25) in den Abscheideraum (24) hineinragt und als Auslauf (27) für einen Sekundärstrom (5) fungiert.
  3. Vorrichtung nach Anspruch 1 oder Sekundärabscheider (20) nach Anspruch 2, dadurch gekennzeichnet, dass die der Unterlaufdüse (13) zugewandten Öffnung des Tauchrohres (25) und die Öffnung der Unterlaufdüse (13) im Wesentlichen konzentrisch angeordnet sind.
  4. Vorrichtung nach Anspruch 1 oder Anspruch 3 oder Sekundärabscheider (20) nach Anspruch 2 oder Anspruch 3, dadurch gekennzeichnet, dass das Tauchrohr (25) in zumindest einem Bereich geknickt bzw. gebogen ist.
  5. Vorrichtung nach einem der Ansprüche 1, 3 oder 4 oder Sekundärabscheider (20) nach den Ansprüchen 2 bis 4, dadurch gekennzeichnet, dass das Tauchrohr (25) relativ zum Abscheideraum (24) in Richtung Abscheideboden (26) und/oder Abscheidedeckel (22) verschiebbar ist.
  6. Vorrichtung nach einem der Ansprüche 1 oder 3 bis 5 oder Sekundärabscheider (20) nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass das Tauchrohr (25) eine Tauchrohrabdeckung (25') aufweist, wobei diese am zur Unterlaufdüse (13) näherliegenden Tauchrohrende fluiddurchlässig angebracht ist.
  7. Vorrichtung nach einem der Ansprüche 1 oder 3 bis 6 oder Sekundärabscheider (20) nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass der Abscheideboden (26) einen in Richtung Abscheidedeckel (22) und von der seitlichen Abscheidewand (23) zum Tauchrohr (25) hin zusammenführenden Konus (28') aufweist.
  8. Vorrichtung nach einem der Ansprüche 1 oder 3 bis 7 oder Sekundärabscheider (20) nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass der Abscheideboden (26) einen in Richtung Abscheidedeckel (22) und vom Tauchrohr (25) zur seitlichen Abscheidewand (23) hin auseinanderlaufenden Konus (28") aufweist.
  9. Vorrichtung nach einem der Ansprüche 1 oder 3 bis 8 oder Sekundärabscheider (20) nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass der Abscheidedeckel (22) einen in Richtung Abscheideboden (26) und vom Sekundärabscheider-Zulauf (21) zur seitlichen Abscheidewand (23) auseinanderlaufenden Konus (29') aufweist.
  10. Vorrichtung nach einem der Ansprüche 1 oder 3 bis 9 oder Sekundärabscheider (20) nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass der Abscheideboden (26) in jedem Bereich des Übergangs zur seitlichen Abscheidewand (23) eine Vertiefung (26') aufweist, wobei die Vertiefung als Wanne fungiert.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Vertiefung (26') eine ringförmige Wanne (26') aufweist.
  12. Vorrichtung nach einem der Ansprüche 1 bis 11, gekennzeichnet durch zumindest einen Spül-Zulauf (30', 30", 31', 31") und zumindest einen Spül-Ablauf (30', 30", 31', 31"), wobei diese mit dem Sekundärabscheider (20) fluidleitend verbunden sind.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass der zumindest eine Spül-Zulauf (30', 30", 31', 31") und der zumindest eine Spül-Ablauf (30', 30", 31', 31") im Wesentlichen tangential zur seitlichen Abscheidewand und orthogonal zur Längsachse des Sekundärabscheider-Zulaufs (21) angeordnet ist.
  14. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass der zumindest eine Spül-Zulauf (32', 32") und der zumindest eine Spül-Ablauf (33', 33") im Wesentlichen parallel zum Sekundärabscheider-Zulauf (21) angeordnet ist, wobei der zumindest eine Spül-Zulauf (32', 32") mit dem Abscheidedeckel (22) verbunden ist und der zumindest eine Spül-Ablauf (33', 33") mit dem Abscheideboden (26) verbunden ist.
  15. Verfahren zur Abscheidung von Feststoffpartikeln aus dem Unterlaufstrom (3) eines Hydrozyklons (10) bzw. zur Aufkonzentrierung einer Suspension, wobei eine Rohflüssigkeit als Einlaufstrom (1) in einen Hydrozyklon (10) strömt, wobei im Hydrozyklon (10) eine erste Fest-Flüssig-Trennung erfolgt, wobei ein Überlaufstrom (2) und ein Unterlaufstrom (3) aus dem Hydrozyklon (10) strömt, dadurch gekennzeichnet, dass der Unterlaufstrom (3) in einen Sekundärabscheider (20) insbesondere nach einem der Ansprüche 2 bis 14 strömt, wobei im Sekundärabscheider (20) zumindest eine zweite Fest-Flüssig-Trennung erfolgt und ein Sekundärstrom (5) aus zumindest einem Sekundärabscheider (20) strömt.
EP18155889.1A 2018-02-08 2018-02-08 Abscheidevorrichtung Pending EP3524357A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18155889.1A EP3524357A1 (de) 2018-02-08 2018-02-08 Abscheidevorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18155889.1A EP3524357A1 (de) 2018-02-08 2018-02-08 Abscheidevorrichtung

Publications (1)

Publication Number Publication Date
EP3524357A1 true EP3524357A1 (de) 2019-08-14

Family

ID=61192700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18155889.1A Pending EP3524357A1 (de) 2018-02-08 2018-02-08 Abscheidevorrichtung

Country Status (1)

Country Link
EP (1) EP3524357A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431809A (zh) * 2020-11-05 2022-05-06 广东美的白色家电技术创新中心有限公司 一种旋流分离器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1130339A (en) 1965-01-26 1968-10-16 Coal Industry Patents Ltd Mineral separation
US3928186A (en) 1973-07-24 1975-12-23 Boise Cascade Corp Combined pulp cleaning system including high and low pressure drop hydrocyclone cleaners
US4378289A (en) * 1981-01-07 1983-03-29 Hunter A Bruce Method and apparatus for centrifugal separation
EP0313197A2 (de) * 1987-09-05 1989-04-26 Serck Baker Limited Trennvorrichtung
EP1133538A1 (de) * 1998-11-06 2001-09-19 Shell Internationale Researchmaatschappij B.V. Trennungsgerät
WO2007144631A2 (en) * 2006-06-16 2007-12-21 Cameron International Corporation Cyclone separator and method of separation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1130339A (en) 1965-01-26 1968-10-16 Coal Industry Patents Ltd Mineral separation
US3928186A (en) 1973-07-24 1975-12-23 Boise Cascade Corp Combined pulp cleaning system including high and low pressure drop hydrocyclone cleaners
US4378289A (en) * 1981-01-07 1983-03-29 Hunter A Bruce Method and apparatus for centrifugal separation
EP0313197A2 (de) * 1987-09-05 1989-04-26 Serck Baker Limited Trennvorrichtung
EP1133538A1 (de) * 1998-11-06 2001-09-19 Shell Internationale Researchmaatschappij B.V. Trennungsgerät
WO2007144631A2 (en) * 2006-06-16 2007-12-21 Cameron International Corporation Cyclone separator and method of separation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431809A (zh) * 2020-11-05 2022-05-06 广东美的白色家电技术创新中心有限公司 一种旋流分离器

Similar Documents

Publication Publication Date Title
EP2812121B1 (de) Hydrozyklon mit feinstoffabreicherung im zyklonunterlauf
DE3342016C2 (de) Vorrichtung zum Mischen und Absetzen von partikelhaltigen Flüssigkeiten
WO2011082972A1 (de) Abscheidevorrichtung mit einem gravitationsvorabscheider gefolgt von einem zentrifugalabscheider
EP2579958B1 (de) Filtereinrichtung, insbesondere flüssigkeitsfilter
DE2436080A1 (de) Vorrichtung zum abtrennen eines fluids niedriger dichte von einem fluid hoeherer dichte und/oder feststoffteilchen
DE19811090A1 (de) Zyklonabscheider
WO2011082975A1 (de) Zentrifugaltropfenabscheider zum abscheiden von flüssigkeitströpfchen aus einem diese enthaltenden einsatzgasstrom
EP3132856B1 (de) Hydrozyklon mit feinstoffabreicherung im zyklonunterlauf
DE925400C (de) Verfahren und Vorrichtung zum fortlaufenden zentrifugalen Dekantieren von Aufschlaemmungen fester Teilchen in einer Fluessigkeit
DE102004041768B4 (de) Fliehkraftabscheider
DE3941016A1 (de) Zyklonfilter
EP3524357A1 (de) Abscheidevorrichtung
DE2359656C3 (de) Vorrichtung zum Klären von feste Stoffe enthaltendem Abwasser o.dgl. Flüssigkeiten
AT521034B1 (de) Formgebungsmaschine mit einem Hydrauliksystem
DE19508430A1 (de) Hydrozyklon
DE2058395A1 (de) Siebvorrichtung zum Abscheiden von Feststoffen aus Fluessigkeitsstroemen in Rohrleitungen
EP2893981A1 (de) Schlammabscheider
EP0960643B1 (de) Abscheider zum Trennen eines Zweiphasen-Flüssigkeitsgemisches in Leichtflüssigkeit und Schwerflüssigkeit
DE19923600A1 (de) Verfahren zur Aufbereitung von mineralischen Rohstoffen, insbesondere von Steinkohle
DE102017128560B3 (de) Vorrichtung zum Abscheiden von Sinkstoffen aus Flüssigkeiten, Reinigungseinrichtung und Verfahren zum Abscheiden von Sinkstoffen
EP0075258A2 (de) Anlage zum Beschichten von Werkstücken mit einer Flüssigkeit
WO2010075916A1 (de) Verfahren und vorrichtung zur anschwemmfiltration von fluiden
DE4241178C2 (de) Schwimmstoff-Abscheider
EP1499416A1 (de) Filtervorrichtung mit integrierter zentrifugalabscheidung
EP4370743A1 (de) Hydrozyklone-anordnung zum zentrifugalabscheiden von feststoffen aus einer suspension

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200120

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221026

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515