EP3523513B1 - Arbre à cames pour moteur à combustion interne - Google Patents

Arbre à cames pour moteur à combustion interne Download PDF

Info

Publication number
EP3523513B1
EP3523513B1 EP17780420.0A EP17780420A EP3523513B1 EP 3523513 B1 EP3523513 B1 EP 3523513B1 EP 17780420 A EP17780420 A EP 17780420A EP 3523513 B1 EP3523513 B1 EP 3523513B1
Authority
EP
European Patent Office
Prior art keywords
cam contour
cam
camshaft
centrifugal
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17780420.0A
Other languages
German (de)
English (en)
Other versions
EP3523513C0 (fr
EP3523513A1 (fr
Inventor
Uwe Eisenbeis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3523513A1 publication Critical patent/EP3523513A1/fr
Application granted granted Critical
Publication of EP3523513C0 publication Critical patent/EP3523513C0/fr
Publication of EP3523513B1 publication Critical patent/EP3523513B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/08Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for decompression, e.g. during starting; for changing compression ratio
    • F01L13/085Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for decompression, e.g. during starting; for changing compression ratio the valve-gear having an auxiliary cam protruding from the main cam profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts

Definitions

  • One aspect of the invention relates to a camshaft for an exhaust valve of an internal combustion engine.
  • the camshaft has a movable cam contour element, by means of which a speed-dependent cam contour shape is obtained.
  • valve trains are usually used that use a camshaft to generate a valve lift of the intake and exhaust valves with a fixed lift height and lift duration.
  • a valve train has disadvantages in terms of optimal adaptation to different load ranges of the internal combustion engine.
  • the camshaft actuates the valve train when the engine is started during the starting phase;
  • the energy to compress the gas in the combustion chamber must be applied by the starter motor, which can lead to disadvantages during starting.
  • a particularly simple but effective design is based on a camshaft, which comprises several cam tracks arranged laterally next to one another to actuate a valve and which can be moved laterally by means of an adjusting unit. A cam track adapted to the respective requirements can then be selected by moving the camshaft laterally.
  • a camshaft for an exhaust valve one cam can be provided for the starting phase and another cam for normal operation, with the cam for the starting phase providing an additional valve opening to reduce the pressure of the gas in the combustion chamber.
  • the JP 2008-82188 describes a camshaft with a decompression function that depends on the rotation speed of the camshaft and a phase shift function.
  • a control shaft 57 is rotated relative to the cam 36 by means of a centrifugal mechanism 50 in order to raise pins 65a and 65b (see Fig. 6 , 7 of JP 2008-82188 ).
  • This mechanism requires a tension spring 53 attached to the centrifugal mechanism and a transmission member 59, and therefore requires increased space.
  • at least one shaft end of the camshaft must be accessible, which results in restrictions on the storage and placement of the camshaft.
  • the aim of the present invention is to provide a camshaft which, on the one hand, is adjustable but, on the other hand, reduces at least some of the disadvantages mentioned above.
  • a camshaft specifically for an exhaust valve of an internal combustion engine.
  • the camshaft includes a cam and a trigger mechanism for its cam contour element.
  • the cam defines a cam contour for cyclically actuating the exhaust valve by rotating the camshaft.
  • the cam includes a cam body and the cam contour element.
  • the cam contour element is movable relative to the cam body into a first cam contour position and into a second cam contour position, such that the cam contour has a first cam contour shape when the cam contour element is in the first cam contour position, and has a second cam contour shape different from the first cam contour shape when the cam contour element is in the second cam contour position.
  • the triggering mechanism is configured to hold the cam contour element in the first cam contour position at a first, lower speed of the camshaft (in particular at a first speed range), and to hold the cam contour element at a second, higher speed of the camshaft (in particular at a second speed range that is opposite to the first speed or the first speed range is higher) in the second cam contour position.
  • the camshaft is mounted on both sides, that is, it has a first bearing and a second bearing for rotatably supporting the camshaft about its camshaft axis, the cam being arranged axially between these bearings.
  • the trigger mechanism is also arranged between these bearings.
  • the cam contour element is designed as a pin that can be inserted and extended into the cam body.
  • the trigger mechanism comprises a centrifugal element. The centrifugal element is arranged directly adjacent to the cams.
  • the cam contour element protrudes in the first cam contour position for actuating (opening) the exhaust valve (relative to the surrounding cam contour), and does not protrude or protrudes less in the second cam contour position, so that the exhaust valve does not require any - that is, no significant - additional actuation (opening). experienced, so not is opened significantly further than by means of the cam contour surrounding the cam contour element.
  • the second speed range can essentially adjoin the first speed range, wherein the transition between the first and second speed ranges can be defined either with a threshold value or with a certain transition (transition range).
  • the triggering mechanism is configured to hold the cam contour element in the first cam contour position when the speed falls below a predetermined threshold or transition range, and to maintain the cam contour element in the second cam contour position when the speed exceeds the predetermined threshold or transition range.
  • the triggering mechanism is configured to bring the cam contour element from the first cam contour position to the second cam contour position during the transition from the first speed to the second speed range (or from the first speed range to the second speed range).
  • the first speed can, for example, be in a speed range typical for starting.
  • the first speed - also depending on the engine type - is between 0 rpm and 1000 rpm, preferably between 0 rpm and 500 rpm.
  • the second speed can be in a normal operating range of the engine, for example above 500 rpm, preferably above 700 rpm or 1000 rpm, in each case based on the speed of the camshaft.
  • the threshold value can therefore be, for example, in a speed range between 500 rpm and 1000 rpm.
  • the camshaft according to the invention thus allows a speed-dependent cam contour shape and consequently a speed-dependent valve lift curve of the exhaust valve.
  • the cam contour element protrudes (in the first cam contour position), so that an additional valve opening (compared to higher speeds or the second cam contour position) is achieved, so that the starter does less work against the Pressure must be applied in the combustion chamber.
  • this speed-dependent cam contour shape can be achieved without a lateral displacement of the cam.
  • This enables the camshaft to be mounted on both sides in particular.
  • the storage on both sides allows particularly favorable power transmission between the cam and valve, as undesirable Bending vibrations of the camshaft are avoided and a flexible control of the valve train.
  • the first cam contour shape can differ from the second cam contour shape in particular in that the first cam contour shape has a highlight in order to open the exhaust valve (70) during a compression stroke of the internal combustion engine.
  • the highlighting preferably occupies a rotation angle range of the camshaft between 1° and 30°.
  • a center of the highlight is preferably offset by an angle of between 90° and 270°, particularly preferably between 90° and 180°, in the direction of rotation of the cam relative to a point or angle of maximum eccentricity of the cam contour (projection of the cam body).
  • the cam contour element is preferably mounted (in the axial direction) centrally in the cam.
  • the first speed range can include standstill (speed 0).
  • Fig. 1 and 2 show a valve train for an exhaust valve 70 of an internal combustion engine with the camshaft 10 according to an embodiment of the invention.
  • the camshaft 10 includes a cam 11 arranged to actuate the exhaust valve 70.
  • the camshaft 10 can be rotated about its axis.
  • the camshaft 10 is mounted on the cylinder head by bearings 8a, 8b - i.e. on both sides. It is therefore an overhead camshaft.
  • the camshaft 10 further comprises a centrifugal element 21, which is described below in relation to Figures 3 and 4 is described in more detail.
  • the storage on both sides by the bearings 8a, 8b allows a favorable power transmission between the cam and the valve, since undesirable bending vibrations of the camshaft are avoided.
  • the storage on both sides also allows flexible control of the valve train:
  • a drive gear or sprocket connected to a crankshaft of the internal combustion engine is located on the side 7a of the camshaft, and an output gear connected to an intake valve drive shaft is located on the other side 7b the camshaft 10.
  • the camshaft can, for example, in the DE 102005057127
  • the valve train described can be used.
  • the valve train further includes a mechanism for actuating the exhaust valve 70 through the cam 11.
  • this mechanism includes a rocker arm 60 and a shim (valve adjustment plate) 72, which are arranged between the cam 11 and the exhaust valve 70, so that the exhaust valve is actuated by the cam 11 via the rocker arm 60 and the tappet 72.
  • a valve spring 74 is shown, which biases the valve 70 (at least in phases, for example when the valve is actuated) against the cam 11 and thus creates a frictional connection between the valve 70 and the cam 11. In a phase in which the valve is not actuated, the valve spring presses the valve into the valve seat, which applies the corresponding counterforce.
  • the cam 11 includes a cam body 12 and a cam contour element 40 (see Fig. 3b , 4b ; in Fig. 2 only one end of the cam contour element acting as a decompression surface 44 can be seen), which together define the cam contour 16 of the cam 11. More specifically, the cam contour 16 is formed by the decompression surface 44 of the cam contour element 40 (also referred to as the cam contour surface of the cam contour element) and by a remaining cam contour surface 14 of the cam body 12.
  • the cam contour 16 is the cross-sectional profile of the cam 11, which actuates the exhaust valve 70 when the camshaft 10 rotates and which therefore significantly influences the valve lift curve of the exhaust valve 70.
  • the cam contour element 40 is designed as a pin that can be moved in and out of the cam body 12 (see also Fig. 3b , 4b ).
  • the cam contour surface 44 of the cam contour element 40 protrudes from the remaining cam contour surface 14. The result of this is that the exhaust valve 70 experiences additional actuation (opening) through the cam contour surface 44 of the cam contour element 40.
  • the cam contour surface 44 is arranged flush with the remaining cam contour surface 14 (does not protrude significantly), so that the exhaust valve does not experience any - meaning no significant - additional actuation (opening).
  • the cam contour 16 has a variable cam contour shape that depends on whether the cam contour element 40 is in the first or second cam contour position.
  • the cam contour surface 44 of the cam contour element 40 is arranged on a section of the cam contour 16 in which the exhaust valve 70 - at least in the second cam contour position or in the remaining cam contour surface 14 of this section surrounding the cam contour element 40 - is closed.
  • the cam contour surface 44 of the cam contour element 40 thus acts as a decompression surface 44: At low speeds, which are typical for the starting phase, the additional valve opening (in the first cam contour position) allows pressure in the combustion chamber to be released, so that the starter does less work against the pressure in the combustion chamber must apply. At higher speeds, which are typical for normal operation, the additional valve opening is prevented, so that no losses in terms of engine efficiency have to be accepted.
  • the cam contour element 40 is mounted centrally in the cam 11 (with respect to the axial direction of the camshaft). This central mounting, in particular in conjunction with the valve drive having a rocker arm 60, causes a uniform and low-wear force transmission from the cam 11 to the valve 70. According to a general aspect, a center of the cam contour element 40 deviates from a center (with respect to the axial direction). of the cam by less than 20% of the width of the cam.
  • FIG. 3 and 4 is the trigger mechanism 20 of the valve train according to Fig. 1 and 2 shown in greater detail, by means of which the cam contour element 40 is speed-dependent is moved (retracted and extended).
  • the triggering mechanism 20 thus ensures that the cam contour element 40 or its cam contour surface 44 is extended at low speeds (first cam contour position) and is retracted at higher speeds (second cam contour position).
  • FIG. 3a is the cam contour element in the first cam contour position
  • Fig. 4a-c the cam contour element is shown in the second cam contour position.
  • the side view or cross-sectional view of the Fig. 3a, 3c show the centrifugal element 21 of the trigger mechanism 20.
  • the centrifugal element 21 is designed as a double-sided lever with a first lever arm 27 and a second lever arm 28 and is rotatable about an axis 22 on the camshaft 10 (ie on a suspension that rotates with the camshaft 10, here on the cam body 12) rigidly connected to the camshaft 10.
  • the centrifugal element 21 is shown in a first centrifugal position; in Fig. 4a, 4c it is shown in a second centrifugal position, in which the centrifugal element 21 is rotated clockwise about the axis 22 compared to the first centrifugal position.
  • the biasing element 30 shown tensions the centrifugal element 21 towards the first centrifugal position (in the view of Fig. 3a , 4a counterclockwise).
  • the biasing element 30 is arranged in an opening of the camshaft 10 that runs transversely through the camshaft, so that the longitudinal axis of the biasing element 30 runs at right angles through the axis of rotation of the camshaft.
  • the preload can be carried out by a return spring, which is arranged approximately concentrically to the longitudinal axis of the preload element 30 in the camshaft 10 and tensions (presses) the preload element 30 against the centrifugal element 21.
  • the return spring can be a compression spring clamped between (a stop in) the opening of the camshaft and (a stop on) the biasing element 30.
  • the length of the portion of the biasing element 30 protruding from the camshaft 10 toward the centrifugal element 21 is shorter than the camshaft radius of the camshaft 10 at this point. This applies in the first and/or the second Centrifugal position. This makes a particularly compact arrangement of the prestressing element 30 possible.
  • the centrifugal element 21 In the first centrifugal position, the centrifugal element 21 is tensioned (pressed) against a first stop by the biasing element 30.
  • the first stop is formed on the first lever arm, for example by a center piece 26 of the first lever arm, and the camshaft 10.
  • the first stop is arranged on a different lever side of the centrifugal element 21 than the biasing element 30.
  • the first stop limits the pivoting of the centrifugal element 21 in the direction in which the biasing element 30 biases the centrifugal element 21.
  • the pivoting of the centrifugal element 21 in the opposite direction is limited by a maximum compression of the return spring of the biasing element 30, or by a further stop between the second lever arm 28 and the camshaft 10.
  • the biasing element 30 is non-positively connected to the centrifugal element 21, in particular pressed against the centrifugal element 21.
  • the bias towards the first centrifugal position exerted by the biasing element 30 causes the centrifugal element 21 to be in the rest position or in the first centrifugal position at low speeds (at a first speed) of the camshaft, as shown in Fig. 3a shown.
  • the centrifugal element is made of a lever.
  • the lever 21 and in particular its lever arms 27, 28 are dimensioned such that the centrifugal force acting when the camshaft rotates acts more strongly on the first lever arm 27 than on the second lever arm 28 and thus on the centrifugal element 21 overall a force directed towards the second centrifugal position (ie in the view of Fig. 3a , 4a clockwise) torque. If the speed exceeds a certain threshold value (for example at a second, higher speed), this torque outweighs the preload through the preload element 30, and as a result the centrifugal element 21 is then in the second centrifugal position, as in Fig. 4a shown.
  • a certain threshold value for example at a second, higher speed
  • the lever extends along a sub-segment around the camshaft 10.
  • the center of gravity of the first lever arm 27 is offset from the center of gravity of the second lever arm 28 by more than 90°, preferably more than 120° or even by more than 135°.
  • the center of gravity and/or the lever end of the first lever arm 27 is more than 90° relative to the pivot axis 22, preferably offset by more than 120° or even by more than 135° (with respect to the axis of rotation of the camshaft 10 and in the direction of the spatial extent of the centrifugal element 21).
  • the center of gravity and/or the lever end of the second lever arm 28 is offset from the pivot axis 22 by less than 90°, preferably less than 45° or even by less than 30°.
  • the center of gravity and/or the lever end of the first lever arm 27 is offset from the pivot axis 22 by more than twice, three or even four times the angle than the center of gravity or the lever end of the second lever arm 28.
  • the angle is always defined around the axis of rotation of the camshaft 10 and in the direction of the spatial extent of the centrifugal element 21.
  • the centrifugal element (lever) 21 is pivotable about a lever axis running parallel to the camshaft axis.
  • the lever axis is arranged eccentrically to the camshaft axis, preferably spaced radially in the direction of a projection region of the cam body 12 from the camshaft axis.
  • the projection area is the angular area extending radially from the camshaft axis with an angular deviation of less than 30° in the direction of the projection (point of maximum eccentricity) of the cam body 12.
  • the centrifugal element 21 is arranged directly adjacent to the cam 12, i.e. without any other functional part in between, such as a bearing for the cam.
  • the axial distance between the centrifugal element 21 and the cam 12 (side surface to side surface) is less than 0.5 cm.
  • the axial distance between a center plane of the centrifugal element 21 and a center plane of the cam 12 is less than twice or less than 1.5 times the axial width of the cam, or even less than the axial width of the cam.
  • the camshaft is mounted on both sides, and the centrifugal element 21 is arranged between the two bearings 8a, 8b. This enables a compact design even in the axial direction.
  • Fig. 3b , 4b show the cam contour element 40 and a coupling mechanism which couples the centrifugal element 21 to the cam contour element 40.
  • the cam contour element 40 is designed as a pin, which is at least partially arranged in a blind hole of the cam body 12 along a pin axis and can be inserted into it.
  • the surface of the cam contour element 40 directed outwards from the blind hole forms the cam contour surface 44.
  • the pin In the first cam contour position ( Fig. 3b ), the pin is at least partially extended out of the blind hole, and in the second cam contour position ( Fig. 4b ), the pin is essentially retracted into the blind hole so that the cam contour surface 44 is flush with the surrounding surfaces.
  • the coupling mechanism between the centrifugal element 21 and the cam contour element 40 is realized by a movable stop body 24, which is in a first or second stop position depending on the centrifugal position of the centrifugal element 21.
  • the stop body is realized as a pin that is rigidly connected to the centrifugal element 21 and can be rotated about an axis parallel to the camshaft axis.
  • the stop body 24 is positively, in particular rigidly, connected to the centrifugal element 21.
  • the connection between the centrifugal element 21 and the stop body 24 is arranged eccentrically to the camshaft axis, preferably offset radially to a projection or projection region (angular range of +/- 30 ° around the projection) of the cam body 12.
  • the stop body is rotatable about a stop body axis parallel to the camshaft axis by moving the centrifugal element 21 between the first and second centrifugal positions.
  • the stop body 24 or the stop body axis is arranged eccentrically to the camshaft axis, preferably arranged in a projection region of the cam body 12.
  • the stop body axis is equal to a lever axis of the centrifugal member (lever) 21, and the stop body 24 is rotatable together with the centrifugal member 21.
  • the cam contour element 40 is biased against the stop body 24.
  • the preload is not shown and can be carried out, for example, by a return spring which is arranged approximately concentrically to the axis of the cam contour element 40 and tensions (presses) the cam contour element 40 against the stop body 24.
  • the return spring can be a compression spring clamped between (a stop in) the blind hole or cam body 12 and (a stop on) the cam contour element 40.
  • the cam contour element 40 is non-positively connected to (pressed against) the stop body 24.
  • the contact area between the stop body 24 and the cam contour element 40 is arranged in the cam body 12, preferably in a projection area of the cam body 12.
  • the stop body 24 is out of round in the area in which the cam contour element 40 tensions against the stop body 24.
  • the stop body 24 When the centrifugal element 21 is in the first centrifugal position, the stop body 24 is in the first stop position and provides a first stop for the cam contour element 40, which defines the first cam contour position for the cam contour element 40. When the centrifugal element 21 is in the second centrifugal position, the stop body 24 is in the second stop position and provides a second stop for the cam contour element 40, which defines the second cam contour position for the cam contour element 40.
  • the first and second stops are different. The second stop is preferably set back compared to the first stop.
  • This stop body is realized by a shaft 24 which rotates around the axis 22 ( Fig. 3c , 4c ) is rotatable and rigidly connected to the centrifugal element 21. Depending on the centrifugal position of the centrifugal element 21, the shaft 24 is moved into the first stop position ( Fig. 3b ) or in the second stop position ( Fig. 4b ) rotates.
  • the cam contour element 40 is a pin displaceably mounted in the cam 11 along a cam contour element axis, and is biased against the shaft (stop body) 24 (i.e. biased towards the cam body 12 or toward the second cam contour position).
  • the cam contour element 40 therefore assumes the position that is specified by the stop with the shaft 24.
  • the Wave 24 ( Fig. 3b )
  • the stop is produced by a comparatively more protruding section of the shaft 24. This blocks movement of the cam contour element 40 into the cam body 12 (toward the second cam contour position), so that the cam contour element 40 is in the first cam contour position, that is, its cam contour surface 44 protrudes from the remaining cam contour surface 14.
  • the stop In the second stop position ( Fig. 4b ), the stop is produced by a comparatively less protruding or flattened section of the shaft 24. This enables movement of the cam contour element 40 into the cam body 12 (towards the second cam contour position), and due to the preload, the cam contour element 40 is consequently in the second cam contour position, that is, with its cam contour surface 44 not protruding.
  • the cam contour surface - more precisely its center 44 ' - of the cam contour element 40 is preferably arranged on a section of the cam contour 16 in which the exhaust valve - at least in the second cam contour position or in the remaining cam contour surface of this section - is closed.
  • the cam contour surface of the cam contour element 40 is preferably arranged in a section of the cam contour 16 which is assigned to a compression stroke of the internal combustion engine.
  • an angle ⁇ between the point 16a of maximum eccentricity of the cam contour 16 and the center 44' of the cam contour surface is less than 180° (measured in the direction of rotation as in Fig. 5 shown, with the direction of rotation being clockwise, as shown in Fig. 3b and 4b rocker arm 60 shown is visible).
  • the angle ⁇ can be between 90° and 180°, particularly preferably between 105° and 180° or even between 125° and 180°. This ensures that the cam contour surface can act efficiently as a decompression surface and allow pressure to be released in the combustion chamber during cranking.
  • the point 16a of maximum eccentricity of the cam contour 16 is generally independent of the cam contour position, and is defined with respect to the second cam contour position to avoid ambiguity.
  • the cam contour element 40 is a pin displaceably mounted in the cam 11 along a cam contour element axis.
  • the axis of this pin 40 deviates by an angle of less than 45°, preferably less than 30°, from the radial direction of the camshaft through the center 44' of the cam contour surface.
  • the entire cam contour surface of the cam contour element 40 only occupies a limited angular range of the cam contour 16, preferably less than 45°, particularly preferably less than 30°, and most preferably less than 15°.
  • the cam contour surface of the cam contour element 40 preferably occupies an angular range of at least 2°.
  • a valve lift diagram of a four-stroke engine is described, which is operated by means of the valve train according to the invention.
  • the valve lift diagram shows schematically the valve opening V of an intake valve (dashed curve labeled I) and the exhaust valve driven by the valve train according to the invention (solid curve labeled E and E ⁇ ) as a function of a phase angle ⁇ of the engine cycle, approximately half the angle of the crankshaft.
  • the diagram shows the following cycles of the four-stroke engine in this order: Eject; suction; compacting; Work.
  • Curves E and I represent common valve lift curves of the four-stroke engine.
  • Curve E' represents the additional actuation by the cam contour element 40 in the first cam contour position. This additional actuation is not present in the second cam contour position, i.e. curve E' is characterized by a flat one Curve (no valve lift replaced). This additional actuation occurs in the compression stroke before top dead center. As already described, this additional actuation E ⁇ allows gas to escape from the combustion chamber and thus pressure can be reduced, so that the work to be done by the starter motor against the pressure is reduced.
  • Figure 6 also illustrates some general aspects of the arrangement of the cam contour element 40 in relation to the engine phase, which are described below and optionally for any embodiments apply.
  • the motor phase angle ⁇ is defined so that it runs through the interval from 0° to 360° during an engine cycle.
  • the engine is a four-stroke engine and the engine phase angle ⁇ is half the valve crank angle.
  • the cam contour surface of the cam contour element 40 is arranged for valve actuation during a compression stroke of the internal combustion engine. According to a further aspect, the cam contour surface of the cam contour element 40 is arranged such that a phase angle ⁇ P of a maximum valve lift of this cam contour surface is by a phase difference in the range of 70 ° - 30 °, preferably in the range of 65 ° - 45 ° before top dead center UDC am end of the compression cycle.
  • the valve opening caused by the cam contour surface of the cam contour element 40 covers a phase interval ( ⁇ O - ⁇ C ) of the engine cycle of more than 2 ° or more than 3 ° or even more than 5 °, and or of less than 20 °, less than 15° or even less than 10°, for example between 3° and 15°, preferably between 5° and 10°.
  • ⁇ O is defined as the phase in which the valve opening exceeds the value of 10% of the maximum valve opening at ⁇ P
  • ⁇ C is defined as the phase in which the valve opening falls below this value again.
  • the phase interval ( ⁇ O - ⁇ C ) is the range at which the valve opening is greater than 10% of the maximum valve opening at ⁇ P.
  • the cam contour element is arranged in a non-actuation region of the cam, so that the valve is not actuated in an area around the cam contour element.
  • the (maximum) valve lift through the cam contour element (in the first cam contour position) is less than 30%, less than 20% or even less than 10% of the (maximum) valve lift through the cam as a whole (i.e. through point 16a of the Cam contour, see Fig. 5 ).
  • the camshaft 10 rotates at a low (first) speed and cyclically actuates the exhaust valve 70 through the cam 11. Due to the low (first) speed, the cam contour element is located 40 in the first cam contour position, in which its cam contour surface 44 protrudes, so that the exhaust valve 70 is actuated by the cam contour surface 44 during a compression stroke of the internal combustion engine.
  • the first cam contour position is achieved as described above by the trigger mechanism 20 holding the cam contour element 40 in the first cam contour position, as shown in FIG Figs. 3a-3c shown and described in relation to these figures.
  • the protruding cam contour surface 44 opens the valve so that the pressure of the gas in the combustion chamber can be reduced.
  • the rotation of the camshaft is accelerated to a second, higher speed. Due to the higher speed, the cam contour element 40 becomes the second cam contour position ( Figs. 4a-4c ) moves in which the cam contour surface 44 does not protrude or protrudes less.
  • the movement towards the second cam contour position is achieved, as described above, by the trigger mechanism 20 holding the cam contour element 40 in the second cam contour position, as in Figs. 4a-4c shown and described in relation to these figures.
  • the exhaust valve 70 is no longer actuated by the cam contour surface 44 of the cam contour element 40, ie there is no significant additional valve opening. This enables normal operation of the internal combustion engine and in particular normal compression of the air-fuel mixture in the combustion chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Claims (10)

  1. Arbre à cames (10) pour une soupape d'échappement (70) d'un moteur à combustion interne, dans lequel l'arbre à cames comprend :
    - un premier palier (8a) et un second palier (8b) permettant de supporter l'arbre à cames (10) de manière rotative autour de son axe d'arbre à cames ;
    - une came (11), dans lequel la came (11) définit un contour de came (16) pour l'actionnement de manière cyclique de la soupape d'échappement en faisant tourner l'arbre à cames, et dans lequel la came (11) comprend un corps de came (12) et un élément de contour de came (40),
    dans lequel l'élément de contour de came (40) est mobile par rapport au corps de came (12) dans une première position de contour de came et dans une seconde position de contour de came, de telle sorte que le contour de came (16) présente une première forme de contour de came lorsque l'élément de contour de came (40) se trouve dans la première position de contour de came, et présente une seconde forme de contour de came différente de la première forme de contour de came lorsque l'élément de contour de came se trouve dans la seconde position de contour de came ; et
    - un mécanisme de déclenchement (20) pour l'élément de contour de came (40), dans lequel le mécanisme de déclenchement (20) est configuré pour maintenir l'élément de contour de came dans la première position de contour de came à une première vitesse de rotation inférieure de l'arbre à cames et pour maintenir l'élément de contour de came dans la seconde position de contour de came à une seconde vitesse de rotation supérieure de l'arbre à cames,
    dans lequel la came (11) et le mécanisme de déclenchement (20) sont disposés axialement entre le premier palier (8a) et le second palier (8b), et
    dans lequel l'élément de contour de came (40) est conçu comme une broche qui peut être rentrée dans le corps de came (12) et sortie de celui-ci, caractérisé en ce que
    le mécanisme de déclenchement (20) comprend un élément centrifuge (21), dans lequel l'élément centrifuge (21) est disposé de manière directement adjacente à la came (12).
  2. Arbre à cames selon l'une quelconque des revendications précédentes, dans lequel l'élément de contour de came (40) fait saillie pour l'actionnement de la soupape d'échappement (70) lorsque l'élément de contour de came (40) se trouve dans la première position de contour de came, et l'élément de contour de came (40) ne fait pas saillie ou fait moins saillie lorsque l'élément de contour de came se trouve dans la seconde position de contour de came.
  3. Arbre à cames selon l'une quelconque des revendications précédentes, dans lequel le mécanisme de déclenchement (20) comprend l'élément centrifuge (21) et un mécanisme d'accouplement (24), dans lequel
    l'élément centrifuge (21) est monté pour prendre une première position centrifuge à la première vitesse de rotation inférieure de l'arbre à cames et pour prendre une seconde position centrifuge sous l'action de la force centrifuge à la seconde vitesse de rotation supérieure de l'arbre à cames, et dans lequel
    le mécanisme d'accouplement (24) accouple l'élément centrifuge (21) à l'élément de contour de came (40) pour maintenir l'élément de contour de came (40) dans la première position de contour de came lorsque l'élément centrifuge (21) prend la première position centrifuge et pour maintenir l'élément de contour de came (40) dans la seconde position de contour de came lorsque l'élément centrifuge (21) prend la seconde position centrifuge.
  4. Arbre à cames selon la revendication 3, dans lequel au moins l'un parmi (a) à (b) :
    (a) : l'élément centrifuge (21) est un levier qui est monté sur l'arbre à cames (10) de telle sorte que la force centrifuge agissant lors de la rotation de l'arbre à cames exerce sur le levier (21) un couple dirigé vers la seconde position centrifuge, et le mécanisme de déclenchement (20) présente un élément de précontrainte (30) qui précontraint le levier (21) vers la première position centrifuge, dans lequel l'élément de précontrainte (30) est relié à force à l'élément centrifuge (21), en particulier est pressé contre l'élément centrifuge (21) au moyen d'un ressort de pression ;
    (b) : l'élément centrifuge (21) est un levier pouvant pivoter autour d'un axe de levier s'étendant parallèlement à l'axe d'arbre à cames, dans lequel l'axe de levier est de préférence disposé de manière excentrique par rapport à l'axe d'arbre à cames, dans lequel l'axe de levier est de manière particulièrement préférée espacé de l'axe d'arbre à cames en direction d'une zone de saillie du corps de came (12).
  5. Arbre à cames selon l'une quelconque des revendications 3 et 4, dans lequel de préférence au moins l'un parmi (d) et (e) :
    (d) : le mécanisme d'accouplement (24) est relié à l'élément centrifuge (21) afin de bloquer un mouvement de l'élément de contour de came (40) vers la seconde position de contour de came lorsque l'élément centrifuge (21) se trouve dans la première position centrifuge, et de
    libérer le mouvement de l'élément de contour de came (40) vers la seconde position de contour de came lorsque l'élément centrifuge (21) se trouve dans la seconde position centrifuge, dans lequel
    l'élément de contour de came (40) est précontraint vers la seconde position de contour de came ;
    (e) : le mécanisme d'accouplement présente un corps de butée (24), contre lequel l'élément de contour de came (40) est précontraint, et le corps de butée (24) est relié par complémentarité de formes, en particulier de manière rigide, à l'élément centrifuge (21), afin de prendre, conjointement avec l'élément centrifuge (21), la première ou la seconde position centrifuge, par exemple pour pouvoir tourner conjointement avec l'élément centrifuge (21) autour de l'axe de levier décrit en (b), dans lequel le corps de butée (24) pour fournir, dans la première position centrifuge, une première butée pour l'élément de contour de came (40), et pour fournir, dans la seconde position centrifuge, une seconde butée différente de la première butée pour l'élément de contour de came (40), dans lequel le corps de butée (24) est de préférence disposé de manière excentrique par rapport à l'axe d'arbre à cames.
  6. Arbre à cames selon l'une quelconque des revendications précédentes, dans lequel l'élément de contour de came (40) est une broche montée de manière à pouvoir coulisser dans la came (11) le long d'un axe d'élément de contour de came, laquelle broche est précontrainte vers la seconde position de contour de came.
  7. Commande de soupapes pour un moteur à combustion interne comportant un arbre à cames selon l'une quelconque des revendications précédentes, dans laquelle l'arbre à cames (10) est relié axialement à l'extérieur du premier palier (8a) à une roue d'entraînement pour être entraîné par un vilebrequin du moteur à combustion interne et est relié axialement à l'extérieur du second palier (8b) à une roue de sortie pour l'entraînement d'une unité d'actionnement de soupape d'admission.
  8. Moteur à combustion interne comportant une commande de soupapes selon la revendication 7, dans lequel la roue d'entraînement est reliée au vilebrequin, et dans lequel la roue de sortie est reliée à une unité d'actionnement de soupape d'admission.
  9. Procédé permettant l'actionnement d'une soupape d'échappement (70) d'un moteur à combustion interne, dans lequel le moteur à combustion interne présente un arbre à cames (10) comportant une came (11), dans lequel la came (11) présente un corps de came (12) et un élément de contour de came (40) mobile par rapport au corps de came (12),
    dans lequel l'élément de contour de came (40) est conçu comme une broche qui peut être rentrée dans le corps de came (12) et sortie de celui-ci, et
    dans lequel l'arbre à cames (10) est supporté de manière rotative autour de son axe d'arbre à cames au moyen d'un premier palier (8a) et d'un second palier (8b) de telle sorte que la came (11) et un mécanisme de déclenchement (20) sont disposés axialement entre le premier palier (8a) et le second palier (8b), caractérisé en ce que
    le mécanisme de déclenchement (20) comprend un élément centrifuge (21), dans lequel l'élément centrifuge (21) est disposé de manière directement adjacente à la came (12) ;
    dans lequel le procédé comprend :
    - la rotation de l'arbre à cames (10) à une première vitesse pour l'actionnement de manière cyclique de la soupape d'échappement au moyen de la came (11), dans lequel l'élément de contour de came (40) se trouve dans une première position de contour de came, dans laquelle l'élément de contour de came (40) est sorti et une surface de contour de came (44) de l'élément de contour de came (40) fait saillie de telle sorte que la soupape d'échappement (70) est actionnée par la surface de contour de came (44) pendant un temps de compression du moteur à combustion interne ;
    - l'accélération de la rotation de l'arbre à cames à une seconde vitesse qui est supérieure à la première vitesse,
    - le déplacement de l'élément de contour de came (40) par le mécanisme de déclenchement (20) vers une seconde position de contour de came, dans laquelle l'élément de contour de came (40) est rentré et la surface de contour de came (44) ne fait pas saillie ou fait moins saillie, de sorte que la soupape d'échappement (70) n'est plus actionnée par la surface de contour de came (44) de l'élément de contour de came (40).
  10. Utilisation de l'arbre à cames selon l'une quelconque des revendications 1 à 7 ou de la commande de soupapes selon la revendication 8 pour l'actionnement d'une soupape d'échappement d'un moteur à combustion interne, en particulier conformément au procédé selon la revendication 9.
EP17780420.0A 2016-10-07 2017-10-06 Arbre à cames pour moteur à combustion interne Active EP3523513B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016119105.1A DE102016119105A1 (de) 2016-10-07 2016-10-07 Nockenwelle für Verbrennungsmotor
PCT/EP2017/075544 WO2018065602A1 (fr) 2016-10-07 2017-10-06 Arbre à came pour moteur à combustion interne

Publications (3)

Publication Number Publication Date
EP3523513A1 EP3523513A1 (fr) 2019-08-14
EP3523513C0 EP3523513C0 (fr) 2024-02-21
EP3523513B1 true EP3523513B1 (fr) 2024-02-21

Family

ID=60022120

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17780420.0A Active EP3523513B1 (fr) 2016-10-07 2017-10-06 Arbre à cames pour moteur à combustion interne

Country Status (5)

Country Link
EP (1) EP3523513B1 (fr)
CN (1) CN109952416B (fr)
BR (1) BR112019006860A2 (fr)
DE (1) DE102016119105A1 (fr)
WO (1) WO2018065602A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3061930A1 (fr) * 2015-02-24 2016-08-31 Triumph Designs Limited Dispositif de décompression

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1461817A (fr) * 1965-01-12 1966-12-09 Tecumseh Products Co Mécanisme de décompression pour moteurs à combustion interne
US3395689A (en) * 1966-09-15 1968-08-06 Studebaker Corp Engine decompression apparatus
US3381676A (en) * 1967-04-12 1968-05-07 Tecumseh Products Co Compression relief mechanism
IT1254606B (it) * 1992-02-10 1995-09-28 Cagiva Motor Dispositivo automatico di decompressione di un motore di una motocicletta in fase di avviamento
JP3319920B2 (ja) * 1995-10-12 2002-09-03 株式会社ユニシアジェックス エンジンの弁作動装置
US6539906B2 (en) * 2001-03-30 2003-04-01 Tecumseh Products Company Mechanical compression and vacuum release
EP1712747A1 (fr) 2005-04-17 2006-10-18 Uwe Eisenbeis Distribution de moteur à combustion avec course et calage variable pour moteurs à haut régime
JP4887200B2 (ja) * 2006-08-08 2012-02-29 本田技研工業株式会社 デコンプ装置を備えたエンジン
JP4531026B2 (ja) 2006-09-26 2010-08-25 本田技研工業株式会社 内燃機関の動弁装置
JP5027739B2 (ja) * 2008-06-10 2012-09-19 川崎重工業株式会社 デコンプ機構
KR101234654B1 (ko) * 2010-12-06 2013-02-19 현대자동차주식회사 가변 밸브 구동 장치
JP5905665B2 (ja) * 2011-02-08 2016-04-20 本田技研工業株式会社 ロッカーアーム装置
CN202117726U (zh) * 2011-08-29 2012-01-18 重庆银钢汽车配件制造有限责任公司 一种凸轮轴结构
GB201406661D0 (en) * 2014-04-14 2014-05-28 Triumph Designs Ltd Decompression device
JP2015224579A (ja) * 2014-05-27 2015-12-14 ヤマハ発動機株式会社 エンジン及び車両

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3061930A1 (fr) * 2015-02-24 2016-08-31 Triumph Designs Limited Dispositif de décompression

Also Published As

Publication number Publication date
BR112019006860A2 (pt) 2019-06-25
EP3523513C0 (fr) 2024-02-21
DE102016119105A1 (de) 2018-04-12
CN109952416A (zh) 2019-06-28
WO2018065602A1 (fr) 2018-04-12
CN109952416B (zh) 2021-11-16
EP3523513A1 (fr) 2019-08-14

Similar Documents

Publication Publication Date Title
DE19655398B4 (de) Dreh- oder Winkelphasen-Steuervorrichtung
EP2486248B1 (fr) Agencement d'arbre à cames
WO1995002116A1 (fr) Procede et dispositif de commande variable d'une soupape d'un moteur a combustion interne
DE3234640A1 (de) Ventiltrieb, insbesondere fuer eine brennkraftmaschine
DE4416989A1 (de) Vorrichtung zur Umwandlung einer kreisförmigen Bewegung in eine Hin- und Herbewegung und umgekehrt
DE102006034951A1 (de) Ventiltrieb für eine Brennkraftmaschine
DE19908286A1 (de) Variable Ventilsteuerung für Brennkraftmaschinen
DE102004047721A1 (de) Variabler Ventilmechanismus für Motoren
EP1328708A1 (fr) Mecanisme de distribution variable pour la commande de charge d'un moteur a combustion interne a allumage commande
DE60033534T2 (de) Ventilsteuerungsvorrichtung
WO2007071528A1 (fr) Systeme de correction d'arbre a cames presentant un dispositif de verrouillage
WO2009141422A2 (fr) Moteur comprenant un disque excentrique
EP2636859A1 (fr) Commande de soupape pour un moteur à combustion et moteur à combustion
EP2132417B1 (fr) Dispositif de réglage d'arbre à cames pour un moteur à combustion interne
DE10038916A1 (de) Kolbenbrennkraftmaschine mit Gaswechselventilen, die zur Erzeugung einer zusätzlichen Bremsleistung steuerbar sind
EP3523513B1 (fr) Arbre à cames pour moteur à combustion interne
DE102008020909B4 (de) Dekompressionsvorrichtung für eine Brennkraftmaschine
DE112014000940B4 (de) Nockenfolger für eine Ventilstößelanordnung in einem Verbrennungsmotor
EP2486249B1 (fr) Ensemble d'arbre à cames
DE4041943A1 (de) Ventilsteuereinrichtung fuer einen kraftfahrzeug-verbrennungsmotor mit einem kupplungsmechanismus zum verrasten eines synchron mit dem motor drehenden elements und eines nockenantreibelements in einer eingestellten phasenbeziehung
WO2018185197A1 (fr) Dispositif d'actionnement mécanique de soupapes
DE102020107342B4 (de) Exzenterwellen-drehzahlwechselmechanismus
DE3025259A1 (de) Ventilbetaetigungsmechanismus
EP3387234B1 (fr) Moteur à combustion interne
AT1915U1 (de) Brennkraftmaschine mit innerer verbrennung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200928

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230912

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017015858

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20240320

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240327