EP3523064A1 - Verfahren zur herstellung eines hochfesten tubenteils - Google Patents

Verfahren zur herstellung eines hochfesten tubenteils

Info

Publication number
EP3523064A1
EP3523064A1 EP17776982.5A EP17776982A EP3523064A1 EP 3523064 A1 EP3523064 A1 EP 3523064A1 EP 17776982 A EP17776982 A EP 17776982A EP 3523064 A1 EP3523064 A1 EP 3523064A1
Authority
EP
European Patent Office
Prior art keywords
tube part
strength
producing
tube
sheet metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17776982.5A
Other languages
English (en)
French (fr)
Inventor
Markus Pfestorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP3523064A1 publication Critical patent/EP3523064A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments
    • B21D5/015Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments for making tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G1/00Thread cutting; Automatic machines specially designed therefor
    • B23G1/22Machines specially designed for operating on pipes or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Definitions

  • the present invention relates to a method for producing a high-strength tube part according to the preamble of the independent
  • tube creates connection possibilities directly in the sheet metal part or in the component, so that additional fastening means, such.
  • Threaded bushings, etc. can be dispensed with.
  • the tube is integral, d. H. integrally integrated in the sheet metal part. To introduce the tube in the sheet metal part, so far only soft steels can be used as the starting material of the sheet metal blank. Thus, such tube parts have a low overall strength. As known from the prior art
  • Tubular parts have a low strength in order to achieve relatively high degrees of deformation, they are unsuitable for use as structural and safety components.
  • the invention proposes a method for
  • Tubes parts find in the so-called load thread of the body shell, which should ensure the protection of the occupants in the event of a crash.
  • the curing of the tube part can take place in a hot-forming step.
  • This offers the advantage that tube parts with a tensile strength in the range of> 1300 MPa can be produced.
  • the hot forming step in the sense of this invention is understood to mean that the
  • a mechanical processing in particular the introduction of threads into the tube, takes place after the tube part has hardened, wherein the tube part has softer and harder sections.
  • the tube or region in which mechanical processing takes place corresponds to a section of the tube part which is soft after the hardening step. In this area, the tube part has low
  • the tube part can have strength values which correspond to the strength value of the material of the output plate. This can advantageously be a particularly simple mechanical processing, in which the wear of the
  • Machining tool is reduced to a minimum.
  • - to ensure a rework of the possible thread in the tube - leave this section of the tube or the tube part in a soft state or subsequently annealed in this section.
  • This can be done by typical methods of making soft sections in hot worked or press hardened parts.
  • Such measures may be, for example, the use of an absorber mass or a heat shield in the oven in which the already
  • cold-formed tube part is heated.
  • a 3-D heat radiator with which only the areas of the cold-formed tube part to be hardened are heated, non-hardening areas not being detected by the 3-D radiator.
  • measures can also be achieved in the hot forming step or during press hardening. In these measures, a part of the forming tool is heated or a thermal insulation between the heated
  • Tubenteil and the hot forming tool for example in the form of an air gap provided.
  • the component undergoes a slower cooling in this area, so that set in this section, a lower strength.
  • measures can be taken on the hardened component, whereby, for example, inductive tempering causes certain sections of the high-strength tube part to be heated, as a result of which the high strength initially achieved by hardening in this region is again reduced.
  • a heat-formable steel in particular 22MnB5
  • 22MnB5 a heat-formable steel
  • This is a martensitic hardenable tempered steel whose high-strength properties are only established during hot forming by transformation into a martensitic microstructure.
  • the strength of manganese steel grades is about 600 MPa. After their hardening, for example by hot working, a tensile strength up to about 1800 MPa can be achieved.
  • Conventional manganese drilling steels contain the following alloying elements:
  • the hot-workable steel of the board can be provided with a corrosion protection layer, wherein the board or the coil is precoated.
  • a corrosion protection layer in a
  • the coating is optionally on the board, on the cold-formed tube part or on the high-strength tube part.
  • the subsequent coating offers a particularly good sheathing of the complete tube part, and thus a particularly high corrosion protection.
  • coatings are particularly suitable aluminum-silicon coatings, zinc coatings, etc.
  • Tubular parts with a yield strength> 950 MPa and a tensile strength> 1300 MPa can be produced with this invention. This is achieved by the use according to the invention of the indirect hot forming or the two-stage hot forming process for producing such tube parts. In this process, boards are first cut from a coil of thermoformable material. Thereafter, the boards are cold formed, creating an uncured tube part.
  • cold forming takes place in several steps, wherein successively in 10-20 pressing the component is converted to its final geometry.
  • the blanks are formed using numerous drawing stages. In general, deep drawing of the board occurs in a first pull stage.
  • Forming stages are introduced with the help of die and male tube sections in the deep-drawn board, so that a tube part with its final shape is formed successively. If necessary, a thread can be introduced in a final press step of cold forming.
  • the forming in the cold state offers higher degrees of freedom with respect to
  • the tube part can be machined, for example by introducing threads or by trimming to a desired contour. It also punch holes and
  • the cold-formed tube parts are heated in an oven to the austenitizing temperature of about 900 ° C.
  • the tube part can be completely heated, or only certain portions of the tube part are heated, with other sections are not heated or only slightly heated.
  • After heating in the oven is a rapid cooling of the tube part.
  • the cooling takes place in a tool, which on the one hand increases the strength of the steel and, on the other hand, calibrates the geometry of the component. In this tool, in which the component is cooled, can optionally take place Restumformung. If only individual areas of the tube part were heated in the oven, a rapid increase in cooling will only increase the strength in the previously warmed up areas. Unheated areas or areas just below the
  • Strength values are generated to the immediate units, such as gearbox, engine, engine mounts, mountings for axle and the like, can be mounted. This can in the vehicle a
  • Weight savings are achieved and additional assembly processes, such as mounting nuts omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines hochfesten Tubenteils, mit den Schritten: Erzeugen einer Blechplatine, Erzeugen eines Tubenteils durch Kaltumformen der Blechplatine, gekennzeichnet durch den Schritt zumindest abschnittsweises Härten des Tubenteils zu einem hochfesten Tubenteil.

Description

Verfahren zur Herstellung eines hochfesten Tubenteils
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines hochfesten Tubenteils gemäß dem Oberbegriff des unabhängigen
Patentanspruchs 1 .
Im heutigen Kraftfahrzeugbau werden Anbauteile, wie Verkleidungsteile, und dergleichen oder andere Aggregate, wie Getriebe, Motorträger, Hilfsrahmen, u. Ä. an die tragende Grundstruktur bzw. an die Karosserie montiert. Hierzu ist es bislang vorgesehen, an den Anbauteilen oder an den Strukturteilen Aufnahmen vorzusehen, zur Aufnahme von Befestigungsmitteln.
Beispielsweise werden Gewindebuchsen, Schraubenmutter und dergleichen an diese Strukturteile befestigt. Dies geschieht in einem separaten
Montageschritt, beispielsweise durch Schweißen. Seit geraumer Zeit haben sich jedoch sogenannte Tubenteile im Fahrzeugbau etabliert. Die
sogenannte Tube schafft Anbindungsmöglichkeiten direkt im Blechteil bzw. im Bauteil, so dass auf zusätzliche Befestigungsmittel, wie z. B.
Gewindebuchsen usw., verzichtet werden kann. Die Tube wird dabei integral, d. h. einstückig in dem Blechteil integriert. Um die Tube in das Blechteil einzubringen, können bislang nur weiche Stähle als Ausgangsmaterial der Blechplatine verwendet werden. Damit weisen solche Tubenteile insgesamt eine geringe Festigkeit auf. Da aus dem Stand der Technik bekannte
Tubenteile eine geringe Festigkeit aufweisen, um verhältnismäßig hohe Umformgrade erreichen zu können, sind sie für die Verwendung als Struktur- und Sicherheitsbauteile ungeeignet.
Ausgehend von diesem Stand der Technik macht es sich die vorliegende Erfindung zur Aufgabe, ein Verfahren anzugeben, mit dem Tubenteile erzeugbar sind, die den Anforderungen an Sicherheits- und Strukturbauteile genügen.
Zur Lösung dieser Aufgabe schlägt die Erfindung ein Verfahren zur
Herstellung eines hochfesten Tubenteils vor, mit den Schritten:
Erzeugen einer Blechplatine, Erzeugen eines Tubenteils durch Kaltumformen der Blechplatine, wobei zumindest abschnittsweise das Tubenteil zu einem hochfesten Tubenteil gehärtet wird. Dadurch können die hochfesten
Tubenteile in den sogenannten Lastfaden der Rohkarosserie Verwendung finden, die im Crashfall den Schutz der Insassen gewährleisten sollen.
Weiterhin kann das Härten des Tubenteils in einem Warmumformschritt erfolgen. Dies bietet den Vorteil, dass Tubenteile mit einer Zugfestigkeit im Bereich von > 1300 MPa erzeugt werden können. Der Warmumformschritt im Sinne dieser Erfindung ist dabei so zu verstehen, dass die
Hauptumformarbeit der Blechplatine im Kaltumformen erfolgt und nur noch eine geringe Restumformung beim Warmumformen geschieht. Alternativ dazu kann in dem Warmumformschritt auch keine geometrische Änderung der Bauteilgeometrie erfolgen, so dass im Sinne einer Presshärtung oder Kalibrierung lediglich die Festigkeitswerte des Tubenteils erhöht werden, jedoch nicht dessen Geometrie. Durch die Verwendung pressgehärteter bzw. warmumgeformter Bauteile kann eine Gewichtseinsparung ermöglicht werden, da eine geringere Wanddicke bei gleichen mechanischen
Eigenschaften des Bauteils erzielbar ist.
Gemäß einer ersten Variante des Verfahrens erfolgt eine mechanische Bearbeitung, insbesondere das Einbringen von Gewinden in die Tube, nach dem Härten des Tubenteils, wobei das Tubenteil weichere und härtere Abschnitte aufweist. Die Tube bzw. der Bereich, in dem eine mechanische Bearbeitung erfolgt, entspricht einem Abschnitt des Tubenteils, der nach dem Härteschritt weich ist. In diesem Bereich weist das Tubenteil geringe
Festigkeitswerte auf als im restlichen Bereich des hochfesten Tubenteils. dem ungehärteten Tubenteil kann das Tubenteil Festigkeitswerte aufweisen, die dem Festigkeitswert des Materials der Ausgangsplatine entsprechen. Dadurch kann vorteilhafterweise eine besonders einfache mechanische Bearbeitung erfolgen, bei welcher der Verschleiß des
Bearbeitungswerkzeugs auf ein Minimum reduziert ist. Mit anderen Worten wird - um eine Nacharbeit des möglichen Gewindes in der Tube zu gewährleisten - dieser Abschnitt der Tube bzw. des Tubenteils in weichem Zustand belassen oder nachträglich in diesem Abschnitt weichgeglüht. Dies kann durch typische Verfahren zur Herstellung weicher Abschnitte in warmumgeformten bzw. pressgehärteten Bauteilen erfolgen. Derartige Maßnahmen können beispielsweise die Verwendung einer Absorbermasse oder eines Hitzeschildes in dem Ofen sein, in dem das bereits
kaltumgeformte Tubenteil erwärmt wird. Alternativ kann dazu auch ein 3-D- Hitzestrahler verwendet werden, mit dem nur die zu härtenden Bereiche des kaltumgeformten Tubenteils erwärmt werden, wobei nicht zu härtende Bereiche von dem 3-D-Strahler nicht erfasst werden. Alternativ dazu können jedoch auch Maßnahmen im Warmumformschritt bzw. beim Presshärten erzielt werden. Bei diesen Maßnahmen wird ein Teil des Umformwerkzeugs beheizt bzw. eine thermische Isolierung zwischen dem aufgeheizten
Tubenteil und dem Warmumformwerkzeug, beispielsweise in Form eines Luftspalts, vorgesehen. Somit erfährt das Bauteil in diesen Bereich eine langsamere Abkühlung, so dass sich in diesem Abschnitt eine geringere Festigkeit einstellt. Nicht zuletzt können Maßnahmen am gehärteten Bauteil vorgenommen werden, wobei beispielsweise durch induktives Anlassen bestimmte Abschnitte des hochfesten Tubenteils erwärmt werden, wodurch die zunächst durch Härtung erzielte hohe Festigkeit in diesem Bereich wieder reduziert wird.
In einer zweiten Variante des Verfahrens, kann eine mechanische
Bearbeitung, insbesondere das Einbringen von Gewinden, vor, während oder nach dem Kaltumformen, aber immer vor dem Härten des Tubenteils stattfinden. Dies bietet den Vorteil, dass das Tubenteil in weichem Zustand mechanisch bearbeitet wird, wobei der Verschleiß an den Werkzeugen auf ein Mindestmaß reduziert wird. Bevorzugt kann die mechanische
Bearbeitung direkt im Kaltumformschritt erfolgen. Dabei wird eine besonders zeitoptimierte Verfahrensvariante erzielt.
Weiterhin kann als Material für das Tubenteils ein warmumformbarer Stahl, insbesondere 22MnB5, verwendet werden. Hierbei handelt es sich um einen Martensit-aushärtbaren Vergütungsstahl, dessen hochfeste Eigenschaften sich erst bei der Warmumformung durch Umwandlung in ein martensitisches Gefüge einstellt. Im Ausgangszustand beträgt die Festigkeit von Mangan- Bohr-Stahlsorten etwa 600 MPa. Nach deren Härten, beispielsweise durch Warmumformung, kann eine Zugfestigkeit bis etwa 1800 MPa erzielt werden. Übliche Mangan-Bohr-Stähle enthalten folgende Legierungselemente:
0,19-0,25 % Kohlenstoff, 1 ,10-1 ,40 % Mangan und 0,001 -0,005 % Bohr. Selbstverständliche können auch andere Stahlsorten erfindungsgemäß verwendet werden, sofern ihre Festigkeitswerte nach dem Härten im Bereich > 1300 MPa liegen.
Darüber hinaus kann der warmumformbare Stahl der Platine mit einer Korrosionsschutzschicht versehen sein, wobei die Platine bzw. das Coil vorbeschichtet ist. Dies bietet den Vorteil, dass das Blechbauteil direkt nach dem Härten weiterverwendbar ist bzw. in die Montage überführt werden kann, ohne dass ein zusätzlicher Beschichtungsschritt erfolgt. Alternativ oder zusätzlich dazu kann jedoch die Korrosionsschutzschicht in einem
zusätzlichen Prozessschritt aufgetragen werden, wobei die Beschichtung wahlweise auf die Platine, auf das kaltumgeformte Tubenteil oder auf das hochfeste Tubenteil erfolgt. Die nachträgliche Beschichtung bietet eine besonders gute Ummantelung des vollständigen Tubenteils, und dadurch einen besonders hohen Korrosionsschutz. Als Beschichtungen eignen sich insbesondere Aluminium-Silizium-Beschichtungen, Zink-Beschichtungen, usw. Mit dieser Erfindung können Tubenteile mit einer Dehngrenze > 950 MPa und einer Zugfestigkeit > 1300 MPa hergestellt werden. Dies geschieht durch die erfindungsgemäße Verwendung des indirekten Warmumformens bzw. des zweistufigen Warmumformverfahrens zur Herstellung solcher Tubenteile. Bei diesem Verfahren werden zunächst Platinen von einem Coil aus warmumformbaren Material abgeschnitten. Danach werden die Platinen kaltumgeformt, wodurch ein ungehärtetes Tubenteil entsteht. Insbesondere bei der Herstellung von Tubenteilen erfolgt die Kaltumformung in mehreren Schritten, wobei sukzessive in 10-20 Pressverfahren das Bauteil auf seine Endgeometrie umgeformt wird. Bei der Kaltumformung werden die Platinen über zahlreiche Zieh-Stufen umgeformt. Im Allgemeinen erfolgt in einer ersten Zieh-Stufe ein Tief-Ziehen der Platine. In darauf folgenden
Umformstufen werden mithilfe von Matrize und Patrize Tubenabschnitte in die tiefgezogene Platine eingebracht, so dass ein Tubenteil mit seiner endgültigen Form sukzessive entsteht. Bei Bedarf kann in einem letzten Pressenschritt des Kaltumformens ein Gewinde eingebracht werden. Das Umformen in kaltem Zustand bietet höhere Freiheitsgrade bzgl. der
Verformbarkeit der Platine als das Umformen in heißem Zustand.
Nach dem Kaltumformen kann das Tubenteil mechanisch bearbeitet, beispielsweise durch Einbringen von Gewinden oder durch Beschnitt auf eine gewünschte Kontur, erfolgen. Dabei können auch Lochungen und
Stanzungen in dem weichen, unvergüteten Zustand eingebracht werden, da dies mit geringeren Presskräften möglich ist und ein kostenintensiver Laserbzw. Hartbeschnitt entfallen kann. Die mechanische Bearbeitung kann allerdings auch erst nach dem Härten des Tubenteils erfolgen.
In einem weiteren Schritt werden die kaltumgeformten Tubenteile in einem Ofen auf die Austenitisierungs-Temperatur von ca. 900 ° C aufgeheizt. Bei diesem Arbeitsschritt kann wahlweise das Tubenteil vollständig erwärmt werden, oder nur bestimmt Abschnitte des Tubenteils erwärmt werden, wobei andere Abschnitte nicht aufgeheizt bzw. nur geringfügig erwärmt werden. Nach der Aufheizung im Ofen erfolgt eine rasche Abkühlung des Tubenteils. Die Abkühlung erfolgt in einem Werkzeug, wodurch zum einen die Festigkeit des Stahls erhöht wird und zum anderen die Geometrie des Bauteils kalibriert wird. In diesem Werkzeug, in dem das Bauteil abgekühlt wird, kann optional eine Restumformung stattfinden. Sofern nur einzelne Bereiche des Tubenteils im Ofen erwärmt wurden, wird durch die rasche Abkühlung eine Festigkeitserhöhung nur in den vorher aufgewärmten Bereichen erzeugt. Nicht erwärmte Bereiche bzw. Bereiche, die nur unterhalb der
Austenitisierungs-Temperatur erwärmt werden, erfahren keine
Festigkeitssteigerung. In solchen ungehärteten Bereichen ist eine
nachträgliche Bearbeitung nach dem Härten bzw. dem Warmumformschritt des Bauteils noch möglich, ohne dass ein hoher Verschleiß der
mechanischen Bearbeitungswerkzeuge in Kauf genommen werden müsste.
Mit diesem Verfahren können dünnwandige Bauteile mit hohen
Festigkeitswerten erzeugt werden, an die unmittelbare Aggregate, wie Getriebe, Motor, Motorlager, Aufnahmen für Achsträger und dergleichen, montiert werden können. Dadurch kann im Fahrzeug eine
Gewichtseinsparung erzielt werden und zusätzliche Montageprozesse, wie beispielsweise das Montieren von Muttern, entfallen.

Claims

Patentansprüche
1 . Verfahren zur Herstellung eines hochfesten Tubenteils, mit den Schritten:
Erzeugen einer Blechplatine,
Erzeugen eines Tubenteils durch Kaltumformen der
Blechplatine,
gekennzeichnet durch den Schritt
zumindest abschnittsweises Härten des Tubenteils zu einem hochfesten Tubenteil.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass
das Härten des Tubenteils in einem Warmumformschritt erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mechanische Bearbeitung, insbesondere Einbringen von Gewinden nach dem Härten des Tubenteils stattfindet, in nicht hochfesten Bereich des Tubenteils.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mechanische Bearbeitung, insbesondere Einbringen von Gewinden vor, während oder nach der Kaltumformung und vor dem Härten des Tubenteils stattfindet.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
als Material für das Tubenteil ein warmumformbarer Stahl, insbesondere 22MnB5 verwendet wird.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der warmumformbare Stahl mit einer Korrosionsschutzschicht versehen ist.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
auf die Platine, auf das Tubenteil oder auf das hochfeste Tubenteil eine Korrosionsschutzschicht aufgetragen wird.
EP17776982.5A 2016-10-05 2017-09-22 Verfahren zur herstellung eines hochfesten tubenteils Withdrawn EP3523064A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016219278.7A DE102016219278A1 (de) 2016-10-05 2016-10-05 Verfahren zur Herstellung eines hochfesten Tubenteils
PCT/EP2017/073965 WO2018065230A1 (de) 2016-10-05 2017-09-22 Verfahren zur herstellung eines hochfesten tubenteils

Publications (1)

Publication Number Publication Date
EP3523064A1 true EP3523064A1 (de) 2019-08-14

Family

ID=59974408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17776982.5A Withdrawn EP3523064A1 (de) 2016-10-05 2017-09-22 Verfahren zur herstellung eines hochfesten tubenteils

Country Status (5)

Country Link
US (1) US11131002B2 (de)
EP (1) EP3523064A1 (de)
CN (1) CN109414742A (de)
DE (1) DE102016219278A1 (de)
WO (1) WO2018065230A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210011A (zh) * 2020-03-16 2022-10-18 日轻金Act株式会社 模具以及使用模具的加工方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256854A (ja) * 1993-03-05 1994-09-13 Nippon Steel Corp 曲がりの少ない超高張力電縫鋼管の製造方法
US6296805B1 (en) * 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891804A (en) * 1954-12-16 1959-06-23 John S Frayne Vehicle body rigidifying device and mounting for passenger harness
JPH07103420B2 (ja) * 1990-04-05 1995-11-08 住友金属工業株式会社 ボロン鋼板を素材とする部材の製造方法
DE19941993C1 (de) * 1999-09-02 2000-12-14 Benteler Werke Ag Verfahren zur Herstellung eines biegesteifen torsionsweichen Rohrprofils als Querträger für eine Verbundlenkerhinterachse eines Personenkraftwagens
JP4319828B2 (ja) * 2002-11-18 2009-08-26 新日本製鐵株式会社 超音波衝撃処理による冷間加工部の強度向上方法およびその金属製品
CN1738687A (zh) * 2003-01-20 2006-02-22 新日本制铁株式会社 金属箔管及其制造方法与制造装置
US20040145140A1 (en) * 2003-01-29 2004-07-29 Amos Chen Twist car
US20050081964A1 (en) * 2003-10-21 2005-04-21 Urband Bruce E. A Method Of Establishing Stress Relieving Procedures For Minimizing Sulfide Stress Cracking In Cold Worked Metals
CN100574921C (zh) * 2004-09-15 2009-12-30 新日本制铁株式会社 高强度部件及其制造方法
PT2522563E (pt) * 2007-04-04 2014-07-24 Shin Nippon Seitetsu Kabushiki Kaisha Nippon Steel Corp Estrutura lateral para uma carroçaria de automóvel
US7845061B2 (en) * 2007-05-16 2010-12-07 Frank's International, Inc. Low clearance centralizer and method of making centralizer
DE102008025165B4 (de) * 2008-05-26 2013-06-06 Elisabeth Braun Antriebsbauteil
DE102010048209C5 (de) * 2010-10-15 2016-05-25 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines warmumgeformten pressgehärteten Metallbauteils
KR101119173B1 (ko) * 2011-09-30 2012-02-22 현대하이스코 주식회사 레이저 열처리를 이용한 이종강도를 갖는 강 제품 제조 방법 및 이에 이용되는 열처리 경화강
US8919867B2 (en) * 2013-03-14 2014-12-30 Honda Motor Co., Ltd. Front pillar garnish
CA2920198C (en) * 2013-08-01 2022-03-15 Jean Buytaert Rolled tubular centralizer
EP3160665A1 (de) * 2014-06-27 2017-05-03 ATI Properties LLC Abstreckwalzen von rohren aus korrosionsbeständiger legierung und damit hergestelltes rohr
US20170136874A1 (en) * 2015-08-23 2017-05-18 Brian Harris Off road vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256854A (ja) * 1993-03-05 1994-09-13 Nippon Steel Corp 曲がりの少ない超高張力電縫鋼管の製造方法
US6296805B1 (en) * 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2018065230A1 *

Also Published As

Publication number Publication date
DE102016219278A1 (de) 2018-04-05
WO2018065230A1 (de) 2018-04-12
US11131002B2 (en) 2021-09-28
CN109414742A (zh) 2019-03-01
US20190226042A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
DE102009052210B4 (de) Verfahren zum Herstellen von Bauteilen mit Bereichen unterschiedlicher Duktilität
DE102010012830B4 (de) Verfahren zur Herstellung einer Kraftfahrzeugkomponente und Karosseriebauteil
DE102008032911B4 (de) Verfahren zur Herstellung eines Formteils
DE102006019567B3 (de) Verfahren zum Herstellen umgeformter Stahlbauteile
DE202012000616U1 (de) Struktur- und/oder Karosseriebauteil für ein Kraftfahrzeug mit verbesserten Crasheigenschaften und Korrosionsschutz
DE102005041741B4 (de) Verfahren zum Herstellen eines pressgehärteten Bauteils
DE102010012832A1 (de) Kraftfahrzeugsäule
EP2415895A1 (de) Blechformteil für Kraftfahrzeuge
DE102014108113A1 (de) Verfahren zur Herstellung eines Kraftfahrzeugbauteils aus Aluminium
DE102011118285A1 (de) Verfahren zur Herstellung eines Kraftwagenbauteils und Kraftwagenbauteil
WO2016020148A1 (de) Verfahren zur herstellung von warmumgeformten bauteilen
EP2987878B1 (de) Verfahren zur herstellung eines kraftfahrzeugbauteils aus einer härtbaren aluminiumlegierung
DE102010012833B4 (de) Längsträger sowie Längsträgeranordnung
EP2942418B1 (de) Verfahren zur herstellung eines kraftfahrzeugbauteils aus aluminium
EP2963140B1 (de) Verfahren zur herstellung eines kraftfahrzeugbauteils aus aluminium
WO2018065230A1 (de) Verfahren zur herstellung eines hochfesten tubenteils
DE102019130381A9 (de) Kraftfahrzeugbauteil mit gesteigerter Festigkeit
DE102013104299A1 (de) Wirkmedienbasierte Tieftemperaturumformung
DE102011009891A1 (de) Verfahren zum Herstellen von Blechbauteilen sowie Vorrichtung zur Durchführung des Verfahrens
EP3296104A1 (de) Karosseriebauteil mit reduzierter rissneigung und verfahren zur herstellung
DE102011001849A1 (de) Verfahren zum Herstellen eines Blechstrukturbauteils sowie Blechstrukturteil
DE102014213688A1 (de) Warmumformwerkzeug mit integrierter Stanz- oder Nieteinheit zum Fügen von Verbindungselementen
DE102010012831A1 (de) Getriebetunnel
DE102016202087A1 (de) Verfahren zur Herstellung eines Verbundbauteils sowie ein dieses Verbundbauteil aufweisendes Fahrzeug

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200514

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220705