EP3519100A1 - Apparatus for the micronization of powdered material with the capacity to prevent incrustations - Google Patents

Apparatus for the micronization of powdered material with the capacity to prevent incrustations

Info

Publication number
EP3519100A1
EP3519100A1 EP17784573.2A EP17784573A EP3519100A1 EP 3519100 A1 EP3519100 A1 EP 3519100A1 EP 17784573 A EP17784573 A EP 17784573A EP 3519100 A1 EP3519100 A1 EP 3519100A1
Authority
EP
European Patent Office
Prior art keywords
micronization
chamber
gaseous fluid
powdered material
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17784573.2A
Other languages
German (de)
French (fr)
Other versions
EP3519100B1 (en
Inventor
Piero Iamartino
Milko LEONE
Salvatore MERCURI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Macinazione SA
Original Assignee
Micro Macinazione SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Macinazione SA filed Critical Micro Macinazione SA
Publication of EP3519100A1 publication Critical patent/EP3519100A1/en
Application granted granted Critical
Publication of EP3519100B1 publication Critical patent/EP3519100B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/061Jet mills of the cylindrical type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/063Jet mills of the toroidal type

Definitions

  • the present invention relates in general to the area of devices and apparatuses for the micronization of powdered material, that is for the grinding and crushing of powdered materials and similar substances in order to transform them into a finer micronized powder, and in particular its object is an apparatus for the micronization of a powdered product or the like, which specifically comprises a micronizer mill of the type with high- energy jets of a gaseous fluid and which offers improved performances and features aimed at preventing the formation of incrustations and deposits inside the micronizer mill during use to micronize the powdered material.
  • the present invention also relates to a corresponding process for the micronization of powdered material or a similar product, which provides for the use of a micronizer mill of the type with high-energy jets of a gaseous fluid and which has the advantage of effectively preventing the formation of incrustations and other accumulations of powdered material inside the micronizer mill which could create serious problems and disadvantages during its use for micronizing the powdered product.
  • jet mills normally comprise a grinding or micronization chamber, circular in shape, or the like, where a series of jets, with high energy, act, generated by a compressed gaseous fluid, such as typically air or nitrogen, which draw and stir the particles of the powdered product and cause a continuous collision between them and therefore their micronization into finer and smaller particles.
  • a compressed gaseous fluid such as typically air or nitrogen
  • jet mills also usually comprise a system of selection or classification, of the static or dynamic type, associated with a central area of the micronization chamber and apt to classify and separate selectively on the basis of their grain size the crushed and micronized particles.
  • the particles, stirred and drawn by high-energy jets of the gaseous fluid which are generated and act inside the micronization chamber are subject to a centrifugal force which also determines a selection thereof, so that the finer and already micronized particles tend to move towards the inner central zone of the micronization chamber, from where they are evacuated, while those of greater dimensions, not yet micronized, tend to remain in the outer peripheral area of the micronization chamber and therefore to rotate around the axis of the latter, thus undergoing further collisions, until, through the effect of these further collisions, they reach a certain fineness and sufficient micronization so that they are drawn back towards the central area of the micronization chamber and then evacuated.
  • the patent US 3,856,214 proposes a device for the micronization of powdered material comprising a micronization mill in which the powdered material, to be micronized, is subjected to a vortex motion due to the action of a gaseous fluid, so as to cause the crushing of the particles of the powdered material into finer particles, in which the micronization mill in turn comprises a screen which is placed in an outlet duct which conveys the fine particles, already micronized, outside of the mill, and has the specific function of avoiding incrustations and accumulations of powdered material in the zone of this outlet duct.
  • a first object of the present invention is to make a new improved apparatus, for the micronization of powders, of the type comprising a mill with high- energy jets of a gaseous fluid, such as typically nitrogen or air, which is able to avoid the disadvantages, illustrated previously and present in the prior art, and which therefore has the capacity to prevent the formation of undesirable incrustations and/or accumulations of powdered material inside the jet mill and therefore also to avoid having to intervene periodically to remove these incrustations and accumulations from the same jet mill.
  • a gaseous fluid such as typically nitrogen or air
  • a further and second more general object of the present invention is also that of increasing the efficiency of a process of micronization of powders and similar materials which typically use a mill with high-energy jets of a gaseous fluid, avoiding those phenomena, such as the formation of accumulations and incrustations in the jet mill which, as is known, have a negative influence on and reduce the efficiency and the productivity of the micronization process.
  • a third object of the present invention is that of preventing and avoiding the formation of incrustations and accumulations of material on the surfaces of the micronization chamber of a jet mill, during the micronization of specific powdered substances which, as has been observed experimentally, are particularly critical and subject more than others to these phenomena of formation of incrustations and formation of accumulations of powdered material.
  • Fig. 1 is a partial schematic view sectioned along the vertical plane defined by line I-I of Fig. 2 and Figs. 5 A and 5B, of an apparatus, according to the present invention, for the micronization of powdered material, comprising a micronizer mill, of the type with high-energy jets of a gaseous fluid, having the capacity to prevent the formation of incrustations and accumulations of powdered material inside the same micronizer mill;
  • Fig. 2 is a partial schematic view sectioned along the horizontal plane defined by line II-II of Fig. 1 and of Fig. 5C and 5D, of the apparatus, according to the present invention, for the micronization of powdered material;
  • Fig. 3 is a sectioned schematic view on enlarged scale of an area of the micronization apparatus of Figs. 1 and 2, which has a porous wall apt to be traversed by a flow of gaseous fluid in order to prevent the formation of incrustations and accumulations of powdered material inside a micronization chamber of the micronizer mill, with high- energy jets, included in the same micronization apparatus;
  • Fig. 4 is a diagram of the micronization apparatus of the invention which shows a circuit of control of the gaseous flow aimed at avoiding the formation of incrustations and accumulations inside the micronizer mill of the micronization apparatus;
  • Fig. 5A is a first three-dimensional graphic view which shows the apparatus, according to the present invention, for the micronization of powdered material, comprising a mill with high-energy jets of a gaseous fluid having the capacity to prevent the formation of incrustations and accumulations of powdered material inside the micronizer mill;
  • Fig. 5B is a further plan graphic view from above of the micronization apparatus of Fig. 5A;
  • Figs. 5C and 5D are further graphic views sectioned along the vertical plane defined by line V-V of Fig. 5A, of the micronization apparatus of the invention;
  • Fig. 5E is a further graphic view from below of the micronization apparatus of Fig. 5A;
  • Fig. 5F is a further sectioned graphic view, from above, corresponding to Fig. 2, of the micronization apparatus of Fig. 5 A;
  • Fig. 6 is a diagram of the micronization apparatus of the invention in a further embodiment with respect to that of Figs. 1-3 and of the corresponding graphic views of Figs. 5A-5F; and
  • Figs. 6A-6C are sectioned three-dimensional graphic views of the further embodiment of Fig. 6 of the micronization apparatus of the invention.
  • an apparatus or plant, according to the present invention for the grinding or micronization of a material containing and formed by particles to be micronized and typically constituted by a product, a compound, a substance or in general a material P in powdered form, is denoted overall by 10 and comprises:
  • micronizer mill denoted overall by 20, of the type with high-energy jets of a gaseous fluid, such as typically air;
  • a feed system denoted overall by 30, for feeding the powdered material P, to be micronized, to the micronizer mill 20;
  • a system of collection and evacuation denoted overall by 40, for collecting and evacuating the micronized powdered material, denoted by P', or the powdered material P after it has been micronized by means of the micronizer mill 20.
  • micronizer mill 20 with high-energy jets, also often referred to as "jet mill", has substantially known basic structural and operative features, which will therefore be described briefly and are to be considered part of the set of knowledge of persons skilled in the art.
  • micronizer mill 20 comprises:
  • an inner micronization chamber 20a with circular shape, also referred to simply as grinding or micronization chamber,
  • an outer pressure chamber 20b with annular shape, also referred to simply as pressure chamber, which surrounds the inner micronization chamber 20a, with annular shape, and is provided in order to be fed by a pressurised fluid through an inlet aperture or mouth 20b' of the same outer pressure chamber 20b;
  • ducts or through holes 20c a plurality of ducts or through holes 20c, appropriately slanted with respect to the radius of the micronization chamber 20a, which connect the outer pressure chamber 20b, to the inner micronization chamber 20a and through which the pressurised fluid coming from the outer pressure chamber 20b is conveyed into the inner micronization chamber 20a, so as to generate, inside the latter, the high-energy jets that cause the micronization of the powdered material P.
  • the slanted ducts or through holes 20c which communicate the outer pressure chamber 20b with the inner micronization chamber 20a, can be made in various shapes and be part of different combinations.
  • they can be constituted by simple through holes without being formed in additional parts or elements, which extend and traverse the area, or the wall or the walls usually in Teflon, which separates the pressure chamber 20b and the micronization chamber 20 one from the other, in particular in micronization mills of small size, such as those with micronization chamber of diameter of approximately 100 mm, or can be integrated in actual nozzles, provided with a metal body 20c', as shown in Fig. 2, in the case of micronization mills of greater size, such as those with micronization chamber of the diameter of approximately 300 mm.
  • the feeding system 30, also with substantially known features, comprises in turn: a feed duct 30a which penetrates the interior of the micronizer mill 20 and in particular extends through the respective outer annular chamber 20a and the respective intermediate annular wall 20c, in order to feed the powdered material P, to be micronized, to the inner micronization chamber 20b of the micronizer mill 20, as described in greater detail here below; and
  • a hopper 30b which is filled with the powdered material P to be micronized, as indicated by a corresponding arrow P in Fig. 1, wherein this hopper 30b is usually associated with a Venturi tube, denoted by 30C, in turn integrated and defined by the feed duct 30a.
  • the collection and evacuation system 40 also with substantially known features, has the function of collecting and evacuating from the micronizer mill 20 the micronized powdered material P', or the powdered material P once micronized, which concentrates in fact in the central area of the micronization chamber 20a, as described in greater detail here below.
  • the collection and evacuation system 40 is associated with a classifier, of known features and therefore not shown in the drawings, having the function of classifying or selecting the particles of the micronized powdered material P', on the basis of their dimensions and grain size, so as to evacuate from the micronizer mill 20 only the particles which have reached a certain level of micronization.
  • This system of collection and evacuation 40 can have various configurations, in particular as a function of the product type which has to be micronized.
  • the collection and evacuation system 40 can comprise a collector member 40a, vaguely in the shape of a hopper, which is associated at a respective lower end with the central area of the micronization chamber 20a, so as to collect the micronized product which exits upwards, through the classifier, in the direction of an end collection cyclone.
  • system of collection and evacuation 40 can be configured so as to collect the micronized product which exits and flows from the micronization chamber downwards, so that the classifier which receives the micronized particles is open downwards and the micronized product is collected under the mill.
  • the collection and evacuation system 40 comprises in any case always an opening upwards to allow the release of the gas coming from the micronization chamber, so that this gas which is released and exits upwards will contain a certain quantity, even if in a minimal percentage, of micronized particles, which therefore will be lost.
  • the feed duct 30a of the feed system 30 is fed from the outside with pressurised air, denoted in the drawings by B, so as to create a flow of air which flows along the feed duct 30a and which, while it traverses the zone of the Venturi tube 30c, creates a vacuum which draws back the powdered material P from the hopper 30b, so as to generate a flow of air, indicated by an arrow B' in the drawings, which draws the particles of the powdered material P to be micronized and feeds them, through an outlet opening 30a' of the feed duct 30a, to the inner micronization chamber 20a of the micronizer mill 20, so that the particles are micronized.
  • pressurised air denoted in the drawings by B
  • the micronizer mill 20 is fed with a fluid, in particular air or nitrogen, denoted by A, at high pressure, which is fed into the outer pressure chamber 20b, to then emerge, in the form of high-energy jets, indicated by arrows G, in the inner micronization chamber 20a, through the channels 20c which connect the outer pressure chamber 20b with the inner micronization chamber 20a.
  • A a fluid, in particular air or nitrogen
  • This vortex motion in turn causes a continuous collision between the particles of the powdered material P, which in this way are crushed and take on increasingly small dimensions, that is they are micronized.
  • the particles of the powdered material P are subject to a centrifugal force which tends to move them towards the periphery of the micronization chamber 20a and therefore to maintain them in the micronization area, while the particles are above a certain dimension or are not yet sufficiently crushed.
  • the vortex motion in the micronization chamber operates also as classifier of the particles so as to determine the evacuation thereof, once micronized.
  • the micronization chamber 20a of the micronizer mill 20, included in the broader micronization apparatus 10 is delimited by respective walls which have at least one porous or filtering portion which is apt to be traversed by a regular flow of a gaseous fluid denoted by F, aimed towards the interior of the micronization chamber 20a, so as to avoid the formation of incrustations and/or accumulations of powdered material on this porous portion of the walls which delimit the micronization chamber 20a and in the areas adjacent to the micronization chamber 20a.
  • F gaseous fluid
  • the micronizer mill 20 of the micronization apparatus 10 of the invention comprises in addition to the inner micronization chamber 20a, of circular shape:
  • a first wall 20e of annular shape, usually in Teflon, that separates the intermediate chamber 20d from the outer pressure chamber 20b;
  • a second wall 20f of annular shape, that surrounds and externally delimits the inner micronization chamber 20a so as to separate the intermediate chamber 20d, of annular shape, from the inner micronization chamber 20a, of circular shape.
  • intermediate chamber 20d is provided in order to be fed by the gaseous fluid F aimed at traversing the porous portion of the walls that delimit the micronization chamber 20a, and
  • the second wall 20f of annular shape, that surrounds and delimits externally the inner micronization chamber 20a and separates it from the intermediate chamber 20d, has this porous or filtering portion provided in order to traversed by the fluid F, as indicated by a plurality of arrows fl in Fig. 3, so as to avoid, during use and functioning of the micronization apparatus 10, the formation of incrustations and/or accumulations of powdered material inside the micronization chamber 20a.
  • the gaseous fluid F which flows through the porous portion of the annular wall 20f which separates the intermediate chamber 20d from the micronization chamber 20a accesses from the outside the intermediate chamber 20d via an inlet duct 21 which extends through the outer casing, denoted by 20g, of the micronizer mill 20.
  • this regular flow of the gaseous fluid F which traverses the porous wall 20f in fact has the effect of preventing in time, that is during the use of the micronization apparatus 10, the powdered material, which is subjected to the micronization process, from depositing or accumulating on the walls of the micronization chamber 20a of the micronizer mill 20 and in the areas adjacent to the this micronization chamber 20a, as instead usually or at least often takes place in conventional jet mills.
  • the pressure PI of the gaseous fluid F, present in the intermediate chamber 20d is higher than the pressure P2, present in the peripheral area of the micronization chamber 20a or in the immediate vicinity of the porous wall 20f, so that the gaseous fluid F is induced to flow through the porous wall 20f by a difference in pressure equal to (P1-P2) which corresponds also to the drop in pressure undergone by the same gaseous fluid F while it traverses the thickness S of this porous wall 20f.
  • this flow of fluid F through the porous wall 20f can be induced by a pressure PI, of the fluid F, present in the intermediate chamber 20d, equal for example to 10 ata, that is 10 kg/cm 2 and by a pressure P2, present in the peripheral area of the micronization chamber 20a that is in the immediate vicinity of the porous wall 20f, slightly higher than the P3 one, usually equal to atmospheric pressure and in any case relatively low, present in the central area 20a' of the micronization chamber 20a, where the micronized powder P' is collected.
  • a pressure PI of the fluid F
  • this material is suitable for being advantageously used, taking account of its specific features and technical properties, to make the porous wall 20f of the micronization apparatus 10, and for example to make a micronization apparatus according to the invention wherein the gaseous fluid F is subjected to a condition of relative pressure of only 20 mbar in the micronization chamber 20a, in order to generate the flow of the gaseous fluid F through this porous wall 20f.
  • PTFE that is to say Teflon
  • Teflon appears to be the best choice for making the porous wall, being above all a material that is easy to work, adapt and model and moreover compatible with the needs and requirements posed by the technology of micronization of powdered material.
  • this material can for example have a porosity of approximately 1-3 microns.
  • HDPE high density polyethylene
  • the wall 20f can also be made, exploiting some recent developments in the technology of materials and of components, with a material that is not exactly porous, that is having a structure, made with a non-porous material, which is characterised by a system of micro-cavities, very fine, in communication one with the other, which allow the passage of the fluid F through the wall 20f and make it therefore functionally equivalent to a porous or filtering wall made with a porous material.
  • diameter D of the micronization chamber 20a 100 - 300 mm.
  • the micronization apparatus 10 includes a micronizer mill 20 with a micronization chamber 20a having a diameter of 100 mm and delimited laterally by a cylindrical ring just over 1 cm high, it is obtained that the surface of this ring, which corresponds to the porous wall 20f which is traversed by the gaseous fluid F, is equal to approximately 50 cm ā‡ .
  • the flow of grinding gas A aimed at generating the fluid jets G with high energy is equal to 800 litres/minute and takes place at approximately 7 bar of relative pressure with respect to the atmospheric pressure
  • the flow of the gas F which traverses the porous wall 20f of the cylindrical ring to reach the grinding chamber 20b has to have a flow of at least one tenth and that is equal to approximately 100 litres/minute, which corresponds, taking account of the fact that the surface of the cylindrical ring or of the porous wall is approximately 50 cm ā‡ , to a flow or to a flow rate of the gas F through this ring of approximately 2 litres per cm ā‡ and minute.
  • the present invention achieves in full the objects that had been set, and in particular provides a new micronization apparatus or plant, of the type comprising a micronization mill with high-energy jets, which has significant improvements and better performances with respect to the apparatuses, currently known and in use, for the micronization of powders such as those typically intended to be used in the pharmaceutical industry, and which in particular is apt to avoid the formation of irksome and damaging incrustations inside the high-energy jets micronization mill which is included in the micronization apparatus.
  • micronization apparatus of the invention has not presented, even after prolonged use, accumulations of powdered material in those critical areas, such as for example the area of the classifier, which in the prior art are instead often affected by this disadvantage and problem.
  • the porous portion which is associated with the walls that delimit the micronization chamber 20a of the micronizer mill 20 and that is apt to be traversed by the fluid F, can assume various configurations, or be associated with different areas of the walls that delimit the micronization chamber 20a and for example be associated with the respective base wall, in order to avoid the formation of incrustations of powdered material inside the same micronization chamber 20a.
  • the base wall of the micronization chamber can be associated with a cavity which receives from the outside the fluid F which is intended to flow through this base wall, so as to avoid that in time deposits and incrustations of powdered material are formed thereon.
  • the porous portion can also be associated, as well as with the lateral annular wall and/or the lower base wall, also with the upper wall, opposite to the base one, of the micronization chamber.
  • this porous portion can be formed in any area of the walls that delimit the micronization chamber, in which, as ascertained experimentally and through the effect of the particular fluid dynamic conditions present in the same micronization chamber, deposits and incrustations of the powdered material tend to form.
  • the apparatus of the invention for the micronization of a material or of a powdered product, is able to ensure and guarantee, unlike those already known, a total absence, during use, of incrustations and/or deposits of powdered material on the walls of the same inner micronization chamber.
  • porous portion can be formed in any area, considered appropriate, of the walls of the inner micronization chamber, will not be shown in the drawings, being implicit or obviously inferable from the embodiment 10, described previously, of the apparatus of the invention for the micronization of a powdered material.
  • the gaseous fluid A that feeds the outer pressure chamber 20b to generate the high-energy jets G in the micronization chamber 20a, the gaseous fluid B that feeds the feed duct 30a to draw the powder P to be micronized into the micronization chamber 20a, and the fluid F that feeds the intermediate chamber or annular cavity 20d to generate the flow towards the micronization chamber 20a through the porous portion 20f of the walls that delimit the same micronization chamber 20a, can be different one from the other, this possibility being in particular allowed by the fact that the pressure chamber 20b and the cavity 20d are separate and distinct one from the other and are associated with respective systems for feeding of the gaseous fluid, also distinct one from the other.
  • the fluid F that feeds the cavity 20d could be constituted by nitrogen or air, like the fluid A that feeds the outer pressure chamber 20b.
  • the preferred solution appears to be that of adopting the same type of fluid, in particular air or nitrogen, for the two fluids A and F.
  • nitrogen being an inert gas
  • the preferred and elective gaseous fluid A for the generation of high-energy gaseous jets and therefore for performing the micronization of the powdered material is to be considered, precisely on account of this property thereof of being inert and therefore of not participating in chemical reactions, the preferred and elective gaseous fluid A for the generation of high-energy gaseous jets and therefore for performing the micronization of the powdered material.
  • air in turn also appears to be a very suitable gas for being used to flow through the porous wall and therefore prevent the formation of incrustations.
  • Fig. 4 illustrates an interesting improvement of the micronization apparatus of the invention including a control circuit, denoted overall by 50, apt to control the flow of the second gaseous fluid F through the porous wall 20f and in particular comprising an electronic control unit 51 and a pressure sensor 52, placed inside the micronization chamber 20b of the micronizer mill 20, having the function of detecting the pressure present inside the respective micronization chamber 20a.
  • a control circuit denoted overall by 50, apt to control the flow of the second gaseous fluid F through the porous wall 20f and in particular comprising an electronic control unit 51 and a pressure sensor 52, placed inside the micronization chamber 20b of the micronizer mill 20, having the function of detecting the pressure present inside the respective micronization chamber 20a.
  • control unit 51 receives from the pressure sensor 52 a signal S 1 indicating the pressure present inside the micronization chamber 20b and generates a corresponding signal S2 aimed at controlling a pump 53 that feeds the fluid F, at an appropriate rate and pressure, to the cavity 20d so as to keep under control, that is in accordance with a preset trend, the pressure inside the micronization chamber 20b and therefore also the flow of the fluid F that traverses the porous wall 20f.
  • FIG. 6 and the photos of Figs. 6A-6C refer to a further variant, denoted overall by 110, of the micronization apparatus of the invention, in which the parts and the features corresponding to those of the preferred embodiment 10, described previously, are indicated for reasons of clarity with reference numerals incremented by 100 with respect to those of this previous embodiment 10.
  • the micronizer mill 120 included in the apparatus 110 for the micronization of a powdered material or product, comprises as well as the inner micronization chamber 120a, of circular shape, and alternatively to the pressure chamber 20b, included in the embodiment 10:
  • a system of channels or ducts denoted overall by 120b, apt to be fed by the first gaseous fluid A, pressurised, wherein this system of channels 120b has an annular configuration around the inner micronization chamber 120a and comprises in turn an outer channel 120b', with ring shape, and a plurality of channels 120c, connected at one end to the outer annular channel 120b' having the function of conveying the first gaseous fluid A, pressurised, inside the inner micronization chamber 120a, so as to generate the high-energy jets G that cause the micronization of the powdered material P.
  • micronizer mill 120 of the micronization apparatus 110 comprises, similarly to the micronizer mill 20 of the micronization apparatus 10:
  • a wall 120f of annular shape, that surrounds and externally delimits the inner micronization chamber 120a and separates the intermediate chamber 120d, of annular shape, from the inner micronization chamber 120a, of circular shape, of the micronizer mill 120;
  • this wall 120f of annular shape, which delimits the inner micronization chamber 120a, has the porous or filtering portion through which the second gaseous fluid F flows, having the function of avoiding the formation of incrustations and/or accumulations of powdered material inside the micronization chamber 120a and in the adjacent areas.
  • the channels 120c that convey and feed the first gaseous fluid A, pressurised, to the inner micronization chamber 120a can be integrated, similarly to the channels or through holes 20c included in the embodiment 10 and shown in Fig. 2, in actual nozzles, each one provided with a respective metal body which extends through the wall 120e that delimits externally the intermediate chamber 120d and the wall 120f that delimits the micronization chamber 120a.
  • This possible improvement on the basis of which the gaseous fluid that generates the high-energy jets is used at a relatively low temperature has the advantage of controlling the temperature inside the micronization chamber in order to allow the grinding or micronization of active substances in cryogenic or cold conditions, when this is required for reasons of chemical and physical stability or to facilitate and improve the same process of micronization, acting on the features of hardness, influenced by the cold, of the particles to be micronized.
  • the two gaseous fluids in particular nitrogen and air, provided to generate the high-energy gaseous jets aimed at micronizing the powdered material and to traverse the porous wall so as to avoid the formation of incrustations inside the micronizer mill, are used in cryogenic function, that is to control the temperature inside the micronization chamber of the micronizer mill, so as to improve and optimise the process of micronization in particular as regards the quality of the micronized end product and the capacity of the micronization apparatus to avoid and contrast the formation in time of incrustations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Apparatus (10; 110) for the micronization of a powdered material or product (P) comprising a micronizer mill (20), of the type with high-energy jets of a gaseous fluid, in turn comprising a micronization chamber (20a), in which micronization chamber the powdered material (P) is micronized as a result of the collisions between its particles caused by the high-energy jets (G) of a first gaseous fluid (A), such as nitrogen or air, wherein the micronization chamber (20a) of the micronizer mill (20) is delimited by walls (20f) which have at least one porous portion which is traversed by a regular flow (f1), of a second gaseous fluid (F), aimed towards the interior of the micronization chamber, so as toavoid the formation of incrustations and/or accumulations of powdered material in the same micronization chamber (20a). More particularly the micronization apparatus (10) comprises a first outer annular chamber (20b) which extends around the micronizationchamber (20a) and is fed by the first gaseous fluid (A) which generates the high-energy jets in the micronization chamber, and a second intermediate annular chamber (20d) which is associated with the porous wall (20f) which delimits the micronization chamber (20a) and is fed by the second gaseous fluid (F) aimed to flow through this porous wall, or, in a variant (110) of the micronization apparatus, comprises instead of the first annular chamber a system of channels (120b) which convey the first gaseous fluid which generates the high-pressure jets and extend through the annular chamber (120d) fed by the second gaseous fluid (F) which traverses the porous wall. Advantageously the apparatus of the invention (10; 110), avoiding the formation of incrustations and similar accumulations inside the micronization chamber (20a) of the micronization mill (20) and in the adjacent areas, improves the efficiency of the micronization process and the quality of the micronized end product and moreover considerably reduces the costs of maintenance with respect to conventional micronization mills and apparatuses, with high-energy jets of a gaseous fluid.

Description

APPARATUS FOR THE MICRONIZATION OF POWDERED MATERIAL WITH THE CAPACITY TO PREVENT INCRUSTATIONS
Technical field of the invention
The present invention relates in general to the area of devices and apparatuses for the micronization of powdered material, that is for the grinding and crushing of powdered materials and similar substances in order to transform them into a finer micronized powder, and in particular its object is an apparatus for the micronization of a powdered product or the like, which specifically comprises a micronizer mill of the type with high- energy jets of a gaseous fluid and which offers improved performances and features aimed at preventing the formation of incrustations and deposits inside the micronizer mill during use to micronize the powdered material.
The present invention also relates to a corresponding process for the micronization of powdered material or a similar product, which provides for the use of a micronizer mill of the type with high-energy jets of a gaseous fluid and which has the advantage of effectively preventing the formation of incrustations and other accumulations of powdered material inside the micronizer mill which could create serious problems and disadvantages during its use for micronizing the powdered product.
Background of the invention and state of the art
The current technology for the grinding and micronization of powdered material and in general of powders, for example made up of powdered compounds for a use in the pharmaceutical industry, offers numerous solutions, also alternative one to the other, among which mention is made in particular of the systems of micronization of powders based on the use of a mill with high-energy jets of a gaseous fluid, also referred to as "spiral mill" or "jet mill".
These jet mills normally comprise a grinding or micronization chamber, circular in shape, or the like, where a series of jets, with high energy, act, generated by a compressed gaseous fluid, such as typically air or nitrogen, which draw and stir the particles of the powdered product and cause a continuous collision between them and therefore their micronization into finer and smaller particles.
These jet mills also usually comprise a system of selection or classification, of the static or dynamic type, associated with a central area of the micronization chamber and apt to classify and separate selectively on the basis of their grain size the crushed and micronized particles.
More specifically, during the functioning of these jet mills, the particles, stirred and drawn by high-energy jets of the gaseous fluid which are generated and act inside the micronization chamber, are subject to a centrifugal force which also determines a selection thereof, so that the finer and already micronized particles tend to move towards the inner central zone of the micronization chamber, from where they are evacuated, while those of greater dimensions, not yet micronized, tend to remain in the outer peripheral area of the micronization chamber and therefore to rotate around the axis of the latter, thus undergoing further collisions, until, through the effect of these further collisions, they reach a certain fineness and sufficient micronization so that they are drawn back towards the central area of the micronization chamber and then evacuated.
Despite the improvements which during the years have involved micronization apparatuses and corresponding processes, at the present time some problem are still unsolved or at least appear to have been solved in a not wholly satisfactory manner, so as to require further improvements in these apparatuses and processes of micronization.
More particularly, among these unsolved problems, mention is made of the important one of the formation of undesirable incrustations and accumulations of powdered material, in particular during micronization of certain types of powdered material, in critical zones and surfaces inside the micronization chamber, which have the effect of reducing the productivity of the apparatus of micronization and also entail having to intervene periodically to remove these incrustations and accumulations of powdered material, with a considerable increase in maintenance costs.
Among the powdered substances which, as has been observed experimentally, are subject during their micronization in a high-energy jet mill to the disadvantage of the formation of incrustations and accumulations on the walls of the micronization chamber of the jet mill the following substances are cited as an example: Flutamide, Acitretin, Fluticasone, Isoconazole, Isosorbide mononitrate, Nifedipine, Orlistat, Medroxyprogesterone acetate, Triamcinolone, Desogestrel and Eplerenone, and some types of steroids.
Naturally the list above is not to be considered limiting, so that other substances, not mentioned here, can have the disadvantage of generating incrustations during their micronization, so that the present invention could have a useful and advantageous application also in relation to these other substances.
It is also true that solutions have been studied and systems set up to prevent the formation of these incrustations and accumulations of powdered material inside the micronization chamber.
However these solutions and systems, known and in use, still have limits and disadvantages which need to be overcome and solved with appropriate improvements and perfections of the micronization apparatuses currently known.
For example the patent US 3,856,214 proposes a device for the micronization of powdered material comprising a micronization mill in which the powdered material, to be micronized, is subjected to a vortex motion due to the action of a gaseous fluid, so as to cause the crushing of the particles of the powdered material into finer particles, in which the micronization mill in turn comprises a screen which is placed in an outlet duct which conveys the fine particles, already micronized, outside of the mill, and has the specific function of avoiding incrustations and accumulations of powdered material in the zone of this outlet duct.
However this device too for micronization of powdered material is not free from limitations and disadvantages, and in particular the solution, comprising a screen, adopted in this micronization device known from US patent 3,856,214 appears limited to avoiding and preventing the formation of incrustations and accumulations of powdered material only in a restricted area, of outlet, of the micronization mill, and also constructionally somewhat complex and in any case involving an additional part, precisely constituted by a screen, so as to entail also a non-negligible cost.
Objects and summary of the invention
Therefore a first object of the present invention is to make a new improved apparatus, for the micronization of powders, of the type comprising a mill with high- energy jets of a gaseous fluid, such as typically nitrogen or air, which is able to avoid the disadvantages, illustrated previously and present in the prior art, and which therefore has the capacity to prevent the formation of undesirable incrustations and/or accumulations of powdered material inside the jet mill and therefore also to avoid having to intervene periodically to remove these incrustations and accumulations from the same jet mill.
A further and second more general object of the present invention is also that of increasing the efficiency of a process of micronization of powders and similar materials which typically use a mill with high-energy jets of a gaseous fluid, avoiding those phenomena, such as the formation of accumulations and incrustations in the jet mill which, as is known, have a negative influence on and reduce the efficiency and the productivity of the micronization process.
Again a third object of the present invention is that of preventing and avoiding the formation of incrustations and accumulations of material on the surfaces of the micronization chamber of a jet mill, during the micronization of specific powdered substances which, as has been observed experimentally, are particularly critical and subject more than others to these phenomena of formation of incrustations and formation of accumulations of powdered material.
The aforementioned objects can be considered achieved in full by the apparatus for the micronization of powders having the features defined by the independent claim 1 and by the corresponding process for the micronization of powders having the features defined by the independent claim 9.
Particular embodiments of the present invention are defined by the dependent claims.
Advantages of the invention
The advantages are numerous, in part already implicitly stated previously, which are associated with the new apparatus, according to the present invention, for the micronization of powders, such as those listed here below purely by way of example:
a greater quality in general of the micronized product with respect to that which can be obtained with conventional apparatuses;
a considerable reduction in maintenance costs of the micronization apparatus;
a greater efficiency and quality of the micronization process, in particular of important substances widely used in the pharmaceutical industry;
possibility of using different gaseous fluids as a function of the features of the powdered material which has to be micronized and the formation of incrustations whereof is to be avoided;
a simple and easy-to-make construction;
possibility of making new micronization equipment by adapting with relatively simple and non-complex modifications a micronization apparatus of a conventional type.
Brief description of the drawings
These and other objects, features and advantages of the present invention will be made clearer and more evident by the following description of one of its preferred embodiments, given by way of a non-limiting example with reference to the accompanying drawings, of which:
Fig. 1 is a partial schematic view sectioned along the vertical plane defined by line I-I of Fig. 2 and Figs. 5 A and 5B, of an apparatus, according to the present invention, for the micronization of powdered material, comprising a micronizer mill, of the type with high-energy jets of a gaseous fluid, having the capacity to prevent the formation of incrustations and accumulations of powdered material inside the same micronizer mill; Fig. 2 is a partial schematic view sectioned along the horizontal plane defined by line II-II of Fig. 1 and of Fig. 5C and 5D, of the apparatus, according to the present invention, for the micronization of powdered material;
Fig. 3 is a sectioned schematic view on enlarged scale of an area of the micronization apparatus of Figs. 1 and 2, which has a porous wall apt to be traversed by a flow of gaseous fluid in order to prevent the formation of incrustations and accumulations of powdered material inside a micronization chamber of the micronizer mill, with high- energy jets, included in the same micronization apparatus;
Fig. 4 is a diagram of the micronization apparatus of the invention which shows a circuit of control of the gaseous flow aimed at avoiding the formation of incrustations and accumulations inside the micronizer mill of the micronization apparatus;
Fig. 5A is a first three-dimensional graphic view which shows the apparatus, according to the present invention, for the micronization of powdered material, comprising a mill with high-energy jets of a gaseous fluid having the capacity to prevent the formation of incrustations and accumulations of powdered material inside the micronizer mill;
Fig. 5B is a further plan graphic view from above of the micronization apparatus of Fig. 5A;
Figs. 5C and 5D are further graphic views sectioned along the vertical plane defined by line V-V of Fig. 5A, of the micronization apparatus of the invention;
Fig. 5E is a further graphic view from below of the micronization apparatus of Fig. 5A;
Fig. 5F is a further sectioned graphic view, from above, corresponding to Fig. 2, of the micronization apparatus of Fig. 5 A;
Fig. 6 is a diagram of the micronization apparatus of the invention in a further embodiment with respect to that of Figs. 1-3 and of the corresponding graphic views of Figs. 5A-5F; and
Figs. 6A-6C are sectioned three-dimensional graphic views of the further embodiment of Fig. 6 of the micronization apparatus of the invention.
Description of a preferred embodiment of the micronization apparatus of the invention.
Referring to the drawings, an apparatus or plant, according to the present invention, for the grinding or micronization of a material containing and formed by particles to be micronized and typically constituted by a product, a compound, a substance or in general a material P in powdered form, is denoted overall by 10 and comprises:
a micronizer mill, denoted overall by 20, of the type with high-energy jets of a gaseous fluid, such as typically air;
a feed system, denoted overall by 30, for feeding the powdered material P, to be micronized, to the micronizer mill 20; and
a system of collection and evacuation, denoted overall by 40, for collecting and evacuating the micronized powdered material, denoted by P', or the powdered material P after it has been micronized by means of the micronizer mill 20.
The micronizer mill 20, with high-energy jets, also often referred to as "jet mill", has substantially known basic structural and operative features, which will therefore be described briefly and are to be considered part of the set of knowledge of persons skilled in the art.
More particularly the micronizer mill 20 comprises:
an inner micronization chamber 20a, with circular shape, also referred to simply as grinding or micronization chamber,
an outer pressure chamber 20b, with annular shape, also referred to simply as pressure chamber, which surrounds the inner micronization chamber 20a, with annular shape, and is provided in order to be fed by a pressurised fluid through an inlet aperture or mouth 20b' of the same outer pressure chamber 20b; and
a plurality of ducts or through holes 20c, appropriately slanted with respect to the radius of the micronization chamber 20a, which connect the outer pressure chamber 20b, to the inner micronization chamber 20a and through which the pressurised fluid coming from the outer pressure chamber 20b is conveyed into the inner micronization chamber 20a, so as to generate, inside the latter, the high-energy jets that cause the micronization of the powdered material P.
The slanted ducts or through holes 20c, which communicate the outer pressure chamber 20b with the inner micronization chamber 20a, can be made in various shapes and be part of different combinations.
For example they can be constituted by simple through holes without being formed in additional parts or elements, which extend and traverse the area, or the wall or the walls usually in Teflon, which separates the pressure chamber 20b and the micronization chamber 20 one from the other, in particular in micronization mills of small size, such as those with micronization chamber of diameter of approximately 100 mm, or can be integrated in actual nozzles, provided with a metal body 20c', as shown in Fig. 2, in the case of micronization mills of greater size, such as those with micronization chamber of the diameter of approximately 300 mm.
The feeding system 30, also with substantially known features, comprises in turn: a feed duct 30a which penetrates the interior of the micronizer mill 20 and in particular extends through the respective outer annular chamber 20a and the respective intermediate annular wall 20c, in order to feed the powdered material P, to be micronized, to the inner micronization chamber 20b of the micronizer mill 20, as described in greater detail here below; and
a hopper 30b which is filled with the powdered material P to be micronized, as indicated by a corresponding arrow P in Fig. 1, wherein this hopper 30b is usually associated with a Venturi tube, denoted by 30C, in turn integrated and defined by the feed duct 30a.
The collection and evacuation system 40, also with substantially known features, has the function of collecting and evacuating from the micronizer mill 20 the micronized powdered material P', or the powdered material P once micronized, which concentrates in fact in the central area of the micronization chamber 20a, as described in greater detail here below.
Normally the collection and evacuation system 40 is associated with a classifier, of known features and therefore not shown in the drawings, having the function of classifying or selecting the particles of the micronized powdered material P', on the basis of their dimensions and grain size, so as to evacuate from the micronizer mill 20 only the particles which have reached a certain level of micronization.
This system of collection and evacuation 40 can have various configurations, in particular as a function of the product type which has to be micronized.
For example, as shown in Fig. 1, the collection and evacuation system 40 can comprise a collector member 40a, vaguely in the shape of a hopper, which is associated at a respective lower end with the central area of the micronization chamber 20a, so as to collect the micronized product which exits upwards, through the classifier, in the direction of an end collection cyclone.
Or, alternatively, the system of collection and evacuation 40 can be configured so as to collect the micronized product which exits and flows from the micronization chamber downwards, so that the classifier which receives the micronized particles is open downwards and the micronized product is collected under the mill.
In this alternative configuration, in which the micronized product is collected under the mill, the collection and evacuation system 40 comprises in any case always an opening upwards to allow the release of the gas coming from the micronization chamber, so that this gas which is released and exits upwards will contain a certain quantity, even if in a minimal percentage, of micronized particles, which therefore will be lost.
In the functioning of the micronization apparatus 10, the feed duct 30a of the feed system 30 is fed from the outside with pressurised air, denoted in the drawings by B, so as to create a flow of air which flows along the feed duct 30a and which, while it traverses the zone of the Venturi tube 30c, creates a vacuum which draws back the powdered material P from the hopper 30b, so as to generate a flow of air, indicated by an arrow B' in the drawings, which draws the particles of the powdered material P to be micronized and feeds them, through an outlet opening 30a' of the feed duct 30a, to the inner micronization chamber 20a of the micronizer mill 20, so that the particles are micronized.
Moreover, simultaneously, the micronizer mill 20 is fed with a fluid, in particular air or nitrogen, denoted by A, at high pressure, which is fed into the outer pressure chamber 20b, to then emerge, in the form of high-energy jets, indicated by arrows G, in the inner micronization chamber 20a, through the channels 20c which connect the outer pressure chamber 20b with the inner micronization chamber 20a.
In this way a system of high-energy jets is generated inside the micronization chamber 20a, slanted with respect to the radius of the micronization chamber 20a, which determine a vortex and air spiral motion, around the axis of the micronization chamber 20a and converging towards a central area of the latter.
This vortex motion in turn causes a continuous collision between the particles of the powdered material P, which in this way are crushed and take on increasingly small dimensions, that is they are micronized.
More particularly, in the micronization chamber 20a, due to this vortex motion, the particles of the powdered material P are subject to a centrifugal force which tends to move them towards the periphery of the micronization chamber 20a and therefore to maintain them in the micronization area, while the particles are above a certain dimension or are not yet sufficiently crushed.
The same particles, once they have been completely crushed, are instead subjected to a radial force which tends to move them towards the central area of the micronization chamber 20a, denoted in the drawings by 20a' and a dotted and dashed circle, from where they are evacuated from the collection and evacuation system 40.
Therefore the vortex motion in the micronization chamber operates also as classifier of the particles so as to determine the evacuation thereof, once micronized.
According to an essential feature of the present invention, the micronization chamber 20a of the micronizer mill 20, included in the broader micronization apparatus 10, is delimited by respective walls which have at least one porous or filtering portion which is apt to be traversed by a regular flow of a gaseous fluid denoted by F, aimed towards the interior of the micronization chamber 20a, so as to avoid the formation of incrustations and/or accumulations of powdered material on this porous portion of the walls which delimit the micronization chamber 20a and in the areas adjacent to the micronization chamber 20a.
More particularly, for this purpose and as shown in the drawings, the micronizer mill 20 of the micronization apparatus 10 of the invention comprises in addition to the inner micronization chamber 20a, of circular shape:
- an intermediate chamber or cavity denoted by 20d, of annular shape, that surrounds and externally delimits the inner micronization chamber 20a and is placed between the outer pressure chamber 20b, of annular shape, and the inner micronization chamber 20a, of circular shape,
a first wall 20e, of annular shape, usually in Teflon, that separates the intermediate chamber 20d from the outer pressure chamber 20b; and
a second wall 20f, of annular shape, that surrounds and externally delimits the inner micronization chamber 20a so as to separate the intermediate chamber 20d, of annular shape, from the inner micronization chamber 20a, of circular shape.
wherein the intermediate chamber 20d is provided in order to be fed by the gaseous fluid F aimed at traversing the porous portion of the walls that delimit the micronization chamber 20a, and
wherein the second wall 20f, of annular shape, that surrounds and delimits externally the inner micronization chamber 20a and separates it from the intermediate chamber 20d, has this porous or filtering portion provided in order to traversed by the fluid F, as indicated by a plurality of arrows fl in Fig. 3, so as to avoid, during use and functioning of the micronization apparatus 10, the formation of incrustations and/or accumulations of powdered material inside the micronization chamber 20a.
In detail, as shown in the drawings and for example in Fig. 3, the gaseous fluid F which flows through the porous portion of the annular wall 20f which separates the intermediate chamber 20d from the micronization chamber 20a accesses from the outside the intermediate chamber 20d via an inlet duct 21 which extends through the outer casing, denoted by 20g, of the micronizer mill 20.
As also ascertained by numerous and thorough experimental tests, this regular flow of the gaseous fluid F which traverses the porous wall 20f in fact has the effect of preventing in time, that is during the use of the micronization apparatus 10, the powdered material, which is subjected to the micronization process, from depositing or accumulating on the walls of the micronization chamber 20a of the micronizer mill 20 and in the areas adjacent to the this micronization chamber 20a, as instead usually or at least often takes place in conventional jet mills.
Naturally this gaseous flow that traverses the porous part of the wall 20f and which, as mentioned, has the beneficial effect of preventing the formation of accumulations and incrustations inside the micronization chamber 20a, is induced by a difference or gradient of pressure between the intermediate chamber 20d and the micronization chamber 20a.
In other words, referring to Figs. 3 and 4, the pressure PI of the gaseous fluid F, present in the intermediate chamber 20d, is higher than the pressure P2, present in the peripheral area of the micronization chamber 20a or in the immediate vicinity of the porous wall 20f, so that the gaseous fluid F is induced to flow through the porous wall 20f by a difference in pressure equal to (P1-P2) which corresponds also to the drop in pressure undergone by the same gaseous fluid F while it traverses the thickness S of this porous wall 20f.
Indicatively it has emerged, on the basis of experimental tests, that this flow of fluid F through the porous wall 20f can be induced by a pressure PI, of the fluid F, present in the intermediate chamber 20d, equal for example to 10 ata, that is 10 kg/cm2 and by a pressure P2, present in the peripheral area of the micronization chamber 20a that is in the immediate vicinity of the porous wall 20f, slightly higher than the P3 one, usually equal to atmospheric pressure and in any case relatively low, present in the central area 20a' of the micronization chamber 20a, where the micronized powder P' is collected.
Naturally the numerical pressure values given above are to be understood as relative and not absolute pressure values, that is of pressure with respect to the atmospheric one of 1 bar.
The materials which can be used to make the porous wall 20f or a portion thereof can be different, all coming within the scope of the present invention.
For example mention is made among these possible materials of sintered stainless steel, known by the code AISI 316, currently already used for making sterilising and purifying filter cartridges in the pharmaceutical and food industry, or plastic materials such as PTFE, better known as Teflon.
In particular as regards PTFE this material is suitable for being advantageously used, taking account of its specific features and technical properties, to make the porous wall 20f of the micronization apparatus 10, and for example to make a micronization apparatus according to the invention wherein the gaseous fluid F is subjected to a condition of relative pressure of only 20 mbar in the micronization chamber 20a, in order to generate the flow of the gaseous fluid F through this porous wall 20f.
It is in any case clear that, by incrementing or in general varying the conditions of pressure in the gaseous fluid F provided to flow through the porous wall 20f, it is possible to regulate and obtain the optimal and more convenient rate of the flow of the gaseous fluid F through the same porous wall 20f, made in porous PTFE.
In this respect it is also pointed out that currently various types of PTFE are available, for example that known commercially by the registered trademark TEKPORE of the firm GUARNIFLON, with features of porosity such as to meet the specific needs of the present invention in relation to the porous wall 20f.
To sum up, at least at the current time, PTFE, that is to say Teflon, appears to be the best choice for making the porous wall, being above all a material that is easy to work, adapt and model and moreover compatible with the needs and requirements posed by the technology of micronization of powdered material.
As regards sintered steel, this material can for example have a porosity of approximately 1-3 microns.
Finally mention is further made, among the possible materials which can be used to make the porous wall through which the gaseous fluid F flows to avoid the formation of incrustations, of the following:
porous polypropylene;
porous high density polyethylene (HDPE);
porous ceramic materials.
Again the wall 20f can also be made, exploiting some recent developments in the technology of materials and of components, with a material that is not exactly porous, that is having a structure, made with a non-porous material, which is characterised by a system of micro-cavities, very fine, in communication one with the other, which allow the passage of the fluid F through the wall 20f and make it therefore functionally equivalent to a porous or filtering wall made with a porous material.
For completeness of information an indication is given here below, on an indicative level and with reference to Figs. 3 and 4, of some of the relevant dimensions and of the respective ranges of variation of the micronization apparatus 10 of the invention:
thickness S of the porous wall 20f = 2 - 3 mm,
diameter D of the micronization chamber 20a = 100 - 300 mm. Again, always for greater and more complete information, a simple calculation is given here below aimed at showing and giving an idea of the value of the parameters involved in the functioning of the micronization apparatus of the invention 10.
Supposing that the micronization apparatus 10 includes a micronizer mill 20 with a micronization chamber 20a having a diameter of 100 mm and delimited laterally by a cylindrical ring just over 1 cm high, it is obtained that the surface of this ring, which corresponds to the porous wall 20f which is traversed by the gaseous fluid F, is equal to approximately 50 cm^.
Therefore, assuming that the flow of grinding gas A aimed at generating the fluid jets G with high energy is equal to 800 litres/minute and takes place at approximately 7 bar of relative pressure with respect to the atmospheric pressure, it is obtained that the flow of the gas F which traverses the porous wall 20f of the cylindrical ring to reach the grinding chamber 20b has to have a flow of at least one tenth and that is equal to approximately 100 litres/minute, which corresponds, taking account of the fact that the surface of the cylindrical ring or of the porous wall is approximately 50 cm^, to a flow or to a flow rate of the gas F through this ring of approximately 2 litres per cm^ and minute.
It is therefore clear, from what is described, that the present invention achieves in full the objects that had been set, and in particular provides a new micronization apparatus or plant, of the type comprising a micronization mill with high-energy jets, which has significant improvements and better performances with respect to the apparatuses, currently known and in use, for the micronization of powders such as those typically intended to be used in the pharmaceutical industry, and which in particular is apt to avoid the formation of irksome and damaging incrustations inside the high-energy jets micronization mill which is included in the micronization apparatus.
Among the substances widely used in the pharmaceutical industry which, as has been found from the numerous and thorough experimental tests performed on prototypes of the micronization apparatus of the invention, have not generated, unlike what often happens using known micronization devices, phenomena of formation of accumulations and incrustations of powdered material inside the micronizer mill, the following are mentioned in particular: Flutamide, Acitretin, Fluticasone, Isoconazole, Isosorbide mononitrate, Nifedipine, Orlistat, Medroxyprogesterone acetate, Triamcinolone.
More particularly the micronization apparatus of the invention has not presented, even after prolonged use, accumulations of powdered material in those critical areas, such as for example the area of the classifier, which in the prior art are instead often affected by this disadvantage and problem. Variants
Naturally the micronization apparatus 10, described previously, can be the subject of changes, improvements and variants still coming within the scope of the present invention.
For example the porous portion, which is associated with the walls that delimit the micronization chamber 20a of the micronizer mill 20 and that is apt to be traversed by the fluid F, can assume various configurations, or be associated with different areas of the walls that delimit the micronization chamber 20a and for example be associated with the respective base wall, in order to avoid the formation of incrustations of powdered material inside the same micronization chamber 20a.
For example, in this embodiment, the base wall of the micronization chamber can be associated with a cavity which receives from the outside the fluid F which is intended to flow through this base wall, so as to avoid that in time deposits and incrustations of powdered material are formed thereon.
The porous portion can also be associated, as well as with the lateral annular wall and/or the lower base wall, also with the upper wall, opposite to the base one, of the micronization chamber.
In general this porous portion can be formed in any area of the walls that delimit the micronization chamber, in which, as ascertained experimentally and through the effect of the particular fluid dynamic conditions present in the same micronization chamber, deposits and incrustations of the powdered material tend to form.
In this way, that is by creating the porous portion or portions in the most appropriate areas of the walls that delimit the inner micronization chamber, the apparatus of the invention, for the micronization of a material or of a powdered product, is able to ensure and guarantee, unlike those already known, a total absence, during use, of incrustations and/or deposits of powdered material on the walls of the same inner micronization chamber.
For reasons of brevity, these variants in which the porous portion can be formed in any area, considered appropriate, of the walls of the inner micronization chamber, will not be shown in the drawings, being implicit or obviously inferable from the embodiment 10, described previously, of the apparatus of the invention for the micronization of a powdered material.
Further, the gaseous fluid A that feeds the outer pressure chamber 20b to generate the high-energy jets G in the micronization chamber 20a, the gaseous fluid B that feeds the feed duct 30a to draw the powder P to be micronized into the micronization chamber 20a, and the fluid F that feeds the intermediate chamber or annular cavity 20d to generate the flow towards the micronization chamber 20a through the porous portion 20f of the walls that delimit the same micronization chamber 20a, can be different one from the other, this possibility being in particular allowed by the fact that the pressure chamber 20b and the cavity 20d are separate and distinct one from the other and are associated with respective systems for feeding of the gaseous fluid, also distinct one from the other.
For example the fluid F that feeds the cavity 20d could be constituted by nitrogen or air, like the fluid A that feeds the outer pressure chamber 20b.
In this respect it is in any case pointed out that, although it is possible to differentiate the two fluids, respectively the fluid A aimed at producing the high-energy gaseous jets and the fluid F aimed at flowing through the porous wall in order to avoid the formation of incrustations inside the micronization chamber 20b, the preferred solution appears to be that of adopting the same type of fluid, in particular air or nitrogen, for the two fluids A and F.
In any case nitrogen, being an inert gas, is to be considered, precisely on account of this property thereof of being inert and therefore of not participating in chemical reactions, the preferred and elective gaseous fluid A for the generation of high-energy gaseous jets and therefore for performing the micronization of the powdered material.
Moreover nitrogen also appears suitable for constituting the gaseous fluid F that traverses the porous wall 20f.
In any case air in turn also appears to be a very suitable gas for being used to flow through the porous wall and therefore prevent the formation of incrustations.
Further, Fig. 4 illustrates an interesting improvement of the micronization apparatus of the invention including a control circuit, denoted overall by 50, apt to control the flow of the second gaseous fluid F through the porous wall 20f and in particular comprising an electronic control unit 51 and a pressure sensor 52, placed inside the micronization chamber 20b of the micronizer mill 20, having the function of detecting the pressure present inside the respective micronization chamber 20a.
In functioning the control unit 51 receives from the pressure sensor 52 a signal S 1 indicating the pressure present inside the micronization chamber 20b and generates a corresponding signal S2 aimed at controlling a pump 53 that feeds the fluid F, at an appropriate rate and pressure, to the cavity 20d so as to keep under control, that is in accordance with a preset trend, the pressure inside the micronization chamber 20b and therefore also the flow of the fluid F that traverses the porous wall 20f.
The diagram of Fig. 6 and the photos of Figs. 6A-6C refer to a further variant, denoted overall by 110, of the micronization apparatus of the invention, in which the parts and the features corresponding to those of the preferred embodiment 10, described previously, are indicated for reasons of clarity with reference numerals incremented by 100 with respect to those of this previous embodiment 10.
In detail, in this further embodiment, the micronizer mill 120, included in the apparatus 110 for the micronization of a powdered material or product, comprises as well as the inner micronization chamber 120a, of circular shape, and alternatively to the pressure chamber 20b, included in the embodiment 10:
a system of channels or ducts, denoted overall by 120b, apt to be fed by the first gaseous fluid A, pressurised, wherein this system of channels 120b has an annular configuration around the inner micronization chamber 120a and comprises in turn an outer channel 120b', with ring shape, and a plurality of channels 120c, connected at one end to the outer annular channel 120b' having the function of conveying the first gaseous fluid A, pressurised, inside the inner micronization chamber 120a, so as to generate the high-energy jets G that cause the micronization of the powdered material P.
Moreover the micronizer mill 120 of the micronization apparatus 110 comprises, similarly to the micronizer mill 20 of the micronization apparatus 10:
an intermediate chamber or cavity 120d, with annular shape, which is placed between a ring 120b' of the system of channels 120b and the micronization chamber 120a and is provided to be fed by the second gaseous fluid F; and
a wall 120f, of annular shape, that surrounds and externally delimits the inner micronization chamber 120a and separates the intermediate chamber 120d, of annular shape, from the inner micronization chamber 120a, of circular shape, of the micronizer mill 120;
wherein this wall 120f, of annular shape, which delimits the inner micronization chamber 120a, has the porous or filtering portion through which the second gaseous fluid F flows, having the function of avoiding the formation of incrustations and/or accumulations of powdered material inside the micronization chamber 120a and in the adjacent areas.
In this variant 110 the channels 120c that convey and feed the first gaseous fluid A, pressurised, to the inner micronization chamber 120a can be integrated, similarly to the channels or through holes 20c included in the embodiment 10 and shown in Fig. 2, in actual nozzles, each one provided with a respective metal body which extends through the wall 120e that delimits externally the intermediate chamber 120d and the wall 120f that delimits the micronization chamber 120a.
Further improvements
The possibility is also pointed out, always to be considered within the scope of the improvements and of the variants of the present invention, of using a gaseous fluid, in particular nitrogen, at a temperature below zero, that is less than 0Ā°C, in order to generate the high-energy gaseous jets that micronize the powdered material in the micronizer mill 20.
This possible improvement on the basis of which the gaseous fluid that generates the high-energy jets is used at a relatively low temperature has the advantage of controlling the temperature inside the micronization chamber in order to allow the grinding or micronization of active substances in cryogenic or cold conditions, when this is required for reasons of chemical and physical stability or to facilitate and improve the same process of micronization, acting on the features of hardness, influenced by the cold, of the particles to be micronized.
These conditions, that is operating in a condition of cold and at a relatively low temperature, can be applied to only the grinding fluid or extended also to the fluid that flows through the porous wall, taking account of the specific nature of the micronization process and of the features of the active substance to be ground.
In this way the two gaseous fluids, in particular nitrogen and air, provided to generate the high-energy gaseous jets aimed at micronizing the powdered material and to traverse the porous wall so as to avoid the formation of incrustations inside the micronizer mill, are used in cryogenic function, that is to control the temperature inside the micronization chamber of the micronizer mill, so as to improve and optimise the process of micronization in particular as regards the quality of the micronized end product and the capacity of the micronization apparatus to avoid and contrast the formation in time of incrustations.

Claims

1. Apparatus (10; 1 10) for micronization of a powdered material or product (P), or in general a material containing particles, comprising:
- a micronizer mill (20; 120), of the type with high-energy jets of a first gaseous fluid (A), such as in particular but not exclusively nitrogen;
wherein said micronizer mill (20; 120) in turn comprises an inner micronization chamber (20a; 120a), of circular shape, in which the powdered material or product (P) is micro nized as a result of collisions between the respective particles caused by the high- energy jets (G) of the gaseous fluid (A);
characterized in that said micronization chamber (20a; 120a) of the micronizer mill (20; 120) is delimited by respective walls (20f; 120f) which have at least one porous or filtering portion which is suitable to be crossed by a regular flow (fl), of a second gaseous fluid (F), directed towards the interior of said micronization chamber (20a; 120a), so as to avoid the formation of incrustations and/or powdered material accumulations within the same micronization chamber (20a; 120a).
2. Apparatus (10) for micronization of a powdered material or product according to claim 1 , wherein the respective micronizer mill (20) in turn comprises in addition to said inner micronization chamber (20a), of circular shape;
an outer pressure chamber (20b), of annular shape, arranged around said inner micronization chamber (20a), of circular shape, and apt to be fed by said first gaseous fluid (A), under pressure; and
a plurality of ducts or through holes (20c) which connect the outer pressure chamber (20b), of annular shape, to the inner micronization chamber (20a), of circular shape, and convey the first gaseous fluid (A) under pressure coming from the outer pressure chamber (20b), so as to generate, within said inner micronization chamber (20a), the high-energy jets (G) that cause the micronization of the powdered material (P);
said apparatus (10) for micronization being characterized in that it further comprises:
an intermediate chamber or hollow space (20d), of annular shape, arranged between said outer pressure chamber (20b), of annular shape, and said inner micronization chamber (20a), of circular shape, with said intermediate chamber (20d) being provided to be fed by said second gaseous fluid (F) directed to cross said porous portion (20f);
a first wall (20e), of annular shape, separating said intermediate chamber (20d) from said outer pressure chamber (20b); and
a second wall (20f), of annular shape, surrounding and externally delimiting said inner micronization chamber (20a) and separating said intermediate chamber (20d), of annular shape, from said inner micronization chamber (20a), of circular shape,
wherein said second wall (20f), of annular shape, which delimits said inner micronization chamber (20a), comprises said porous or filtering portion provided to be crossed by said second gaseous fluid (F) in order to avoid the formation of incrustations and/or powdered material accumulations within the same inner micronization chamber (20a).
3. Apparatus (1 10) for the micronization of a powdered material or product according to claim 1 , wherein the respective micronizer mill (120) in turn comprises in addition to said inner micronization chamber (120a), of circular shape;
a system of channels (120b), apt to be fed by said first gaseous fluid (A), under pressure, which system extends annularly around said inner micronization chamber (120a) and comprises a plurality of channels (120c) directed to convey the first gaseous fluid (A), under pressure, inside said inner micronization chamber (120a), so as to generate the high-energy jets (G) that cause the micronization of the powdered material (P); said apparatus (1 10) for micro nization being characterized in that it further comprises:
an intermediate chamber or hollow space (120d), of annular shape, arranged between a ring of said system of channels (120b) and said inner micronization chamber (120a), said intermediate chamber (120d) being provided to be fed by said second gaseous fluid (F) directed to cross said porous portion; and a wall (120f), of annular shape, surrounding and externally delimiting said inner micronization chamber (120a) and separating said intermediate chamber (120d), of annular shape, from said inner micronization chamber (120a), of circular shape,
wherein said wall (120f), of annular shape, which delimits said inner micronization chamber (120a), comprises said porous or filtering portion provided to be crossed by said second gaseous fluid (F), in order to avoid the formation of incrustations and/or powdered material accumulations within the same inner micronization chamber (120a).
4. Apparatus (10; 1 10) for micronization of a powdered material or product according to claim 2 or 3, comprising a feed system (30), including in turn a feed duct (30a), for feeding to the micronization chamber (20a) the powdered material (P) to be micronized, wherein said feed duct (30a) extends through said intermediate chamber (20d; 120d) provided to be fed by said second gaseous fluid (F) which then passes through said porous portion.
5. Apparatus (10; 1 10) for the micronization of a powdered material or product according to any one of the preceding claims, wherein said first gaseous fluid (A), directed to generate the high-energy jets (G) that cause the micronization of the powdered material (P), and said second gaseous fluid (F), directed to cross said porous portion (20f; 120f) in order to avoid the formation of incrustations and/or powdered material accumulations inside the micronization chamber (20a; 120a) are both constituted by the same kind of gaseous fluid, in particular nitrogen or air.
6. Apparatus (10; 1 10) for micronization of a powdered material or product according to any one of the preceding claims, wherein said second gaseous fluid (F) is caused to flow through the wall (20f; 120f), which delimits said inner micronization chamber (20a; 120a) and exhibits said porous portion (20f; 120f), by a pressure difference (P1-P2), between the pressure (PI) present in the intermediate chamber (20d; 120d) and the pressure (P2 ) present in the micronization chamber (20a; 120a), such that said second fluid (F) accesses the interior of 'the micronization chamber (20a; 120a) at a pressure (P2) slightly higher than that (P3) present in the central region of said micronization chamber (20a; 120a).
7. Apparatus (10; 1 10) for micronization of a powdered material or product according to claim 1 , wherein said porous portion, through which said second gaseous fluid (F) flows, is formed along a wall (20f; 120f), in particular cylindrical, which laterally delimits the micronization chamber (20a; 120a).
8. Apparatus for micronization of a powdered material or product according to claim 1 , wherein said porous portion, through which said second gaseous fluid (f) flows, is formed along a lower wall or base wall of the micronization chamber.
9. Apparatus for micronization of a powdered material or product according to claim 1 , wherein said porous portion, through which said second gaseous fluid (F) flows, is formed along an upper wall of the micronization chamber
10. Apparatus (10; 1 10) for micronization of a powdered material or product according to any one of the preceding claims, wherein said porous or filtering portion (20f; 120f) is constituted by porous PTFE, or a plastic material or a sintered material, such as a sintered steel, which exhibits a suitable porosity, or a porous ceramic material.
1 1. Apparatus (10) for micronization of a powdered material or product according to any one of claims 1 to 9, wherein said porous or filtering portion (20f; 120f) is constituted by a material which has a special configuration characterized by micro interstices, in communication one with the other, suitable to allow the passage, through the same porous or filtering portion, of the fluid (F) that accesses the interior of the micronization chamber (20a; 120a) to prevent the formation at its inside of incrustations.
12. A process for micronizing a powdered material or product (P) or in general a material containing particles by means of a micronizer mill (20; 120), of the type with jets at high energy of a gaseous fluid (A), avoiding at the same time the formation of incrustations and/or powdered material accumulations inside a micronization chamber (20a; 120a), of the same micronizer mill (20; 120), in which micronization chamber the powdered material or product (P) is micronized as a result of the collisions between the respective particles caused by the high-energy jets (G) of a first gaseous fluid (A), in particular nitrogen or air, comprising the following steps:
configuring the micronization chamber (20a; 120a), of the micronizer mill (20; 120), in such a way that it is delimited by respective walls (20f; 120f) that have at least one porous or filtering portion; and
feeding a regular flow (fl) of a second gaseous fluid (F), in particular air, through said porous or filtering portion, from the outside towards the inside of said micronization chamber (20b).
13. Process according to claim 12, wherein the powdered material or product (P) or in general containing particles micronized with the process can for example be selected from a group consisting of: Flutamide, Acitretin, Fluticasone, Isoconazole, Isosorbide mononitrate, Nifedipine, Orlistat, Medroxyprogesterone acetate, Triamcinolone, Desogestrel and Eplerenone.
14. Process according to claim 12 or 13, wherein said first and second gaseous fluid (A, F), respectively provided for generating the high-energy jets (G) that cause the micronization of the powdered material (P) and for flowing through said porous portion (20f; 120f) in order to avoid the formation of incrustations and/or powdered material accumulations inside the micronization chamber (20a; 120a), are both constituted by the same kind of gaseous fluid, in particular nitrogen or air.
15. Apparatus (10; 1 10) for micronization of a powdered material or product according to any one of claims 1 to 1 1 , or method according to any one of claims 12 to 14, wherein the gaseous fluid (A), such as air and nitrogen, directed to generate the high-energy gaseous jets (G) in the micronizer mill (20; 120) and/or the gaseous fluid (F), such as air and nitrogen, which flows through the porous wall (20f; 120f) that delimits the micronization chamber (20a; 120a) of the micronizer mill (20; 120) are used in cold condition, that is at a relatively low temperature, in particular at a temperature below zero, that is less than 0Ā°C, in order to control the temperature in the micronization chamber (20a; 120a).
EP17784573.2A 2016-09-30 2017-09-28 Apparatus for the micronization of powdered material with the capacity to prevent incrustations Active EP3519100B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT102016000098452A IT201600098452A1 (en) 2016-09-30 2016-09-30 EQUIPMENT FOR THE MICRONIZATION OF DUSTY MATERIAL WITH THE ABILITY TO PREVENT SCREENING
PCT/EP2017/074669 WO2018060355A1 (en) 2016-09-30 2017-09-28 Apparatus for the micronization of powdered material with the capacity to prevent incrustations

Publications (2)

Publication Number Publication Date
EP3519100A1 true EP3519100A1 (en) 2019-08-07
EP3519100B1 EP3519100B1 (en) 2020-09-09

Family

ID=57960644

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17784573.2A Active EP3519100B1 (en) 2016-09-30 2017-09-28 Apparatus for the micronization of powdered material with the capacity to prevent incrustations

Country Status (7)

Country Link
US (1) US11260396B2 (en)
EP (1) EP3519100B1 (en)
JP (1) JP7068319B2 (en)
CN (1) CN109789424B (en)
ES (1) ES2833975T3 (en)
IT (1) IT201600098452A1 (en)
WO (1) WO2018060355A1 (en)

Families Citing this family (7)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US11344853B2 (en) * 2016-02-22 2022-05-31 Oleksandr Galaka Multifunctional hydrodynamic vortex reactor and method for intensifying cavitation
IT201600098452A1 (en) 2016-09-30 2018-03-30 Micro Macinazione Sa EQUIPMENT FOR THE MICRONIZATION OF DUSTY MATERIAL WITH THE ABILITY TO PREVENT SCREENING
DE102018120596A1 (en) * 2018-08-23 2020-02-27 Netzsch Trockenmahltechnik Gmbh Method and device for removing difficult-to-grind particles from a spiral jet mill
US11045816B2 (en) * 2019-04-04 2021-06-29 James F. Albus Jet mill
CN111330713A (en) * 2020-03-18 2020-06-26 äøŠęµ·čµ›å±±ē²‰ä½“ęœŗę¢°åˆ¶é€ ęœ‰é™å…¬åø Jet mill main machine
CN111450962B (en) * 2020-04-15 2021-05-07 ēŽ‹å°å¹³ Superfine black fungus powder fine processing device and method
IT202000027369A1 (en) * 2020-11-16 2022-05-16 C Flow Srls RANQUE VORTEX TUBE - HITSCH (HRTV) MODIFIED WITH VENTURI TUBE (HRTV-V)

Family Cites Families (20)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890048A (en) * 1972-03-01 1973-11-24
US3856214A (en) 1974-01-04 1974-12-24 Riley Stoker Corp Material pulverizing system
JPS62273061A (en) 1986-05-20 1987-11-27 ę Ŗ式会ē¤¾ć€€ę —ęœ¬é‰„å·„ꉀ Air-current type crusher for low-temperature crushing
JPH074557B2 (en) * 1990-10-23 1995-01-25 ę Ŗ式会ē¤¾ę —ęœ¬éµå·„ꉀ Airflow grinding method using grinding media
JPH1028857A (en) 1996-07-15 1998-02-03 Daiyamondo Eng Kk Apparatus for quantitatively taking out powder-grain
US6383706B1 (en) * 2000-07-13 2002-05-07 Xerox Corporation Particulate smoothing process
JP4464696B2 (en) 2003-01-23 2010-05-19 ę Ŗ式会ē¤¾ćƒŖć‚³ćƒ¼ Powder grinding classification system and powder grinding classification method
JP2004313928A (en) * 2003-04-16 2004-11-11 Yms:Kk Method for crushing coagulated powder
JP4452587B2 (en) * 2003-09-05 2010-04-21 ę—„ęø…ć‚Øćƒ³ć‚øćƒ‹ć‚¢ćƒŖćƒ³ć‚°ę Ŗ式会ē¤¾ Jet mill
GB0321607D0 (en) * 2003-09-15 2003-10-15 Vectura Ltd Manufacture of pharmaceutical compositions
JP2009028707A (en) * 2007-06-29 2009-02-12 Hosokawa Funtai Gijutsu Kenkyusho:Kk Medium-type powder treating device
JP2011219292A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Granulation trough
CN103237604B (en) * 2011-02-28 2015-07-22 ę—„ęø…å·„ē؋ę Ŗ式会ē¤¾ Method for grinding powder
TW201247324A (en) * 2011-05-25 2012-12-01 Ghi Fu Technology Co Ltd Supersonic impact crushing device
US20120325942A1 (en) * 2011-06-27 2012-12-27 General Electric Company Jet milling of boron powder using inert gases to meet purity requirements
ITMI20120635A1 (en) * 2012-04-17 2013-10-18 Micro Macinazione S A EQUIPMENT OF THE JET MILL TYPE FOR THE MICRONIZATION OF A DUSTY OR GENERAL MATERIAL CONTAINING PARTICLES, WITH A NEW SYSTEM FOR SUPPLYING AND DETERMINING THE DUSTY MATERIAL TO BE MICRONIZED, AND CORRESPONDING ITS PROCEDURE
MX361286B (en) * 2013-03-15 2018-12-03 Pearl Therapeutics Inc Methods and systems for conditioning of particulate crystalline materials.
CN204841875U (en) * 2015-08-01 2015-12-09 äŗŽä½œę¬£ Floated fluid energy mill
JP6756111B2 (en) 2016-01-21 2020-09-16 å ŗåŒ–å­¦å·„ę„­ę Ŗ式会ē¤¾ Powder crushing method and powder crushing equipment
IT201600098452A1 (en) 2016-09-30 2018-03-30 Micro Macinazione Sa EQUIPMENT FOR THE MICRONIZATION OF DUSTY MATERIAL WITH THE ABILITY TO PREVENT SCREENING

Also Published As

Publication number Publication date
JP2020500105A (en) 2020-01-09
IT201600098452A1 (en) 2018-03-30
CN109789424A (en) 2019-05-21
WO2018060355A1 (en) 2018-04-05
JP7068319B2 (en) 2022-05-16
ES2833975T3 (en) 2021-06-16
EP3519100B1 (en) 2020-09-09
US11260396B2 (en) 2022-03-01
CN109789424B (en) 2021-06-25
US20190291118A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
EP3519100B1 (en) Apparatus for the micronization of powdered material with the capacity to prevent incrustations
KR101655132B1 (en) Cyclone device
EP2838661B1 (en) Spiral jet mill apparatus for micronisation of a powdered material or a material containing particles in general, with a novel system for feeding and dispensing the powdered material to be micronised, and corresponding process for micronisation of a powdered product
JP6872620B2 (en) Manufacturing equipment and manufacturing method for powdered plastic having a spherical structure
KR102201557B1 (en) Powder classifying apparatus
US2968062A (en) Atomizing nozzle and pouring cup assembly for the manufacture of metal powders
JP2010188283A (en) Cyclone device and fine powder removal method
JP2012135749A (en) Ultrafine grinding device and ultrafine grinding method
JP6056942B2 (en) Metal detector
JP2011045819A (en) Powder classifying apparatus
JP4747130B2 (en) Powder classifier
JP5820684B2 (en) Airflow classifier
JPS6178474A (en) Classification of powder
JP6089782B2 (en) Spraying equipment
JP6666206B2 (en) Cyclone device and classification method
RU134079U1 (en) VORTEX GRINDING DEVICE FOR MATERIAL
JP5322454B2 (en) Spouted bed granulator
CN116637698A (en) Jet sieve pulverizer and working method thereof
KR20200041945A (en) Sieve classifier
JP5474465B2 (en) Classification device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200526

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1310889

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017023426

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1310889

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017023426

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2833975

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210908

Year of fee payment: 5

Ref country code: IT

Payment date: 20210830

Year of fee payment: 5

Ref country code: IE

Payment date: 20210913

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20210830

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20211130

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220928

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230926

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230926

Year of fee payment: 7

Ref country code: DE

Payment date: 20230928

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220929