JPS6178474A - Classification of powder - Google Patents

Classification of powder

Info

Publication number
JPS6178474A
JPS6178474A JP20121284A JP20121284A JPS6178474A JP S6178474 A JPS6178474 A JP S6178474A JP 20121284 A JP20121284 A JP 20121284A JP 20121284 A JP20121284 A JP 20121284A JP S6178474 A JPS6178474 A JP S6178474A
Authority
JP
Japan
Prior art keywords
cylinder
powder
particles
conical
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20121284A
Other languages
Japanese (ja)
Inventor
木村 典夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINTO DUST COLLECTOR KK
SHINTOU DASUTOKOREKUTAA KK
Original Assignee
SHINTO DUST COLLECTOR KK
SHINTOU DASUTOKOREKUTAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINTO DUST COLLECTOR KK, SHINTOU DASUTOKOREKUTAA KK filed Critical SHINTO DUST COLLECTOR KK
Priority to JP20121284A priority Critical patent/JPS6178474A/en
Publication of JPS6178474A publication Critical patent/JPS6178474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Cyclones (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業との利用分野〉 本発明は、粒度の異なる粉体を、所定粒度毎に分離する
粉体の分級方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Field of industrial application> The present invention relates to a powder classification method for separating powders of different particle sizes into predetermined particle sizes.

〈従来技術〉 かかる分級方法として、サイクロン型の分S*を用いた
もの等、遠心力を利用した方法が知られている。前記サ
イクロン型の分JI It aを利用したものは、第5
図のようにその円錐筒すの内周面に沿って1分級する粉
体を含有した流体を入口管Cから送給し、前記流体を旋
回させながら下方流動させ、その最下端部で反転させて
前記円錐筒す中心を通る排出管dから該流体を排出させ
る流動経路を生じさせたものであって、前記流体が旋回
下降している間に前記流体中の粒子は遠心力の作用をう
け、徐々に該円錐筒内面に接触して頚部をっなって最下
端部の回収室e内に落下する。
<Prior Art> As such a classification method, methods using centrifugal force, such as those using a cyclone-type separator S*, are known. The one using the cyclone type minute JI It a is the fifth one.
As shown in the figure, a fluid containing one class of powder is fed from the inlet pipe C along the inner peripheral surface of the conical tube, the fluid is swirled and flows downward, and is reversed at the lowest end. A flow path is created in which the fluid is discharged from a discharge pipe d passing through the center of the conical cylinder, and while the fluid is swirling and descending, particles in the fluid are subjected to the action of centrifugal force. , it gradually comes into contact with the inner surface of the conical cylinder and falls down through its neck into the collection chamber e at the lowest end.

すなわちかかるサイクロン型分離機a内での粒子の回収
プロセスをみると、第5図に示すように粒子は、その旋
回流動中においてその重さに比例するrmω1(ここで
「;旋回軸からの粒子の距離1m;粒子の質量、ω;角
速度)の遠心力Xの作用を受けるとともに、その下方流
動に伴う送り方向の力yをI7.えられ、この両者の力
の合成力により大粒径のものから順次壁面側に衝突して
摺動落トーする。
In other words, when looking at the particle recovery process in such a cyclone separator a, as shown in FIG. At the same time, the force y in the feeding direction due to the downward flow is obtained, and the combined force of these two forces causes large particles to be One by one, the object collides with the wall and slides down.

この分離機を利用して分級する場合には、第6図のよう
に出口径の異なる前記分外機を、下流にいくに従って出
口径が小となるように配列して直列接続し、各分I11
機毎にヒ流側から順次分級することとなる。
When classifying using this separator, as shown in Figure 6, the separators with different outlet diameters are arranged and connected in series so that the outlet diameter becomes smaller toward the downstream. I11
Each machine will be classified sequentially starting from the high flow side.

〈発明が解決しようとする問題点〉 ところで前記サイクロン型分澤機を順次接続して 品分
#、、機で所定粒度の粒子を回収する方法にあっては、
装置が過大となり、装置費用及び電力負荷が大きく極め
て不経済である。
<Problems to be Solved by the Invention> By the way, in a method of sequentially connecting the cyclone type separating machines and collecting particles of a predetermined particle size with the machine,
The device becomes oversized, and the device cost and power load are large, making it extremely uneconomical.

本発明は前記従来欠点を是正し、良好な分級を施しく’
lる粉体の分級方法の提供を目的とするものである。
The present invention corrects the conventional drawbacks and provides good classification.
The purpose of this invention is to provide a method for classifying powder.

く問題点を解決するための手段〉 未発明は、円筒の内周面に軸方向へ所定間隔で1−数個
の回収スリットを設けるとともに、前記円筒内に送給さ
れる粉体含有流体を、円筒の内周面に沿った旋回流とな
るように案内し、111j記環状回収スリットによって
、該流体内の粉体を大径粒のものから順次回収するよう
にしたものである。
Means for Solving the Problems> The uninvented invention provides one to several collection slits at predetermined intervals in the axial direction on the inner circumferential surface of the cylinder, and collects the powder-containing fluid fed into the cylinder. , the fluid is guided so as to form a swirling flow along the inner peripheral surface of the cylinder, and the powder in the fluid is sequentially collected from the large-diameter particles by the annular collection slit 111j.

ここで円筒とは、直円筒1円錐筒または直筒体と円錐筒
体を組合わせたもの等、横断面が円形の筒状体のすべて
を包含する概念である。
Here, the term cylinder is a concept that includes all cylindrical bodies with a circular cross section, such as a right cylinder, a conical cylinder, or a combination of a straight cylinder and a conical cylinder.

く作用〉 円筒の内周面に沿って粉体を含有する気体、液体等の流
体を送給する。この流体内の粒子は、前記旋回に伴う遠
心力の作用により主に大粒径のものから順次壁面に衝突
する。このとき前記円周面には所定間隔毎に回収スリッ
トが形成されており、各回収スリット毎に筒袖方向の流
れに沿って大径のものから小径のものへと順次回収され
る。
Function: A fluid such as gas or liquid containing powder is fed along the inner peripheral surface of the cylinder. The particles in this fluid collide with the wall surface in order, mainly from large particles, due to the action of centrifugal force accompanying the swirling. At this time, collection slits are formed on the circumferential surface at predetermined intervals, and each collection slit sequentially collects items from large diameter items to small diameter items along the flow in the sleeve direction.

而で、前記軸に沿って回収スリ、ト毎に一定分布の粒径
のものが分級される。
Then, along the axis, particles having a constant distribution of particle sizes are classified for each collection slot.

〈実施例〉 第1,2図はサイクロン型分#機のものに本発明を適用
した実施例を示す。
<Example> Figures 1 and 2 show an example in which the present invention is applied to a cyclone type separator.

ここで、■は円筒であって、入口側の直円n 2と ト
カに行くに従って小径となる円錐筒3とを同軸状に接続
してなり、前記直円筒2の上端部に第2図に示すように
その円周面の切線方向に沿って入口管4が設けられる。
Here, ■ is a cylinder, which is formed by coaxially connecting a right circle n2 on the inlet side and a conical cylinder 3 whose diameter becomes smaller toward the end, and the upper end of the right cylinder 2 is connected as shown in Fig. 2. As shown, an inlet pipe 4 is provided along the tangential direction of the circumferential surface.

また前記円筒lの中心り方部には筒袖に沿って排出管5
が設けられる。
In addition, a discharge pipe 5 is provided along the sleeve of the cylinder in the central part of the cylinder l.
is provided.

さらに前記円錐筒3の下端は開口していて、回収室6に
連通している。
Further, the lower end of the conical cylinder 3 is open and communicates with the recovery chamber 6.

前記円錐筒3の外周には前記筒袖と直交する面で所定間
隔毎に環状回収スリット7が形成され、各環状回収スリ
ット7を円筒1外周から集粉タンクに連通ずる回収室8
で覆っている。
Annular collection slits 7 are formed at predetermined intervals on the outer periphery of the conical cylinder 3 on a surface perpendicular to the sleeve, and a collection chamber 8 is provided in which each annular collection slit 7 is communicated from the outer periphery of the cylinder 1 to a powder collecting tank.
covered with

前記実施例の作用について説明する。The operation of the above embodiment will be explained.

円筒1の人口管4から直円筒2の内周面にνJ線方向か
ら送給された粉体を含有した気体(または液体)は、前
記直円筒2の内周面にK)って旋回し、徐々に下降する
。この流体内の粒子は、前記したように、その旋回流動
中においてその質早に比例する遠心力Xと空気の下方流
動に伴う送り方向の力Yを!トえられる。このため両者
の力の合成力により大粒径のものから順次壁面側に衝突
して層動落下し、最上部の前記環状回収スリット7には
粗粒子が吸収されて回収室8、に回収され・、下流に行
くに従って各環状回収スリット7に吸収される粒子径が
順次小さくなり、最後に円錐筒3の下端に連通している
回収室6に微粒子が回収される。このとき円錐筒3に所
定間隔で環状回収スリット7を形成したから1回転中心
となる筒袖から円筒l内周面までの半径距離は下流に行
くに従い小さくなり、流体内の粒子の内周面への到達距
離が短くなるとともに、角速度の増大に伴い遠心力が増
すことから、各粒子は急速に651記内面に衝突する。
Powder-containing gas (or liquid) fed from the artificial tube 4 of the cylinder 1 to the inner circumferential surface of the right cylinder 2 from the νJ line direction K) and swirls on the inner circumferential surface of the right cylinder 2. , gradually descending. As mentioned above, the particles in this fluid, during their swirling flow, exert a centrifugal force X that is proportional to their quality and a force Y in the feeding direction due to the downward flow of air! It can be done. Therefore, due to the combined force of the two forces, particles of large size collide with the wall side and fall in layers, and the coarse particles are absorbed by the annular collection slit 7 at the top and collected into the collection chamber 8. - The diameter of the particles absorbed by each annular collection slit 7 becomes smaller as one goes downstream, and finally the fine particles are collected into the collection chamber 6 communicating with the lower end of the conical cylinder 3. At this time, since annular collection slits 7 are formed at predetermined intervals in the conical cylinder 3, the radial distance from the sleeve of the cylinder, which is the center of one rotation, to the inner circumferential surface of the cylinder l becomes smaller as it goes downstream, and the inner circumferential surface of the particles in the fluid becomes smaller. As the distance traveled by the particle becomes shorter and the centrifugal force increases as the angular velocity increases, each particle rapidly collides with the inner surface 651.

このため第1図のように円錐筒3に多数の環状回収スリ
ット7を形成しても1粒子の分別が良好になされ得る。
Therefore, even if a large number of annular recovery slits 7 are formed in the conical cylinder 3 as shown in FIG. 1, one particle can be separated well.

かかる粒子を回収した後、気体は円筒l下部からその中
心方向へ反転し、前記円筒l中心を垂直状にヒ昇して排
出管5から排出される。
After collecting such particles, the gas is reversed from the lower part of the cylinder 1 toward its center, ascends vertically through the center of the cylinder 1, and is discharged from the discharge pipe 5.

而て、−個のサイクロン型分離機により細かく分級化す
ることが可能となる。尚前記分外機を複数接続すること
により、ざらに分級することがでさる。
Therefore, it becomes possible to perform fine classification using - cyclone type separators. Incidentally, by connecting a plurality of the above-mentioned classifiers, it is possible to perform rough classification.

前記サイクロン型分離機のものにおいて前記環状回収ス
リンドアの数は任征に設定することができ、第3図のよ
うに円筒lの中間部に一個と、そのh)下の回収室6の
二箇所で分級するようにしてもよい、m3図の装置では
、直円筒2の内径よりも円錐筒3の上端内径を大とし、
前記直円筒2゜円錐筒3間を下方に拡径する逆円j41
筒9で接続している。この逆円錐筒9は、前記直円筒2
上端から旋回力を与えられて送給された気体中の粉体が
前記直円筒2内壁に衝突し、その反作用により中心の1
.シ1流に乗って排出管5から排出されるパイ・ぐス流
を防止し、前記逆円錐筒9の勾配により円錐筒3の内周
面に案内するものである。
In the cyclone type separator, the number of annular recovery slind doors can be set as desired; one in the middle of the cylinder l and two in the recovery chamber 6 below, as shown in Figure 3. In the device shown in the m3 diagram, the inner diameter of the upper end of the conical cylinder 3 is larger than the inner diameter of the right cylinder 2, and
A reverse circle j41 whose diameter expands downward between the right circular cylinder 2° and the conical cylinder 3
They are connected by tube 9. This inverted conical cylinder 9 is similar to the right circular cylinder 2.
Powder in the gas fed by a swirling force from the upper end collides with the inner wall of the right cylinder 2, and due to the reaction, the powder in the gas
.. This prevents the pie and gas flow from being discharged from the discharge pipe 5 along with the flow of the pipe 1, and guides it to the inner circumferential surface of the conical cylinder 3 by the slope of the inverted conical cylinder 9.

またかかる構成の場合、前記逆円錐筒9により+’t+
 改変が低下して遠心力が弱まり、粒子は下方への流れ
により壁面方向へ緩徐に移動する。このため、粒子の質
着に比例する壁面方向移動が、流れ方向に拡大して生じ
る。従って、大粒径のものを選択的に採集することが可
能となる。
In addition, in the case of such a configuration, +'t+
As the modification decreases, the centrifugal force weakens, and the particles slowly move toward the wall due to the downward flow. Therefore, the movement in the wall direction, which is proportional to the particle fixation, is expanded in the flow direction. Therefore, it becomes possible to selectively collect large-sized particles.

尚、第1.3図の構成のものにおいて、tit体に旋回
流を発生させるためには、第4図のように筒に部に案内
羽根を設け、その案内作用により生じさせるようにして
もよい。
In addition, in order to generate a swirling flow in the tit body in the configuration shown in Fig. 1.3, guide vanes may be provided in the tube as shown in Fig. 4, and the flow may be generated by the guiding action of the guide vanes. good.

第4図は横4式の円筒10により本発明を具体化したも
のである。
FIG. 4 shows the embodiment of the present invention using a cylinder 10 of four horizontal types.

lnin日記10は、直円筒11と、該直円筒11に同
軸線状に連続し、下流に行くに従って径が小さくなる円
錐筒12と、前記円錐筒12と連通ずる出口筒13とに
よって構成されるものであって、前記直円筒11内には
案内羽根14が設けられている。また前記直円nllと
円錐筒12間。
The lnin diary 10 is composed of a right cylinder 11, a conical cylinder 12 coaxially continuous with the right cylinder 11 and whose diameter decreases as it goes downstream, and an outlet cylinder 13 communicating with the conical cylinder 12. A guide vane 14 is provided within the right cylinder 11. Also, between the right circle nll and the conical cylinder 12.

円′A筒12の略中央、及び円錐筒12と出口筒131
1JIの周面には、夫々所定間隔毎に環状回収スリント
15が形成され、該環状回収スリット15の外周を夫々
回収タンクと連通する回収室16で覆っている。
Approximately the center of the circle 'A cylinder 12, the conical cylinder 12 and the outlet cylinder 131
Annular recovery slits 15 are formed at predetermined intervals on the circumferential surface of each JI, and the outer periphery of each of the annular recovery slits 15 is covered with a recovery chamber 16 that communicates with a recovery tank.

前記実施例において、粉体を含有する気体を直円筒11
の端方から送給すると前記案内羽根14により旋回力が
与えられる。このため流体は直円筒111円錐筒12の
内周面に沿って旋回しなから出(」筒13へ流出する。
In the above embodiment, the gas containing the powder was transferred to the right cylinder 11.
When the guide blade 14 is fed from the end, a turning force is applied by the guide vane 14. Therefore, the fluid swirls along the inner peripheral surface of the right cylindrical cylinder 111 and the conical cylinder 12, and then flows out into the cylinder 13.

この旋回途中においてIii!記した回収メカニズムに
より昏に状回収スリッ)15に順次気体内の粉体は回収
され、該回収室16に回収される。このと、!夫々の回
収室■6に回収される粒子の径は下流に行くに従って粒
子が小さくなり、而て各回収室16には夫々粒子−径の
分aj+lの異なった粉体を回収することがnr能とな
る。
During this turn, Iiii! By the collection mechanism described above, the powder in the gas is sequentially collected by the collection slit (15) and then collected into the collection chamber (16). With this! The diameter of the particles collected in each collection chamber 16 becomes smaller as it goes downstream, and each collection chamber 16 has the ability to collect different powders corresponding to the particle diameter (aj+l). becomes.

+iij記各実施例において、円筒1.10の筒軸は必
ずしも完全な1tlZ線である必要はない。
+iii In each embodiment, the cylinder axis of the cylinder 1.10 does not necessarily have to be a perfect 1tlZ line.

また回収スリットは必ずしも円周に沿って環状である必
要はなく、該円周方向へ適宜間隔に形成されていてもよ
い。
Further, the collection slits do not necessarily have to be annular along the circumference, and may be formed at appropriate intervals in the circumferential direction.

さらにまた前記各実施例では円錐筒3,12またはその
直前に回収スリットを設けたが、直円筒に順次設けるよ
うにしてもよい。
Furthermore, in each of the embodiments described above, the recovery slits were provided at or immediately before the conical tubes 3, 12, but they may be provided sequentially on the right cylinder.

その他面状回収スリットを、没は肖る円筒の形状は種々
あり、さらには前記流体の流入経路についても種々選択
し?’)る。
In addition, there are various shapes of the cylinder into which the planar recovery slit is inserted, and various types of inflow paths for the fluid can be selected. ').

く効果〉 円筒の内周面に軸方向へ所定間隔で回収スリットを形成
し1円筒内に送給される粉体を含有した流体に、円筒の
内周面に沿った旋回流を発生させ、前記回収スリットに
よって、大径粒のものから順次回収するようにしたから
、弔−の装置でも分級が可能となり、かつその各回収粒
子の粒子径分布の立ち上がりを急峻にできて、良好な分
級を達成し得る等の優れた効果がある。
Effect> Recovery slits are formed at predetermined intervals in the axial direction on the inner circumferential surface of the cylinder, and a swirling flow is generated along the inner circumferential surface of the cylinder in the powder-containing fluid fed into the cylinder. Since the collection slit allows particles to be collected in order from large to large, it is possible to classify them even with a funeral device, and the particle size distribution of each collected particle can have a steep rise, allowing for good classification. There are excellent effects that can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用したサイクロン型分s機の縦断側
面図、第2図は第1図A−A線断面図。 第3図は他のサイクロノ型分子#機の縦断側面図。 第4図は本発明を適用した横置型の分屋機の縦断側面図
、第5図は従来のサイクロン型分離機の縦断側面図、第
6図は前記サイクロン型性#機を使用した従来方法を示
す側面図である。 i、to・・・円筒 2.11・・・直円筒 3.12・・・円錐筒 7.15・・・回収スリット 9・・・逆円錐筒
FIG. 1 is a longitudinal sectional side view of a cyclone type separator to which the present invention is applied, and FIG. 2 is a sectional view taken along the line A--A in FIG. 1. Figure 3 is a longitudinal side view of another Cyclono-type molecular machine. Fig. 4 is a longitudinal side view of a horizontally placed separator to which the present invention is applied, Fig. 5 is a longitudinal side view of a conventional cyclone type separator, and Fig. 6 is a conventional method using the cyclone type separator. FIG. i, to...Cylinder 2.11...Right cylinder 3.12...Conical cylinder 7.15...Recovery slit 9...Inverted conical cylinder

Claims (1)

【特許請求の範囲】 1)円筒の内周面に軸方向へ所定間隔で1〜数個の回収
スリットを設けるとともに、前記円筒内に送給される粉
体含有流体を、円筒の内周面に沿つた旋回流となるよう
に案内し、前記環状回収スリットによつて、該流体内の
粉体を大径粒のものから順次回収するようにした粉体の
分級方法 2)前記円筒が、下流に行くに従つて縮径する円錐筒で
あることを特徴とする特許請求の範囲第1)項記載の粉
体の分級方法 3)前記円筒が、直円筒であることを特徴とする特許請
求の範囲第1)項記載の粉体の分級方法 4)前記円筒が、下流に行くに従つて拡径し、さらに縮
径する円錐筒であることを特徴とする特許請求の範囲第
1)項記載の粉体の分級方法
[Scope of Claims] 1) One to several collection slits are provided at predetermined intervals in the axial direction on the inner circumferential surface of the cylinder, and the powder-containing fluid fed into the cylinder is 2) A method for classifying powder in which the cylinder is guided to form a swirling flow along the flow, and the powder in the fluid is sequentially collected from large-diameter particles by the annular collection slit. Claim 1) The method for classifying powder according to claim 1) is characterized in that the cylinder is a conical cylinder whose diameter decreases as it goes downstream.3) Claim characterized in that the cylinder is a right cylinder. 4) The method for classifying powder according to claim 1), wherein the cylinder is a conical cylinder whose diameter increases as it goes downstream and further decreases in diameter. Classification method of powder described
JP20121284A 1984-09-26 1984-09-26 Classification of powder Pending JPS6178474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20121284A JPS6178474A (en) 1984-09-26 1984-09-26 Classification of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20121284A JPS6178474A (en) 1984-09-26 1984-09-26 Classification of powder

Publications (1)

Publication Number Publication Date
JPS6178474A true JPS6178474A (en) 1986-04-22

Family

ID=16437204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20121284A Pending JPS6178474A (en) 1984-09-26 1984-09-26 Classification of powder

Country Status (1)

Country Link
JP (1) JPS6178474A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173352U (en) * 1987-05-01 1988-11-10
JPH04118149U (en) * 1991-04-08 1992-10-22 宇佐美 守一 Dry classification device
JP2005349339A (en) * 2004-06-11 2005-12-22 Akamatsu Denki Seisakusho:Kk Dust-removal device
JP2008119694A (en) * 2008-01-10 2008-05-29 Akamatsu Denki Seisakusho:Kk Lateral-type dust-removal device
JP2012130858A (en) * 2010-12-21 2012-07-12 Yoshiko:Kk Cyclone
JP2014057908A (en) * 2012-09-14 2014-04-03 Kawata Mfg Co Ltd Powder classifying device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173352U (en) * 1987-05-01 1988-11-10
JPH0334281Y2 (en) * 1987-05-01 1991-07-19
JPH04118149U (en) * 1991-04-08 1992-10-22 宇佐美 守一 Dry classification device
JP2005349339A (en) * 2004-06-11 2005-12-22 Akamatsu Denki Seisakusho:Kk Dust-removal device
JP2008119694A (en) * 2008-01-10 2008-05-29 Akamatsu Denki Seisakusho:Kk Lateral-type dust-removal device
JP2012130858A (en) * 2010-12-21 2012-07-12 Yoshiko:Kk Cyclone
JP2014057908A (en) * 2012-09-14 2014-04-03 Kawata Mfg Co Ltd Powder classifying device

Similar Documents

Publication Publication Date Title
US4212653A (en) Process and apparatus for separating particulate matter from gaseous media
US1416995A (en) Dust collector
US3590558A (en) Particle-from-fluid separator
US3802570A (en) Cyclone separator
US20080047239A1 (en) Rotary gas cyclone separator
US3064411A (en) Separator
US2607438A (en) Cyclone separator
US4756729A (en) Apparatus for separating dust from gases
US5180257A (en) Straightening instrument and cyclone
US4585466A (en) Cyclone separators
CN102076422A (en) Cyclone separator with two gas outlets and separation method
JP2509374B2 (en) Granule classifier
US4600410A (en) Process and apparatus for separating particulate matter from a gaseous medium
US2975896A (en) Hydrocyclone for fibres suspension
JPH05161861A (en) Cyclone dust collector
JPH0525717Y2 (en)
JPS6178474A (en) Classification of powder
US3042202A (en) Cyclone classifier
US3643800A (en) Apparatus for separating solids in a whirling gaseous stream
JPH0663452A (en) Cyclone separator
GB1401331A (en) Grader for fine-grained material
CN212119297U (en) Cyclone separator with particle material reverse cyclone gas flow control and multiple particle size distribution
JPH07328545A (en) Classifier for granule
CN107666965A (en) Cyclone separator
CN106269315B (en) Inlet particle sequence type cyclone