JP5322454B2 - Spouted bed granulator - Google Patents

Spouted bed granulator Download PDF

Info

Publication number
JP5322454B2
JP5322454B2 JP2008031154A JP2008031154A JP5322454B2 JP 5322454 B2 JP5322454 B2 JP 5322454B2 JP 2008031154 A JP2008031154 A JP 2008031154A JP 2008031154 A JP2008031154 A JP 2008031154A JP 5322454 B2 JP5322454 B2 JP 5322454B2
Authority
JP
Japan
Prior art keywords
perforated plate
gas
flow
generating means
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008031154A
Other languages
Japanese (ja)
Other versions
JP2009189913A (en
Inventor
重信 羽多野
広行 辻本
香織 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP2008031154A priority Critical patent/JP5322454B2/en
Publication of JP2009189913A publication Critical patent/JP2009189913A/en
Application granted granted Critical
Publication of JP5322454B2 publication Critical patent/JP5322454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、粉体同士を付着させて造粒物を形成する噴流層造粒装置に関する。   The present invention relates to a spouted bed granulator that forms a granulated product by adhering powders to each other.

従来、乾式の造粒方法として、例えば噴流層型造粒法が知られている。この方法は、原料となる粉体(付着性粉体)を、下部がテーパ状に狭くなった縦型の円筒容器内に収容し、下方から高速の気体を噴出することによって当該粉体の噴流層を形成する。
噴流層は、造粒装置の中心軸付近で上向きに粉体が噴き上げられると共に、その周囲では粉体が下降して、粉体が循環する構造をとる。
噴流層型造粒法では、気体により粉体を吹き上げる噴流中での粉体同士の接触と、前記容器内面での粉体の転動作用等による粉体同士の結合とにより、粉体サイズの適正化が繰り返し行われ、所望の粒径の造粒物が形成される。
Conventionally, for example, a spouted bed granulation method is known as a dry granulation method. In this method, the raw material powder (adhesive powder) is contained in a vertical cylindrical container whose lower part is tapered and narrow, and a high-speed gas is jetted from below to jet the powder. Form a layer.
The spouted bed has a structure in which the powder is spouted upward in the vicinity of the central axis of the granulating apparatus, and the powder descends and circulates around the powder.
In the spouted bed granulation method, the size of the powder is determined by the contact between the powders in the jet flow in which the powders are blown up by the gas, and the bonding of the powders for the purpose of rolling the powder on the inner surface of the container. The optimization is repeated and a granulated product having a desired particle size is formed.

噴流層型造粒法では、不純物となり得るバインダを使用せず、付着性粉体の相互の付着力のみを利用して粉体同士を結合する。このため、噴流層型造粒法は、不純物の混入が問題となる医薬・食料分野等においてその応用が期待されている。   In the spouted bed type granulation method, a binder that can be an impurity is not used, and the powders are bonded together using only the adhesive force of the adhesive powder. For this reason, the spouted bed granulation method is expected to be applied in the pharmaceutical and food fields where impurities are a problem.

この方法を用いて医薬・食料品等を製造するためにはその処理効率が問題となる。噴流層型造粒法では、造粒装置内での粉体の上向きの噴流量と、容器内面での粉体の転動効果とのバランスで粉体の粒径や処理能力が決定されると思われる。しかし、造粒装置の構成や噴流部に供給する気体の流量などをどのように設定するかの最適条件は未だ確立されていない。   In order to produce pharmaceuticals, foods, etc. using this method, the processing efficiency becomes a problem. In the spouted bed granulation method, the particle size and processing capacity of the powder are determined by the balance between the upward flow rate of the powder in the granulator and the rolling effect of the powder on the inner surface of the container. Seem. However, the optimum conditions for setting the structure of the granulator and the flow rate of the gas supplied to the jet part have not been established yet.

従って、本発明の目的は、付着性の粉体を効率的に造粒するための噴流層造粒装置を提供することにある。   Accordingly, an object of the present invention is to provide a spouted bed granulating apparatus for efficiently granulating adhesive powder.

上記目的を達成するための本発明に係る噴流層造粒装置の第一特徴構成は、筺体の下部に設けたガス噴出口と、前記ガス噴出口の上方に設けた多孔板と、前記多孔板の上方に形成される噴流部および前記多孔板に隣接し上方に内径が拡大する傾斜部とを設けた造粒室と、前記多孔板を通気する前記気体の流速を、前記多孔板の中央部から周縁部に向けて低く設定できる流速分布発生手段と、を備え、前記流速分布発生手段が、前記筺体の形状を、前記多孔板より下方で前記ガス噴出口に向けて内径が縮小するテーパ状に形成してあり、前記流速分布発生手段が、前記多孔板の開孔率を、周縁部より中央部が大きくなるように構成した点にある。 In order to achieve the above object, the first characteristic configuration of the spouted bed granulating apparatus according to the present invention includes a gas outlet provided in a lower part of a casing, a perforated plate provided above the gas outlet, and the perforated plate. A granulation chamber provided with a jet part formed above and a sloping part adjacent to the perforated plate and having an inner diameter expanding upward, and a flow rate of the gas flowing through the perforated plate, the central part of the perforated plate A flow velocity distribution generating means that can be set low toward the peripheral edge, and the flow velocity distribution generating means has a tapered shape in which the inner diameter is reduced toward the gas ejection port below the perforated plate. The flow velocity distribution generating means is configured such that the aperture ratio of the perforated plate is configured such that the central portion is larger than the peripheral portion .

ガス噴出口からの気体流を多孔板の開孔から上方向に噴出させることによって粉体を噴流部にて噴き上げる際、例えば噴流部の中心上方に向けて気体を噴出させると、粉体は気体に乗って噴き上げられ、上昇速度が低下する筺体の上方部でその外側方向に流れを変え、その後、筐体の内面に沿って下降流を形成する。   When the powder is spouted at the jet part by jetting the gas flow from the gas jet port upward from the opening of the perforated plate, for example, when the gas is jetted upward at the center of the jet part, the powder is The flow is changed in the outer direction at the upper part of the housing which is jetted up and decreases in the rising speed, and then a downward flow is formed along the inner surface of the casing.

本構成では、多孔板の上方において、多孔板の中央部では気体の流速が高く、周縁部では流速が低くなる流速分布発生手段を備える。このように多孔板の周縁部における気体の上昇速度を抑える結果、筺体の内面に沿って下降し傾斜部を経て再度噴流部に向かう循環流を良好に形成させることができる。そして、この循環流中で、粉体同士の接触や衝突により粉体同士が付着結合され、かつ前記筺体の内面や傾斜部の傾斜面上を転動することで粉体は適度に締め固められるとともに、形状自体も球形状に整えられる。この結果、バインダを用いずとも粉体を効率よく造粒することができる。
従って、本構成では、流速分布発生手段によって噴流部での気体の流速分布を適切に設定することで、所望の粒径と強度を有する造粒物を得ることができる。
In this configuration, the flow rate distribution generating means is provided above the perforated plate so that the gas flow rate is high in the central portion of the perforated plate and the flow rate is low in the peripheral portion. As a result of suppressing the gas rising speed at the peripheral edge of the perforated plate in this way, it is possible to satisfactorily form a circulating flow that descends along the inner surface of the housing and passes through the inclined portion toward the jet portion again. In this circulating flow, the powders are bonded and bonded by contact or collision between the powders, and the powders are appropriately compacted by rolling on the inner surface of the casing or the inclined surface of the inclined part. At the same time, the shape itself is adjusted to a spherical shape. As a result, the powder can be efficiently granulated without using a binder.
Therefore, in this structure, the granulated material which has a desired particle size and intensity | strength can be obtained by setting appropriately the gas flow velocity distribution in a jet part by a flow velocity distribution generation means.

本構成のごとく、筺体の形状を、多孔板より下方でガス噴出口に向けて内径が縮小するテーパ状にすることで、噴出した気体がテーパ部を通過するとき、当該気体はある程度拡径しつつ多孔板に到達するが、当該気体流の外周側は中央部に比べ、周囲の気体との接触や噴出に伴う周囲気体の巻き込みなどの影響もあって必然的に流速は抑えられることになる。そのため、多孔板を通過する時点では、中央部の流速に比べて周縁部の流速は低いものとなる。この結果、周縁部における気体の上昇速度を抑えて造粒室における循環流を良好に形成させることができる。As in this configuration, the shape of the housing is tapered so that the inner diameter is reduced toward the gas ejection port below the perforated plate, so that when the ejected gas passes through the tapered portion, the gas expands to some extent. Although it reaches the perforated plate, the flow rate is inevitably suppressed on the outer peripheral side of the gas flow due to the influence of contact with the surrounding gas and entrainment of the surrounding gas due to the ejection compared to the central part. . Therefore, when passing through the perforated plate, the flow velocity at the peripheral portion is lower than the flow velocity at the central portion. As a result, it is possible to satisfactorily form a circulation flow in the granulation chamber while suppressing the gas rising speed at the peripheral edge.

本構成のごとく、当該多孔板の中央部側で開孔率が大きくなるように構成した場合は、多孔板の開孔を気体が通過する際の圧力損失の差により、多孔板の中央部側で気体の流速を高く設定し、周縁部側で気流の流速を低く設定することができる。本構成の場合、ガス噴出口からの多孔板への気流の噴出状態や噴出位置を変化させなくとも、多孔板の上方において中央部側ほど流速の高い噴流領域を形成することができる。よって、気体の噴流手段の如何に関わらず、最適な気流の流速分布を形成することができる。As in this configuration, when the opening ratio is increased on the center side of the perforated plate, due to the difference in pressure loss when the gas passes through the holes of the perforated plate, the center side of the perforated plate The gas flow velocity can be set high, and the air flow velocity can be set low on the peripheral edge side. In the case of this configuration, it is possible to form a jet region having a higher flow velocity toward the center side above the porous plate without changing the jetting state or the jetting position of the airflow from the gas jetting port to the porous plate. Therefore, an optimum airflow velocity distribution can be formed regardless of the gas jetting means.

上記目的を達成するための本発明に係る噴流層造粒装置の第二特徴構成は、筺体の下部に設けたガス噴出口と、前記ガス噴出口の上方に設けた多孔板と、前記多孔板の上方に形成される噴流部および前記多孔板に隣接し上方に内径が拡大する傾斜部とを設けた造粒室と、前記多孔板を通気する前記気体の流速を、前記多孔板の中央部から周縁部に向けて低く設定できる流速分布発生手段と、を備え、前記流速分布発生手段が、前記筺体の形状を、前記多孔板より下方で前記ガス噴出口に向けて内径が縮小するテーパ状に形成してあり、前記多孔板の周縁部に、前記傾斜部と隣接し、前記多孔板を通過する気体の流通径を絞り、かつ、前記傾斜部の傾斜角度を緩める絞り部を備えた点にある。In order to achieve the above object, the second characteristic configuration of the spouted bed granulating apparatus according to the present invention includes a gas outlet provided in a lower part of a casing, a perforated plate provided above the gas outlet, and the perforated plate. A granulation chamber provided with a jet part formed above and a sloping part adjacent to the perforated plate and having an inner diameter expanding upward, and a flow rate of the gas flowing through the perforated plate, the central part of the perforated plate A flow velocity distribution generating means that can be set low toward the peripheral edge, and the flow velocity distribution generating means has a tapered shape in which the inner diameter is reduced toward the gas ejection port below the perforated plate. A throttle part that restricts the flow diameter of the gas passing through the perforated plate and loosens the inclination angle of the inclined part at the peripheral part of the perforated plate, adjacent to the inclined part. It is in.

ガス噴出口からの気体流を多孔板の開孔から上方向に噴出させることによって粉体を噴流部にて噴き上げる際、例えば噴流部の中心上方に向けて気体を噴出させると、粉体は気体に乗って噴き上げられ、上昇速度が低下する筺体の上方部でその外側方向に流れを変え、その後、筐体の内面に沿って下降流を形成する。When the powder is spouted at the jet part by jetting the gas flow from the gas jet port upward from the opening of the perforated plate, for example, when the gas is jetted upward at the center of the jet part, the powder is The flow is changed in the outer direction at the upper part of the housing which is jetted up and decreases in the rising speed, and then a downward flow is formed along the inner surface of the casing.

本構成では、多孔板の上方において、多孔板の中央部では気体の流速が高く、周縁部では流速が低くなる流速分布発生手段を備える。このように多孔板の周縁部における気体の上昇速度を抑える結果、筺体の内面に沿って下降し傾斜部を経て再度噴流部に向かう循環流を良好に形成させることができる。そして、この循環流中で、粉体同士の接触や衝突により粉体同士が付着結合され、かつ前記筺体の内面や傾斜部の傾斜面上を転動することで粉体は適度に締め固められるとともに、形状自体も球形状に整えられる。この結果、バインダを用いずとも粉体を効率よく造粒することができる。In this configuration, the flow rate distribution generating means is provided above the perforated plate so that the gas flow rate is high in the central portion of the perforated plate and the flow rate is low in the peripheral portion. As a result of suppressing the gas rising speed at the peripheral edge of the perforated plate in this way, it is possible to satisfactorily form a circulating flow that descends along the inner surface of the housing and passes through the inclined portion toward the jet portion again. In this circulating flow, the powders are bonded and bonded by contact or collision between the powders, and the powders are appropriately compacted by rolling on the inner surface of the casing or the inclined surface of the inclined part. At the same time, the shape itself is adjusted to a spherical shape. As a result, the powder can be efficiently granulated without using a binder.
従って、本構成では、流速分布発生手段によって噴流部での気体の流速分布を適切に設定することで、所望の粒径と強度を有する造粒物を得ることができる。Therefore, in this structure, the granulated material which has a desired particle size and intensity | strength can be obtained by setting appropriately the gas flow velocity distribution in a jet part by a flow velocity distribution generation means.

本構成のごとく、筺体の形状を、多孔板より下方でガス噴出口に向けて内径が縮小するテーパ状にすることで、噴出した気体がテーパ部を通過するとき、当該気体はある程度拡径しつつ多孔板に到達するが、当該気体流の外周側は中央部に比べ、周囲の気体との接触や噴出に伴う周囲気体の巻き込みなどの影響もあって必然的に流速は抑えられることになる。そのため、多孔板を通過する時点では、中央部の流速に比べて周縁部の流速は低いものとなる。この結果、周縁部における気体の上昇速度を抑えて造粒室における循環流を良好に形成させることができる。As in this configuration, the shape of the housing is tapered so that the inner diameter is reduced toward the gas ejection port below the perforated plate, so that when the ejected gas passes through the tapered portion, the gas expands to some extent. Although it reaches the perforated plate, the flow rate is inevitably suppressed on the outer peripheral side of the gas flow due to the influence of contact with the surrounding gas and entrainment of the surrounding gas due to the ejection compared to the central part. . Therefore, when passing through the perforated plate, the flow velocity at the peripheral portion is lower than the flow velocity at the central portion. As a result, it is possible to satisfactorily form a circulation flow in the granulation chamber while suppressing the gas rising speed at the peripheral edge.

本構成によれば、前記ガス噴出口から噴出した気体は前記絞り部によって、多孔板を通過する際の抵抗による影響は周縁部側の方が大きくなる。この結果、多孔板の上方において、気体の流速が中央部ほど高い噴流領域が形成される。この結果、造粒室における循環流を良好に形成させることができ、造粒効率を高めることができる。According to this configuration, the gas ejected from the gas ejection port has a greater influence on the peripheral edge side due to the resistance when passing through the perforated plate due to the throttle portion. As a result, a jet region having a higher gas flow rate toward the center is formed above the perforated plate. As a result, the circulation flow in the granulation chamber can be formed satisfactorily, and the granulation efficiency can be increased.
また、絞り部が傾斜部の傾斜角度を緩めることで、傾斜部での転動効果が更に向上し、粉体同士の付着・圧密が促進され、良好な造粒物を得ることができる。  Moreover, when the throttle part loosens the inclination angle of the inclined part, the rolling effect at the inclined part is further improved, adhesion and compaction of the powders are promoted, and a good granulated product can be obtained.

本発明に係る噴流層造粒装置の第三特徴構成は、前記流速分布発生手段として、前記筺体内下方に設けたガス供給管に連通するノズルを設けるとともに、前記ノズルの開口を前記多孔板の中心下方で、かつ前記ガス供給管よりも上方に配置した点にある。A third characteristic configuration of the spouted bed granulation apparatus according to the present invention is provided with a nozzle communicating with a gas supply pipe provided below the casing as the flow velocity distribution generating means, and the opening of the nozzle is formed in the perforated plate. It exists in the point arrange | positioned below the center and above the said gas supply pipe | tube.

本構成のように、多孔板の中心下方で、かつガス供給管よりも上方にノズルを配置することで、ノズルからの噴出気体を多孔板の中央部付近に集中させて、周縁部への通気量を抑えることができる。よって、本構成によっても上記構成と同様に、多孔板を通過する際の流速分布を中央付近で高く周縁部分で低く設定することができる。As in this configuration, by arranging the nozzle below the center of the perforated plate and above the gas supply pipe, the gas ejected from the nozzle is concentrated in the vicinity of the center of the perforated plate so that the air flows to the periphery. The amount can be reduced. Therefore, also in this configuration, similarly to the above configuration, the flow velocity distribution when passing through the perforated plate can be set high near the center and low at the peripheral portion.

以下、本発明の実施形態を図面に基づいて説明する。
本発明の噴流層造粒装置は、粉体同士を付着させて造粒物を形成するものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The spouted bed granulator of the present invention forms a granulated product by adhering powders together.

〔実施の形態1〕
図1,2に、当該噴流層造粒装置Xの概略図を示す。
噴流層造粒装置Xは、造粒室30と、多孔板20から噴き上げる気体の流速を、多孔板20の中央部から周縁部に向けて低く設定できる流速分布発生手段40から構成される。造粒室30は、縦型円筒状の筺体60の下部に設けた気体を噴出するガス噴出口10と、筺体60内にガス噴出口10の上方に位置し、かつガス噴出口10に対向して設けられ多孔板20と、ガス噴出口10からの気体が多孔板20に設けた開孔21を通過することによって多孔板20の上方に粉体Aを噴き上げ、かつ、噴き上げられた粉体Aを筺体60の内面に沿って下降させる噴流部31と、粉体Aを転動させるべく噴流部31および多孔板20に隣接し上方向に内径が拡大する傾斜部32から構成される。
[Embodiment 1]
1 and 2 are schematic views of the spouted bed granulator X.
The spouted bed granulation apparatus X includes a granulation chamber 30 and a flow velocity distribution generating means 40 that can set the flow velocity of the gas spouted from the perforated plate 20 to be lower from the central portion toward the peripheral portion of the perforated plate 20. The granulation chamber 30 is located in the lower part of the vertical cylindrical casing 60 for jetting gas, and is located above the gas outlet 10 in the casing 60 and faces the gas outlet 10. The porous plate 20 and the gas from the gas outlet 10 pass through the apertures 21 provided in the porous plate 20, so that the powder A is spouted above the porous plate 20, and the powder A is spouted up. Is composed of a jet part 31 that moves down along the inner surface of the housing 60, and an inclined part 32 that is adjacent to the jet part 31 and the perforated plate 20 so that the powder A rolls, and whose inner diameter expands upward.

(粉体)
本発明の噴流層造粒装置Xでは、粉体自身が付着力を有する付着性の粉体であれば造粒可能である。当該付着力は、例えば分子間力・粘着力等である。このように粉体自身の付着力のみを利用することで、不純物となり得るバインダを使用しないでも造粒が行える。
(powder)
In the spouted bed granulation apparatus X of the present invention, granulation is possible if the powder itself is an adherent powder having adhesive force. The adhesion force is, for example, intermolecular force or adhesive force. In this way, by using only the adhesive force of the powder itself, granulation can be performed without using a binder that can be an impurity.

(ガス噴出口)
ガス噴出口10は、前記筺体60の下部に設けて、気体を多孔板20および噴流部31の中心軸Z上に沿って上方向に噴出させる。
当該ガス噴出口10は、ガス供給管11と結合しており、ガス供給管11は、気体の供給源・流量調節弁・湿度調節器・フローメータ等と接続する。これにより流量・湿度・圧力などを調節できるように構成することができる。当該気体は、例えば原料となる粉体との関係から、反応性の乏しい窒素ガス(N)等の不活性ガスを使用するのが好ましい。
(Gas outlet)
The gas ejection port 10 is provided at the lower part of the housing 60 and ejects gas upward along the central axis Z of the porous plate 20 and the jet part 31.
The gas outlet 10 is connected to a gas supply pipe 11, and the gas supply pipe 11 is connected to a gas supply source, a flow control valve, a humidity controller, a flow meter, and the like. Thereby, it can comprise so that flow volume, humidity, a pressure, etc. can be adjusted. As the gas, for example, an inert gas such as nitrogen gas (N 2 ) having low reactivity is preferably used because of the relationship with the powder as a raw material.

(多孔板)
多孔板20は造粒室30の下方に装着する。多孔板20には多数の開孔21が設けてある。本実施形態では、同一の開孔21が多孔板20の全面に亘って均一に配置されている。多孔板20は、例えば325メッシュのステンレス製の金網を使用する。
なお、当該多孔板20としては、上部に粉体を載置できる程度の開孔の大きさで、気体通過時の圧力損失が少ない、言い換えれば開孔率の大きいものが好適である。
(Perforated plate)
The perforated plate 20 is mounted below the granulation chamber 30. A large number of apertures 21 are provided in the perforated plate 20. In the present embodiment, the same opening 21 is arranged uniformly over the entire surface of the porous plate 20. For the perforated plate 20, for example, a 325 mesh stainless steel wire mesh is used.
As the perforated plate 20, a porous plate having such a size that the powder can be placed on the upper portion and having a small pressure loss when passing through the gas, in other words, having a large open rate is preferable.

(造粒手段)
造粒室30は、ガス噴出口10から気体流によって多孔板20の上方で粉体Aを噴き上げ、かつ前記噴き上げられた粉体Aを筺体60の内面に沿って下降させる噴流部31、および、多孔板20に隣接し上方向に内径が拡大する傾斜部32を備える。
(Granulation means)
The granulation chamber 30 is a jet section 31 that spouts the powder A above the perforated plate 20 by a gas flow from the gas ejection port 10 and lowers the sprayed powder A along the inner surface of the housing 60, and An inclined portion 32 that is adjacent to the perforated plate 20 and whose inner diameter expands upward is provided.

噴流部31は筺体60の内部に設ける。本実施形態の筺体60は内部を観察する目的から透明なアクリル製で、その内径は100mmである。
噴流部31では、ガス噴出口10から多孔板20の開孔21を介して噴出する気体流で、噴流部31の中心軸Zに沿って粉体Aは噴き上げられ、気体と粉体Aとの上昇流が形成される。次に、噴き上げられた粉体Aは筺体60の上方部における気流の上昇速度の低下により、外側方向に流れを変え、筐体60の内面に沿った下降流が形成される。
The jet part 31 is provided inside the housing 60. The casing 60 of this embodiment is made of transparent acrylic for the purpose of observing the inside, and has an inner diameter of 100 mm.
In the jet part 31, the powder A is spouted along the central axis Z of the jet part 31 by the gas flow ejected from the gas outlet 10 through the opening 21 of the porous plate 20, and the gas and the powder A An upward flow is formed. Next, the sprayed powder A changes its flow in the outward direction due to a decrease in the rising speed of the airflow in the upper part of the housing 60, and a downward flow is formed along the inner surface of the housing 60.

傾斜部32は筺体60の下部に形成し、テーパ状の傾斜面を有する。当該傾斜部32は多孔板20に隣接させてあるため、噴流部31から粉体Aが下降した際、多孔板20の近傍で粉体Aを転動させることができる。このとき傾斜部32の傾斜面を転動しながら粉体同士が接触と衝突し付着結合して圧密される。その後、粉体Aは多孔板中央部に到達して上昇流により噴き上げられた後、再び循環して傾斜部32に到達する。このサイクルを繰り返すことで当該粉体Aは成長して粒状の造粒物Bとなる。   The inclined portion 32 is formed below the housing 60 and has a tapered inclined surface. Since the inclined portion 32 is adjacent to the porous plate 20, the powder A can roll in the vicinity of the porous plate 20 when the powder A descends from the jet portion 31. At this time, while rolling on the inclined surface of the inclined portion 32, the powder collides with the contact, adheres and is bonded and consolidated. Thereafter, the powder A reaches the central portion of the perforated plate and is blown up by the upward flow, and then circulates again and reaches the inclined portion 32. By repeating this cycle, the powder A grows into a granular granulated product B.

尚、筺体60内の上部には、筺体外へ気体が排出される際の粉体Aの機外への漏出を防ぐためのバグフィルターが装着してある。また、傾斜部32の表面は、粉体Aなどの付着を防ぐため、テフロン(登録商標)加工されたテープが貼着してある。   Note that a bag filter for preventing leakage of the powder A to the outside when the gas is discharged to the outside of the housing is mounted on the upper portion of the housing 60. The surface of the inclined portion 32 is attached with a Teflon (registered trademark) processed tape to prevent adhesion of powder A and the like.

(流速分布発生手段)
流速分布発生手段40は、噴流部31に噴出した気体の流速を、多孔板20の中央部に比べて多孔板20の周縁部、すなわち傾斜部32に近接した位置で低く設定できるように構成する。
このとき、気体流の相対的な流速は、多孔板20の中央部では高くなり、傾斜部32に近接した位置では低くなる。このように多孔板20の外周側に位置する周縁部の近傍における気体の上昇速度を抑える結果、筺体60に沿って下降し傾斜部32を経て噴流部31に向かう循環流を良好に形成させることができる。この際、粉体A同士の接触や衝突により凝集・結合され、かつ前記筺体60の壁面や傾斜部32の傾斜面上を転動することで粉体Aは適度に締め固められるとともに、形状自体も球形状に整えられる。この結果、バインダを用いずとも粉体を効率よく造粒することができる。
(Velocity distribution generation means)
The flow velocity distribution generating means 40 is configured so that the flow velocity of the gas ejected to the jet portion 31 can be set lower at the peripheral portion of the porous plate 20, that is, at a position close to the inclined portion 32 than the central portion of the porous plate 20. .
At this time, the relative flow velocity of the gas flow increases at the center of the perforated plate 20 and decreases at a position close to the inclined portion 32. As a result of suppressing the gas rising speed in the vicinity of the peripheral edge located on the outer peripheral side of the perforated plate 20 as described above, it is possible to satisfactorily form a circulating flow that descends along the housing 60 and goes to the jet portion 31 through the inclined portion 32. Can do. At this time, the powder A is agglomerated and bonded by contact or collision between the powders A and rolls on the wall surface of the casing 60 or the inclined surface of the inclined portion 32, whereby the powder A is appropriately compacted and the shape itself Is also arranged in a spherical shape. As a result, the powder can be efficiently granulated without using a binder.

従って、流速分布発生手段40によって多孔板20を通過する気体の流速分布を適切に設定することで、所望の粒径と強度を有する造粒物Bを効率よく得ることができる。   Therefore, by appropriately setting the flow velocity distribution of the gas passing through the porous plate 20 by the flow velocity distribution generating means 40, the granulated product B having a desired particle size and strength can be obtained efficiently.

本実施形態では、流速分布発生手段40は、転動部32と隣接し、かつ、造粒室30における気体の入口径をガス噴出口10における気体の出口径より大きく形成したテーパ状の筺体下部41によって構成してある。
本構成によれば、筺体下部41の形状を、多孔板20より下方でガス噴出口10に向けて内径が縮小するテーパ状にすることで、ガス噴出口10から噴出した気体がテーパ状の筺体下部41を通過するとき、当該気体はある程度拡径しつつ多孔板20に到達するが、当該気体流の外周側は中央部に比べ、周囲の気体との接触や噴出に伴う周囲気体の巻き込みなどの影響もあって必然的に流速は抑えられることになる。そのため、多孔板20を通過する時点では、中央部の流速に比べて周縁部の流速は低いものとなる。この結果、周縁部における気体の上昇速度を抑えて造粒室30における循環流を良好に形成させることができる。
In the present embodiment, the flow velocity distribution generating means 40 is adjacent to the rolling part 32 and has a tapered casing lower portion formed such that the gas inlet diameter in the granulation chamber 30 is larger than the gas outlet diameter in the gas outlet 10. 41.
According to the present configuration, the shape of the casing lower portion 41 is tapered such that the inner diameter is reduced toward the gas ejection port 10 below the perforated plate 20 so that the gas ejected from the gas ejection port 10 is tapered. When passing through the lower portion 41, the gas reaches the porous plate 20 while expanding to some extent, but the outer peripheral side of the gas flow is in contact with the surrounding gas or involving the surrounding gas due to ejection, compared to the central portion. Inevitably, the flow velocity will inevitably be reduced. Therefore, when passing through the perforated plate 20, the flow velocity at the peripheral portion is lower than the flow velocity at the central portion. As a result, it is possible to satisfactorily form a circulation flow in the granulation chamber 30 while suppressing the gas rising speed at the peripheral edge.

本発明の噴流層造粒装置Xにて処理する粉体Aを使用して次のような条件で造粒処理を行った。具体的には、原料である付着性の粉体Aを載置する多孔板20の大きさを種々変更した。
筐体60は、多孔板20の上方の造粒室30から下部のガス噴出口10まで同一の傾斜面を有するテーパ状のもので、テーパ角度は20°とし、ガス噴出口10の開口径は8mmとした。実施例1は、多孔板20の外径(D)を25mm、ガス噴出口10の開口面からの高さ(H)を6cmとし、実施例2は外径(D)を50mm、高さ(H)を14cmとした。また、比較例として、ガス噴出口10の開口部(d)に多孔板20を取り付け、筺体60内には多孔板20を付けない場合についても造粒処理を行った。
Using the powder A processed by the spouted bed granulator X of the present invention, granulation was performed under the following conditions. Specifically, the size of the porous plate 20 on which the adhesive powder A as a raw material was placed was variously changed.
The casing 60 has a tapered shape having the same inclined surface from the granulation chamber 30 above the perforated plate 20 to the lower gas ejection port 10, the taper angle is 20 °, and the opening diameter of the gas ejection port 10 is It was 8 mm. In Example 1, the outer diameter (D) of the porous plate 20 is 25 mm, the height (H) from the opening surface of the gas outlet 10 is 6 cm, and in Example 2, the outer diameter (D) is 50 mm and the height ( H) was 14 cm. Further, as a comparative example, the granulation process was performed also in the case where the porous plate 20 was attached to the opening (d) of the gas ejection port 10 and the porous plate 20 was not attached in the housing 60.

粉体Aは、粉末吸入製剤に賦形剤として用いられるラクトース(frieslandfoods社製)を使用した。前処理として、粉体Aの凝集物を取り除くため、事前に目開き1.4mmの篩いに通過させた。その後、多孔板20の上に所定量充填した。造粒処理の条件を表1に示す。   As the powder A, lactose (manufactured by Frieslandfoods) used as an excipient in a powder inhalation preparation was used. As a pretreatment, in order to remove agglomerates of the powder A, the powder A was passed through a sieve having an aperture of 1.4 mm in advance. Thereafter, a predetermined amount was filled on the porous plate 20. Table 1 shows the conditions for the granulation treatment.

次に、各条件での造粒状態を評価するため、得られた造粒物Bの形状・粒度分布・造粒中の流動化状態を調べた。造粒物Bの形状はマイクロスコープで観察し、粒度分布はJISに規定された手動篩いにより、流動化状態は目視により評価した。   Next, in order to evaluate the granulated state under each condition, the shape, particle size distribution, and fluidized state during granulation of the obtained granulated product B were examined. The shape of the granulated product B was observed with a microscope, the particle size distribution was evaluated with a manual sieve specified by JIS, and the fluidized state was visually evaluated.

粒度分布の測定結果を図7に示す((a):比較例、(b):実施例1、(c):実施例2)。
造粒処理の結果を表2〜4に示す。表2は比較例、表3は実施例1、表4は実施例2の結果を示した。
尚、回収率は、造粒物回収量(g)×100÷原料充填量(g)によって算出し、流動化状態の評価については、以下の三種類に分類した。
(※1)造粒開始直後に、多孔板20の上方付近の外壁に軽い衝撃与えることにより良好な流動化状態が得られた。
(※2)※1の操作に加えて、細い棒によって多孔板20の上方の造粒室30内壁付近の付着性粉体層を解すことにより良好な流動化状態が得られた。
(※3)※1および※2の操作を行った場合であっても、チャネリング或いはスラッギングが生じた。
The measurement results of the particle size distribution are shown in FIG. 7 ((a): Comparative example, (b): Example 1, (c): Example 2).
The result of a granulation process is shown to Tables 2-4. Table 2 shows the results of the comparative example, Table 3 shows the results of Example 1, and Table 4 shows the results of Example 2.
The recovery rate was calculated by the granulated material recovery amount (g) × 100 ÷ raw material filling amount (g), and the fluidization state was classified into the following three types.
(* 1) Immediately after the start of granulation, a good fluidized state was obtained by giving a light impact to the outer wall near the upper part of the perforated plate 20.
(* 2) In addition to the operation of * 1, a good fluidized state was obtained by breaking the adhesive powder layer near the inner wall of the granulation chamber 30 above the porous plate 20 with a thin rod.
(* 3) Even when the operations of * 1 and * 2 were performed, channeling or slugging occurred.

実施例1,2および比較例ともに、充填高さを目処に原料の充填量を変えて行った。
実施例1,2および比較例で、原料の充填高さが3cm、7cm、10cmになるようにした。なお、実施例1において、充填高さを15cmにした場合では正常な噴流層が形成できなかった。これは、実施例2における充填高さを10cmにしたのと同程度の充填量であり、充填高さによる噴流層への影響を確認するためである。因みに、比較例では、充填高さが11cmになると噴流層を形成することが困難であった。
図7に示した粒度分布の測定結果より、実施例1(外径(D):25mm)では、充填高さが3cm、7cm、10cmの場合の何れも略良好な噴流層が形成されている。但し、前記充填高さを15cm(以下「HB15)と記載する)にした場合では良好な噴流層を形成することができなかった。
この結果、他の全ての条件では、1000μm以下の回収された造粒物Bが70%程度存在するのに対して、原料充填高さ15cmの条件では1000μm以下の回収された造粒物Bは40%程度しか存在しなかった。
また、実施例2(外径(D):50mm)では、充填高さが3cm、7cm、10cmの何れ場合も良好な噴流層が形成されている。
In each of Examples 1 and 2 and the comparative example, the raw material filling amount was changed with the filling height as a target.
In Examples 1 and 2 and the comparative example, the filling height of the raw material was set to 3 cm, 7 cm, and 10 cm. In Example 1, when the filling height was 15 cm, a normal spouted layer could not be formed. This is the same amount of filling as that in Example 2 where the filling height is 10 cm, and this is to confirm the influence of the filling height on the spouted bed. Incidentally, in the comparative example, it was difficult to form the spouted layer when the filling height was 11 cm.
From the measurement results of the particle size distribution shown in FIG. 7, in Example 1 (outer diameter (D): 25 mm), a substantially good spouted bed is formed in all cases where the filling height is 3 cm, 7 cm, and 10 cm. . However, when the filling height was 15 cm (hereinafter referred to as “HB15”), a good spouted layer could not be formed.
As a result, in all other conditions, about 70% of the recovered granulated product B having a size of 1000 μm or less exists, whereas in the condition of the raw material filling height of 15 cm, the recovered granulated product B having a size of 1000 μm or less is Only about 40% was present.
In Example 2 (outer diameter (D): 50 mm), a good spouted layer is formed in any case where the filling height is 3 cm, 7 cm, or 10 cm.

実施例2、および、実施例1のHB15以外では、良好な球形の造粒物Bが形成された(図8(a))。これより、これら条件では良好な噴流層が形成されたと考えられる。
一方、実施例1のHB15では、比較的大きな非球形の造粒物Bが形成された(図8(b))。これより、この条件下では、正常な噴流層ではなく、むしろ気泡流動層が形成されたと考えられる。
以上より、原料の処理量を増やし、かつ、回収率を上げ、良好な造粒物を得るためには、多孔板20の通気面積を増加させて、多孔板20上に噴流部31と循環部を良好に形成するスペースを確保すると共に、原料の充填を所定の充填高さの範囲に留めるのが有効であることが示唆された。
他方、比較例では充填高さが3cm以外は処理量、回収率ともに十分ではなく、良好な噴流層を形成することが難しいことが分かった。
Except for Example 2 and HB15 of Example 1, a good spherical granulated product B was formed (FIG. 8A). From this, it is considered that a good spouted layer was formed under these conditions.
On the other hand, in HB15 of Example 1, a relatively large non-spherical granulated product B was formed (FIG. 8B). From this, under this condition, it is considered that a bubble fluidized bed was formed rather than a normal spouted bed.
From the above, in order to increase the throughput of raw materials, increase the recovery rate, and obtain a good granulated product, the aeration area of the porous plate 20 is increased, and the jet part 31 and the circulation part are provided on the porous plate 20. It has been suggested that it is effective to secure a space for forming the material well and keep the filling of the raw material within a predetermined filling height range.
On the other hand, it was found that in the comparative example, when the filling height is other than 3 cm, the processing amount and the recovery rate are not sufficient, and it is difficult to form a good spouted bed.

〔実施の形態2〕
上述の実施形態では、ガス噴出口10はガス供給管11と結合されており、ガス供給管11から直接気体が噴出する場合について説明した。この他、当該ガス供給管11に気体を噴出する別のノズル12を備えることが可能である(図3)。このとき、流速分布発生手段40は、ノズル12の開口を多孔板20の中央部下方で、ガス供給管11よりも上方の多孔板20に近づけた位置に配置すること、言い換えれば、ノズル12と多孔板20との間に適度な間隔をとることによって構成する。
前記ノズル12の開口を前記多孔板20の中心下方で、かつ前記ガス供給管11よりも上方位置に配置したことで、ノズル12からの噴出気体を多孔板20の中央部に集中させことで、周縁部への通気量を抑えることができる。よって、本構成によっても上記構成と同様に、多孔板を通過する際の流速分布を中央部付近で高く周縁部で低く設定することができる。
これにより、多孔板20の周縁部における気体の上昇速度を抑えて造粒室30における循環流を良好に形成させることができる。
[Embodiment 2]
In the above-described embodiment, the case where the gas ejection port 10 is coupled to the gas supply pipe 11 and gas is directly ejected from the gas supply pipe 11 has been described. In addition, it is possible to provide another nozzle 12 for ejecting gas to the gas supply pipe 11 (FIG. 3). At this time, the flow velocity distribution generating means 40 is arranged such that the opening of the nozzle 12 is located at a position below the central portion of the porous plate 20 and close to the porous plate 20 above the gas supply pipe 11, in other words, with the nozzle 12. It is configured by taking an appropriate interval between the perforated plate 20.
By arranging the opening of the nozzle 12 below the center of the perforated plate 20 and above the gas supply pipe 11, the gas ejected from the nozzle 12 is concentrated at the center of the perforated plate 20, The amount of ventilation to the peripheral edge can be suppressed. Therefore, also in this configuration, similarly to the above configuration, the flow velocity distribution when passing through the perforated plate can be set high near the central portion and low at the peripheral portion.
Thereby, it is possible to satisfactorily form a circulation flow in the granulation chamber 30 while suppressing the gas rising speed at the peripheral edge of the perforated plate 20.

〔実施の形態3〕
上述の実施形態では、多孔板20における開孔21の孔径は、多孔板20の全面に亘って均一となるように形成する場合について説明した。しかし、これに限られるものではない。例えば、多孔板20自体の開孔率を、多孔板20の中央部と周縁部とで異なるように形成することが可能で、周縁部より中央部の開孔率が大きくなるようにする。具体的には、多孔板20の中央部側で周縁部側よりも開孔率が大きくなるように構成した場合には、多孔板20の開孔21を気体が通過する際の圧力損失の差により、多孔板20の中央部側で気体の流速を高く設定し、周縁部側で気体の流速を低く設定することができる。
[Embodiment 3]
In the above-described embodiment, a case has been described in which the hole diameter of the opening 21 in the porous plate 20 is formed to be uniform over the entire surface of the porous plate 20. However, it is not limited to this. For example, the aperture ratio of the perforated plate 20 itself can be formed so as to be different between the central portion and the peripheral portion of the perforated plate 20 so that the aperture ratio of the central portion is larger than that of the peripheral portion. Specifically, in the case where the opening ratio is larger at the center side of the porous plate 20 than at the peripheral side, the difference in pressure loss when the gas passes through the opening 21 of the porous plate 20. Thus, the gas flow rate can be set high on the central side of the perforated plate 20 and the gas flow rate can be set low on the peripheral side.

また、当該開孔21の孔径を、多孔板20の中央部側および周縁部側で異なるように形成することが可能である(図4,5)。この場合、当該開孔21の孔径を中央部から周縁部に向けて小さくなるように構成する。   Moreover, it is possible to form so that the hole diameter of the said opening 21 may differ in the center part side and the peripheral part side of the perforated panel 20 (FIGS. 4 and 5). In this case, the hole diameter of the opening 21 is configured to decrease from the central portion toward the peripheral portion.

開孔21の孔径を、多孔板20の中央部側および周縁部側において異ならせるには、図4に示したように、異なる孔径を有するメッシュ(網体)である中央部メッシュ22および周縁部メッシュ23を組み合わせるとよい。この場合、粉体Aがメッシュから落ちない範囲で、中央部メッシュ22の開孔21の孔径が周縁部メッシュ23の開孔21の孔径より大きくなるようにする。各メッシュ22,23は、それぞれにおいて開孔21の孔径を全面に亘って均一となるように形成してある。
本構成によれば、多孔板20の中央部側で気体の流速を高く設定し、周縁部側で気体の流速を低く設定することができる。本構成の場合、ガス噴出口10から多孔板20への気流の噴出状態や噴出位置を変化させなくとも、多孔板20の上方部において中央部側ほど流速の高い噴流領域を形成することができる。よって、気体の噴流手段の如何に関わらず、最適な気流の流速分布を形成することができる。
尚、中央部メッシュ22および周縁部メッシュ23を枠体24に着脱可能に構成することで、所望の内径を有するメッシュに適宜交換することができる。
In order to make the hole diameter of the opening 21 different between the central part side and the peripheral part side of the perforated plate 20, as shown in FIG. 4, the central part mesh 22 and the peripheral part which are meshes (net bodies) having different pore diameters. The mesh 23 may be combined. In this case, the diameter of the opening 21 of the central mesh 22 is set to be larger than the diameter of the opening 21 of the peripheral mesh 23 in a range where the powder A does not fall from the mesh. Each of the meshes 22 and 23 is formed so that the hole diameter of the opening 21 is uniform over the entire surface.
According to this configuration, the gas flow rate can be set high on the central side of the perforated plate 20, and the gas flow rate can be set low on the peripheral side. In the case of this configuration, it is possible to form a jet region having a higher flow velocity toward the central portion in the upper part of the porous plate 20 without changing the jet state or the position of the air flow from the gas jet port 10 to the porous plate 20. . Therefore, an optimum airflow velocity distribution can be formed regardless of the gas jetting means.
In addition, the center part mesh 22 and the peripheral part mesh 23 are comprised so that attachment or detachment to the frame 24 is possible, and it can replace | exchange suitably for the mesh which has a desired internal diameter.

〔実施の形態4〕
多孔板20の周縁部の外側に、多孔板20を通過する気体の流通径を絞り、かつ、傾斜部32のよりも傾斜角度の緩い絞り部50を筐体60に備えることが可能である(図6)。
本構成では、傾斜部32は絞り部50の表面に形成される。本構成によれば、ガス噴出口10から噴出した気体は、絞り部50によって流通径が絞られることで、多孔板20の中央部と周縁部とで多孔板20を通過する流速が異なってくる。すなわち、当該気体に対して絞り部50はオリフィスとして作用し、多孔板20の上方において、気体の流速が中央部側ほど高くなる。
この結果、造粒室30における循環流を良好に形成させることができ、造粒効率を高めることができる。
また、絞り部50には傾斜部32と隣接して傾斜部32よりも傾斜角度の緩いテーパ面を設定することで、更に傾斜部32での転動効果が向上し、粉体同士の付着・圧密が促進され、良好な造粒物を得ることができる。
[Embodiment 4]
It is possible to provide the casing 60 with a throttle portion 50 that restricts the flow diameter of the gas passing through the porous plate 20 and has a gentler inclination angle than the inclined portion 32 outside the peripheral edge portion of the porous plate 20 ( FIG. 6).
In this configuration, the inclined portion 32 is formed on the surface of the throttle portion 50. According to this configuration, the flow velocity of the gas ejected from the gas ejection port 10 is reduced at the central portion and the peripheral portion of the porous plate 20 by the flow diameter of the gas being reduced by the throttle portion 50. . That is, the throttle portion 50 acts as an orifice with respect to the gas, and the flow velocity of the gas increases toward the center side above the porous plate 20.
As a result, the circulation flow in the granulation chamber 30 can be formed well, and the granulation efficiency can be increased.
Further, by setting a tapered surface with a slanting angle closer to that of the inclined portion 32 adjacent to the inclined portion 32 in the throttle portion 50, the rolling effect at the inclined portion 32 is further improved, and adhesion between powders is reduced. Consolidation is promoted and a good granulated product can be obtained.

本発明は、粉体同士を付着させて造粒物を形成する噴流層造粒装置に利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized for the spouted bed granulation apparatus which adheres powder and forms a granulated material.

本発明の噴流層造粒装置の概略図Schematic diagram of spouted bed granulator of the present invention 実施形態1の噴流層造粒装置の要部概略図The principal part schematic of the spouted bed granulation apparatus of Embodiment 1 実施形態2の噴流層造粒装置の要部概略図The principal part schematic of the spouted bed granulation apparatus of Embodiment 2. 実施形態3の多孔板の概略図Schematic of the porous plate of Embodiment 3 実施形態3の噴流層造粒装置の要部概略図Schematic diagram of essential parts of the spouted bed granulating apparatus of Embodiment 3. 実施形態4の噴流層造粒装置の要部概略図Main part schematic of spouted bed granulation apparatus of Embodiment 4 粒度分布の測定結果を示した図Figure showing particle size distribution measurement results 造粒物の写真を示した図The figure which showed the photograph of the granulated material

符号の説明Explanation of symbols

X 噴流層造粒装置
A 粉体
B 造粒物
10 ガス噴出口
12 ノズル
20 多孔板
21 開孔
30 造粒室
31 噴流部
32 傾斜部
40 流速分布発生手段
41 筐体下部
50 絞り部
60 筺体
X spouted bed granulator A powder B granulated product 10 gas outlet 12 nozzle 20 perforated plate 21 aperture 30 granulating chamber 31 spouting portion 32 inclined portion 40 flow velocity distribution generating means 41 lower case 50 narrowing portion 60 housing

Claims (3)

筺体の下部に設けたガス噴出口と、前記ガス噴出口の上方に設けた多孔板と、前記多孔板の上方に形成される噴流部および前記多孔板に隣接し上方向に内径が拡大する傾斜部を設けた造粒室と、
前記多孔板を通気する前記気体の流速を、前記多孔板の中央部から周縁部に向けて低く設定できる流速分布発生手段と、を備え、
前記流速分布発生手段が、前記筺体の形状を、前記多孔板より下方で前記ガス噴出口に向けて内径が縮小するテーパ状に形成してあり、前記流速分布発生手段が、前記多孔板の開孔率を、周縁部より中央部が大きくなるように構成してある噴流層造粒装置。
A gas outlet provided at the lower part of the housing, a perforated plate provided above the gas outlet, a jet formed above the perforated plate, and an inclination that is adjacent to the perforated plate and whose inner diameter expands upward A granulation chamber with a section;
A flow rate distribution generating means capable of setting a flow rate of the gas that passes through the perforated plate to be lower from a central portion toward a peripheral portion of the perforated plate,
The flow velocity distribution generating means, the shape of the housing, the perforated plate than Ri tare and tapered inner diameter is reduced toward the gas ejection port below, said flow velocity distribution generating means, the perforated plate the porosity, structure and tear Ru spouted bed granulator so that the central portion is greater than the peripheral portion.
筺体の下部に設けたガス噴出口と、前記ガス噴出口の上方に設けた多孔板と、前記多孔板の上方に形成される噴流部および前記多孔板に隣接し上方向に内径が拡大する傾斜部を設けた造粒室と、
前記多孔板を通気する前記気体の流速を、前記多孔板の中央部から周縁部に向けて低く設定できる流速分布発生手段と、を備え、
前記流速分布発生手段が、前記筺体の形状を、前記多孔板より下方で前記ガス噴出口に向けて内径が縮小するテーパ状に形成してあり、前記多孔板の周縁部に、前記傾斜部と隣接し、前記多孔板を通過する気体の流通径を絞り、かつ、前記傾斜部の傾斜角度を緩める絞り部を備えた噴流層造粒装置。
A gas outlet provided at the lower part of the housing, a perforated plate provided above the gas outlet, a jet formed above the perforated plate, and an inclination that is adjacent to the perforated plate and whose inner diameter expands upward A granulation chamber with a section;
A flow rate distribution generating means capable of setting a flow rate of the gas that passes through the perforated plate to be lower from a central portion toward a peripheral portion of the perforated plate,
The flow velocity distribution generating means, the shape of the housing, the perforated plate than toward the gas ejection port at the lower and tapered to reduce the inner diameter tare is, the peripheral portion of the perforated plate, the inclined portion And a spouted bed granulating apparatus comprising a constricted part that restricts the flow diameter of gas passing through the perforated plate and loosens the inclination angle of the inclined part.
前記流速分布発生手段が、前記筺体内下方に設けたガス供給管に連通するノズルを設けるとともに、前記ノズルの開口を前記多孔板の中心下方で、かつ前記ガス供給管よりも上方に配置してある請求項1又は2に記載の噴流層造粒装置。 The flow velocity distribution generating means is provided with a nozzle communicating with a gas supply pipe provided below the housing, and an opening of the nozzle is disposed below the center of the perforated plate and above the gas supply pipe. The spouted bed granulator according to claim 1 or 2 .
JP2008031154A 2008-02-12 2008-02-12 Spouted bed granulator Active JP5322454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031154A JP5322454B2 (en) 2008-02-12 2008-02-12 Spouted bed granulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031154A JP5322454B2 (en) 2008-02-12 2008-02-12 Spouted bed granulator

Publications (2)

Publication Number Publication Date
JP2009189913A JP2009189913A (en) 2009-08-27
JP5322454B2 true JP5322454B2 (en) 2013-10-23

Family

ID=41072429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031154A Active JP5322454B2 (en) 2008-02-12 2008-02-12 Spouted bed granulator

Country Status (1)

Country Link
JP (1) JP5322454B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH652940A5 (en) * 1982-01-09 1985-12-13 Sandoz Ag METHOD FOR PRODUCING NON-DUSTING GRANULES AND DEVICE THEREFOR.
JPH0612823Y2 (en) * 1989-08-03 1994-04-06 友昭 福田 Air suspension system with a guide tube for improving granulation
JPH0733266B2 (en) * 1992-12-28 1995-04-12 住友大阪セメント株式会社 Jet fluidized bed granulator
JPH0724292A (en) * 1993-07-06 1995-01-27 Kyowa Hakko Kogyo Co Ltd Fluidized bed granulation method and its device
JPH08332368A (en) * 1995-06-09 1996-12-17 Kyowa Hakko Kogyo Co Ltd Powder mixing method utilizing pulsated air vibration waves, solid destructing method, mixer, energy transport device and granulator
JP2001259405A (en) * 2000-03-17 2001-09-25 Matsui Mfg Co Fluidizing bed granulating device and manufacturing method of granulated material
DE10323089B4 (en) * 2003-05-16 2006-12-07 Glatt Process Technology Gmbh Fluidized bed device
JP2007160262A (en) * 2005-12-15 2007-06-28 Fuji Paudal Co Ltd Fluidized layer apparatus

Also Published As

Publication number Publication date
JP2009189913A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP4819008B2 (en) Fluidized bed equipment
US8197729B2 (en) Method of granulation with a fluidized bed granulator
CA3065363C (en) Metal powder producing apparatus and gas jet device for same
CN109789424B (en) Device for micronization of powdery materials with encrustation prevention
JPH0463729B2 (en)
WO2000054876A1 (en) Device and method for producing granules
JPH03135430A (en) Granulating and coating method and device
CN106573217B (en) Equipment for introducing the droplet of monomer solution in reactor
MXPA06011620A (en) Fluid bed granulation process.
WO2003000397A1 (en) Powder particle processing device
CN109906128A (en) Low-melting-point metal or alloy powder are atomized production technology
JP4777306B2 (en) Fluidized bed equipment
JP5322454B2 (en) Spouted bed granulator
US10661238B2 (en) Continuous particle manufacturing device
EP2497567A1 (en) Process and apparatus for production of a granular urea product
JPH10329136A (en) Method and apparatus for producing granules
JP3894686B2 (en) Granulator
DK2352579T3 (en) Method and apparatus for treating fine-grained material in a jet layer
JP2016026867A (en) Continuous particle production device
JP4418980B2 (en) Powder and particle generator
EP2201998B1 (en) Apparatus for coating solid particles and related method
JP2002306944A (en) Granulation/drying process and fluidized bed granulation/drying equipment
CN214975588U (en) Screening plant is used in fertilizer production
JPH05148515A (en) Production of metal powder and device therefor
JPH0138102B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Ref document number: 5322454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250