EP3516222A1 - Schraubenkompressor für ein nutzfahrzeug - Google Patents

Schraubenkompressor für ein nutzfahrzeug

Info

Publication number
EP3516222A1
EP3516222A1 EP17772658.5A EP17772658A EP3516222A1 EP 3516222 A1 EP3516222 A1 EP 3516222A1 EP 17772658 A EP17772658 A EP 17772658A EP 3516222 A1 EP3516222 A1 EP 3516222A1
Authority
EP
European Patent Office
Prior art keywords
oil
air
screw compressor
pocket groove
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17772658.5A
Other languages
German (de)
English (en)
French (fr)
Inventor
Gilles Hebrard
Jean-Baptiste Marescot
Jörg MELLAR
Thomas Weinhold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH
Original Assignee
Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH filed Critical Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH
Publication of EP3516222A1 publication Critical patent/EP3516222A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1005Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/221Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0092Removing solid or liquid contaminants from the gas under pumping, e.g. by filtering or deposition; Purging; Scrubbing; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/98Lubrication

Definitions

  • the present invention relates to a screw compressor for a utility vehicle having an air filter, an inlet port and an air supply passage for supplying air to the screws of the screw compressor.
  • Screw compressors for commercial vehicles are already known from the prior art. Such screw compressors are used to provide the necessary compressed air for, for example, the braking system of the commercial vehicle.
  • Oil circuit is connected via a thermostatic valve.
  • the oil cooler is here
  • Heat exchanger having two separate circuits, wherein the first circuit for the hot liquid, so the compressor oil is provided and the second for the cooling liquid.
  • a coolant for example, air
  • Water mixtures can be used with an antifreeze or other oil.
  • This oil cooler must then with the compressor oil circuit through pipes or
  • Hoses are connected and the oil circuit must be secured against leaks.
  • This external volume must also be filled with oil, so that the total amount of oil is increased. This increases the system inertia.
  • the oil cooler must be mechanically housed and secured, either by surrounding brackets or by a separate
  • the DE 37 17493 A1 discloses a arranged in a compact housing screw compressor system having an oil cooler on the electric motor of the screw compressor.
  • a generic screw compressor is already known for example from DE 10 2004060417 B4.
  • Inlet nozzle and is provided with an air supply passage for supplying air to the screws of the screw compressor, wherein the inlet nozzle is disposed between the air filter and the air supply channel and having a pocket groove, by means of which oil can be retained.
  • the invention is based on the idea that a pocket is integrated into the inlet nozzle, which can retain oil after the compressor has been switched off and vented. This oil should then at the restart of the
  • Compressor be pulled back into the compressor interior.
  • it should be prevented that oil penetrates into the air filter in the region of the inlet or air inlet of the screw compressor.
  • the pocket groove is formed circumferentially. This allows a uniform shrinkage of oil in the pocket groove. This also simplifies manufacturing.
  • the pocket groove is designed and arranged such that, due to the influence of gravity, oil can enter and collect in the pocket groove. This can be achieved in particular by the fact that the
  • Orientation of the pocket groove in the assembled state or operating state is oriented such that the air filter above the inlet nozzle and the
  • Air supply duct is below the inlet nozzle and in the inlet stoop
  • precipitating oil runs down the walls into the pocket groove.
  • the pocket groove is designed and arranged such that when starting the screw compressor oil from the pocket groove is sucked into the compressor interior.
  • the depth of the pocket groove or the air supply channel facing part of the pocket groove is formed such that when sucking the oil can be sucked out of the pocket groove.
  • the inlet nozzle is a separate component.
  • the bottom of the pocket groove is formed, for example, by a circumferential sealing ring or the like. The runoff, inside the inlet
  • precipitating oil thus runs towards the seal and collects at the bottom of the pocket groove. From there it can then be sucked out again at the start.
  • Fig. 1 is a schematic sectional view through an inventive
  • FIG. 1 shows a schematic sectional view of a screw compressor 10 in the sense of an exemplary embodiment of the present invention.
  • the screw compressor 10 has a mounting flange 12 for mechanical attachment of the screw compressor 10 to an electric motor not shown here.
  • the input shaft 14 via which the torque from the electric motor to one of the two screws 16 and 18, namely the screw 16 is transmitted.
  • the screw 18 meshes with the screw 16 and is driven by this.
  • the screw compressor 10 has a housing 20 in which the essential components of the screw compressor 10 are housed.
  • the housing 20 is filled with oil 22.
  • Air inlet side is on the housing 20 of the screw compressor 10 a
  • Inlet port 24 is provided.
  • the inlet nozzle 24 is designed such that an air filter 26 is arranged on it.
  • an air inlet 28 is provided radially on the air inlet pipe 24.
  • a spring-loaded valve core 30 is provided, designed here as an axial seal.
  • This valve insert 30 serves as a check valve. Downstream of the valve core 30, an air supply channel 32 is provided, which supplies the air to the two screws 16, 18.
  • an air outlet pipe 34 is provided with a riser 36.
  • a temperature sensor 38 is provided, by means of which the oil temperature can be monitored. Furthermore, a holder 40 for an air de-oiling element 42 is provided in the air outlet area.
  • the holder 40 for the air de-oiling element has in the assembled state in the area facing the bottom (as shown in Fig. 1), the air de-oiling element 42. Further provided in the interior of the air de-oiling element 42 is a corresponding filter screen or known filter and oil-separating devices 44, which are not specified in detail.
  • the holder for the air de-oiling element 40 has a
  • the check valve 48 and the minimum pressure valve 50 may also be formed in a common, combined valve. Following the check valve 48, the air outlet 51 is provided.
  • the air outlet 51 is connected to correspondingly known compressed air consumers in the rule.
  • a riser 52 is provided which has the outlet of the holder 40 for the air de-oiling element 42 at the upper step into the housing 20 a filter and check valve 54.
  • a nozzle 56 is provided in a housing bore.
  • the oil return line 58 leads back approximately in the middle region of the screw 16 or the screw 18 to supply oil 22 again.
  • Oil drain plug 59 is provided. Upper oil drain plug 59 may be a
  • Regulation means may be provided, by means of which the ⁇ ttemperatur of the oil in the housing 20 22 Uberwachbar and is adjustable to a desired value.
  • a safety valve 76 In the upper region of the housing 20 (relative to the assembled state) there is a safety valve 76, via which an excessive pressure in the housing 20 can be reduced.
  • a bypass line 78 which leads to a relief valve 80.
  • a relief valve 80 by means of a Connection with the air supply 32 is controlled, air can be returned to the region of the air inlet 28.
  • a vent valve not shown in detail and also a nozzle (diameter reduction of the feeding line) may be provided.
  • an oil level sensor 82 may be provided.
  • This oil level sensor 82 may be, for example, an optical sensor and arranged and set up so that it can be detected by the sensor signal, whether the oil level is above the oil level sensor 82 in operation or if the oil level sensor 82 is exposed and thereby the oil level has fallen accordingly.
  • an alarm unit can also be provided which outputs or forwards an appropriate error message or warning message to the user of the system.
  • the function of the screw compressor 10 shown in FIG. 1 is as follows:
  • Air is supplied via the air inlet 28 and passes through the check valve 30 to the screws 16, 18, where the air is compressed.
  • the compressed air-oil mixture which rises by a factor of between 5 and 16 times compression after the screws 16 and 18 through the outlet conduit 34 via the riser 36, is blown directly onto the temperature sensor 38.
  • the air which still partly carries oil particles, is then guided via the holder 40 into the air de-oiling element 42 and, provided the corresponding minimum pressure is reached, enters the air outlet line 51.
  • the oil 22 located in the housing 20 is maintained at the operating temperature via the oil filter 62 and optionally via the heat exchanger 74.
  • the heat exchanger 74 is not used and is not switched on.
  • the corresponding connection is made via the thermostatic valve 68.
  • oil is supplied via the line 68 to the screw 18 or the screw 16, but also to the bearing 72.
  • the screw 16 or the screw 18 is supplied via the return line 52, 58 with oil 22, here is the purification of the oil 22 in the air de-oiling 42nd
  • FIG. 2 shows a perspective sectional view of the inlet connection 24 of FIG
  • Screw compressor 10 of FIG. 1 Screw compressor 10 of FIG. 1.
  • the inlet connection is arranged between the air filter 26 and the air supply channel 32.
  • the inlet port 24 further includes a pocket groove 100 by means of which oil can be retained.
  • the pocket groove 100 is formed circumferentially.
  • the inlet port 24 is formed as a separate component and the sealing of the gap between the inlet port 24 and the boundary of the air supply channel 32 is accomplished by the sealing ring 104.
  • the pocket groove 100 is designed and arranged such that due to the influence of gravity, oil can run into the pocket groove 100 and collect there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
EP17772658.5A 2016-09-21 2017-09-19 Schraubenkompressor für ein nutzfahrzeug Withdrawn EP3516222A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016011496.7A DE102016011496A1 (de) 2016-09-21 2016-09-21 Schraubenkompressor für ein Nutzfahrzeug
PCT/EP2017/073585 WO2018054882A1 (de) 2016-09-21 2017-09-19 Schraubenkompressor für ein nutzfahrzeug

Publications (1)

Publication Number Publication Date
EP3516222A1 true EP3516222A1 (de) 2019-07-31

Family

ID=59969135

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17772658.5A Withdrawn EP3516222A1 (de) 2016-09-21 2017-09-19 Schraubenkompressor für ein nutzfahrzeug

Country Status (8)

Country Link
US (1) US20190338777A1 (zh)
EP (1) EP3516222A1 (zh)
JP (1) JP2019529805A (zh)
KR (1) KR20190049861A (zh)
CN (1) CN109937303B (zh)
BR (1) BR112019005058A2 (zh)
DE (1) DE102016011496A1 (zh)
WO (1) WO2018054882A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114658660B (zh) * 2022-04-29 2024-01-09 南通市晶盛真空设备有限公司 一种低噪音的双螺杆真空泵

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2515382B1 (fr) 1981-10-27 1985-07-12 Maco Meudon Sa Dispositif regulateur pour un compresseur, et notamment un compresseur a vis
US4748873A (en) 1986-05-23 1988-06-07 Raymond Engineering Inc. Power wrench
US4780061A (en) 1987-08-06 1988-10-25 American Standard Inc. Screw compressor with integral oil cooling
JPH05195972A (ja) * 1992-01-22 1993-08-06 Hitachi Ltd スクリュー流体機械
US5556271A (en) * 1994-11-23 1996-09-17 Coltec Industries Inc. Valve system for capacity control of a screw compressor and method of manufacturing such valves
IT1307507B1 (it) 1999-10-21 2001-11-06 Virgilio Mietto Regolatore automatico di aspirazione dell'aria in un serbatoio.
DE102004060417B4 (de) 2004-12-14 2006-10-26 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Kompakter Schraubenkompressor zum mobilen Einsatz in einem Fahrzeug
DE102006016317A1 (de) 2006-04-06 2007-10-11 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verdichteranordnung mit einer Ventileinheit im Ansaugbereich
EP2063127A1 (en) * 2007-11-26 2009-05-27 Michele Solarski Safety device for intake valves
DE102014118266B3 (de) * 2014-12-10 2016-06-02 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Kompressorvorrichtung mit separatem Luftentölelement

Also Published As

Publication number Publication date
US20190338777A1 (en) 2019-11-07
BR112019005058A2 (pt) 2019-06-18
KR20190049861A (ko) 2019-05-09
CN109937303A (zh) 2019-06-25
WO2018054882A1 (de) 2018-03-29
JP2019529805A (ja) 2019-10-17
CN109937303B (zh) 2020-09-15
DE102016011496A1 (de) 2018-03-22

Similar Documents

Publication Publication Date Title
WO2018054854A1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3516230A1 (de) Schraubenkompressorsystem für ein nutzfahrzeug
EP3516237A1 (de) System für ein nutzfahrzeug umfassend einen schraubenkompressor sowie einen elektromotor mit gemeinsamer kühlung
WO2018054860A1 (de) Schraubenkompressorsystem für ein nutzfahrzeug
EP3516234A1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3516172B1 (de) Anordnung von schrauben für einen schraubenkompressor für ein nutzfahrzeug
WO2018054882A1 (de) Schraubenkompressor für ein nutzfahrzeug
WO2018054855A1 (de) System für ein nutzfahrzeug umfassend einen schraubenkompressor sowie einen elektromotor
EP3516236B1 (de) System für ein nutzfahrzeug umfassend einen kompressor sowie einen elektromotor
EP3516224B1 (de) Schraubenkompressor für ein nutzfahrzeug
WO2018054879A1 (de) Schraubenkompressorsystem für ein nutzfahrzeug
EP3516233A1 (de) Schraubenkompressor für ein nutzfahrzeug
WO2018054875A1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3516231B1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3516229A1 (de) Schraubenkompressorsystem für ein nutzfahrzeug
EP3516223A1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3516226A1 (de) Schraubenkompressor für ein nutzfahrzeug
EP3516232A1 (de) Schraubenkompressorsystem für ein nutzfahrzeug

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190423

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210401