EP3516178B1 - Anlage und verfahren mit einer wärmekraftanlage und einem prozessverdichter - Google Patents

Anlage und verfahren mit einer wärmekraftanlage und einem prozessverdichter Download PDF

Info

Publication number
EP3516178B1
EP3516178B1 EP17761043.3A EP17761043A EP3516178B1 EP 3516178 B1 EP3516178 B1 EP 3516178B1 EP 17761043 A EP17761043 A EP 17761043A EP 3516178 B1 EP3516178 B1 EP 3516178B1
Authority
EP
European Patent Office
Prior art keywords
process fluid
cooling
compressor
plant
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17761043.3A
Other languages
English (en)
French (fr)
Other versions
EP3516178A1 (de
Inventor
Marcel HUSMANN
Arne Herbert LIENAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3516178A1 publication Critical patent/EP3516178A1/de
Application granted granted Critical
Publication of EP3516178B1 publication Critical patent/EP3516178B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger

Definitions

  • the object of the invention is to improve the efficiency of an arrangement of the type defined in the introduction.
  • the decisive advantage of the invention compared to the conventional arrangements or methods for operating arrangements which provide for driving a multi-stage process compressor by means of a thermal power plant is that the waste heat from the compression process of the thermal power plant is supplied as useful heat and, accordingly, that for the operation of the thermal power plant required energy can be reduced.
  • the direct mechanical coupling of the thermal power plant for the transfer of technical work to the compressor has the additional advantage with the additional thermodynamic connection according to the invention between the cooling, intercoolers or the aftercooler of the compressor and the preheaters in front of the boiler of the thermal power plant that the compressor with increasing performance requirements also generates an increased waste heat in cooling, which also leads to an increased possible useful heat for the operation of the driving thermal power plant.
  • the process compressor according to the invention is generally any one-stage or multi-stage compressor with corresponding cooling between the individual compression stages or an aftercooler.
  • the compression stages can be understood to mean individual impellers or also several impellers arranged directly one behind the other.
  • the compressor can basically be a radial compressor or an axial compressor or a mixed arrangement deal with radial compressor stages and axial compressor stages.
  • Particularly preferred is the design of the multi-stage compressor as a gear compressor, in which a central gear drives a plurality of compressor drive pinion shafts that carry the impellers of compressor stages.
  • a plurality of compressor stages, preferably radial compressor stages is provided on a gearbox, preferably also mechanically fastened or supported there.
  • the thermal power plant is a cycle process, also known as the Clausius-Rankine cycle.
  • This is usually a so-called steam turbine as a turbine and the process fluid is usually water or water vapor.
  • the process fluid is usually water or water vapor.
  • another, in particular an organic, liquid can be used instead of water, so that the operating temperature field of the process changes as a result of the changed process fluid.
  • thermodynamic connection between at least one cooling of the process compressor and at least one preheater of the thermal power plant is preferably accompanied by a combination of this cooling with the preheater.
  • the combination has the particular advantage that no further process fluid has to be used to transfer the thermal energy between the preheater and the cooling.
  • the cooling of the second process fluid which is combined with the preheater of the thermal power plant, can directly transfer the waste heat as useful heat to the first process fluid.
  • the first process fluid is particularly suitable for absorbing the waste heat from the second process fluid in the cooling or the preheater.
  • the invention is also advantageously used in a thermal power plant which already has a plurality of preheaters operated with taps of the turbine for the first process fluid or, in the case of the turbine operated with steam, the feed water for the boiler.
  • the tapping amount of the first process fluid from the turbine can expediently be reduced because part of the preheating is already carried out with the waste heat from the cooling of the process compressor. Accordingly, the turbine generates a higher technical output, so that the boiler manages with a lower energy input or firing.
  • the system has a cooling line with a cooling fluid guided by the cooling line, the cooling line being connected to at least one cooling of the process compressor.
  • This cooling fluid supply can be combined with the cooling fluid supply of the thermal power plant, which has a not inconsiderable cooling fluid consumption in the condenser, so that the corresponding supply of cooling fluid for cooling the process compressor can be connected there.
  • a control unit is particularly expediently provided, which is connected to control processes in the cooling fluid lines and in particular in the exchange lines between the thermal power plant and the process compressor. In particular during unsteady processes, for example during the start-up of the entire arrangement, it is expedient if the individual system components are not necessarily dependent on one another with regard to cooling or preheating, but also function largely independently of one another.
  • FIGS. 1 , 2nd each show schematically illustrated flow diagrams of the system A according to the invention or methods which illustrate the thermodynamic relationships.
  • the reference numerals used in the figures are identical for components with the same function, and the description of the figures relates to both figures, unless stated otherwise.
  • a system A comprises a thermal power plant WKA and a multi-stage process compressor MSC.
  • the thermal power plant WKA in turn comprises a pump PMP, a boiler BOI, a turbine TRB with an output shaft SD1 and a condenser CND.
  • the turbine can advantageously also have two output ends - that is, a double output.
  • the BOI boiler is either operated with the waste heat from another process or is fired using a fossil fuel. This energy supply is called FUL.
  • the BOI boiler evaporates and overheats the first process fluid PF1, which circulates in the elements of the thermal power plant WKA that are connected in a fluid-conducting manner.
  • the turbine TRB is preferably a steam turbine and the first process fluid PF1 is preferably water or water vapor.
  • the overheated water vapor flowing out in the BOI boiler is expanded in the turbine TRB and then reaches the condenser CND, where the expanded steam condenses to liquid and is then pumped up to the boiler pressure by means of the pump PMP.
  • the condenser CND is supplied with cooling fluid CLF by means of a cooling line COL. This is preferably water that is either removed from a natural heat sink and returned to it heated, or water that is removed or supplied to an at least partially artificial heat sink.
  • the process compressor MSC has one or more stages ST1, ..., STn, in which a second process fluid PF2 compresses becomes.
  • three stages ST1, ST2, ST3 are provided.
  • the process compressor also has a plurality of cooling systems IC1,..., ICn or intermediate cooling systems or an aftercooler, a first cooling system IC1, a second cooling system IC2 and a third cooling system IC3 being provided in the specific example.
  • the third cooling IC3 is also a "cooling", even if there is no further compression stage ST1,..., STn to compress the second process fluid PF2 following this third cooling IC3. It is crucial that waste heat is removed from the compression process by means of cooling.
  • the cooling systems IC1,..., ICn have connections to the cooling line COL in order to be supplied with cooling fluid CLF by the latter.
  • the same cooling line COL is particularly advantageously provided for supplying the cooling systems IC1,..., ICn with cooling fluid CLF as for the condenser CND.
  • the process compressor MSC has an input shaft SD2, which is coupled by means of a clutch CPL to an output shaft SD1 of the turbine TRB of the thermal power plant WKA.
  • a transmission can also be provided, which causes the turbine speed to be geared up or down to the process compressor MSC.
  • the thermal power plant WKA has a preheater PH1, ..., PHn in the flow of the first process fluid PF1 between the pump PMP and the boiler BOI (see in particular Figure 2 ) by means of which a preheating flow PRF is fed to the process fluid.
  • FIG. 1 there is a connection between the circuit of the thermal power plant WKA of the first process fluid PF1 and the second cooling IC2 by means of an exchange line FCC, which provides a supply of the first process fluid PF1 to the cooling IC2 and a discharge back into the circuit of the thermal power plant WKA.
  • the first process fluid PF1 absorbs and guides waste heat from the second cooling IC2 it to the cycle of the WKA thermal power plant as useful heat.
  • less energy FUL must be supplied to the BOI boiler.
  • the cooling of the process compressor MSC consumes less cooling fluid CLF in total.
  • the turbine TRB has a first tap TB1 and a second tap TB2.
  • the two taps TB1, TB2 supply a third preheater PH3 or a second preheater PH2 corresponding amounts of heat, which result in a higher inlet temperature into the boiler BOI of the first process fluid PF1.
  • the disadvantage here is that not all of the first process fluid PF1 supplied to the turbine TRB until it exits the turbine TRB provides for the production of technical work.
  • the exchange line FCC already described is provided behind the pump PMP in the circuit of the first process fluid PF1, by means of which waste heat from the process compressor is supplied as useful heat to the thermal power plant WKA.
  • the systems A are particularly advantageous Figures 1 , 2nd , a control unit CON.
  • At least the exchange line FCC or the cooling line COL are further equipped with control elements CV1, ..., CV4, which are connected to the control unit CON.
  • the control unit CON Control elements CV1, ..., CV4 adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine Anlage gemäß Anspruch 1 mit einer Wärmekraftanlage und einem ein- oder mehrstufigen Prozessverdichter, und ein Verfahren gemäß Anspruch 5, wobei die Wärmekraftanlage umfasst:
    • Pumpe,
    • Kessel,
    • Turbine mit mindestens einer Abtriebswelle,
    • Kondensator,
    wobei ein erstes Prozessfluid in den miteinander fluidleitend verbundenen Elementen Pumpe, Kessel, Turbine, Kondensator zirkuliert, wobei der Prozessverdichter mehrere Stufen aufweist, in denen ein zweites Prozessfluid verdichtet wird, wobei mindestens eine Kühlung stromabwärts einer Prozessstufe oder zwischen zwei Prozessstufen vorgesehen ist, mittels derer dem zweiten Prozessfluid mindestens ein erster Wärmestrom entzogen wird, wobei der Prozessverdichter eine Antriebswelle aufweist, wobei die Abtriebswelle mechanisch mit der Antriebswelle gekoppelt ist, so dass die Turbine den Prozessverdichter antreibt.
    Daneben betrifft die Erfindung ein Verfahren zum Betrieb einer Anlage der eingangs definierten Art.
    Aus der WO 2008/031810 oder der WO 2010/069759 oder der WO 2010/142574 oder der EP2578817 A2 oder der US2005/0235625 A1 sind bereits Anordnungen bekannt, bei denen Turbomaschinen, unter anderem Dampfturbinen, als Antrieb für Verdichter bzw. Verdichteranlagen bzw. mehrstufige Verdichter verwendet werden. Bei all diesen Anordnungsentwürfen ist der Wirkungsgrad der gesamten Anordnung stets von großer Bedeutung. Die Verdichtung eines Prozessfluids, beispielsweise die Verdichtung von Luft, Erdgas oder Kohlendioxid ist im realen Prozess stets verlustbehaftet, wobei die Minimierung dieser Verluste im Fokus der Bemühungen der Wirkungsgraderhöhung stehen.
  • Die Erfindung hat es sich zur Aufgabe gemacht, eine Anordnung der eingangs definierten Art im Wirkungsgrad zu verbessern.
  • Zur Lösung der erfindungsgemäßen Aufgabe wird vorgeschlagen, eine Anordnung der eingangs definierten Art mit den zusätzlichen Merkmalen des Kennzeichens des unabhängigen Vorrichtungsanspruchs weiterzubilden. Daneben wird zur Lösung ein Verfahren zum Betrieb einer solchen Anordnung gemäß dem unabhängigen Verfahrensanspruch vorgeschlagen. Die jeweils rückbezogenen Unteransprüche beinhalten vorteilhafte Weiterbildungen der Erfindung.
  • Der entscheidende Vorteil der Erfindung gegenüber den herkömmlichen Anordnungen bzw. Verfahren zum Betrieb von Anordnungen, die den Antrieb eines mehrstufigen Prozessverdichters mittels einer Wärmekraftanlage vorsehen liegt darin, dass die Abwärme aus dem Verdichtungsprozess der Wärmekraftanlage als Nutzwärme zugeführt wird und dementsprechend die für den Betrieb der Wärmekraftanlage erforderliche Energie verringert werden kann. Die direkte mechanische Kopplung der Wärmekraftanlage zur Übertragung technischer Arbeit auf den Verdichter hat mit der zusätzlichen erfindungsgemäßen thermodynamischen Verbindung zwischen den Kühlungen, Zwischenkühlern oder dem Nachkühler des Verdichters einerseits und den Vorwärmern vor dem Kessel der Wärmekraftanlage andererseits den zusätzlichen Vorteil, dass der Verdichter mit steigender Leistungsanforderung auch eine erhöhte Abwärme in Kühlungen erzeugt, die damit auch zu einer vergrößerten möglichen Nutzwärme für den Betrieb der antreibenden Wärmekraftanlage führt.
  • Bei dem erfindungsgemäßen Prozessverdichter handelt es sich in der Regel um einen beliebigen ein- oder mehrstufigen Verdichter mit entsprechenden Kühlungen zwischen den einzelnen Verdichtungsstufen oder einem Nachkühler. Unter den Verdichtungsstufen können einzelne Laufräder verstanden werden oder auch mehrere direkt hintereinander angeordnete Laufräder. Bei dem Verdichter kann es sich grundsätzlich um einen Radialverdichter oder einen Axialverdichter oder eine gemischte Anordnung von Radialverdichterstufen und Axialverdichterstufen handeln. Besonders bevorzugt ist die Ausführung des mehrstufigen Verdichters als Getriebeverdichter, bei dem ein zentrales Getriebe mehrere Verdichterantriebsritzelwellen antreibt, die Laufräder von Verdichterstufen tragen. An einem Getriebekasten ist hier in der Regel eine Mehrzahl von Verdichterstufen, bevorzugt Radialverdichterstufen vorgesehen, bevorzugt dort auch mechanisch befestigt bzw. abgestützt.
  • Bei der Wärmekraftanlage handelt es sich um einen Kreislaufprozess, wie er auch unter der Bezeichnung Clausius-Rankine-Kreislauf bekannt ist. Meist handelt es sich hierbei um eine sogenannte Dampfturbine als Turbine und das Prozessfluid ist in der Regel Wasser bzw. Wasserdampf. Alternativ kann statt Wasser auch eine andere, insbesondere eine organische Flüssigkeit eingesetzt werden, so dass sich das Betriebstemperaturfeld des Prozesses in Folge des geänderten Prozessfluids ändert.
  • Die thermodynamische Verbindung zwischen mindestens einer Kühlung des Prozessverdichters und mindestens einem Vorwärmer der Wärmekraftanlage geht bevorzugt mit einer Kombination dieser Kühlung mit dem Vorwärmer einher. Die Kombination hat den besonderen Vorteil, dass kein weiteres Prozessfluid zur Übertragung der Wärmeenergie zwischen dem Vorwärmer und der Kühlung verwendet werden muss. Das zu verdichtende zweite Prozessfluid kann in der Kühlung, der mit dem Vorwärmer der Wärmekraftanlage kombiniert ist, direkt die Abwärme als Nutzwärme an das erste Prozessfluid übertragen. Im Falle einer mit Wasser bzw. mit Wasserdampf betriebenen Dampfturbine eignet sich das erste Prozessfluid besonders gut zur Aufnahme der Abwärme aus dem zweiten Prozessfluid in der Kühlung bzw. dem Vorwärmer.
  • Die Erfindung findet auch vorteilhaft Anwendung bei einer Wärmekraftanlage, die bereits mehrere mit Anzapfungen der Turbine betriebene Vorwärmer für das erste Prozessfluid bzw. im Falle der mit Wasserdampf betriebenen Turbine das Speisewasser für den Kessel vorsieht. In diesem Fall kann zweckmäßig die Anzapfmenge des ersten Prozessfluids aus der Turbine reduziert werden, weil ein Teil der Vorwärmung bereits mit der Abwärme aus der Kühlung des Prozessverdichters erfolgt. Demensprechend erzeugt die Turbine eine höhere technische Leistung, so dass der Kessel mit einer geringeren Energiezufuhr bzw. Befeuerung auskommt.
  • Eine andere vorteilhafte Weiterbildung sieht vor, dass die Anlage eine Kühlleitung mit einem von der Kühlleitung geführtem Kühlfluid aufweist, wobei die Kühlleitung an mindestens eine Kühlung des Prozessverdichters angeschlossen ist. Auf diese Weise kann mitels der Kühlung ein Teil des Abwärmestroms auf das Kühlfluid übertragen werden. So ist unter allen Betriebsbedingungen sichergestellt, dass die nachfolgende Stufeneintrittstemperatur hinreichend niedrig ist, um so einen sicheren und energiesparenden Betrieb zu gewährleisten. Diese Kühlfluidversorgung kann kombiniert werden mit der Kühlfluidversorgung der Wärmekraftanlage, die in dem Kondensator einen nicht unerheblichen Kühlfluidverbrauch aufweist, so dass die entsprechende Versorgung mit Kühlfluid für die Kühlung des Prozessverdichters dort angeschlossen werden kann. Besonders zweckmäßig ist eine Regelungseinheit vorgesehen, die mit Reglungsorgangen in den Kühlfluidleitungen und insbesondere in den Austauschleitungen zwischen der Wärmekraftanlage und dem Prozessverdichter in Verbindung steht. Insbesondere während instationärer Prozesse, beispielsweise während des Anfahrens der gesamten Anordnung, ist es zweckmäßig, wenn die einzelnen Anlagenkomponenten nicht zwingend hinsichtlich der Kühlung oder Vorwärmung aufeinander angewiesen sind, sondern auch weitestgehend autark voneinander funktionieren.
  • Im Folgenden ist die Erfindung anhand eines speziellen Ausführungsbeispiels unter Bezugnahme auf Figuren näher beschrieben. Es zeigen:
  • Figuren 1, 2
    jeweils ein schematisches Flussdiagramm einer erfindungsgemäßen Anordnung bzw. eines erfindungsgemäßen Verfahrens.
  • Die Figuren 1, 2 zeigen jeweils schematisch dargestellte Flussdiagramme von der erfindungsgemäßen Anlage A bzw. Verfahren, die die thermodynamischen Zusammenhänge illustrieren. Die in den Figuren benutzten Bezugszeichen sind für Bauteile gleicher Funktion identisch und die Figurenbeschreibung bezieht sich, soweit nicht anders angegeben, auf beide Figuren.
  • Eine erfindungsgemäße Anlage A umfasst eine Wärmekraftanlage WKA und einen mehrstufigen Prozessverdichter MSC. Die Wärmekraftanlage WKA ihrerseits umfasst eine Pumpe PMP, einen Kessel BOI, eine Turbine TRB mit einer Abtriebswelle SD1 und einen Kondensator CND. Die Turbine kann vorteilhaft auch zwei Abtriebsenden - also einen Doppelabtrieb - aufweisen. Der Kessel BOI wird entweder mit der Abhitze aus einem anderen Prozess betrieben oder mittels eines fossilen Energieträgers befeuert. Diese Energiezuführ ist mit FUL bezeichnet. Der Kessel BOI verdampft und überhitzt das erste Prozessfluid PF1, das in den miteinander fluidleitend verbundenen Elementen der Wärmekraftanlage WKA zirkuliert. Bei der Turbine TRB handelt es sich bevorzugt um eine Dampfturbine und das erste Prozessfluid PF1 ist bevorzugt Wasser bzw. Wasserdampf. Der im Kessel BOI ausströmende, überhitzte Wasserdampf wird in der Turbine TRB entspannt und gelangt anschließend in den Kondensator CND, wo der entspannte Dampf zu Flüssigkeit kondensiert und anschließend mittels der Pumpe PMP auf den Kesseldruck befördert wird. Der Kondensator CND ist mittels einer Kühlleitung COL mit Kühlfluid CLF versorgt. Hierbei handelt es sich bevorzugt um Wasser, dass entweder aus einer natürlichen Wärmesenke entnommen und dort hin erwärmt wieder zurückgeführt wird oder um Wasser, das einer zumindest teilweise künstlichen Wärmesenke entnommen oder zugeführt wird.
  • Der Prozessverdichter MSC weist ein oder mehrere Stufen ST1, ..., STn auf, in denen ein zweites Prozessfluid PF2 verdichtet wird. In dem konkreten Beispiel sind drei Stufen ST1, ST2, ST3 vorgesehen. Der Prozessverdichter weist darüber hinaus mehrere Kühlungen IC1, ..., ICn bzw. Zwischenkühlungen bzw. einen Nachkühler auf, wobei in dem konkreten Beispiel eine erste Kühlung IC1, eine zweite Kühlung IC2 und eine dritte Kühlung IC3 vorgesehen sind. In der Betriffswelt der Erfindung handelt es sich bei der dritten Kühlung IC3 auch um eine "Kühlung", auch, wenn im Anschluss an diese dritte Kühlung IC3 keine weitere verdichtende Stufe ST1,..., STn zur Verdichtung des zweiten Prozessfluids PF2 folgt. Entscheidend hierbei ist, dass Abwärme aus dem Verdichtungsprozess mittels der Kühlung entfernt wird. Die Kühlungen IC1, ..., ICn weisen Anschlüsse zu der Kühlleitung COL auf, um von dieser mit Kühlfluid CLF versorgt zu werden. Besonders vorteilhaft ist hierbei die gleiche Kühlleitung COL zur Versorgung der Kühlungen IC1, ..., ICn mit Kühlfluid CLF vorgesehen, wie für den Kondensator CND.
  • Der Prozessverdichter MSC weist eine Antriebswelle SD2 auf, die mittels einer Kupplung CPL mit einer Abtriebswelle SD1 der Turbine TRB der Wärmekraftanlage WKA gekoppelt ist. Auf diese Weise wird mechanische Leistung auf den Prozessverdichter MSC übertragen, so dass die Drehzahl der Turbine TRB einen Einfluss auf die Drehzahl des Prozessverdichters MSC hat. Statt der Kupplung CPL kann auch ein Getriebe vorgesehen sein, das eine Übersetzung oder Untersetzung der Turbinendrehzahl auf den Prozessverdichter MSC bewirkt. Die Wärmekraftanlage WKA hat im Strom des ersten Prozessfluids PF1 zwischen der Pumpe PMP und dem Kessel BOI einen Vorwärmer PH1, ..., PHn (siehe insbesondere Figur 2) mittels dessen dem Prozessfluid ein Vorwärmestrom PRF jeweils zugeführt wird. In der Figur 1 besteht zwischen dem Kreislauf der Wärmekraftanlage WKA des ersten Prozessfluids PF1 und der zweiten Kühlung IC2 eine Verbindung mittels einer Austauschleitung FCC, die eine Zufuhr des ersten Prozessfluids PF1 zu der Kühlung IC2 vorsieht und eine Abfuhr zurück in den Kreislauf der Wärmekraftanlage WKA. Hierbei nimmt das erste Prozessfluid PF1 Abwärme aus der zweiten Kühlung IC2 auf und führt sie dem Kreislauf der Wärmekraftanlage WKA als Nutzwärme zu. Entsprechend weniger Energie FUL muss dem Kessel BOI zugeführt werden. Zusätzlich verbraucht die Kühlung des Prozessverdichters MSC in der Summe weniger Kühlfluid CLF.
  • In der Figur 2 weist die Turbine TRB eine erste Anzapfung TB1 und eine zweite Anzapfung TB2 auf. Die beiden Anzapfungen TB1, TB2 führen einen dritten Vorwärmer PH3 bzw. einem zweiten Vorwärmer PH2 entsprechende Wärmemengen zu, die eine höhere Eintrittstemperatur in den Kessel BOI des ersten Prozessfluids PF1 zur Folge haben. Nachteilig hierbei ist, dass nicht das gesamte der Turbine TRB zugeführte erste Prozessfluid PF1 bis zum Austritt aus der Turbine TRB für die Erzeugung technischer Arbeit sorgt. Vorteilhaft vor dieser Vorwärmung mittels der beiden Anzapfungen TB1, TB2 ist hinter der Pumpe PMP in dem Kreislauf des ersten Prozessfluids PF1 die bereits beschriebene Austauschleitung FCC vorgesehen, mittels derer Abwärme aus dem Prozessverdichter als Nutzwärme der Wärmekraftanlage WKA zugeführt wird.
  • Besonders vorteilhaft weisen die Anlagen A der Figuren 1, 2, eine Regelungseinheit CON auf. Mindestens die Austauschleitung FCC oder die Kühlleitung COL sind weiterhin mit Regelorganen CV1, ..., CV4 ausgestattet, die mit der Regelungseinheit CON in Verbindung stehen. In Abhängigkeit von der Temperatur T des zweiten Prozessfluids PF2 zwischen einem Austritt aus der zweiten Kühlung IC2, die an die Austauschleitung FCC angeschlossen ist, und einem Eintritt in eine stromabwärtige Stufe ST1, ..., STn des Prozessverdichters MSC werden von der Regelungseinheit CON die Regelorgane CV1, ..., CV4 verstellt.

Claims (6)

  1. Anlage (A) mit einer Wärmekraftanlage (WKA) und einem mehrstufigen Prozessverdichter (MSC), wobei die Wärmekraftanlage (WKA) umfasst:
    - Pumpe (PMP),
    - Kessel (BOI),
    - Turbine (TRB) mit einer Abtriebswelle (SD1), oder Doppelabtrieb
    - Kondensator (CND),
    wobei ein erstes Prozessfluid (PF1) in den miteinander fluidleitend verbundenen Elementen Pumpe (PMP),
    Kessel (BOI), Turbine (TRB), Kondensator (CND) zirkuliert, wobei der Prozessverdichter (MSC) mindestens eine Stufe (ST1, ..., STn) aufweist, in denen ein zweites Prozessfluid (PF2) verdichtet wird,
    wobei der Prozessverdichter (MSC) mindestens eine Kühlung (IC1, ..., ICn) stromabwärts einer Prozessstufe (ST1, ..., STn) aufweist, mittels derer dem zweiten Prozessfluid mindestens ein erster Abwärmestrom (QF1, ..., QFn) entzogen wird,
    wobei der Prozessverdichter (MSC) eine Antriebswelle (SD2) aufweist,
    wobei die Abtriebswelle (SD1) mechanisch mit der Antriebswelle (SD2) gekoppelt ist, so dass die Turbine (TRB) den Prozessverdichter (MSC) antreibt, dadurch gekennzeichnet, dass
    die Wärmekraftanlage (WKA) im Strom des ersten Prozessfluids (PF1) zwischen der Pumpe (PMP) und dem Kessel (BOI) mindestens einen Vorwärmer (PH1, ..., PHn) aufweist, mittels dessen dem ersten Prozessfluid (PF1) ein Vorwärmestrom (PRF) zugeführt wird, wobei mindestens eine Kühlung (IC1, ..., ICn) mittels mindestens einer Austauschleitung (FCC) mit der Wärmekraftanlage (WKA) derart verbunden sind, dass mindestens ein Teil des Abwärmestroms (QF1) dem ersten Prozessfluids (PF1) zwischen der Pumpe (PMP) und dem Kessel (BOI) als
    Vorwärmestrom (PRF) zugeführt wird,
    wobei die Anlage eine Regelungseinheit (CON) aufweist, wobei mindestens die Austauschleitung (FCC) oder die Kühlleitung (COL) Regelorgane (CV1 - CV4) aufweist, wobei die Regelungseinheit (CON) mit den Regelorganen (CV1 - CV4) in Verbindung steht und die Regelorgane (CV1 - CV4) verstellt in Abhängigkeit von der Temperatur des zweiten Prozessfluids zwischen einem Austritt aus der Kühlung (IC1, ..., ICn) und einem Eintritt in eine stromabwärtige Stufe des Prozessverdichters (MSC).
  2. Anlage (A) nach Anspruch 1, wobei der mindestens eine Vorwärmer (PH1, ..., PHn) ein kombiniertes Bauteil mit der mindestens einen Kühlung (IC1, ..., ICn) ausbildet, so dass mindestens ein Teil des Abwärmestroms (QF1) dem ersten Prozessfluids (PF1) zwischen der Pumpe (PMP) und dem Kessel (BOI) als Vorwärmestrom (PRF) zugeführt wird.
  3. Anlage (A) nach Anspruch 1, wobei die Turbine (TRB) mindestens eine Anzapfung (TB1, TB2) zur Entnahme von erstem Prozessfluid (PF1) aufweist,
    wobei mindestens ein Vorwärmer (PH1, ..., PHn) mit der Anzapfung (TB1, TB2) in fluidleitender Verbindung steht, so dass das entnommene erste Prozessfluid (PF1) das übrige erste Prozessfluid (PF1) vor Eintritt in den Kessel (BOI) vorwärmt.
  4. Anlage (A) nach Anspruch 1, wobei die Anlage eine Kühlleitung (COL) mit einem von der Kühlleitung (COL) geführtem Kühlfluid (CLF) aufweist, wobei die Kühlleitung (COL) an mindestens eine Kühlung (IC1, ..., ICn) angeschlossen ist und die Kühlung (IC1, ..., ICn) einen Teil des Abwärmestroms (QF1, ..., QFn) auf das Kühlfluid (CLF) überträgt.
  5. Verfahren zum Betrieb einer Anlage (A) mit einer Wärmekraftanlage (WKA) und einem mehrstufigen Prozessverdichter (MSC), wobei die Wärmekraftanlage (WKA) umfasst:
    - Pumpe (PMP),
    - Kessel (BOI),
    - Turbine (TRB) mit einer Abtriebswelle (SD1), oder Doppelabtrieb
    - Kondensator (CND),gekennzeichnet durch die Schritte:
    - Zirkulieren eines ersten Prozessfluids (PF1) in den miteinander fluidleitend verbundenen Elementen Pumpe (PMP), Kessel (BOI), Turbine (TRB), Kondensator (CND),
    - Verdichten eines zweiten Prozessfluids (PF2) mittels eine oder mehrerer Stufen (ST1, ..., STn) des
    Prozessverdichters (MSC),
    - Entziehen mindestens eines ersten Wärmestroms (QF1, ..., QFn) aus dem zweiten Prozessfluid (PF2) mittels mindestens einer Kühlung (IC1, ..., ICn) zwischen zwei
    Prozessstufen (ST1, ..., STn),
    - Übertragung von Antriebsleistung von der Turbine (TRB) auf den Prozessverdichter (MSC),
    - Zuführung mindestens eines Teils des Abwärmestroms (QF1) als Vorwärmestrom (PRF) im Strom des ersten Prozessfluids (PF1) zwischen der Pumpe (PMP) und dem Kessel (BOI),
    wobei die Anlage eine Kühlleitung (COL) mit einem von der Kühlleitung (COL) geführtem Kühlfluid (CLF) aufweist, wobei die Kühlleitung (COL) an mindestens eine Kühlung (IC1, ..., ICn) angeschlossen ist, wobei das Verfahren die weiteren Schritte aufweist:
    - Übertragung eines Teils des Abwärmestroms (QF1, ..., QFn) auf das Kühlfluid (CLF),
    wobei die Anlage eine Regelungseinheit (CON) aufweist, wobei mindestens die Austauschleitung (FCC) oder die Kühlleitung (COL) Regelorgane (CV1 - CV4) aufweist, wobei die Regelungseinheit (CON) mit den Regelorganen (CV1 - CV4) in Verbindung steht,
    wobei das Verfahren die weiteren Schritte aufweist:
    - Messen der Temperatur des zweiten Prozessfluids zwischen einen Austritt aus der Kühlung (IC1, ..., ICn) und einem Eintritt in eine stromabwärtige Stufe des Prozessverdichters (MSC)
    - Verstellen der Regelorgane (CV1 - CV4) in Abhängigkeit von der Temperatur des zweiten Prozessfluids zwischen einen Austritt aus der Kühlung (IC1, ..., ICn) und einem Eintritt in eine stromabwärtige Stufe des Prozessverdichters (MSC), wobei mindestens eine Kühlung (IC1, ... , ICn) mittels mindestens einer Austauschleitung (FCC) mit der Wärmekraftanlage (WKA) derart verbunden sind, dass mindestens ein Teil des Abwärmestroms (QF1) dem ersten Prozessfluids (PF1) zwischen der Pumpe (PMP) und dem Kessel (BOI) als Vorwärmestrom (PRF) zugeführt wird.
  6. Verfahren nach Anspruch 5, mit den weiteren Schritten:
    - Entnahme von erstem Prozessfluid (PF1) von der Turbine (TRB) mittels mindestens einer Anzapfung (TB1, TB2),
    - Vorwärmung des übrigen ersten Prozessfluids (PF1) vor Eintritt in den Kessel (BOI) mittels des entnommenen ersten Prozessfluids (PF1).
EP17761043.3A 2016-09-19 2017-08-22 Anlage und verfahren mit einer wärmekraftanlage und einem prozessverdichter Active EP3516178B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016217886.5A DE102016217886A1 (de) 2016-09-19 2016-09-19 Anlage und Verfahren mit einer Wärmekraftanlage und einem Prozessverdichter
PCT/EP2017/071097 WO2018050402A1 (de) 2016-09-19 2017-08-22 Anlage und verfahren mit einer wärmekraftanlage und einem prozessverdichter

Publications (2)

Publication Number Publication Date
EP3516178A1 EP3516178A1 (de) 2019-07-31
EP3516178B1 true EP3516178B1 (de) 2020-06-17

Family

ID=59745892

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17761043.3A Active EP3516178B1 (de) 2016-09-19 2017-08-22 Anlage und verfahren mit einer wärmekraftanlage und einem prozessverdichter

Country Status (5)

Country Link
EP (1) EP3516178B1 (de)
CN (1) CN109790760B (de)
DE (1) DE102016217886A1 (de)
RU (1) RU2700115C1 (de)
WO (1) WO2018050402A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ307962B6 (cs) * 2017-03-31 2019-09-18 Vysoká Škola Báňská-Technická Univerzita Ostrava Zařízení pro využití kompresního tepla

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH495498A (de) 1968-08-28 1970-08-31 Sulzer Ag Dampfkraftanlage mit aufgeladenem Dampferzeuger
SU1740707A1 (ru) * 1990-06-18 1992-06-15 Ленинградское высшее военное инженерное строительное училище им.генерала армии А.Н.Комаровского Комбинированна теплосилова установка
DE19745272C2 (de) * 1997-10-15 1999-08-12 Siemens Ag Gas- und Dampfturbinenanlage und Verfahren zum Betreiben einer derartigen Anlage
DE19943782C5 (de) * 1999-09-13 2015-12-17 Siemens Aktiengesellschaft Gas- und Dampfturbinenanlage
BR0306492A (pt) 2002-09-30 2004-10-13 Bp Corp North America Inc Métodos para fornecer potência para compressão de refrigerante, e compressão de refrigerante e potência elétrica compartilhada para um processo de liquefação de gás de hidrocarbonetos leves, com reduzidas emissões de dióxido de carbono, e, sistema para fornecer potência para compressão de refrigerante e potência elétrica compartilhada para um processo de liquefação de gás de hidrocarbonetos, com reduzidas emissões de dióxido de carborno
DE102004020753A1 (de) * 2004-04-27 2005-12-29 Man Turbo Ag Vorrichtung zur Ausnutzung der Abwärme von Verdichtern
EP1903189A1 (de) 2006-09-15 2008-03-26 Siemens Aktiengesellschaft LNG-Anlage in Kombination mit Gas- und Dampfturbinen
US20100263406A1 (en) 2007-11-07 2010-10-21 Willem Dam Method and apparatus for cooling and liquefying a hydrocarbon stream
EP2336693A3 (de) 2007-12-07 2015-07-01 Dresser-Rand Company Verdichtersystem und Verfahren für ein Gasverflüssigungssystem
DE102008062355A1 (de) 2008-12-18 2010-07-08 Siemens Aktiengesellschaft Turboverdichterstrang und Verfahren zum Betreiben desselben sowie Erdgasverflüssigungsanlage mit dem Turboverdichterstrang
CN102498267B (zh) 2009-06-09 2015-11-25 西门子公司 用于使天然气液化的装置和用于启动所述装置的方法
JP2013092144A (ja) * 2011-10-03 2013-05-16 Kobe Steel Ltd 補助動力発生装置
RU128901U1 (ru) * 2012-12-24 2013-06-10 Владимир Викторович Михайлов Комбинированная теплосиловая установка (варианты)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN109790760B (zh) 2021-11-09
DE102016217886A1 (de) 2018-03-22
CN109790760A (zh) 2019-05-21
RU2700115C1 (ru) 2019-09-12
WO2018050402A1 (de) 2018-03-22
EP3516178A1 (de) 2019-07-31

Similar Documents

Publication Publication Date Title
EP1591644B1 (de) Vorrichtung zur Ausnutzung der Abwärme von Verdichtern
EP0523467B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0819209B1 (de) Verfahren zum betreiben eines abhitzedampferzeugers sowie danach arbeitender abhitzedampferzeuger
DE60315823T2 (de) Verfahren und einrichtung zur stromerzeugung aus der im kern mindestens eines hochtemperatur-kernreaktors erzeugten wärme
DE102007041944B3 (de) Vorrichtung zur Energieumwandlung, Kraft-Wärme-Kopplungsanlage mit einer derartigen Vorrichtung und Verfahren zum Betreiben einer ORC-Anlage
EP2368021B1 (de) Abhitzedampferzeuger sowie ein verfahren zum verbesserten betrieb eines abhitzedampferzeugers
DE102010042792A1 (de) System zur Erzeugung mechanischer und/oder elektrischer Energie
EP2187051A1 (de) Verfahren und Vorrichtung zur Zwischenüberhitzung in einem solarthermischen Kraftwerk mit indirekter Verdampfung
EP0515911A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und entsprechende Anlage
EP0523466B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP3516178B1 (de) Anlage und verfahren mit einer wärmekraftanlage und einem prozessverdichter
DE102012217514A1 (de) Gas- und Dampfturbinenanlage mit Speisewasser-Teilstrom-Entgaser
DE102010016614A1 (de) Dampfturbinenkraftwerkssystem und Verfahren zur Montage desselben
EP2655809A1 (de) Abwärmenutzungsanlage
WO2017081248A1 (de) Anordnung und verfahren zur rückgewinnung von energie aus der abwärme mindestens einer brennkraftmaschine
EP2426337A1 (de) Einrichtung zur Brennstoffvorwärmung sowie Verfahren zur Brennstoffvorwärmung
EP3460179B1 (de) Station und verfahren zum erzeugen von mechanischer energie durch expandieren von erdgas
EP2559867A1 (de) Verfahren zum Erzeugen von elektrischer Energie mittels eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens
DE102010010614B4 (de) Verfahren und Vorrichtung zur Energieerzeugung in einer ORC-Anlage
DE102014203121B4 (de) Vorrichtung und Verfahren für einen ORC-Kreisprozess mit mehrstufiger Expansion
EP3280884B1 (de) Verfahren zum abkühlen einer dampfturbine
DE202012007723U1 (de) Vorrichtung zur Optimierung des inneren Wirkungsgrades eines Organic-Rankine-Prozesses mittels eines Rekuperator-Zwischenkreislaufs
EP3636932A1 (de) Luftverdichtungsanlage für eine luftzerlegung
EP3759330B1 (de) Erweiterter gasturbinenprozess mit expander
EP2952701A1 (de) Dampf-/Wärmekraftwerk und Verfahren zum Betreiben des Dampf-/Wärmekraftwerks

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005788

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1281551

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017005788

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005788

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200822

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

26N No opposition filed

Effective date: 20210318

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200822

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1281551

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 7

Ref country code: CH

Payment date: 20230902

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 7

Ref country code: DE

Payment date: 20230828

Year of fee payment: 7