EP3513223A1 - System zur bestimmung der lage von rohrleitungen - Google Patents

System zur bestimmung der lage von rohrleitungen

Info

Publication number
EP3513223A1
EP3513223A1 EP17807716.0A EP17807716A EP3513223A1 EP 3513223 A1 EP3513223 A1 EP 3513223A1 EP 17807716 A EP17807716 A EP 17807716A EP 3513223 A1 EP3513223 A1 EP 3513223A1
Authority
EP
European Patent Office
Prior art keywords
uav
determining
magnetic field
pipeline
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17807716.0A
Other languages
English (en)
French (fr)
Inventor
Josef Alois Birchbauer
Uwe Linnert
Klaus Ludwig
Markus Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3513223A1 publication Critical patent/EP3513223A1/de
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/48Indicating the position of the pig or mole in the pipe or conduit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/081Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices the magnetic field is produced by the objects or geological structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • G01V3/16Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat specially adapted for use from aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2101/00Uses or applications of pigs or moles
    • F16L2101/30Inspecting, measuring or testing

Definitions

  • the invention relates to a system for determining the position of pipelines with at least one geomolch, which is introduced into a pipeline, moves therein and has a magnetic source for generating a magnetic field.
  • underground pipelines such as pipelines for gas, oil, water, etc. must be known with high accuracy for inspection tasks, usually these pipelines and in particular the position of their upper edge after laying and restoration of the soil are no longer visible from the outside.
  • geomolche which are introduced into the pipeline and transported by the stream of Medium m the pipeline to be moved.
  • the determination of the position of the geomolchs is done by inertial measuring systems.
  • the object of the invention is to further develop the state of the art and in particular to improve the use of geomolets for measuring pipelines.
  • Fig. 1 shows the use of a system according to the invention in a schematic and side view.
  • Fig. 2 shows the use of the system according to the invention in plan view .
  • the illustrations show the use of a geomould GM for determining the position of a pipeline RL.
  • the Geomolch GM is equipped with a magnetic source MQ, which generates a magnetic field MF.
  • the field strength course of the magnetic field is detected with a magnetic field sensor MFS attached to an unmanned flying object UAV and spatially assigned.
  • the unmanned aerial object UAV follows the maximum of the magnetic signal at a predetermined altitude and positions itself in each case at a defined distance from the geomoloch GM, for example directly above it.
  • the position and course of the pipeline RL are determined from the position of the unmanned flying object UAV continuously determined by means of satellite navigation and the distance between geomolch GM and unmanned aerial object UAV which can be determined from the field strength curve of the magnetic field MF.
  • a magnetic source for example, permanent magnets or magnetic coils are conceivable. It is advantageous to use a with alternating current
  • the frequency and field strength of the magnetic field MF prefferably be matched to the properties of the pipeline RL in such a way that the eddy currents induced in the latter become a minimum.
  • the design of the magnetic field MF as a superimposed by an alternating field DC field since the alternating field transmission of magnetic materials by the superposition of a DC field, which magnetically saturates the material at the appropriate location, can be improved.
  • the magnetic constant field should continue to run as symmetrically as possible within the tube.
  • a further advantageous embodiment of the invention provides that the magnetic field also simultaneously for the detection of weak points in the pipe casing or irregularities in the overlying soil (for example, "illegal
  • Tapping by attaching leads
  • a bidirectional measurement would also be conceivable in that the signal measured by the magnetic field probe MFS is transmitted to the geomolcester GM, for example, at a different, lower frequency is returned.
  • the distance between unmanned aerial object UA and geomoloch GM can be determined with suitable coding over the propagation time of the signals.
  • the advantages achieved by the system according to the invention are in particular in a high accuracy of the position determination of the Geomolches GM especially for comparatively long pipes RL by eliminating the drift behavior of the incremental measurement by means of inertial measuring.
  • the system also allows complete automation of the measurement process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Die Erfindung betrifft ein System zur Bestimmung der Lage von Rohrleitungen mit zumindest einem Geomolch, der in eine Rohr- leitung eingebracht wird, sich darin fortbewegt und eine Mag- netquelle zur Erzeugung eines Magnetfeldes aufweist, wobei zumindest ein unbemanntes Flugobjekte (UAV) mit Magnetfeld- sensoren (MFS) und Positionsbestimmungseinrichtungen vorgese- hen ist und wobei Steuerungsmittel zur Bestimmung des Feld- stärkeverlaufs des Magnetfeldes (MF) und zur Positionierung des unbemannten Flugobjektes (UAV) in definiertem Abstand zum Geomolch (GM) vorgesehen sind und wobei Mittel zur Bestimmung der Lage des Geomolches (GM) aus der Position des unbemannten Flugobjektes (UAV)und dem definierten Abstand zwischen Geomolch (GM) und unbemanntem Flugobjekt (UAV)vorgesehen sind.

Description

Beschreibung / Description
System zur Bestimmung der Lage von Rohrleitungen
Die Erfindung betrifft ein System zur Bestimmung der Lage von Rohrleitungen mit zumindest einem Geomolch, der in eine Rohrleitung eingebracht wird, sich darin fortbewegt und eine Magnetquelle zur Erzeugung eines Magnetfeldes aufweist.
Die Lage von unterirdischen Rohrleitungen wie Pipelines für Gas, Öl, Wasser, etc. muss für Inspektionsaufgaben hochgenau bekannt sein, üblicherweise sind diese Pipelines und insbesondere die Lage ihrer Oberkante nach der Verlegung und Wiederherstellung des Erdreiches nicht mehr von außen einsehbar.
Bei der Neuverlegung von Pipelines werden diese während der Verlegung, also vor der Wiederaufschüttung des Erdreichs mittels zeitgemäßen Methoden in Katastergenauigkeit eingemessen. Ältere Pipelinebestände wurden bei der Verlegung in der Vergangenheit hingegen nicht in ausreichender Genauigkeit er- fasst. Zudem kann es durch instabile Untergründe wie z.B. Moore, Wüstensand, etc. geschehen, dass sich die Lage der Pipeline im eingebetteten Untergrund verändert.
Aus dem Stand der Technik sind Methoden bekannt die Pipeline bzw. ihre metallische Struktur im Erdreich zu orten.
Dies geschieht erdoberflächennah beispielsweise mittels Handmessgeräten, wie sie von der CORROCONT Group vertrieben werden (http : //www . corrocont . com/surveys/pipeline-locating-and- depth-measurement) , was die Übertragung des eingekoppelten Messsignals und somit die Sensitivität der Messung begünstigt .
Weiter bekannte Verfahren für die interne Inspektion von Pipelines nutzen sogenannte Geomolche, die in die Pipeline eingebracht werden und durch den Strom des transportierten Mediums m der Pipeline fortbewegt werden. Die Bestimmung der Position des Geomolchs erfolgt durch Inertialmesssysteme.
Diese Systeme sind mit dem Nachteil behaftet, dass sie eine Drift des Messergebnisses, also eine Fehlerfortpflanzung durch die inkrementelle Vorschubbestimmung aufweisen.
Dieses Fehlerverhalten kann mangels des Kontaktes zur Außenwelt nicht trivialerweise durch externe und somit absolute Messungen kompensiert werden, wobei insbesondere die zumeist metallische Struktur der Pipeline ein Hindernis darstellt, , welche die Übertragung von Funksignalen (elektrischen Feldern) stört ( Faradayscher Käfig) .
Bekannt sind aus dem Stand der Technik wie beispielsweise aus https://en.wikipedia.org/wiki/Pigging an der Außenhaut der Pipeline angebrachte akustische, magnetische oder auf Funktechnik beruhende Ortungseinrichtungen welche die Passage es Geomolchs detektieren können.
Diese Form von Sensorik ist aber gerade bei schlecht
eingemessenen Altbeständen nicht vorhanden.
Der Erfindung liegt die Aufgabe zugrunde, den Stand der Technik weiterzuentwickeln und insbesondere den Einsatz von Geo- molchen zur Vermessung von Pipelines zu verbessern.
Diese Aufgabe wird gelöst mit einem System gemäß Anspruch 1. Vorteilhafte Ausgestaltungen ergeb sich aus den Unteransprüchen .
Die Erfindung wird anhand von Figuren näher erläutert. Es zeigen beispielhaft:
Fig. 1 den Einsatz eines erfindungsgemäßen Systems in einer schematischen und seitlichen Darstellung.
Fig. 2 den Einsatz des erfindungsgemäßen Systems in Draufsicht .. Die Darstellungen zeigen den Einsatz eines Geomolches GM zur Bestimmung der Lage einer Rohrleitung RL .
Der Geomolch GM ist mit einer Magnetquelle MQ ausgestattet, die ein Magnetfeld MF erzeugt. Der Feldstärkeverlauf des Magnetfeldes wird mit einem, an einem unbemannten Flugobjekt UAV angebrachten Magnetfeldsensor MFS detektiert und räumlich zu- geordnet.
Das unbemannte Flugobjekt UAV folgt dem Maximum des magnetischen Signales in einer vorgegebenen Flughöhe und positioniert sich jeweils in definiertem Abstand zum Geomolch GM, beispielsweise direkt über diesem.
Durch die Bewegung des Geomolches GM in der Rohrleitung RL wird daher auch das unbemannte Flugobjekt UAV dem Verlauf der Rohrleitung RL folgen.
Aus der mittels Satellitennavigation laufend bestimmten Position des unbemannten Flugobjektes UAV und dem aus dem Feldstärkeverlauf des Magnetfeldes MF bestimmbaren Abstand zwischen Geomolch GM und unbemanntem Flugobjekt UAV werden Lage und Verlauf der Rohrleitung RL ermittelt.
Dabei ist es zweckmäßig wenn die mittels Inertialmesssystemen erhaltenen Informationen zur Position des Geomolches ebenfalls in die Ermittlungen von Lage und Verlauf der Rohrlei- tung RL herangezogen werden.
Als Magnetquelle sind beispielsweise Permanentmagnete oder Magnetspulen denkbar. Vorteilhaft ist der Einsatz einer mit Wechselstrom
beaufschlagten Spule als Magnetquelle MQ zur Erzeugung eines magnetischen Wechselfeldes MF mit einer aufgeprägten Fre- quenzsignatur, sodass die Unterscheidung von Störsignalen ermöglicht wird.
Dazu ist es zweckmäßig, wenn Frequenz und Feldstärke des Mag- netfeldes MF so an die Eigenschaften der Rohrleitung RL ange- passt werden, dass die in derselben induzierten Wirbelströme ein Minimum werden .
Vorteilhaft kann auch die Ausgestaltung des Magnetfeldes MF als ein durch ein Wechselfeld überlagertes Gleichfeld sein, da die Wechselfeld-Durchlässigkeit von magnetischen Materialien durch die Überlagerung eines Gleichfeldes, welches das Material an entsprechender Stelle magnetisch sättigt, verbessert werden kann .
Um ein magnetisches Ankleben des Molches an das Umgebende Rohr zu vermeiden, sollte weiterhin das magnetische Gleichfeld möglichst symmetrisch innerhalb des Rohres verlaufen. Bei der Bestimmung der Position des Geomolches GM ist es zweckmäßig, wenn dazu sowohl die Position
Es kann auch vorteilhaft sein, das unbemannte Flugobjekt UAV mit einer Mehrzahl von Magnetfeldsensoren MFS auszustatten, und diese kreuzförmig anzuordnen, wie dies in Fig. 2 dargestellt ist. Damit wird die Lokalisierung des Geomolches GM und damit der Rohrleitung RL in lateraler Richtung durch die Detektion eines Maximums verbessert. Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass das Magnetfeld auch gleichzeitig zur Detektion von Schwachstellen in der Rohrleitungshülle oder von Unregelmässigkeiten im darüber liegenden Erdreich (z.B. „illegal
Tapping" durch Anbringen von Ableitungen) verwendet wird.
Denkbar wäre auch eine bidirektionalen Messung, indem das durch die Magnetfeldsonde MFS gemessene Signal beispielsweise auf einer anderen, niedrigeren Frequenz an den Geomolch GM zurückgesandt wird. Dadurch kann mit geeigneter Codierung über die Laufzeit der Signale der Abstand zwischen unbemanntem Flugobjekt UA und Geomolch GM bestimmt werden.
Alternativ wäre auch eine Abstandmessung über den Vergleich der Phasenlage der Signale denkbar.
Die mit dem erfindungsgemäßen System erzielten Vorteile liegen insbesondere in einer hohen Genauigkeit der Positionsbestimmung des Geomolches GM vor allem bei vergleichsweise langen Rohrleitungen RL durch Elimination des Driftverhaltens der inkrementellen Messung mittels Inertialmesssystem.
Damit können auch vergleichsweise einfache und kostengünstige Messsysteme im Geomolch GM zum Einsatz kommen.
Das System ermöglicht weiterhin eine vollständige Automatisierung des Meßvorganges.
Bezugszeichenliste
GM Geomolch
UAV Unbemanntes Flugobjekt
RL Rohrleitung
MF Magnetfeld
MFS Magnetfeldsensor
MQ Magnetquelle

Claims

Patentansprüche / Patent Claims
1. System zur Bestimmung der Lage von Rohrleitungen (RL) mit zumindest einem Geomolch (GM) , der in eine Rohrlei- tung (RL) eingebracht wird, sich darin fortbewegt und eine Magnetquelle (MQ) zur Erzeugung eines Magnetfeldes (MF) aufweist, dadurch gekennzeichnet, dass zumindest ein unbemanntes Flugobjekte (UAV) mit Magnetfeldsensoren (MFS) und Positionsbestimmungseinrichtungen vorge- sehen ist und dass Steuerungsmittel zur Bestimmung des
Feldstärkeverlaufs des Magnetfeldes (MF) und zur Positionierung des unbemannten Flugobjektes (UAV) in definiertem Abstand zum Geomolch (GM) und Mittel zur Bestimmung der Lage des Geomolches (GM) aus der Position des unbemannten Flugobjektes (UAV) und dem definierten
Abstand zwischen Geomolch (GM) und unbemanntem Flugobjekt (UAV) vorgesehen sind.
2. System nach Anspruch 1, dadurch gekennzeichnet, dass die Positionsbestimmungseinrichtungen des unbemannten
Flugobjektes (UAV) Mittel zur Satellitennavigation umfassen .
3. System nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der zumindest eine Geomolch (GM) durch den Strom des transportierten Mediums in der Rohrleitung fortbewegt wird.
4. System nach einem der Ansprüche 1 bis 3, dadurch ge- kennzeichnet, dass aus einer Abfolge von ermittelten
Positionen des sich bewegenden Geomolches (GM) die Lage der Rohrleitung bestimmt wird.
5. System nach einem der Ansprüche 1 bis 4, dadurch ge- kennzeichnet, dass als Magnetquelle (MQ) eine mit Wechselstrom beaufschlagte Spule vorgesehen ist und dass der Wechselstrom ein typisches und unterscheidbares Frequenzmuster aufweist.
6. System nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Magnetfeld (MF) ein durch ein Wechselfeld überlagertes Gleichfeld vorgesehen ist.
EP17807716.0A 2016-11-30 2017-11-08 System zur bestimmung der lage von rohrleitungen Pending EP3513223A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016223774.8A DE102016223774A1 (de) 2016-11-30 2016-11-30 System zur Bestimmung der Lage von Rohrleitungen
PCT/EP2017/078546 WO2018099699A1 (de) 2016-11-30 2017-11-08 System zur bestimmung der lage von rohrleitungen

Publications (1)

Publication Number Publication Date
EP3513223A1 true EP3513223A1 (de) 2019-07-24

Family

ID=60515315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17807716.0A Pending EP3513223A1 (de) 2016-11-30 2017-11-08 System zur bestimmung der lage von rohrleitungen

Country Status (7)

Country Link
US (1) US11237289B2 (de)
EP (1) EP3513223A1 (de)
CN (1) CN110023791B (de)
CA (1) CA3043138C (de)
DE (1) DE102016223774A1 (de)
RU (1) RU2716864C1 (de)
WO (1) WO2018099699A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699379B (zh) * 2018-04-02 2024-01-30 杜书勇 用于管道的智能数据采集系统和方法
EP3640620A1 (de) * 2018-10-18 2020-04-22 Siemens Aktiengesellschaft Verfahren zur detektion des verlaufs einer unterirdisch verlegten rohrleitung mittels einer luftgestützten erfassungsvorrichtung
RU2712504C1 (ru) * 2018-12-28 2020-01-29 Государственное Унитарное Предприятие "Водоканал Санкт-Петербурга" Способ неразрушающего инструментального обследования тоннельных канализационных коллекторов
RU2708799C1 (ru) * 2018-12-28 2019-12-11 Государственное Унитарное Предприятие "Водоканал Санкт-Петербурга" Способ обследования закрытых подземных выработок с применением беспилотных летательных аппаратов
CN110282130A (zh) * 2019-04-29 2019-09-27 北京工业大学 一种基于云计算的钢结构腐蚀检测高空飞行智能机器人
RU2747385C1 (ru) * 2020-10-30 2021-05-04 Александр Евгеньевич Зорин Способ определения пространственного положения трубопровода
CN112904878B (zh) * 2021-01-15 2022-08-16 西南石油大学 一种用于管道高后果区识别的无人机系统和方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427943A (en) 1981-08-05 1984-01-24 Innovatum, Inc. Apparatus and method for locating and tracking magnetic objects or sources
DE4406681A1 (de) 1994-03-01 1995-09-07 Siemens Ag Verfahren zum Positionieren oder Bestimmen der Position eines Inspektions- oder Bearbeitungsgerätes
GB2297666B (en) 1995-01-31 1999-06-02 British Gas Plc Signalling to or from a vehicle inside a pipeline
US6243657B1 (en) * 1997-12-23 2001-06-05 Pii North America, Inc. Method and apparatus for determining location of characteristics of a pipeline
US6553322B1 (en) * 1999-09-29 2003-04-22 Honeywell International Inc. Apparatus and method for accurate pipeline surveying
US6816110B1 (en) * 2003-07-30 2004-11-09 Varco I/P, Inc. Precision positioning AGM system
US8261623B2 (en) * 2007-07-09 2012-09-11 Microline Technology Corporation Communication system for pipeline inspection
CN102269825A (zh) * 2010-06-04 2011-12-07 中国石油天然气股份有限公司 一种管道清管器在线跟踪定位系统
CN102169185B (zh) * 2010-12-30 2013-03-13 中国石油大学(北京) 一种清管器跟踪系统
RU2503038C1 (ru) 2012-06-26 2013-12-27 Закрытое акционерное общество "Комплексный технический сервис" Автоматический беспилотный диагностический комплекс
WO2014189943A1 (en) 2013-05-22 2014-11-27 Weatherford/Lamb, Inc. Method and system for tracking movement trajectory of a pipeline tool
CN104297596B (zh) 2014-10-17 2017-08-04 中国石油天然气股份有限公司 一种清管器跟踪定位的磁场发射机信号强度检测装置
US10378689B2 (en) 2015-11-09 2019-08-13 Halliburton Energy Services, Inc. Pig tracking by unmanned submarine
CN106092082A (zh) 2016-05-26 2016-11-09 重庆前卫科技集团有限公司 一种清管器定位方法

Also Published As

Publication number Publication date
CA3043138C (en) 2021-11-09
CN110023791B (zh) 2021-08-31
CA3043138A1 (en) 2018-06-07
DE102016223774A1 (de) 2018-05-30
US20200012005A1 (en) 2020-01-09
US11237289B2 (en) 2022-02-01
WO2018099699A1 (de) 2018-06-07
RU2716864C1 (ru) 2020-03-17
CN110023791A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2018099699A1 (de) System zur bestimmung der lage von rohrleitungen
EP2669694B1 (de) Verfahren und Vorrichtung zum Lokalisieren eines Kabelfehlers eines verlegten Kabels
EP2782775B1 (de) System zur positionsbestimmung von zueinander beweglichen objekten
DE102008058457A1 (de) Verfahren und handgeführter Sensor mit adaptiver Detektionsschwelle zur Detektion von in Bauwerkuntergründen eingebetteten Fremdobjekten
EP3047264B1 (de) Verfahren zur berührungslosen bestimmung einer mechanisch-technologischen kenngrösse von ferromagnetischen metallen
WO2016020326A1 (de) Spulenüberdeckung
EP3060942A1 (de) Verfahren zur bestimmung einer anordnung zumindest zweier sensoren und sensornetzwerk
DE202018107011U1 (de) Vorrichtung zur Bestimmung von Betriebsparametern von Fahrzeugen und zugehöriger Infrastruktur
DE102016006137A1 (de) Verfahren zur Lokalisierung eines Fahrzeugs
DE102016105413B4 (de) Geschwindigkeitsmessverfahren und geschwindigkeitsmessanordnung
DE102015211084A1 (de) Verfahren und Vorrichtung zur Positionsbestimmung eines Schienenfahrzeuges
DE102012017359A1 (de) Verfahren und Vorrichtung zur magnetisch induzierten Wegmessung
EP3314310B1 (de) Vorrichtung und verfahren zur erfassung eines gegenstandes
DE102015201041A1 (de) Verfahren und Vorrichtung zur fahrzeugseitigen Positionsdatenerfassung bei einem Schienenfahrzeug
DE102012217426A1 (de) Verfahren und Vorrichtung zur fahrzeugseitigen Positionsdatenerfassung bei einem Schienenfahrzeug
DE102015212332A1 (de) Verfahren zum automatisierten Führen eines Kraftfahrzeugs und Kraftfahrzeug zum Durchführen des Verfahrens
DE102012111653A1 (de) Erfassung einer Position auf einer Verfahrstrecke
DE102008010580A1 (de) Einrichtung zur Ortung von Teilentladungen in gasisolierten Schaltanlagen im Zeitbereich
EP3969839B1 (de) Bestimmung des mittleren abstandes einer messeinrichtung zu einem leiter
WO2016102570A1 (de) Verfahren zum detektieren eines messbereiches in einem untergrund
DE10004804A1 (de) Verfahren und Vorrichtung zur Vermessung der Lage von Rohrleitungen während des unterirdischen Verlegevorgangs
DE102010010045A1 (de) Elektromagnetischer Durchflussmesser
WO2024094757A1 (de) Verfahren zur positionsbestimmung eines arbeitsgeräts in einer rohrleitung
DE102018111454A1 (de) Sensor zum Erfassen von Metallteilen, sowie Verfahren zum Abschwächen eines magnetischen Feldes
DE102016205069A1 (de) Positionsbestimmungseinrichtung für Kolben-Zylinder-Anordnungen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220316