EP3513223A1 - System for determining the location of pipelines - Google Patents

System for determining the location of pipelines

Info

Publication number
EP3513223A1
EP3513223A1 EP17807716.0A EP17807716A EP3513223A1 EP 3513223 A1 EP3513223 A1 EP 3513223A1 EP 17807716 A EP17807716 A EP 17807716A EP 3513223 A1 EP3513223 A1 EP 3513223A1
Authority
EP
European Patent Office
Prior art keywords
uav
determining
magnetic field
pipeline
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17807716.0A
Other languages
German (de)
French (fr)
Inventor
Josef Alois Birchbauer
Uwe Linnert
Klaus Ludwig
Markus Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3513223A1 publication Critical patent/EP3513223A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/48Indicating the position of the pig or mole in the pipe or conduit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/081Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices the magnetic field is produced by the objects or geological structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • G01V3/16Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat specially adapted for use from aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2101/00Uses or applications of pigs or moles
    • F16L2101/30Inspecting, measuring or testing

Definitions

  • the invention relates to a system for determining the position of pipelines with at least one geomolch, which is introduced into a pipeline, moves therein and has a magnetic source for generating a magnetic field.
  • underground pipelines such as pipelines for gas, oil, water, etc. must be known with high accuracy for inspection tasks, usually these pipelines and in particular the position of their upper edge after laying and restoration of the soil are no longer visible from the outside.
  • geomolche which are introduced into the pipeline and transported by the stream of Medium m the pipeline to be moved.
  • the determination of the position of the geomolchs is done by inertial measuring systems.
  • the object of the invention is to further develop the state of the art and in particular to improve the use of geomolets for measuring pipelines.
  • Fig. 1 shows the use of a system according to the invention in a schematic and side view.
  • Fig. 2 shows the use of the system according to the invention in plan view .
  • the illustrations show the use of a geomould GM for determining the position of a pipeline RL.
  • the Geomolch GM is equipped with a magnetic source MQ, which generates a magnetic field MF.
  • the field strength course of the magnetic field is detected with a magnetic field sensor MFS attached to an unmanned flying object UAV and spatially assigned.
  • the unmanned aerial object UAV follows the maximum of the magnetic signal at a predetermined altitude and positions itself in each case at a defined distance from the geomoloch GM, for example directly above it.
  • the position and course of the pipeline RL are determined from the position of the unmanned flying object UAV continuously determined by means of satellite navigation and the distance between geomolch GM and unmanned aerial object UAV which can be determined from the field strength curve of the magnetic field MF.
  • a magnetic source for example, permanent magnets or magnetic coils are conceivable. It is advantageous to use a with alternating current
  • the frequency and field strength of the magnetic field MF prefferably be matched to the properties of the pipeline RL in such a way that the eddy currents induced in the latter become a minimum.
  • the design of the magnetic field MF as a superimposed by an alternating field DC field since the alternating field transmission of magnetic materials by the superposition of a DC field, which magnetically saturates the material at the appropriate location, can be improved.
  • the magnetic constant field should continue to run as symmetrically as possible within the tube.
  • a further advantageous embodiment of the invention provides that the magnetic field also simultaneously for the detection of weak points in the pipe casing or irregularities in the overlying soil (for example, "illegal
  • Tapping by attaching leads
  • a bidirectional measurement would also be conceivable in that the signal measured by the magnetic field probe MFS is transmitted to the geomolcester GM, for example, at a different, lower frequency is returned.
  • the distance between unmanned aerial object UA and geomoloch GM can be determined with suitable coding over the propagation time of the signals.
  • the advantages achieved by the system according to the invention are in particular in a high accuracy of the position determination of the Geomolches GM especially for comparatively long pipes RL by eliminating the drift behavior of the incremental measurement by means of inertial measuring.
  • the system also allows complete automation of the measurement process.

Abstract

The invention relates to a system for determining the location of pipelines using at least one geopig that is introduced into a pipeline, advances therein and has a magnetic source for generating a magnetic field, wherein at least one unmanned aerial vehicle (UAV) is provided with magnetic field sensors (MFS) and position determination devices and wherein control means are provided for determining the field strength profile of the magnetic field (MF) and for positioning the unmanned aerial vehicle (UAV) at a defined distance from the geopig (GM) and wherein means are provided for determining the location of the geopig (GM) from the position of the unmanned aerial vehicle (UAV) and the defined distance between the geopig (GM) and the unmanned aerial vehicle (UAV).

Description

Beschreibung / Description Description / Description
System zur Bestimmung der Lage von Rohrleitungen System for determining the position of pipelines
Die Erfindung betrifft ein System zur Bestimmung der Lage von Rohrleitungen mit zumindest einem Geomolch, der in eine Rohrleitung eingebracht wird, sich darin fortbewegt und eine Magnetquelle zur Erzeugung eines Magnetfeldes aufweist. The invention relates to a system for determining the position of pipelines with at least one geomolch, which is introduced into a pipeline, moves therein and has a magnetic source for generating a magnetic field.
Die Lage von unterirdischen Rohrleitungen wie Pipelines für Gas, Öl, Wasser, etc. muss für Inspektionsaufgaben hochgenau bekannt sein, üblicherweise sind diese Pipelines und insbesondere die Lage ihrer Oberkante nach der Verlegung und Wiederherstellung des Erdreiches nicht mehr von außen einsehbar. The location of underground pipelines such as pipelines for gas, oil, water, etc. must be known with high accuracy for inspection tasks, usually these pipelines and in particular the position of their upper edge after laying and restoration of the soil are no longer visible from the outside.
Bei der Neuverlegung von Pipelines werden diese während der Verlegung, also vor der Wiederaufschüttung des Erdreichs mittels zeitgemäßen Methoden in Katastergenauigkeit eingemessen. Ältere Pipelinebestände wurden bei der Verlegung in der Vergangenheit hingegen nicht in ausreichender Genauigkeit er- fasst. Zudem kann es durch instabile Untergründe wie z.B. Moore, Wüstensand, etc. geschehen, dass sich die Lage der Pipeline im eingebetteten Untergrund verändert. During the relocation of pipelines, these are measured during cabling, ie before the repopulation of the soil by means of state-of-the-art cadastral accuracy. On the other hand, older pipeline stocks were not recorded with sufficient accuracy during relocation in the past. In addition, it can be caused by unstable surfaces such. Moore, desert sand, etc. happen that the position of the pipeline changes in the embedded underground.
Aus dem Stand der Technik sind Methoden bekannt die Pipeline bzw. ihre metallische Struktur im Erdreich zu orten. From the prior art methods are known to locate the pipeline or its metallic structure in the ground.
Dies geschieht erdoberflächennah beispielsweise mittels Handmessgeräten, wie sie von der CORROCONT Group vertrieben werden (http : //www . corrocont . com/surveys/pipeline-locating-and- depth-measurement) , was die Übertragung des eingekoppelten Messsignals und somit die Sensitivität der Messung begünstigt . This is done close to the surface of the earth, for example by means of hand-held measuring devices marketed by the CORROCONT Group (http://www.corrocont.com / surveys / pipeline-locating-and-depth-measurement), which determines the transmission of the coupled measurement signal and thus the sensitivity of the Measurement favors.
Weiter bekannte Verfahren für die interne Inspektion von Pipelines nutzen sogenannte Geomolche, die in die Pipeline eingebracht werden und durch den Strom des transportierten Mediums m der Pipeline fortbewegt werden. Die Bestimmung der Position des Geomolchs erfolgt durch Inertialmesssysteme. Further known methods for the internal inspection of pipelines use so-called geomolche, which are introduced into the pipeline and transported by the stream of Medium m the pipeline to be moved. The determination of the position of the geomolchs is done by inertial measuring systems.
Diese Systeme sind mit dem Nachteil behaftet, dass sie eine Drift des Messergebnisses, also eine Fehlerfortpflanzung durch die inkrementelle Vorschubbestimmung aufweisen. These systems suffer from the disadvantage that they have a drift in the measurement result, that is, an error propagation through the incremental feed determination.
Dieses Fehlerverhalten kann mangels des Kontaktes zur Außenwelt nicht trivialerweise durch externe und somit absolute Messungen kompensiert werden, wobei insbesondere die zumeist metallische Struktur der Pipeline ein Hindernis darstellt, , welche die Übertragung von Funksignalen (elektrischen Feldern) stört ( Faradayscher Käfig) . In the absence of contact with the outside world, this fault behavior can not be trivially compensated for by external and thus absolute measurements, in which case the metallic structure of the pipeline is an obstacle that interferes with the transmission of radio signals (Faraday cage).
Bekannt sind aus dem Stand der Technik wie beispielsweise aus https://en.wikipedia.org/wiki/Pigging an der Außenhaut der Pipeline angebrachte akustische, magnetische oder auf Funktechnik beruhende Ortungseinrichtungen welche die Passage es Geomolchs detektieren können. Are known from the prior art such as from https://en.wikipedia.org/wiki/Pigging on the outer skin of the pipeline attached acoustic, magnetic or based on wireless locators that can detect the passage of Geomolchs.
Diese Form von Sensorik ist aber gerade bei schlecht But this form of sensor technology is just bad
eingemessenen Altbeständen nicht vorhanden. measured old stocks not available.
Der Erfindung liegt die Aufgabe zugrunde, den Stand der Technik weiterzuentwickeln und insbesondere den Einsatz von Geo- molchen zur Vermessung von Pipelines zu verbessern. The object of the invention is to further develop the state of the art and in particular to improve the use of geomolets for measuring pipelines.
Diese Aufgabe wird gelöst mit einem System gemäß Anspruch 1. Vorteilhafte Ausgestaltungen ergeb sich aus den Unteransprüchen . This object is achieved with a system according to claim 1. Advantageous embodiments result from the subclaims.
Die Erfindung wird anhand von Figuren näher erläutert. Es zeigen beispielhaft: The invention will be explained in more detail with reference to figures. They show by way of example:
Fig. 1 den Einsatz eines erfindungsgemäßen Systems in einer schematischen und seitlichen Darstellung. Fig. 1 shows the use of a system according to the invention in a schematic and side view.
Fig. 2 den Einsatz des erfindungsgemäßen Systems in Draufsicht .. Die Darstellungen zeigen den Einsatz eines Geomolches GM zur Bestimmung der Lage einer Rohrleitung RL . Fig. 2 shows the use of the system according to the invention in plan view .. The illustrations show the use of a geomould GM for determining the position of a pipeline RL.
Der Geomolch GM ist mit einer Magnetquelle MQ ausgestattet, die ein Magnetfeld MF erzeugt. Der Feldstärkeverlauf des Magnetfeldes wird mit einem, an einem unbemannten Flugobjekt UAV angebrachten Magnetfeldsensor MFS detektiert und räumlich zu- geordnet. The Geomolch GM is equipped with a magnetic source MQ, which generates a magnetic field MF. The field strength course of the magnetic field is detected with a magnetic field sensor MFS attached to an unmanned flying object UAV and spatially assigned.
Das unbemannte Flugobjekt UAV folgt dem Maximum des magnetischen Signales in einer vorgegebenen Flughöhe und positioniert sich jeweils in definiertem Abstand zum Geomolch GM, beispielsweise direkt über diesem. The unmanned aerial object UAV follows the maximum of the magnetic signal at a predetermined altitude and positions itself in each case at a defined distance from the geomoloch GM, for example directly above it.
Durch die Bewegung des Geomolches GM in der Rohrleitung RL wird daher auch das unbemannte Flugobjekt UAV dem Verlauf der Rohrleitung RL folgen. Due to the movement of the Geomolches GM in the pipeline RL therefore the unmanned aerial object UAV will follow the course of the pipeline RL.
Aus der mittels Satellitennavigation laufend bestimmten Position des unbemannten Flugobjektes UAV und dem aus dem Feldstärkeverlauf des Magnetfeldes MF bestimmbaren Abstand zwischen Geomolch GM und unbemanntem Flugobjekt UAV werden Lage und Verlauf der Rohrleitung RL ermittelt. The position and course of the pipeline RL are determined from the position of the unmanned flying object UAV continuously determined by means of satellite navigation and the distance between geomolch GM and unmanned aerial object UAV which can be determined from the field strength curve of the magnetic field MF.
Dabei ist es zweckmäßig wenn die mittels Inertialmesssystemen erhaltenen Informationen zur Position des Geomolches ebenfalls in die Ermittlungen von Lage und Verlauf der Rohrlei- tung RL herangezogen werden. It is expedient if the information on the position of the geomolche obtained by means of inertial measuring systems is likewise used in the determination of the position and course of the pipeline RL.
Als Magnetquelle sind beispielsweise Permanentmagnete oder Magnetspulen denkbar. Vorteilhaft ist der Einsatz einer mit Wechselstrom As a magnetic source, for example, permanent magnets or magnetic coils are conceivable. It is advantageous to use a with alternating current
beaufschlagten Spule als Magnetquelle MQ zur Erzeugung eines magnetischen Wechselfeldes MF mit einer aufgeprägten Fre- quenzsignatur, sodass die Unterscheidung von Störsignalen ermöglicht wird. acted coil as a magnetic source MQ for generating an alternating magnetic field MF with an imprinted Fre- frequency signature so that the distinction of interference signals is made possible.
Dazu ist es zweckmäßig, wenn Frequenz und Feldstärke des Mag- netfeldes MF so an die Eigenschaften der Rohrleitung RL ange- passt werden, dass die in derselben induzierten Wirbelströme ein Minimum werden . For this purpose, it is expedient for the frequency and field strength of the magnetic field MF to be matched to the properties of the pipeline RL in such a way that the eddy currents induced in the latter become a minimum.
Vorteilhaft kann auch die Ausgestaltung des Magnetfeldes MF als ein durch ein Wechselfeld überlagertes Gleichfeld sein, da die Wechselfeld-Durchlässigkeit von magnetischen Materialien durch die Überlagerung eines Gleichfeldes, welches das Material an entsprechender Stelle magnetisch sättigt, verbessert werden kann . Advantageously, the design of the magnetic field MF as a superimposed by an alternating field DC field, since the alternating field transmission of magnetic materials by the superposition of a DC field, which magnetically saturates the material at the appropriate location, can be improved.
Um ein magnetisches Ankleben des Molches an das Umgebende Rohr zu vermeiden, sollte weiterhin das magnetische Gleichfeld möglichst symmetrisch innerhalb des Rohres verlaufen. Bei der Bestimmung der Position des Geomolches GM ist es zweckmäßig, wenn dazu sowohl die Position In order to avoid a magnetic sticking of the pig to the surrounding pipe, the magnetic constant field should continue to run as symmetrically as possible within the tube. When determining the position of the geomould GM, it is expedient if both the position
Es kann auch vorteilhaft sein, das unbemannte Flugobjekt UAV mit einer Mehrzahl von Magnetfeldsensoren MFS auszustatten, und diese kreuzförmig anzuordnen, wie dies in Fig. 2 dargestellt ist. Damit wird die Lokalisierung des Geomolches GM und damit der Rohrleitung RL in lateraler Richtung durch die Detektion eines Maximums verbessert. Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass das Magnetfeld auch gleichzeitig zur Detektion von Schwachstellen in der Rohrleitungshülle oder von Unregelmässigkeiten im darüber liegenden Erdreich (z.B. „illegal It can also be advantageous to equip the unmanned flying object UAV with a plurality of magnetic field sensors MFS and to arrange them in a cross shape, as shown in FIG. 2. Thus, the localization of the Geomolches GM and thus the pipeline RL in the lateral direction is improved by the detection of a maximum. A further advantageous embodiment of the invention provides that the magnetic field also simultaneously for the detection of weak points in the pipe casing or irregularities in the overlying soil (for example, "illegal
Tapping" durch Anbringen von Ableitungen) verwendet wird. Tapping "by attaching leads) is used.
Denkbar wäre auch eine bidirektionalen Messung, indem das durch die Magnetfeldsonde MFS gemessene Signal beispielsweise auf einer anderen, niedrigeren Frequenz an den Geomolch GM zurückgesandt wird. Dadurch kann mit geeigneter Codierung über die Laufzeit der Signale der Abstand zwischen unbemanntem Flugobjekt UA und Geomolch GM bestimmt werden. A bidirectional measurement would also be conceivable in that the signal measured by the magnetic field probe MFS is transmitted to the geomolcester GM, for example, at a different, lower frequency is returned. As a result, the distance between unmanned aerial object UA and geomoloch GM can be determined with suitable coding over the propagation time of the signals.
Alternativ wäre auch eine Abstandmessung über den Vergleich der Phasenlage der Signale denkbar. Alternatively, a distance measurement via the comparison of the phase position of the signals would be conceivable.
Die mit dem erfindungsgemäßen System erzielten Vorteile liegen insbesondere in einer hohen Genauigkeit der Positionsbestimmung des Geomolches GM vor allem bei vergleichsweise langen Rohrleitungen RL durch Elimination des Driftverhaltens der inkrementellen Messung mittels Inertialmesssystem. The advantages achieved by the system according to the invention are in particular in a high accuracy of the position determination of the Geomolches GM especially for comparatively long pipes RL by eliminating the drift behavior of the incremental measurement by means of inertial measuring.
Damit können auch vergleichsweise einfache und kostengünstige Messsysteme im Geomolch GM zum Einsatz kommen. This means comparatively simple and cost-effective measuring systems can also be used in the Geomolch GM.
Das System ermöglicht weiterhin eine vollständige Automatisierung des Meßvorganges. The system also allows complete automation of the measurement process.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
GM Geomolch GM Geomolch
UAV Unbemanntes Flugobjekt  UAV Unmanned aerial object
RL Rohrleitung  RL pipe
MF Magnetfeld  MF magnetic field
MFS Magnetfeldsensor  MFS magnetic field sensor
MQ Magnetquelle  MQ magnetic source

Claims

Patentansprüche / Patent Claims Claims / Patent Claims
1. System zur Bestimmung der Lage von Rohrleitungen (RL) mit zumindest einem Geomolch (GM) , der in eine Rohrlei- tung (RL) eingebracht wird, sich darin fortbewegt und eine Magnetquelle (MQ) zur Erzeugung eines Magnetfeldes (MF) aufweist, dadurch gekennzeichnet, dass zumindest ein unbemanntes Flugobjekte (UAV) mit Magnetfeldsensoren (MFS) und Positionsbestimmungseinrichtungen vorge- sehen ist und dass Steuerungsmittel zur Bestimmung des1. System for determining the position of pipelines (RL) with at least one geomoloch (GM), which is introduced into a pipeline (RL), moves therein and has a magnetic source (MQ) for generating a magnetic field (MF), characterized in that at least one unmanned flying object (UAV) with magnetic field sensors (MFS) and position determining means is provided and that control means for determining the
Feldstärkeverlaufs des Magnetfeldes (MF) und zur Positionierung des unbemannten Flugobjektes (UAV) in definiertem Abstand zum Geomolch (GM) und Mittel zur Bestimmung der Lage des Geomolches (GM) aus der Position des unbemannten Flugobjektes (UAV) und dem definiertenField strength curve of the magnetic field (MF) and for positioning the unmanned flying object (UAV) at a defined distance to the Geomolch (GM) and means for determining the position of the Geomolches (GM) from the position of the unmanned flying object (UAV) and the defined
Abstand zwischen Geomolch (GM) und unbemanntem Flugobjekt (UAV) vorgesehen sind. Distance between Geomolch (GM) and unmanned aerial object (UAV) are provided.
2. System nach Anspruch 1, dadurch gekennzeichnet, dass die Positionsbestimmungseinrichtungen des unbemannten2. System according to claim 1, characterized in that the position determining means of the unmanned
Flugobjektes (UAV) Mittel zur Satellitennavigation umfassen . Flying object (UAV) means for satellite navigation.
3. System nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der zumindest eine Geomolch (GM) durch den Strom des transportierten Mediums in der Rohrleitung fortbewegt wird. 3. System according to claim 1 or 2, characterized in that the at least one Geomolch (GM) is moved by the flow of the transported medium in the pipeline.
4. System nach einem der Ansprüche 1 bis 3, dadurch ge- kennzeichnet, dass aus einer Abfolge von ermittelten4. System according to one of claims 1 to 3, character- ized in that from a sequence of determined
Positionen des sich bewegenden Geomolches (GM) die Lage der Rohrleitung bestimmt wird. Positions of the moving Geomolches (GM) the position of the pipeline is determined.
5. System nach einem der Ansprüche 1 bis 4, dadurch ge- kennzeichnet, dass als Magnetquelle (MQ) eine mit Wechselstrom beaufschlagte Spule vorgesehen ist und dass der Wechselstrom ein typisches und unterscheidbares Frequenzmuster aufweist. 5. System according to any one of claims 1 to 4, character- ized in that as a magnetic source (MQ) is provided with an alternating current applied coil and that the alternating current has a typical and distinguishable frequency pattern.
6. System nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Magnetfeld (MF) ein durch ein Wechselfeld überlagertes Gleichfeld vorgesehen ist. 6. System according to one of claims 1 to 4, characterized in that the magnetic field (MF) is provided by an alternating field superimposed DC field.
EP17807716.0A 2016-11-30 2017-11-08 System for determining the location of pipelines Pending EP3513223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016223774.8A DE102016223774A1 (en) 2016-11-30 2016-11-30 System for determining the position of pipelines
PCT/EP2017/078546 WO2018099699A1 (en) 2016-11-30 2017-11-08 System for determining the location of pipelines

Publications (1)

Publication Number Publication Date
EP3513223A1 true EP3513223A1 (en) 2019-07-24

Family

ID=60515315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17807716.0A Pending EP3513223A1 (en) 2016-11-30 2017-11-08 System for determining the location of pipelines

Country Status (7)

Country Link
US (1) US11237289B2 (en)
EP (1) EP3513223A1 (en)
CN (1) CN110023791B (en)
CA (1) CA3043138C (en)
DE (1) DE102016223774A1 (en)
RU (1) RU2716864C1 (en)
WO (1) WO2018099699A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699379B (en) * 2018-04-02 2024-01-30 杜书勇 Intelligent data acquisition system and method for pipeline
EP3640620A1 (en) * 2018-10-18 2020-04-22 Siemens Aktiengesellschaft Method for detecting the course of an underground pipeline by means of an airborne detection device
RU2712504C1 (en) * 2018-12-28 2020-01-29 Государственное Унитарное Предприятие "Водоканал Санкт-Петербурга" Method of non-destructive tool inspection of tunnel sewers
RU2708799C1 (en) * 2018-12-28 2019-12-11 Государственное Унитарное Предприятие "Водоканал Санкт-Петербурга" Method for inspection of closed underground mines using unmanned aerial vehicles
CN110282130A (en) * 2019-04-29 2019-09-27 北京工业大学 A kind of corrosion of steel structure detection high-altitude flight intelligent robot based on cloud computing
RU2747385C1 (en) * 2020-10-30 2021-05-04 Александр Евгеньевич Зорин Method for determining spatial location of pipeline
CN112904878B (en) * 2021-01-15 2022-08-16 西南石油大学 Unmanned aerial vehicle system and method for identifying high-consequence area of pipeline

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427943A (en) * 1981-08-05 1984-01-24 Innovatum, Inc. Apparatus and method for locating and tracking magnetic objects or sources
DE4406681A1 (en) * 1994-03-01 1995-09-07 Siemens Ag Inspection or processing unit position determination method in esp. ferritic pipe
GB2297666B (en) * 1995-01-31 1999-06-02 British Gas Plc Signalling to or from a vehicle inside a pipeline
US6243657B1 (en) * 1997-12-23 2001-06-05 Pii North America, Inc. Method and apparatus for determining location of characteristics of a pipeline
US6553322B1 (en) * 1999-09-29 2003-04-22 Honeywell International Inc. Apparatus and method for accurate pipeline surveying
US6816110B1 (en) * 2003-07-30 2004-11-09 Varco I/P, Inc. Precision positioning AGM system
US8261623B2 (en) * 2007-07-09 2012-09-11 Microline Technology Corporation Communication system for pipeline inspection
CN102269825A (en) * 2010-06-04 2011-12-07 中国石油天然气股份有限公司 Online tracking and locating system of pipeline cleaner
CN102169185B (en) 2010-12-30 2013-03-13 中国石油大学(北京) Tube cleaner tracking system
RU2503038C1 (en) 2012-06-26 2013-12-27 Закрытое акционерное общество "Комплексный технический сервис" Automatic unmanned diagnostic complex
WO2014189943A1 (en) * 2013-05-22 2014-11-27 Weatherford/Lamb, Inc. Method and system for tracking movement trajectory of a pipeline tool
CN104297596B (en) * 2014-10-17 2017-08-04 中国石油天然气股份有限公司 A kind of magnetic field transmitter signal strength detection device of pig tracing positioning
US10378689B2 (en) 2015-11-09 2019-08-13 Halliburton Energy Services, Inc. Pig tracking by unmanned submarine
CN106092082A (en) * 2016-05-26 2016-11-09 重庆前卫科技集团有限公司 A kind of wiper localization method

Also Published As

Publication number Publication date
RU2716864C1 (en) 2020-03-17
US11237289B2 (en) 2022-02-01
US20200012005A1 (en) 2020-01-09
DE102016223774A1 (en) 2018-05-30
CN110023791A (en) 2019-07-16
CA3043138C (en) 2021-11-09
WO2018099699A1 (en) 2018-06-07
CN110023791B (en) 2021-08-31
CA3043138A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
EP3513223A1 (en) System for determining the location of pipelines
EP2782775B1 (en) System for determining the position of objects which can move with respect to one another
EP2669694A1 (en) Method for targeted localisation of a fault point and a device
EP0196020A2 (en) Pig for the electromagnetic testing of the walls of steel pipes, and method of performing it
DE102008058457A1 (en) Method and hand-held sensor with adaptive detection threshold for the detection of foreign objects embedded in building structures
EP3047264B1 (en) Method for determing a mechanical-technological characteristic of a ferromagnetic metal
DE102016001780A1 (en) Cost-effective method of calibrating magnetic field sensors in a high-precision directional drill for early, reliable and timely hole definition and a high-precision directional drill for low-cost deep direction drilling
EP3178148A1 (en) Coil overlap
DE202018107011U1 (en) Device for determining operating parameters of vehicles and associated infrastructure
EP3060942A1 (en) Method for determining a position of at least two sensors, and sensor network
DE102016105413B4 (en) SPEED MEASURING METHOD AND SPEED MEASURING ARRANGEMENT
DE102015211084A1 (en) Method and device for determining the position of a rail vehicle
EP3314310B1 (en) Device and method for detecting an article
DE102015201041A1 (en) Method and device for vehicle-side position data acquisition in a rail vehicle
DE102012217426A1 (en) Method for obtaining on-vehicle position data for rail vehicle, involves detecting supply points by sensors of track electric circuits, and using detected supply points for calibration of odometrischer systems
DE102012017359A1 (en) Method for measuring magnetically induced displacement of hybrid coil e.g. primary coil, in aircraft, involves measuring electrical signals of secondary coils of transformer and output of primary coil of transformer in processing path
DE102012111653A1 (en) Device for detecting position on travel path and in transmission of motor vehicle, has transducer magnet for generating magnetic flux density, and magnetic angle sensor for detecting flux density direction of magnetic flux density
DE102008010580A1 (en) Partial load position locating device for gas insulated switch gear, has correlator interconnected with data processing device, which determines delay time and position of loads between sensors from relative frequency of time difference
EP3969839B1 (en) Determining the average distance of a measuring device to a conductor
EP3237842A1 (en) Method for detecting a measurement region in a substrate
DE10004804A1 (en) Precise determination of the spatial position of a pipeline as it is being laid using a no-dig procedure by measurement of the tension on the pipe and from this calculation of pipe curvature that is used with pipe length laid
DE102010010045A1 (en) Electromagnetic flowmeter for use in bottle racking plant, has control and evaluating device determining flow rate in dependence of displacement of phase positions of sum signal caused by detected electrode voltage
DE102018111454A1 (en) Sensor for detecting metal parts, and method for attenuating a magnetic field
DE102016205069A1 (en) Position determining device for piston-cylinder assemblies
EP3740739A1 (en) Method for sensing travel, travel-sensing arrangement and brake system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220316