EP3508730B1 - Method for adjusting a pressurisation system - Google Patents

Method for adjusting a pressurisation system Download PDF

Info

Publication number
EP3508730B1
EP3508730B1 EP18020478.6A EP18020478A EP3508730B1 EP 3508730 B1 EP3508730 B1 EP 3508730B1 EP 18020478 A EP18020478 A EP 18020478A EP 3508730 B1 EP3508730 B1 EP 3508730B1
Authority
EP
European Patent Office
Prior art keywords
pressure
value
control electronics
building
volume flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18020478.6A
Other languages
German (de)
French (fr)
Other versions
EP3508730A1 (en
Inventor
Daniel BÜNING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilo SE
Original Assignee
Wilo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilo SE filed Critical Wilo SE
Priority to EP18020478.6A priority Critical patent/EP3508730B1/en
Publication of EP3508730A1 publication Critical patent/EP3508730A1/en
Application granted granted Critical
Publication of EP3508730B1 publication Critical patent/EP3508730B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0077Safety measures
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B5/00Use of pumping plants or installations; Layouts thereof
    • E03B5/02Use of pumping plants or installations; Layouts thereof arranged in buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine

Definitions

  • the invention relates to a method for setting a proportional pressure control curve in the control electronics of a pressure boosting system for supplying a hydraulic network in a building with a number of tapping points.
  • the invention also relates to a pressure boosting system for carrying out the method.
  • Pressure boosting systems are pumping stations with one or more parallel pump units and are mainly used in the drinking water supply. They increase the pressure of the drinking water provided by a supplier and thus convey it via a pipe system to all extraction points, such as taps, toilets or showers. It must be ensured that there is always sufficient pressure at each extraction point so that the drinking water flows out of the extraction point.
  • the actual pressure at the consumer is usually not known, so that the pumping station is always selected so oversized and set excessively high that even in the case of unfavorable system conditions, for example extraction points that are open at the same time, the extraction point with the poorest supply is always adequately supplied.
  • the pamphlet EP 2 915 926 A2 the applicant discloses, for example, a method for determining the system characteristic of a distribution network, with a system characteristic raised by adding a desired flow pressure being determined and set as a control characteristic for a pump.
  • This procedure enables a suitable pressure regulation curve to be set on the booster system without the user having to have any knowledge of the pressure losses in the hydraulic network.
  • Three system values are sufficient for the setting. These are easy to determine here, making the process particularly user-friendly.
  • the first system value, the maximum volume flow, is the target flow rate that should be present at the highest point in the building when water is drawn off.
  • a building is understood to mean a structure that includes one or more covered rooms, can be entered and is used for the accommodation of people, animals or for the storage of things.
  • the rooms do not necessarily have to be closed on all sides.
  • the building can have any number of floors and extend in height or in depth.
  • the building can also be used for private, public or industrial purposes.
  • the building can, for example, but not exclusively, be a residential building, an apartment building, an office building, a high-rise building, a public facility such as a school, library, hospital, gym, etc.
  • the building can also be part of a building complex, such as at an airport or exhibition center.
  • the hydraulic network can extend horizontally and/or vertically. It can extend throughout the building or just part of the building. In the latter case, for example, tapping points are not located in all rooms, but only in some rooms. Furthermore, in the case of a multi-storey building, the hydraulic network can only extend over some of the floors, i.e. not over all floors. In addition, the hydraulic network can also extend over two or more buildings, as is the case, for example, in residential complexes comprising several houses, or in terraced houses.
  • the most unfavorable extraction point can be considered to be that extraction point in the network up to which a pumped medium experiences the greatest pressure losses when viewed from the pressure boosting system.
  • the most unfavorable extraction point can be the extraction point that is highest in the building or furthest away from the pressure booster system.
  • the volume flow value (Q 100% ) preferably forms a default value specified at the factory, which the electronic control system expects to be confirmed or changed.
  • the volume flow value therefore does not have to be freely specified by the user. Rather, the control electronics for its part proposes the volume flow value, which is formed by the default value specified and stored at the factory. The user can accept or change this default value and thus specify it accordingly. This means that the user does not need to know anything about the pressure boosting system or the hydraulic network for the first system value.
  • the change in the default value for the volume flow value can advantageously be limited to a specific change range by the control electronics in order to prevent the user from setting an unreasonable value as a result of the change.
  • the default value suitably corresponds to the volume flow at maximum hydraulic power of the pressure booster system.
  • the default value is therefore on the maximum pump curve in relation to the characteristics of the pressure booster system in the HQ diagram. This ensures that the full capacity of the pressure booster system can be utilized along the pressure control curve.
  • the user freely predefines the volume flow value.
  • the volume flow value (Q 100% ) can thus form an input value that can be specified by a user and whose input the electronic control system expects. This enables the pressure booster system to be customized according to the user's wishes.
  • the default value can also be displayed to the user as a suggestion or reference value by the control electronics.
  • the second asset value is the geodetic height.
  • the geodetic height relates to the difference in height between the pressure boosting system and the highest extraction point.
  • the height value (H geo ) preferably forms an input value that is to be specified directly by a user and whose input the electronic control system expects. This height value is a variable that can be easily determined on the building.
  • the height value (H geo ) is determined from another piece of information that a user indicates to the control electronics.
  • H geo is determined from another piece of information that a user indicates to the control electronics.
  • the height value can be determined from a building height specified by the user, which the electronic control system expects to be input. This then calculates the height value, for example based on the assumption that the pressure boosting system is set up in the basement and the highest tapping point is on the top floor.
  • the building height as Height value can be assumed for the geodetic height, since the amount by which the building height has to be increased due to the installation of the pressure booster system in the basement corresponds approximately to the amount by which the building height has to be reduced due to the position of the highest tapping point on the upper floor. Provision can preferably be made for the user to be able to change the ascertained height value manually.
  • the height value (H geo ) can be determined from a number of floors specified by the user. For this purpose, a fixed floor height such as 3 m can be calculated in the control electronics for each floor. In order to improve the accuracy of the determination of the height value, the floor height can also be specified, which the electronic control system expects to be entered. The height value is determined from the number of floors and the floor height.
  • the pressure value (p FL ) can preferably form a default value specified at the factory, the confirmation or change of which the electronic control system expects.
  • This pressure value can be between 1 bar and 3 bar, for example.
  • the pressure value therefore does not have to be freely specified by the user. Rather, the control electronics for its part proposes the pressure value that is formed by the default value specified and stored at the factory. The user can accept or change this default value and thus specify it accordingly. Thus, even with the third system value, the user does not need any knowledge of the pressure boosting system or knowledge of the hydraulic network.
  • the change in the default value for the pressure value can advantageously be limited to a specific change range by the control electronics in order to prevent the user from setting an unreasonable value as a result of the change.
  • the user freely specifies the pressure value.
  • the pressure value can form an input value that can be specified by a user and whose input the electronic control system expects. This allows an individual adjustment of the booster system according to the wish of the user.
  • the default value can also be displayed to the user as a suggestion or reference value by the control electronics.
  • a geodetic pressure value (p geo ) is calculated from the altitude value (H geo ) or the altitude value is converted into the pressure value.
  • the maximum pressure forms the highest point of the pressure control curve to be set, which is therefore also fixed. As a result, the entire pressure control curve is fixed and can be set by the control electronics.
  • a trend function within the meaning of the present invention describes the dependency of the maximum pressure loss ( ⁇ p loss,max ) on the volume flow (Q) according to a square root function.
  • a trend function can be determined empirically, for example using a standard-compliant pipe dimensioning and the pressure loss calculation according to generally known literature for a hydraulic network, using which the system characteristic can be determined.
  • a specific trend function can thus be assigned to each pipe dimension. If the pipe dimensioning corresponds to a specific design standard, a specific trend function can thus also be assigned to this specific design standard.
  • the trend functions for different pipe dimensions or different design standards only differ in terms of their gradient, which can be described by a factor.
  • the trend function can advantageously describe the dependency of the maximum pressure loss ( ⁇ p loss,max ) on the volume flow (Q) according to a root function, the slope of which is defined by a selectable design factor (k A ).
  • the design factor thus determines the slope of the trend function, so that only a single trend function needs to be stored in the control electronics. This can be done as a table of values or as a function.
  • a predefined mean value of the design factor (k A ) can be used to determine the trend function and calculate the maximum pressure drop.
  • the electronic control system expects the specification of the age of the building and then selects the design factor (k A ) from a number of stored design factors based on the building age entered by the user.
  • the corresponding trend function whose slope is defined by the selected design factor (k A ), is then used to calculate the maximum pressure loss.
  • the age of the building is also a variable that is easy to determine, for which the user has neither technical knowledge of the characteristic curve of the pressure boosting system nor knowledge of the building's hydraulic network needed.
  • a proportional pressure control curve that is energetically good for the building or the hydraulic network can be set in the pressure boosting system in a simple manner and with few input variables, with the control electronics of the pressure boosting system doing this itself.
  • the invention also relates to a pressure boosting system for supplying a hydraulic network in a building with a number of tapping points, comprising at least one pump unit and control electronics that regulate it, the control electronics being set up to carry out the method according to the invention.
  • the method according to the invention can, for example, be stored in the control electronics in the form of a software-based setting assistant, which thus facilitates the setting of the pressure control curve on the pressure boosting system.
  • the maximum flow rate is the maximum flow rate on the pressure control curve. In practice, the volume flow can go beyond this, the pressure control curve then goes into a plateau, with a constant pressure being specified and the maximum pump curve forming the limit.
  • the flow pressure is the static overpressure of a flowing medium that must be present at the most unfavorable tapping point during a tapping process so that the required amount of water can flow out.
  • a default value can also be used for the flow pressure, which is suggested to the user, since at least 1 bar, preferably 2 bar, flow pressure p FL should normally be present at a withdrawal point in order to obtain an appropriate flow rate.
  • the user only needs to confirm this suggested default value on the control electronics.
  • the geodetic height here corresponds to the difference in height between the pressure boosting system and the highest extraction point and can thus be easily determined by the user.
  • the geodetic height is 24m.
  • the maximum pressure p Q100% results from a pure conversion of the geodetic height value H geo into a pressure value, addition of the flow pressure value p FL and addition of a maximum pressure loss ⁇ p loss,max . With the numerical values given as an example, this results in a maximum pressure p Q100% of 5.15 bar (H geo / 10.21 + p FL + ⁇ p loss,max ).
  • FIG. 1 shows five trend functions T1 to T5 purely by way of example, which describe the dependency of the maximum pressure loss ⁇ p loss,max on the volume flow, each according to a root function.
  • the trend functions T1 to T5 differ here only in their gradient, which is described by a design factor k A .
  • the gradient of the trend function depends on the hydraulic network of the building that serves the pressure boosting system, for example on the pipe diameter.
  • the trend functions T1, T2, T4 and T5 are determined empirically based on the pipe dimensioning of hydraulic systems according to various design standards 1, 2, 3 and 4 and generally known pressure loss calculation according to literature.
  • DIN 1988 for example, can be used as a design standard, which describes the technical rules for new drinking water installations and specifies the associated correct selection of the pipe diameter. This design standard has been amended several times over the past decades and the pipe diameters specified therein have been adjusted so that a specific pipe diameter was also valid while a specific design standard was valid. Due to the empirical determination of a specific trend function from one or more specific pipe diameter(s), each design standard for pipe diameters is assigned a specific trend function that can be used to calculate the maximum pressure loss. In addition to DIN 1988 and its various versions, DIN EN 806, for example, can also be used.
  • a suitable trend function can thus be determined via the age of the building in order to determine the maximum pressure losses more precisely than using the representative, mean trend function T3.
  • the control electronics selects one of the trend functions according to the age of the building entered. For this purpose, all trend functions can be stored in the control electronics, for example in the form of a table of values or in the form of a mathematical function.
  • the design factor k A can be used, with each building age being assigned a design factor k A and being selected by the user after the building age has been entered. Only one trend function, for example the mean trend function T3, then needs to be stored in the control electronics, which is then simply multiplied by the design factor k A .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Control Of Fluid Pressure (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Einstellung einer proportionalen Druckregelkurve in der Regelungselektronik einer Druckerhöhungsanlage zur Versorgung eines hydraulischen Netzwerks in einem Gebäude mit einer Anzahl von Entnahmestellen. Die Erfindung betrifft ferner eine Druckerhöhungsanlage zur Ausführung des Verfahrens.The invention relates to a method for setting a proportional pressure control curve in the control electronics of a pressure boosting system for supplying a hydraulic network in a building with a number of tapping points. The invention also relates to a pressure boosting system for carrying out the method.

Drückerhöhungsanlagen sind Pumpstationen mit einer oder mehreren parallelen Pumpenaggregaten und finden vor allem in der Trinkwasserversorgung Verwendung. Sie erhöhen den Druck des von einem Versorger bereitgestellten Trinkwassers und fördern dieses somit über ein Rohrleitungssystem zu sämtlichen Entnahmestellen, wie Zapfhähnen, Toiletten, oder Duschen. Dabei ist sicherzustellen, dass stets bei jeder Entnahmestelle ein ausreichender Druck vorliegt, damit das Trinkwasser aus der Entnahmestelle fließt. Der tatsächliche Druck am Verbraucher ist aber in der Regel nicht bekannt, so dass die Pumpstation stets so überdimensioniert gewählt und übertrieben hoch eingestellt wird, dass auch bei ungünstigen Systemzuständen, beispielsweise gleichzeitig geöffneten Entnahmestellen, die am schlechtesten versorgte Entnahmestelle stets ausreichend versorgt wird.Pressure boosting systems are pumping stations with one or more parallel pump units and are mainly used in the drinking water supply. They increase the pressure of the drinking water provided by a supplier and thus convey it via a pipe system to all extraction points, such as taps, toilets or showers. It must be ensured that there is always sufficient pressure at each extraction point so that the drinking water flows out of the extraction point. However, the actual pressure at the consumer is usually not known, so that the pumping station is always selected so oversized and set excessively high that even in the case of unfavorable system conditions, for example extraction points that are open at the same time, the extraction point with the poorest supply is always adequately supplied.

Es ist bei Druckerhöhungsanlagen bekannt, auf einen konstanten, vorgegebenen Ausgangsdruck zu regeln, der auch bei Schwankungen des Versorgerdrucks unabhängig vom Volumenstrom durch die Pumpstation konstant gehalten wird. Dies ist als p-c-Regelung bekannt (p soll = constant). Eine solche Konstantdruck-Regelung führt jedoch zu einem energetisch nicht optimalen Betrieb, da die Druckverluste mit dem Volumenstrom ansteigen (p v ~ Q). Somit steht je nach Durchfluss Q an einer Entnahmestelle unterschiedlich viel Fließdruck p FL zur Nutzung zur Verfügung. Um diesen Nachteil zu vermeiden, ist es ebenfalls bekannt, eine Proportionaldruckkurve zu verwenden, entlang welcher die Druckerhöhungsanlage geregelt wird, so dass ein Solldruckverlauf p soll = f(Q) am Ausgang der Druckerhöhungsanlage vorliegt, d.h. eine sogenannte p-v-Regelung. Eine solche proportionale Druckregelkurve ist für den Nutzer auch komfortabler, weil sie zu geringeren Druckschwankungen an den Entnahmestellen führt.It is known in pressure boosting systems to regulate to a constant, predetermined outlet pressure, which is kept constant regardless of the volume flow through the pumping station even if there are fluctuations in the supply pressure. This is known as the pc control ( p nom = constant). However, such a constant-pressure regulation leads to operation that is not optimal in terms of energy, since the pressure losses increase with the volume flow ( p v ~ Q ). Depending on the flow rate Q, a different amount of flow pressure p FL is available for use at an extraction point. Around To avoid this disadvantage, it is also known to use a proportional pressure curve, along which the pressure booster system is regulated, so that there is a setpoint pressure curve p set = f ( Q ) at the outlet of the pressure booster system, ie a so-called pv control. Such a proportional pressure control curve is also more convenient for the user because it leads to lower pressure fluctuations at the tapping points.

Für eine geeignete und energieoptimale Einstellung einer p-v-Regelkurve an der Druckerhöhungsanlage ist die Kenntnis der Druckverluste pv im hydraulischen Netzwerk erforderlich, insbesondere zumindest derjenigen Druckverluste, die von der Druckerhöhungsanlage über das Rohrleitungsnetz zur hydraulisch ungünstigsten Entnahmestelle auftreten. Diese werden durch die sogenannte Anlagenkurve, auch Gebäudekennlinie oder Systemkennlinie genannt, beschrieben. Die tatsächlichen Druckverluste sind jedoch in der Regel nicht bekannt, insbesondere in demjenigen Fall nicht, dass eine neue Druckerhöhungsanlage in einem Bestandsgebäude installiert wird. Eine optimale Einstellung der Druckerhöhungsanlage ist hier schwierig.For a suitable and energy-optimal setting of a p-v control curve on the pressure boosting system, knowledge of the pressure losses pv in the hydraulic network is required, in particular at least those pressure losses that occur from the pressure boosting system via the pipe network to the hydraulically most unfavorable extraction point. These are described by the so-called system curve, also called building characteristic or system characteristic. However, the actual pressure losses are usually not known, especially not in the case that a new pressure boosting system is installed in an existing building. Optimal adjustment of the pressure boosting system is difficult here.

Es sind Verfahren bekannt, eine Anlagenkurve zu ermitteln. Jedoch sind diese Verfahren aufwändig, erfordern zum Teil Kenntnisse der Struktur des hydraulischen Netzes, Berechnungen oder Messwertauswertungen und sind daher meist nur von Fachpersonal durchzuführen. Häufig werden die Druckverluste abgeschätzt, was einen hohen Grad der Unsicherheit über eine korrekte Einstellung der Druckerhöhungsanlage birgt.Methods are known for determining a system curve. However, these methods are complex, sometimes require knowledge of the structure of the hydraulic network, calculations or evaluation of measured values and can therefore usually only be carried out by specialist personnel. The pressure losses are often estimated, which involves a high degree of uncertainty about the correct setting of the pressure boosting system.

Die Druckschrift EP 2 915 926 A2 der Anmelderin offenbart beispielsweise ein Verfahren zur Bestimmung der Systemkennlinie eines Verteilernetzes, wobei eine durch Addition eines gewünschten Fließdruckes angehobene Systemkennlinie als Regelkennlinie für eine Pumpe bestimmt und eingestellt wird.The pamphlet EP 2 915 926 A2 the applicant discloses, for example, a method for determining the system characteristic of a distribution network, with a system characteristic raised by adding a desired flow pressure being determined and set as a control characteristic for a pump.

Es ist daher Aufgabe der vorliegenden Erfindung, ein einfaches Verfahren zur Einstellung einer proportionalen Druckregelkurve in der Regelungselektronik einer Druckerhöhungsanlage zur Verfügung zu stellen, dass schnell und auch von ungeschulten Personen durchgeführt werden kann und zu einer benutzerfreundlichen Einstellung der Druckerhöhungsanlage führt.It is therefore the object of the present invention to provide a simple method for setting a proportional pressure control curve in the control electronics of a pressure booster system that can be carried out quickly and even by untrained people and leads to a user-friendly setting of the pressure booster system.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.This object is achieved by a method having the features of claim 1. Advantageous developments are specified in the dependent claims.

Erfindungsgemäß wird ein Verfahren zur Einstellung einer proportionalen Druckregelkurve in der Regelungselektronik einer Druckerhöhungsanlage zur Versorgung eines hydraulischen Netzwerks in einem Gebäude mit einer Anzahl von Entnahmestellen vorgeschlagen, bei dem die Regelungselektronik bereits aus drei Anlagenwerten, welche

  • einen Volumenstromwert (Q100%) eines gewünschten Maximalvolumenstroms auf der Druckregelkurve,
  • einen Höhenwert (Hgeo) einer geodätischen Höhe und
  • einen Fließdruckwert (pFL) eines gewünschten Fließdrucks an der ungünstigsten Entnahmestelle umfassen,
    einen Minimaldruck (pQ=0) bei Volumenstrom null und einen Maximaldruck (pQ100%) bei dem Maximalvolumenstrom ermittelt, wobei die Druckregelkurve durch eine Verbindungslinie zwischen dem Minimaldruck (po=o) und dem Maximaldruck (pQ100%) gebildet ist und von der Regelungselektronik eingestellt wird.
According to the invention, a method for setting a proportional pressure control curve in the control electronics of a pressure boosting system for supplying a hydraulic network in a building with a number of tapping points is proposed, in which the control electronics already consists of three system values, which
  • a volume flow value (Q 100% ) of a desired maximum volume flow on the pressure control curve,
  • an elevation value (H geo ) of geodetic elevation and
  • include a flow pressure value (p FL ) of a desired flow pressure at the most unfavorable extraction point,
    a minimum pressure (p Q=0 ) at zero flow rate and a maximum pressure (p Q100% ) at the maximum flow rate is determined, with the pressure control curve being formed by a connecting line between the minimum pressure (po=o) and the maximum pressure (p Q100% ) and of of the control electronics is set.

Dieses Verfahren ermöglicht die Einstellung einer geeigneten Druckregelungskurve an der Druckerhöhungsanlage, ohne dass ein Nutzer Kenntnisse über die Druckverluste im hydraulischen Netz haben muss. Es genügen bereits drei Anlagenwerte für die Einstellung. Diese sind hier einfach zu ermitteln, so dass das Verfahren besonders benutzerfreundlich ist.This procedure enables a suitable pressure regulation curve to be set on the booster system without the user having to have any knowledge of the pressure losses in the hydraulic network. Three system values are sufficient for the setting. These are easy to determine here, making the process particularly user-friendly.

Bei dem ersten Anlagenwert, dem Maximalvolumenstrom, handelt es sich um den Solldurchfluss, der bei der höchsten in dem Gebäude gelegenen Entnahmestelle bei einer Wasserentnahme vorliegen soll.The first system value, the maximum volume flow, is the target flow rate that should be present at the highest point in the building when water is drawn off.

Unter einem Gebäude wird im Sinne der Erfindung ein Bauwerk verstanden, das einen oder mehrere bedachte Räume umfasst, betreten werden kann und dem Aufenthalt von Menschen, Tieren oder der Lagerung von Sachen dient. Die Räume müssen nicht unbedingt zu allen Seiten geschlossen sein. Das Gebäude kann eine beliebige Anzahl an Etagen haben und sich in die Höhe oder in die Tiefe erstrecken. Auch ist die Nutzung des Gebäudes für private, öffentliche oder industrielle Zwecke beliebig. So kann das Gebäude beispielsweise, jedoch nicht abschließend, ein Wohnhaus, ein Mehrfamilienhaus, ein Bürohaus, ein Hochhaus, eine öffentliche Einrichtung wie eine Schule, eine Bibliothek, ein Krankenhaus, eine Turnhalle etc. sein. Das Gebäude kann auch Teil eines Gebäudekomplexes sein, wie z.B. bei einem Flughafen oder einem Messegelände.Within the meaning of the invention, a building is understood to mean a structure that includes one or more covered rooms, can be entered and is used for the accommodation of people, animals or for the storage of things. The rooms do not necessarily have to be closed on all sides. The building can have any number of floors and extend in height or in depth. The building can also be used for private, public or industrial purposes. The building can, for example, but not exclusively, be a residential building, an apartment building, an office building, a high-rise building, a public facility such as a school, library, hospital, gym, etc. The building can also be part of a building complex, such as at an airport or exhibition center.

Das hydraulische Netzwerk kann sich horizontal und/ oder vertikal erstrecken. Es kann sich im gesamten Gebäude oder nur in einem Teil des Gebäudes erstrecken. In letzterem Fall befinden sich beispielsweise nicht in allen Räumen Entnahmestellen sondern nur in einigen Räumen. Ferner kann sich das hydraulische Netzwerk im Falle eines Gebäudes mit mehreren Etagen nur über einige der Etagen erstrecken, d.h. nicht über alle Etagen hinweg. Darüber hinaus kann sich das hydraulische Netzwerk auch über zwei oder mehr Gebäude erstrecken, wie dies beispielsweise bei Wohnanlagen umfassend mehrere Häuser, oder bei Reihenhäusern der Fall ist.The hydraulic network can extend horizontally and/or vertically. It can extend throughout the building or just part of the building. In the latter case, for example, tapping points are not located in all rooms, but only in some rooms. Furthermore, in the case of a multi-storey building, the hydraulic network can only extend over some of the floors, i.e. not over all floors. In addition, the hydraulic network can also extend over two or more buildings, as is the case, for example, in residential complexes comprising several houses, or in terraced houses.

Als ungünstigste Entnahmestelle kann diejenige Entnahmestelle des Netzwerks betrachtet werden, bis zu deren Erreichen ein gefördertes Medium von der Druckerhöhungsanlage betrachtet die größten Druckverluste erfährt. Beispielsweise kann die ungünstigste Entnahmestelle diejenige Entnahmestelle sein, die im Gebäude am höchsten liegt oder am weitesten von der Drückerhöhungsanlage entfernt liegt.The most unfavorable extraction point can be considered to be that extraction point in the network up to which a pumped medium experiences the greatest pressure losses when viewed from the pressure boosting system. For example, the most unfavorable extraction point can be the extraction point that is highest in the building or furthest away from the pressure booster system.

Bevorzugt bildet der Volumenstromwert (Q100%) einen werksseitig festgelegten Vorgabewert, dessen Bestätigung oder Änderung die Regelungselektronik erwartet. Der Volumenstromwert muss somit nicht frei vom Nutzer vorgegeben werden. Vielmehr schlägt die Regelungselektronik ihrerseits den Volumenstromwert vor, der durch den werksseitig festgelegten und abgespeicherten Vorgabewert gebildet ist. Der Nutzer kann diesen Vorgabewert annehmen oder abändern und auf diese Weise entsprechend vorgeben. Somit bedarf es bei dem ersten Anlagenwert seitens des Nutzers weder Kenntnisse der Druckerhöhungsanlage noch Kenntnisse des hydraulischen Netzes.The volume flow value (Q 100% ) preferably forms a default value specified at the factory, which the electronic control system expects to be confirmed or changed. The volume flow value therefore does not have to be freely specified by the user. Rather, the control electronics for its part proposes the volume flow value, which is formed by the default value specified and stored at the factory. The user can accept or change this default value and thus specify it accordingly. This means that the user does not need to know anything about the pressure boosting system or the hydraulic network for the first system value.

Die Änderung des Vorgabewerts für den Volumenstromwert kann vorteilhafterweise seitens der Regelungselektronik auf einen bestimmten Änderungsbereich beschränkt sein, um zu vermeiden, dass der Nutzer durch die Änderung einen unsinnigen Wert einstellt.The change in the default value for the volume flow value can advantageously be limited to a specific change range by the control electronics in order to prevent the user from setting an unreasonable value as a result of the change.

Geeigneterweise entspricht der Vorgabewert dem Volumenstrom bei maximaler hydraulischer Leistung der Druckerhöhungsanlage. Der Vorgabewert liegt somit bezogen auf das Kennlinienfeld der Drückerhöhungsanlage im HQ-Diagramm auf der maximalen Pumpenkurve. Dies stellt sicher, dass entlang der Druckregelkurve die gesamte Leistung der Druckerhöhungsanlage ausgenutzt werden kann.The default value suitably corresponds to the volume flow at maximum hydraulic power of the pressure booster system. The default value is therefore on the maximum pump curve in relation to the characteristics of the pressure booster system in the HQ diagram. This ensures that the full capacity of the pressure booster system can be utilized along the pressure control curve.

Alternativ oder zusätzlich zum Vorgabewert kann vorgesehen sein, dass der Nutzer den Volumenstromwert frei vorgibt. So kann der Volumenstromwert (Q100%) einen von einem Nutzer vorgebbaren Eingabewert bilden, dessen Eingabe die Regelungselektronik erwartet. Dies ermöglicht eine individuelle Anpassung der Drückerhöhungsanlage gemäß dem Wunsch des Nutzers. Der Vorgabewert kann dem Nutzer hierbei zusätzlich als Vorschlag oder Referenzwert von der Regelungselektronik angezeigt werden.As an alternative or in addition to the default value, it can be provided that the user freely predefines the volume flow value. The volume flow value (Q 100% ) can thus form an input value that can be specified by a user and whose input the electronic control system expects. This enables the pressure booster system to be customized according to the user's wishes. The default value can also be displayed to the user as a suggestion or reference value by the control electronics.

Bei dem zweiten Anlagenwert handelt es sich um die geodätische Höhe. Die geodätische Höhe bezieht sich im Sinne der vorliegenden Erfindung auf den Höhenunterschied zwischen der Druckerhöhungsanlage und der am höchsten gelegenen Entnahmestelle.The second asset value is the geodetic height. In the context of the present invention, the geodetic height relates to the difference in height between the pressure boosting system and the highest extraction point.

Vorzugsweise bildet der Höhenwert (Hgeo) einen von einem Nutzer direkt vorzugebenden Eingabewert, dessen Eingabe die Regelungselektronik erwartet. Bei diesem Höhenwert handelt es sich um eine einfach am Gebäude zu ermittelnde Größe.The height value (H geo ) preferably forms an input value that is to be specified directly by a user and whose input the electronic control system expects. This height value is a variable that can be easily determined on the building.

Alternativ kann vorgesehen sein, dass der Höhenwert (Hgeo) aus einer anderen Information ermittelt wird, die ein Nutzer der Regelungselektronik angibt. Hier sind vielfältige Ausführungsvarianten möglich.Alternatively, it can be provided that the height value (H geo ) is determined from another piece of information that a user indicates to the control electronics. Various design variants are possible here.

Beispielsweise kann der Höhenwert aus einer vom Nutzer vorgegebenen Gebäudehöhe ermittelt werden, deren Eingabe die Regelungselektronik erwartet. Diese berechnet dann den Höhenwert, beispielsweise aus der Annahme, dass die Druckerhöhungsanlage im Keller aufgestellt ist und sich die höchste Entnahmestelle im obersten Stock befindet. Im einfachsten Fall kann die Gebäudehöhe als Höhenwert für die geodätische Höhe angenommen werden, da das Maß, um das die Gebäudehöhe aufgrund der Aufstellung der Druckerhöhungsanlage im Keller erhöht werden muss, annährend dem Maß entspricht, um das die Gebäudehöhe aufgrund der Position der höchsten Entnahmestelle im Obergeschoss reduziert werden muss. Vorzugsweise kann vorgesehen sein, dass der Nutzer den ermittelten Höhenwert manuell ändern kann.For example, the height value can be determined from a building height specified by the user, which the electronic control system expects to be input. This then calculates the height value, for example based on the assumption that the pressure boosting system is set up in the basement and the highest tapping point is on the top floor. In the simplest case, the building height as Height value can be assumed for the geodetic height, since the amount by which the building height has to be increased due to the installation of the pressure booster system in the basement corresponds approximately to the amount by which the building height has to be reduced due to the position of the highest tapping point on the upper floor. Provision can preferably be made for the user to be able to change the ascertained height value manually.

Alternativ kann der Höhenwert (Hgeo) aus einer von dem Nutzer vorgegebenen Etagenanzahl ermittelt werden. Hierzu kann in der Regelungselektronik pro Etage mit einer festen Etagenhöhe wie z.B. 3m gerechnet werden. Um die Genauigkeit der Ermittlung des Höhenwerts zu verbessern, kann zusätzlich auch die Etagenhöhe angegebene werden, deren Eingabe die Regelungselektronik erwartet. So wird der Höhenwert aus der Etagenanzahl und der Etagenhöhe ermittelt.Alternatively, the height value (H geo ) can be determined from a number of floors specified by the user. For this purpose, a fixed floor height such as 3 m can be calculated in the control electronics for each floor. In order to improve the accuracy of the determination of the height value, the floor height can also be specified, which the electronic control system expects to be entered. The height value is determined from the number of floors and the floor height.

Bevorzugt kann der Druckwert (pFL) einen werksseitig festgelegten Vorgabewert bilden, dessen Bestätigung oder Änderung die Regelungselektronik erwartet. Dieser Druckwert kann beispielsweise zwischen 1bar und 3bar liegen. Der Druckwert muss somit nicht frei vom Nutzer vorgegeben werden. Vielmehr schlägt die Regelungselektronik ihrerseits den Druckwert vor, der durch den werksseitig festgelegten und abgespeicherten Vorgabewert gebildet ist. Der Nutzer kann diesen Vorgabewert annehmen oder abändern und auf diese Weise entsprechend vorgeben. Somit bedarf es auch bei dem dritten Anlagenwert seitens des Nutzers weder Kenntnisse der Druckerhöhungsanlage noch Kenntnisse des hydraulischen Netzes.The pressure value (p FL ) can preferably form a default value specified at the factory, the confirmation or change of which the electronic control system expects. This pressure value can be between 1 bar and 3 bar, for example. The pressure value therefore does not have to be freely specified by the user. Rather, the control electronics for its part proposes the pressure value that is formed by the default value specified and stored at the factory. The user can accept or change this default value and thus specify it accordingly. Thus, even with the third system value, the user does not need any knowledge of the pressure boosting system or knowledge of the hydraulic network.

Die Änderung des Vorgabewerts für den Druckwert kann vorteilhafterweise seitens der Regelungselektronik auf einen bestimmten Änderungsbereich beschränkt sein, um zu vermeiden, dass der Nutzer durch die Änderung einen unsinnigen Wert einstellt.The change in the default value for the pressure value can advantageously be limited to a specific change range by the control electronics in order to prevent the user from setting an unreasonable value as a result of the change.

Alternativ oder zusätzlich zum Vorgabewert kann vorgesehen sein, dass der Nutzer den Druckwert frei vorgibt. So kann der Druckwert einen von einem Nutzer vorgebbaren Eingabewert bilden, dessen Eingabe die Regelungselektronik erwartet. Dies ermöglicht eine individuelle Anpassung der Drückerhöhungsanlage gemäß dem Wunsch des Nutzers. Der Vorgabewert kann dem Nutzer hierbei zusätzlich als Vorschlag oder Referenzwert von der Regelungselektronik angezeigt werden.As an alternative or in addition to the default value, it can be provided that the user freely specifies the pressure value. In this way, the pressure value can form an input value that can be specified by a user and whose input the electronic control system expects. This allows an individual adjustment of the booster system according to the wish of the user. The default value can also be displayed to the user as a suggestion or reference value by the control electronics.

In einer Ausführungsvariante wird aus dem Höhenwert (Hgeo) ein geodätischer Druckwert (pgeo) berechnet bzw. der Höhenwert in den Druckwert umgerechnet. Anschließend wird der Minimaldruck (po=o) aus der Summe dieses geodätischen Druckwerks (pgeo) und dem Fließdruckwert (pFL) gebildet. Der Minimaldruck bildet den untersten Punkt der einzustellenden Druckregelkurve, der somit feststeht.In one embodiment variant, a geodetic pressure value (p geo ) is calculated from the altitude value (H geo ) or the altitude value is converted into the pressure value. The minimum pressure (po=o) is then formed from the sum of this geodetic pressure unit (p geo ) and the flow pressure value (p FL ). The minimum pressure forms the lowest point of the pressure control curve to be set, which is therefore fixed.

In einer Ausführungsvariante wird aus dem Volumenstromwert (Q100%) anhand einer Trendfunktion (T1-T5) ein Maximaldruckverlust (Δploss,max) berechnet, und der Maximaldruck (pQ100%) aus der Summe des Minimaldrucks (po=o) und dem Maximaldruckverlust (Δploss,max) gebildet. Der Maximaldruck bildet den höchsten Punkt der einzustellenden Druckregelkurve, der somit ebenfalls feststeht. Im Ergebnis ist somit die gesamte Druckregelkurve festgelegt und kann von der Regelungselektronik eingestellt werden.In one embodiment, a maximum pressure loss (Δp loss,max ) is calculated from the volume flow value (Q 100% ) using a trend function (T1-T5), and the maximum pressure (p Q100% ) from the sum of the minimum pressure (po=o) and the Maximum pressure loss (Δp loss,max ) formed. The maximum pressure forms the highest point of the pressure control curve to be set, which is therefore also fixed. As a result, the entire pressure control curve is fixed and can be set by the control electronics.

Eine Trendfunktion im Sinne der vorliegenden Erfindung beschreibt die Abhängigkeit des Maximaldruckverlusts (Δploss,max) vom Volumenstrom (Q) gemäß einer Wurzelfunktion. Eine solche Trendfunktion kann empirisch ermittelt werden, beispielsweise anhand einer normkonformen Rohrdimensionierung und der Druckverlustberechnung gemäß allgemein bekannter Literaturangaben bei einem hydraulischen Netzwerk, anhand derer die Anlagenkennlinie ermittelt werden kann. So kann jeder Rohrdimensionierung eine bestimmte Trendfunktion zugeordnet werden. Entspricht die Rohrdimensionierung einer bestimmten Auslegungsnorm, kann somit auch dieser bestimmten Auslegungsnorm eine bestimmte Trendfunktion zugeordnet werden.A trend function within the meaning of the present invention describes the dependency of the maximum pressure loss (Δp loss,max ) on the volume flow (Q) according to a square root function. Such a trend function can be determined empirically, for example using a standard-compliant pipe dimensioning and the pressure loss calculation according to generally known literature for a hydraulic network, using which the system characteristic can be determined. A specific trend function can thus be assigned to each pipe dimension. If the pipe dimensioning corresponds to a specific design standard, a specific trend function can thus also be assigned to this specific design standard.

Aufgrund der zeitlich unterschiedlichen Gültigkeiten der Auslegungsnormen ist vorteilhafterweise ein Zusammenhang zwischen der angewendeten Auslegungsnorm und dem Gebäudealter gegeben. Dies bedeutet, dass einem Gebäudealter auch eine bestimmte Trendfunktion zugeordnet werden kann bzw. zugeordnet ist.Due to the fact that the design standards are valid at different times, there is advantageously a connection between the design standard used and the age of the building. This means that a certain trend function can also be assigned or is assigned to the age of a building.

Die Trendfunktionen für unterschiedliche Rohrdimensionierungen bzw. unterschiedliche Auslegungsnormen unterscheiden sich insbesondere nur durch ihre Steigung, welche durch einen Faktor beschrieben werden kann. Aus dieser Erkenntnis heraus kann die Trendfunktion vorteilhafterweise die Abhängigkeit des Maximaldruckverlusts (Δploss,max) vom Volumenstrom (Q) gemäß einer Wurzelfunktion beschreiben, deren Steigung durch einen auswählbaren Auslegungsfaktor (kA) definiert ist. Somit legt der Auslegungsfaktor die Steigung der Trendfunktion fest, so dass in der Regelungselektronik nur eine einzige Trendfunktion abgespeichert werden braucht. Dies kann als Wertetabelle oder als Funktion erfolgen.The trend functions for different pipe dimensions or different design standards only differ in terms of their gradient, which can be described by a factor. Based on this knowledge, the trend function can advantageously describe the dependency of the maximum pressure loss (Δp loss,max ) on the volume flow (Q) according to a root function, the slope of which is defined by a selectable design factor (k A ). The design factor thus determines the slope of the trend function, so that only a single trend function needs to be stored in the control electronics. This can be done as a table of values or as a function.

Standardmäßig kann ein vordefinierter mittlerer Wert des Auslegungsfaktors (kA) verwendet werden, um die Trendfunktion festzustellen und den Maximaldruckverlust zu berechnen.By default, a predefined mean value of the design factor (k A ) can be used to determine the trend function and calculate the maximum pressure drop.

Eine höhere Genauigkeit lässt sich jedoch dadurch erzielen, dass die Trendfunktion, respektive ihre Steigung, über den Auslegungsfaktor an das hydraulische Netz in dem Gebäude angepasst wird. Hierfür kann vorteilhafterweise der Umstand ausgenutzt werden, dass das Alter des Gebäudes mit einer bestimmten Auslegungsnorm und folglich mit einer bestimmten Trendfunktion korreliert. So kann jedem Gebäudealter ein Auslegungsfaktor (kA) zugeordnet sein, der eine entsprechende Anpassung einer hinterlegten Referenztrendfunktion (Trendfunktion für kA =1) an das Gebäude bewirkt.However, greater accuracy can be achieved by adapting the trend function or its slope to the hydraulic network in the building using the design factor. The fact that the age of the building correlates with a specific design standard and consequently with a specific trend function can advantageously be used for this purpose. A design factor (k A ) can be assigned to each building age, which causes a corresponding adjustment of a stored reference trend function (trend function for k A =1) to the building.

Vorzugsweise kann bei dem erfindungsgemäßen Verfahren vorgesehen sein, dass die Regelungselektronik die Vorgabe des Gebäudealters des Gebäudes erwartet und anschließend anhand dem vom Nutzer eingegebenen Gebäudealter den Auslegungsfaktor (kA) aus einer Anzahl hinterlegter Auslegungsfaktoren auswählt. Es wird dann die entsprechende Trendfunktion, deren Steigung durch den ausgewählten Auslegungsfaktor (kA) definiert ist, für die Berechnung des Maximaldruckverlusts verwendet.In the method according to the invention, it can preferably be provided that the electronic control system expects the specification of the age of the building and then selects the design factor (k A ) from a number of stored design factors based on the building age entered by the user. The corresponding trend function, whose slope is defined by the selected design factor (k A ), is then used to calculate the maximum pressure loss.

Auch bei dem Gebäudealter handelt es sich um eine einfach zu ermittelnde Größe, für die der Nutzer weder technische Kenntnisse über das Kennlinienfeld der Druckerhöhungsanlage noch Kenntnisse über das hydraulische Netz des Gebäudes benötigt. Er kann somit auf einfache Weise und mit wenigen Eingangsgrößen eine für das Gebäude respektive das hydraulische Netz energetisch gute proportionale Druckregelkurve bei der Druckerhöhungsanlage eingestellt werden, wobei die Regelungselektronik der Druckerhöhungsanlage dies selbst vornimmt.The age of the building is also a variable that is easy to determine, for which the user has neither technical knowledge of the characteristic curve of the pressure boosting system nor knowledge of the building's hydraulic network needed. In this way, a proportional pressure control curve that is energetically good for the building or the hydraulic network can be set in the pressure boosting system in a simple manner and with few input variables, with the control electronics of the pressure boosting system doing this itself.

Die Erfindung betrifft auch eine Druckerhöhungsanlage zur Versorgung eines hydraulischen Netzwerks in einem Gebäude mit einer Anzahl von Entnahmestellen, umfassend zumindest ein Pumpenaggregat und eine dieses regelnde Regelungselektronik, wobei die Regelungselektronik eingerichtet ist, das erfindungsgemäße Verfahren auszuführen.The invention also relates to a pressure boosting system for supplying a hydraulic network in a building with a number of tapping points, comprising at least one pump unit and control electronics that regulate it, the control electronics being set up to carry out the method according to the invention.

Das erfindungsgemäße Verfahren kann beispielsweise in Gestalt eines softwarebasierten Einstellungsassistenten in der Regelungselektronik hinterlegt, welcher somit die Einstellung der Druckregelkurve an der Druckerhöhungsanlage erleichtert.The method according to the invention can, for example, be stored in the control electronics in the form of a software-based setting assistant, which thus facilitates the setting of the pressure control curve on the pressure boosting system.

Weitere Merkmale und Vorteile des erfindungsgemäßen Verfahrens werden nachfolgend anhand eines Ausführungsbeispiels und der beigefügten Figuren beschrieben.Further features and advantages of the method according to the invention are described below using an exemplary embodiment and the attached figures.

Es zeigen:

Fig. 1:
HQ einer Druckerhöhungsanlage mit optimaler Druckregelkurve
Fig. 2:
erweitertes HQ Diagramm
Fig. 3:
HQ-Diagramm mit Trendfunktionen
Show it:
Figure 1:
HQ of a pressure booster system with optimal pressure control curve
Figure 2:
extended HQ chart
Figure 3:
HQ chart with trend functions

Fig. 1 zeigt ein HQ-Diagramm mit zwei maximalen Pumpenkurven 2, 3 für eine Druckerhöhungsanlage mit beispielhaft zwei parallel betreibbaren Pumpenaggregaten. Die äußere maximale Pumpenkurve 3 liegt im gemeinsamen Betrieb beider Pumpenaggregate mit maximaler Drehzahl vor. Der Nennpunkt der Druckerhöhungsanlage Hset, Qset liegt auf der äußeren Pumpenkurve 3. Eine optimal geregelte Druckerhöhungsanlage hat eine proportionale Druckregelkurve 1, die durch diesen Nennpunkt Hset, Qset verläuft und der Förderhöhenunterschied Hset-HQ=0 entlang der Regelkurve 1 gerade den maximal auftretendes Druckverlusten Δploss,max entspricht. Um diese Regelkurve 1 zu finden und einzustellen, werden der Regelungselektronik der Druckerhöhungsanlage erfindungsgemäß drei Anlagenwerten vorgegeben:

  • ein Volumenstromwert Q100% eines gewünschten Maximalvolumenstroms auf der Druckregelkurve 1,
  • einen Höhenwert Hgeo einer geodätischen Höhe und
  • einen Fließdruckwert pFL eines gewünschten Fließdrucks an der ungünstigsten Entnahmestelle.
1 shows an HQ diagram with two maximum pump curves 2, 3 for a pressure boosting system with, for example, two pump units that can be operated in parallel. The outer maximum pump curve 3 occurs when both pump units are operated together at maximum speed. The nominal point of the pressure booster system H set , Qset lies on the outer pump curve 3. An optimally regulated pressure booster system has a proportional pressure control curve 1 that runs through this nominal point H set , Qset and the head difference H set -H Q=0 along the control curve 1 is straight maximum occurring pressure loss Δp loss,max . To find and set this control curve 1, the According to the invention, three system values are specified for the control electronics of the pressure boosting system:
  • a volume flow value Q 100% of a desired maximum volume flow on the pressure control curve 1,
  • a height value H geo a geodetic height and
  • a flow pressure value p FL of a desired flow pressure at the most unfavorable extraction point.

Der Maximalvolumenstrom ist der maximale Volumenstrom auf der Druckregelkurve. In der Praxis kann der Volumenstrom hierüber hinausgehen, die Druckregelkurve geht dann in ein Plateau über, wobei ein Konstantdruck vorgegeben ist und die maximale Pumpenkurve die Grenze bildet.The maximum flow rate is the maximum flow rate on the pressure control curve. In practice, the volume flow can go beyond this, the pressure control curve then goes into a plateau, with a constant pressure being specified and the maximum pump curve forming the limit.

Da sich die Druckerhöhungsanlage selbst kennt, bzw. der Hersteller der Druckerhöhungsanlage Kenntnis über ihre Pumpenkennlinien hat, kann der Volumenstromwert Q100% vom Hersteller werksseitig vorgegeben werden und zwar als derjenige Volumenstromwert, der dem Volumenstrom Qset im Nennbetriebspunkt entspricht. Der Nutzer braucht diesen vorgeschlagenen Vorgabewert dann nur noch an der Regelungselektronik bestätigen. Beispielsweise beträgt der Maximalvolumenstrom Q100% =8,3 m3/h.Since the pressure boosting system knows itself, or the manufacturer of the pressure boosting system knows about its pump characteristics, the volume flow value Q 100% can be specified by the manufacturer at the factory as the volume flow value that corresponds to the volume flow Q set at the nominal operating point. The user then only needs to confirm this suggested default value on the control electronics. For example, the maximum volume flow is Q 100% = 8.3 m 3 /h.

Der Fließdruck ist der statische Überdruck eines fließenden Mediums, der an der ungünstigsten Entnahmestelle bei einem Zapfvorgang vorhanden sein muss, damit die geforderte Wassermenge ausfließen kann. Auch bei dem Fließdruck kann ein Vorgabewert verwendet werden, der dem Nutzer vorgeschlagen wird, da an einer Entnahmestelle üblicherweise mindestens 1 bar vorzugsweise 2 bar Fließdruck pFL anliegen sollte, um einen angemessenen Durchfluss zu erhalten. Auch hier braucht der Nutzer lediglich diesen vorgeschlagenen Vorgabewert an der Regelungselektronik zu bestätigen.The flow pressure is the static overpressure of a flowing medium that must be present at the most unfavorable tapping point during a tapping process so that the required amount of water can flow out. A default value can also be used for the flow pressure, which is suggested to the user, since at least 1 bar, preferably 2 bar, flow pressure p FL should normally be present at a withdrawal point in order to obtain an appropriate flow rate. Here, too, the user only needs to confirm this suggested default value on the control electronics.

Somit muss der Nutzer lediglich den geodätischen Höhenwert angeben. Die geodätische Höhe entspricht hier dem Höhenunterschied zwischen der Druckerhöhungsanlage und der am höchsten gelegenen Entnahmestelle und kann somit auf einfache Weise vom Nutzer ermittelt werden. Beispielsweise beträgt die geodätische Höhe 24m.Thus, the user only has to enter the geodetic height value. The geodetic height here corresponds to the difference in height between the pressure boosting system and the highest extraction point and can can thus be easily determined by the user. For example, the geodetic height is 24m.

Aus den drei Anlagenwerten ermittelt die Regelungselektronik einen Minimaldruck po=o bei Volumenstrom null und einen Maximaldruck pQ100% bei dem vorgegebenen Maximalvolumenstrom Q100%, die in Fig. 2 eingezeichnet sind. Der Minimaldruck po=o ergibt sich aus einer reinen Umrechnung des geodätischen Höhenwerts Hgeo in einen Druckwert und Addition des Fließdruckwerts pFL Mit den beispielhaft genannten numerischen Werten ergibt sich ein Minimaldruck po=o von 4,35 bar (Hgeo/ 10,21 + pFL). Der Maximaldruck pQ100% ergibt sich aus einer reinen Umrechnung des geodätischen Höhenwerts Hgeo in einen Druckwert, Addition des Fließdruckwerts pFL sowie Addition eines Maximaldruckverlusts Δploss,max. Mit den beispielhaft genannten numerischen Werten ergibt sich ein Maximaldruck pQ100% von 5,15 bar (Hgeo/ 10,21 + pFL + Δploss,max).From the three system values, the control electronics determine a minimum pressure po=0 at zero volumetric flow and a maximum pressure p Q100% at the specified maximum volumetric flow Q 100% , which in 2 are drawn. The minimum pressure po=o results from a pure conversion of the geodetic height value H geo into a pressure value and addition of the flow pressure value p FL With the numerical values given as an example, a minimum pressure po=o of 4.35 bar (H geo / 10.21 + p FL ). The maximum pressure p Q100% results from a pure conversion of the geodetic height value H geo into a pressure value, addition of the flow pressure value p FL and addition of a maximum pressure loss Δp loss,max . With the numerical values given as an example, this results in a maximum pressure p Q100% of 5.15 bar (H geo / 10.21 + p FL + Δp loss,max ).

Die zu ermittelnde Druckregelkurve 1 ist durch eine Verbindungslinie zwischen dem Minimaldruck po=o und dem Maximaldruck pQ100% gebildet und wird von der Regelungselektronik nach ihrer Ermittlung eingestellt.The pressure control curve 1 to be determined is formed by a connecting line between the minimum pressure po=0 and the maximum pressure p Q100% and is set by the control electronics after it has been determined.

Die Berechnung des Maximaldruckverlusts Δploss,max wird anhand von Fig. 3 veranschaulicht. Diese zeigt rein beispielhaft fünf Trendfunktionen T1 bis T5, die die Abhängigkeit des Maximaldruckverlusts Δploss,max vom Volumenstrom jeweils gemäß einer Wurzelfunktion beschreiben. Die Trendfunktionen T1 bis T5 unterscheiden sich hier lediglich in ihrer Steigung, die durch einen Auslegungsfaktor kA beschrieben ist. Die Steigung der Trendfunktion ist abhängig vom hydraulischen Netzwerk des Gebäudes, welches die Druckerhöhungsanlage bedient, beispielsweise vom Rohrleitungsdurchmesser.The calculation of the maximum pressure loss Δp loss,max is illustrated using FIG. This shows five trend functions T1 to T5 purely by way of example, which describe the dependency of the maximum pressure loss Δp loss,max on the volume flow, each according to a root function. The trend functions T1 to T5 differ here only in their gradient, which is described by a design factor k A . The gradient of the trend function depends on the hydraulic network of the building that serves the pressure boosting system, for example on the pipe diameter.

Zur Berechnung des Maximaldruckverlusts kann ohne Differenzierung zwischen den einzelnen Trendfunktionen T1 bis T5 eine repräsentative, mittlere Trendfunktion T3 verwendet werden, welcher z.B. der Auslegungsfaktor kA = 1 zugeordnet ist. So ergibt sich bei der mittleren Trendfunktion T3 in Fig. 3 für einen Maximalvolumenstrom Q100% = 8,3 m3/h ein Maximaldruckverlust Δploss,max von 0,8 bar.To calculate the maximum pressure drop, a representative, average trend function T3 can be used without differentiating between the individual trend functions T1 to T5, to which the design factor k A =1 is assigned, for example. In the mean trend function T3 in FIG. 3, a maximum pressure loss Δp loss,max of 0.8 bar results for a maximum volume flow Q 100% =8.3 m 3 /h.

Die Trendfunktionen T1, T2, T4 und T5 sind empirisch ermittelt anhand der Rohrdimensionierung hydraulischer Anlagen gemäß verschiedener Auslegungsnormen 1, 2, 3 und 4 und allgemein bekannter Druckverlustberechnung nach Literaturangaben. Als Auslegungsnorm kann beispielsweise die DIN 1988 herangezogen werden, die die technischen Regeln für neue TrinkwasserInstallationen beschreibt und die damit verbundene, korrekte Auswahl der Rohrdurchmesser angibt. Diese Auslegungsnorm wurde in den vergangenen Jahrzehnten mehrfach abgeändert und die darin genannten Rohrdurchmesser angepasst, so dass während der Gültigkeit einer bestimmten Auslegungsnorm auch ein bestimmter Rohrdurchmesser gültig war. Aufgrund der empirischen Ermittlung einer bestimmten Trendfunktion aus einem oder mehreren bestimmten Rohrdurchmesser(n), ist somit auch jeder Auslegungsnorm für Rohrdurchmesser eine bestimmte Trendfunktion zugeordnet, die für die Berechnung des Maximaldruckverlusts herangezogen werden kann. Neben der DIN 1988 und ihren verschiedenen Versionen kann beispielsweise auch die DIN EN 806 herangezogen werden.The trend functions T1, T2, T4 and T5 are determined empirically based on the pipe dimensioning of hydraulic systems according to various design standards 1, 2, 3 and 4 and generally known pressure loss calculation according to literature. DIN 1988, for example, can be used as a design standard, which describes the technical rules for new drinking water installations and specifies the associated correct selection of the pipe diameter. This design standard has been amended several times over the past decades and the pipe diameters specified therein have been adjusted so that a specific pipe diameter was also valid while a specific design standard was valid. Due to the empirical determination of a specific trend function from one or more specific pipe diameter(s), each design standard for pipe diameters is assigned a specific trend function that can be used to calculate the maximum pressure loss. In addition to DIN 1988 and its various versions, DIN EN 806, for example, can also be used.

Somit kann über das Gebäudealter eine geeignete Trendfunktion ermittelt werden, um die Maximaldruckverluste genauer zu ermitteln als mittels der repräsentativen, mittleren Trendfunktion T3.A suitable trend function can thus be determined via the age of the building in order to determine the maximum pressure losses more precisely than using the representative, mean trend function T3.

Es kann somit vorgesehen sein, dass die Regelungselektronik eine Eingabe des Gebäudealters erwartet. Entsprechend kann das Gebäudealter vom Nutzer vorgegeben werden. Die Regelungselektronik wählt dann entsprechend dem eingegebenen Gebäudealter eine der Trendfunktionen aus. Hierfür können sämtliche Trendfunktionen in der Regelungselektronik hinterlegt sein, beispielsweise in Gestalt einer Wertetabelle oder in Gestalt einer mathematischen Funktion. Um den Speicherbedarf zu minimieren kann der Auslegungsfaktor kA herangezogen werden, wobei jedem Gebäudealter ein Auslegungsfaktor kA zugeordnet ist und nach der Eingabe des Gebäudealters durch den Nutzer ausgewählt wird. Es muss dann nur eine Trendfunktion, beispielsweise die mittlere Trendfunktion T3 in der Regelungselektronik hinterlegt werden, welche dann mit dem Auslegungsfaktor kA schlichtweg multipliziert wird.Provision can thus be made for the control electronics to expect the age of the building to be input. Accordingly, the age of the building can be specified by the user. The control electronics then selects one of the trend functions according to the age of the building entered. For this purpose, all trend functions can be stored in the control electronics, for example in the form of a table of values or in the form of a mathematical function. In order to minimize the storage requirement, the design factor k A can be used, with each building age being assigned a design factor k A and being selected by the user after the building age has been entered. Only one trend function, for example the mean trend function T3, then needs to be stored in the control electronics, which is then simply multiplied by the design factor k A .

Untersuchungen haben gezeigt, dass die Trendfunktion bei Trinkwasserinstallationen mit vergleichsweise hoher geodätischer Höhe steiler sein sollte, als bei Trinkwasserinstallationen mit geringerer geodätischer Höhe. Aus diesem Grund ist es zur Verbesserung der Genauigkeit bei der Ermittlung der Maximaldruckverluste von Vorteil, die Steigung der Trendfunktion abhängig von der geodätischen Höhe Hgeo zu gestalten. Zu diesem Zweck kann ein mit der Trendfunktion zu multiplizierender Höhenfaktor kE berücksichtigt werden, der umso größer ist, je höher die geodätische Höhe ist. Unterhalb eines Grenzwerts von beispielsweise 40m kann dieser Höhenfaktor beispielswiese 1 sein, oberhalb des Grenzwerts linear ansteigen, beispielsweise bei 125m gleich 2 sein, so dass die Steigung verdoppelt wird.Investigations have shown that the trend function for drinking water installations with a relatively high geodetic height should be steeper than for drinking water installations with a lower geodetic height. For this reason, in order to improve the accuracy when determining the maximum pressure loss, it is advantageous to make the gradient of the trend function dependent on the geodetic height H geo . For this purpose, a height factor k E to be multiplied by the trend function can be taken into account, which is greater the higher the geodetic height is. Below a limit value of 40 m, for example, this height factor can be 1, for example, and increase linearly above the limit value, for example it can be 2 at 125 m, so that the gradient is doubled.

Claims (15)

  1. Method for adjusting a proportional pressure control curve (1) in the control electronics of a pressure boosting system to supply a hydraulic network in a building with a number of discharge points, characterised by the control electronics, from three system values comprising
    - a volume flow value (Q100%) of a desired maximum volume flow on the pressure control curve (1),
    - an elevation value (Hgeo) of a geodetic elevation and
    - a flow pressure value (pFL) of a desired flow pressure at the least favourable discharge point,
    already determining a minimum pressure (po=o) at a volume flow of zero and a maximum pressure (pQ100%) at the maximum volume flow, in which the pressure control curve (1) is formed by a connecting line between the minimum pressure (pQ=0) and the maximum pressure (pQ100%) and is adjusted by the control electronics.
  2. Method according to claim 1, characterised by the volume flow value (Q100%) forming a standard value established at the factory, the confirmation or change of which is expected by the control electronics.
  3. Method according to claim 2, characterised by the standard value corresponding to the volume flow at the maximum hydraulic output of the pressure boosting system.
  4. Method according to claim 1, 2 or 3, characterised by the volume flow value (Q100%) forming an input value that can be specified by the user, the input of which is expected by the control electronics.
  5. Method according to one of the preceding claims, characterised by the elevation value (Hgeo) forming an input value to be specified directly by the user, the input of which is expected by the control electronics.
  6. Method according to one of the claims 1 through 4, characterised by the elevation value (Hgeo) being determined from a building height specified by the user, the input of which is expected by the control electronics.
  7. Method according to one of the claims 1 through 4, characterised by the elevation value (Hgeo) being determined from a number of floors specified by the user, notably a number of floors and a floor height, the input of which is expected by the control electronics.
  8. Method according to one of the preceding claims, characterised by the pressure value (pFL) forming a standard value established at the factory, preferably 3bar, the confirmation or change of which is expected by the control electronics.
  9. Method according to one of the preceding claims, characterised by the pressure value (pFL) forming an input value that can be specified by the user, the input of which is expected by the control electronics.
  10. Method according to one of the preceding claims, characterised by the elevation value (Hgeo) being used to calculate a geodetic pressure value (pgeo), and the minimum pressure (po=o) being formed from the sum of this geodetic pressure value (pgeo) and the flow pressure value (pFL).
  11. Method according to one of the preceding claims, characterised by the volume flow value (Q100%) being used to calculate a maximum pressure loss (Δploss,max) using a trend function (T1-T5), and the maximum pressure (pQ100%) being formed from the sum of the minimum pressure (po=o) and the maximum pressure loss.
  12. Method according to claim 11, characterised by the trend function (T1-T5) describing the dependency of the maximum pressure loss (Δploss,max) of the volume flow (Q) according to a root function, the slope of which is defined by a layout factor (kA) that can be selected.
  13. Method according to claim 12, characterised by a predefined mean value of the layout factor (kA) being used as standard.
  14. Method according to claim 12 or 13, characterised by the control electronics expecting the specification of a building age for the building, and selecting the layout factor (kA) from a number of stored layout factors based on the building age input by the user.
  15. Pressure boosting system to supply a hydraulic network in a building with a number of discharge points, comprising at least one pump assembly and control electronics to control said pump assembly, characterised by the control electronics being configured to execute the method according to one of the claims 1 through 14.
EP18020478.6A 2018-10-01 2018-10-01 Method for adjusting a pressurisation system Active EP3508730B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18020478.6A EP3508730B1 (en) 2018-10-01 2018-10-01 Method for adjusting a pressurisation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18020478.6A EP3508730B1 (en) 2018-10-01 2018-10-01 Method for adjusting a pressurisation system

Publications (2)

Publication Number Publication Date
EP3508730A1 EP3508730A1 (en) 2019-07-10
EP3508730B1 true EP3508730B1 (en) 2022-05-11

Family

ID=63720448

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18020478.6A Active EP3508730B1 (en) 2018-10-01 2018-10-01 Method for adjusting a pressurisation system

Country Status (1)

Country Link
EP (1) EP3508730B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116339175B (en) * 2023-05-30 2023-07-25 合肥荣叙科技有限公司 Water supply pump house automatic control system based on big data analysis

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2476907B1 (en) * 2011-01-14 2014-08-06 Grundfos Management a/s System and method for pressure control in a network
DE102014001413A1 (en) * 2014-02-05 2015-08-06 Wilo Se Method for determining the system characteristic of a distribution network
DE102014016791B4 (en) * 2014-11-14 2022-05-12 Paw Gmbh & Co. Kg Process for the hydraulic control of several heating circuits on the manifold
DE102016004458A1 (en) * 2016-04-15 2017-10-19 Wilo Se Centrifugal pump unit and method for its operation
DE102017001722B4 (en) * 2017-02-23 2023-10-26 Wilo Se Method for setting the operation of a pump unit and arrangement of a pump unit and electronics for carrying out the method

Also Published As

Publication number Publication date
EP3508730A1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
EP3366925B1 (en) Method for adjusting the operation of a pump system and arrangement of a pump system and electronics for carrying out the method
EP2944821B1 (en) Method for the energy-optimized regulation of the speed of a pump unit
DE102015000373A1 (en) Method for reducing the energy consumption of a feed pump, which promotes water from a well into a pipeline network, as well as system for conveying water from at least one well into a pipeline network
EP2863134B1 (en) Method for adjusting a heating curve
EP3443228B1 (en) Centrifgual pump unit and method for adjusting the operation thereof
EP3508730B1 (en) Method for adjusting a pressurisation system
EP2678563A1 (en) Operation of an electric motor-driven pump for optimal power by positive feedback
EP2913594A1 (en) Method for operating a heating system with no buffer storage, in particular for guaranteeing safe and correct operation
EP3051222A1 (en) Air distribution system
EP0905596A2 (en) Automatic adaption of the control range of a pressure control loop in multiple pump arrangements
EP2915926A2 (en) Method for determining the system characteristic curve of a distribution network
DE102014202738B4 (en) Process for automated hydraulic balancing of a heating system
EP3048305B1 (en) Reduction of the energy consumption of a variable speed water pump taking into account the current system load
EP3495056A1 (en) Improved control of water conservancy of a cooling section
DE102014016791B4 (en) Process for the hydraulic control of several heating circuits on the manifold
DE102012006444A1 (en) Method for operating a pump set
DE19525887A1 (en) Matching controlled rotary pump system hydraulic power characteristic to heating system requirements - involves selecting value corresp. to flatter pipe network system characteristic determined by comparison, with power characteristic limited depending on last stored value
EP1074795A2 (en) Method for hydraulic calibrating a heating installation
EP0667495B1 (en) Laboratory air feed and exhaust device
DE102015011487A1 (en) Method for reducing the energy consumption of a feed pump, which promotes water from a well into a pipeline network, as well as system for conveying water from at least one well into a pipeline network
EP3267039B1 (en) System and method for controlling a pump station
DE102012112178B4 (en) Process for the circulation of drinking water
EP3376315A1 (en) Method of configuring a centrifugal pump unit with variable rotational speed and associated configuration assistant
EP3739267B1 (en) Method and control unit for controlling a heating circuit
EP3168540A1 (en) Method for carrying out an automated hydraulic balance, valve and heating system for same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191211

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: E03B 5/02 20060101ALI20211125BHEP

Ipc: F04D 15/00 20060101AFI20211125BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WILO SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1491621

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009602

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220912

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220811

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009602

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

26N No opposition filed

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230920

Year of fee payment: 6

Ref country code: GB

Payment date: 20230920

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230920

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511