EP3048305B1 - Reduction of the energy consumption of a variable speed water pump taking into account the current system load - Google Patents

Reduction of the energy consumption of a variable speed water pump taking into account the current system load Download PDF

Info

Publication number
EP3048305B1
EP3048305B1 EP16000069.1A EP16000069A EP3048305B1 EP 3048305 B1 EP3048305 B1 EP 3048305B1 EP 16000069 A EP16000069 A EP 16000069A EP 3048305 B1 EP3048305 B1 EP 3048305B1
Authority
EP
European Patent Office
Prior art keywords
characteristic curve
pump
throughflow rate
delivery pump
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16000069.1A
Other languages
German (de)
French (fr)
Other versions
EP3048305A1 (en
Inventor
Jens-Christian Magnussen
Jörg Bülow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnussen Emsr-Technik GmbH
Original Assignee
Magnussen Emsr-Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102015000373.9A external-priority patent/DE102015000373A1/en
Priority claimed from DE102015011487.5A external-priority patent/DE102015011487A1/en
Application filed by Magnussen Emsr-Technik GmbH filed Critical Magnussen Emsr-Technik GmbH
Publication of EP3048305A1 publication Critical patent/EP3048305A1/en
Application granted granted Critical
Publication of EP3048305B1 publication Critical patent/EP3048305B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B5/00Use of pumping plants or installations; Layouts thereof

Definitions

  • the invention relates to a method for reducing the energy consumption of a feed pump according to the preamble of claim 1 and a system for conveying water from at least one well into a pipe network according to the preamble of claim 10.
  • Processes and plants of the type mentioned are mainly used in water works to promote drinking water wells in a water supply network, but can also be used in industrial plants that require large amounts of fresh water.
  • the feed pumps are usually electric centrifugal pumps, which are used as submersible pumps within the well.
  • the feed pumps are located either directly on the mains or are equipped with a frequency converter with which the drive speed of the feed pump is regulated according to a set flow rate.
  • the EP 2 610 693 A1 discloses a method of optimizing the energy efficiency of a pumping system having at least one pump controlling the liquid level of a reservoir.
  • the method includes two stages, an identification stage and an energy optimization stage.
  • the pump is operated with a series of flow conditions to determine data points, on the basis of which energy efficiency optimization properties are determined.
  • an actual geodetic altitude is determined and on the basis of it and the optimization properties, an energy minimization value for the pump control is selected.
  • the EP 2 944 821 A1 discloses a method for energy-optimized speed control of a pump set. Depending on a given system characteristic curve is calculated by evaluating a mathematical function that assigns a target flow rate required for volume flow energy consumption of the pump unit, the one speed at which this volume flow specific energy consumption is minimal, and then operated the pump unit at this speed.
  • JP S54 122401 A is a highly efficient control for dewatering pumps is known in which the current head is calculated and these corresponding analog signals are placed in a functional operator in which a maximum efficiency curve is stored. The operator then calculates the pump speed based on the current delivery head for maximum efficiency operation.
  • the EP 0 150 068 A2 discloses a method and apparatus for controlling various operating parameters of pumps. The control is based on characteristic curves, for the description of which the speed and the power requirement are used as electrical measured variables.
  • the present invention seeks to improve a method and a system of the type mentioned in that the feed pump works as close to or at its lowest energy operating point.
  • the solution according to the invention makes it possible, even in complex wells, to determine the operating point of each feed pump individually and independently of the other feed pumps at a given time energetically most favorable operating point and then this operating point by changing the input speed of the respective Adjust pump to minimize the energy consumption of each pump separately.
  • the feed pump is preferably an electric feed pump equipped with a frequency converter whose drive speed is controlled or regulated by the frequency converter by changing or adjusting the frequency of the alternating current applied to the drive motor of the feed pump and thus the drive speed of the feed pump.
  • the target flow rate of the lowest energy operating point is transmitted to the control or regulating unit, which compares the target flow rate with a measured actual flow rate and generates a control value for the frequency from the difference of the two flow rates.
  • the frequency converter then changes the frequency of the alternating current until the actual flow rate corresponds to the set flow rate.
  • the operating point with the lowest specific power or energy requirement is that operating point of the feed pump in which a characteristic of the specific power or energy demand of the feed pump, preferably including the drive motor, a serving for controlling the feed pump and a power supply to Drive motor serving power line has a minimum.
  • the flow rate that is delivered from the feed pump to the pipe or pipe network at the minimum of the specific power or energy demand is the flow Q1.
  • a characteristic curve is calculated which indicates the respective specific power or energy requirements of the feed pump as a function of the dynamic system characteristic curve, which in turn results from the geodetic height, the lowering of the water level in the well and line losses in the line or in the mains network is calculated.
  • the minimum of this calculated characteristic represents the operating point with the lowest specific power or energy requirement.
  • the characteristic curve of the specific power or energy demand of the feed pump, the pump efficiency curve and the dynamic system characteristic in a usual for marking feed pumps in wells diagram or coordinate system are shown in which the abscissa, the delivery or flow rate of the feed pump and on the ordinate Conveying height of the feed pump are applied, the former expediently in m 3 / h and the latter expediently in mWS (meter water column) is given.
  • the specific power or energy demand curve indicates the quantity or volume of power or energy required to extract one m 3 of water from the well into the pipeline or pipeline, which is expediently expressed in kWh per m 3 .
  • This curve is a curve that drops to the minimum with increasing flow in the manner of a relatively steep parabola and then rises again in the form of a relatively flat parabola.
  • efficiency curve pump efficiency curve is a "static" characteristic that indicates a certain efficiency of the feed pump as a function of the flow rate at the output of the feed pump and the delivery head.
  • the pump efficiency curve is an increasing with increasing flow or flow rate and increasing head, the slope of which increases with increasing flow or flow rate and increasing head.
  • the pump efficiency characteristic is preferably the efficiency curve for the maximum efficiency of the feed pump, which is usually in the range of about 70 to 80 percent in feed pumps for wells, such as centrifugal pumps, so that the most energetically favorable operating point can be set can.
  • On both sides of the preferred efficiency curve are each pairs of efficiency characteristics, in which the pump operates with the same but lower efficiency.
  • the dynamic system characteristic represents the resistance of the line or the pipeline network at a certain delivery or flow rate at the output of the feed pump.
  • the dynamic system curve is also a curved, rising with increasing delivery or flow rate and increasing head, but is flatter than the pump efficiency curve and cut them.
  • the method according to the invention is preferably implemented by suitable software which is accessed by the control unit.
  • delivery pump performance characteristics are mostly provided by the suppliers of drawn pumps, which can not be directly processed by the software
  • the desired pump efficiency curve is converted from the corresponding drawn pump efficiency curve of the manufacturer to an electronic form obtained by software evaluate or process.
  • the pump efficiency curve of the manufacturer preferably from the pump efficiency curve for the maximum efficiency, value pairs extracted and converted by means of a polynomial regression (polynomial regression) in a usable for the calculation and display electronic form.
  • polynomial regression polynomial regression
  • an overall efficiency curve is calculated to calculate the characteristic of the specific power or energy demand, indicating or reproducing the overall efficiency of the feed pump including the drive motor, the frequency converter and the power line as a function of the current system characteristic.
  • the respective total power is calculated for each flow rate or for a plurality of incremental flow rate support points.
  • the respective total power only needs to be divided by the respectively associated flow rate in order to obtain the characteristic curve or a plurality of incremental interpolation points of the characteristic curve.
  • the calculation of the overall efficiency characteristic curve is preferably carried out in several steps, wherein in a first step pump characteristics for a number of other frequencies or speeds are derived from a pump characteristic curve usually provided by the manufacturer of the feed pump for the maximum frequency or speed.
  • pump characteristics of the feed pump are determined for about five to ten different frequencies. These frequencies suitably include the maximum frequency applied by the frequency converter to the drive motor and a number of other frequencies at predetermined frequency intervals between the maximum frequency and the lowest frequency adjustable by the frequency at which the delivery pump is still allowed to operate.
  • the maximum frequency is 100 Hz
  • the lowest frequency is about 65 Hz.
  • intersection points of the current system characteristic curve are then calculated with the pump characteristic curves calculated in the first step, and the associated flow rate is determined for each of these intersection points.
  • pump efficiency curves for a number of other frequencies or speeds are derived from a maximum efficiency or speed pump efficiency curve typically provided by the pump manufacturer, as previously described for the pump characteristic.
  • the pump efficiency ⁇ at each frequency is determined from each of the flow rates determined in the second step and from the associated pump efficiency curve determined in the third step.
  • a pump efficiency curve becomes the current one Plant characteristic calculated. This calculation is preferably carried out by polynomial regression (polynomial regression).
  • a current overall efficiency curve which is also dependent on the system characteristic curve, is then calculated in a sixth step, into which efficiency characteristics of the electric drive motor, the frequency converter and, if appropriate, the power line are preferably included in addition to the pump efficiency characteristic.
  • the calculation of the overall efficiency characteristic is carried out by multiplying the pump efficiency characteristic with the other efficiency characteristics to be considered.
  • the efficiency characteristics of the electric drive motor of the feed pump, the frequency converter and the power line for supplying power to the drive motor are usually available from the manufacturers of these components, so they need not be calculated.
  • the derived from the plant characteristic curve or dependent on the plant characteristic curves, such as the overall efficiency curve and the characteristic of the specific power or energy demand are constantly recalculated as the plant characteristic, preferably at short intervals and / or whenever the system characteristic changes , This is the case, for example, when the lowering of the water level in the well or line losses in the pipeline or pipeline network change.
  • the determination of the dynamic system characteristic from the geodetic height, the lowering of the water level in the well and the pipe losses in the pipe network is preferably carried out by the characteristics of these variables are electronically added in the above diagram or coordinate system by the software used.
  • the system characteristic curve is a "dynamic" characteristic, which includes the calculation of the constant geodetic height as well as a “dynamic” characteristic of the lowering of the water level in the well and a “dynamic” characteristic of the line losses in the line network. From the plant characteristic curve it can be deduced, which resistance the pipeline network of the pump at a certain delivery or Flow rate, which in turn can be calculated, which pressure is necessary to promote the specific flow or flow through the pipe network. From the current system characteristic curve it can be seen which resistance the pump's line network opposes with the current delivery or flow rate.
  • the geodetic height is the height difference between the highest point of the pipeline network, in which promotes the feed pump, and the water level in the well from which promotes the feed pump.
  • the calm water level is the water level that sets in the well when no water is pumped out of the well.
  • the geodetic height is a constant value that is independent of the flow or flow rate.
  • the characteristic curve of the geodesic height which is also referred to simply as the geodetic characteristic curve, is therefore a straight line running parallel to the abscissa.
  • the characteristic curve of the lowering of the water level in the well is a "dynamic" characteristic which is determined for each well during normal or controlled operation of the feed pump by stepwise or preferably continuous measurements.
  • the actual water level in the well is determined, for example, by means of a pressure gauge at the bottom of the well or at the level of the submersible pump and subtracted from the calm water level.
  • the "dynamic" characteristic shows the course of the lowering of the water level as a function of the delivery or flow rate and the delivery height of the feed pump.
  • the lowering of the water level in the well is dependent on the flow or flow rate characteristic curve, which usually increases linearly with the flow or flow rate.
  • the line losses of the line network are derived for each pump from the prevailing at the output of the pump pressure, which is determined stepwise or preferably continuously during the normal or regular operation of the pump.
  • a line characteristic curve of the line losses is a "dynamic" curve, which is a curved curve in the above diagram or coordinate system, which increases with increasing delivery or flow rate and with increasing head, the slope increases.
  • the line losses of the network usually increase in square of the flow or flow rate.
  • the pressure in the line is preferably measured before the first branching of the line network behind the feed pump.
  • the height level, in which the pressure in the pipeline network is measured flows into the calculation, if the pressure is not measured directly at the outlet of the feed pump, but for example at the wellhead, which is located at submersible pumps at a higher level than the output of the pump ,
  • the measurement of the pressure at the well head is preferred because the line has not yet branched there and because the measurement of the pressure there is easier than inside the well at the output of the feed pump.
  • the dynamic determination of the subsidence according to the invention also makes it possible to detect a blockage of the well.
  • a blockage in which not enough water can flow into the wells, is usually noticeable in that during operation of the feed pump does not set after some time a constant flow water level at which the delivery or flow rate of the feed pump and the Inflow into the well keep the balance, but that the water level drops further and further.
  • the pressure and the delivery or flow rate at the outlet of the pump are determined for each delivery pump.
  • the delivery or flow rate need not be measured directly at the outlet of the delivery pump. Instead, the measurement can be anywhere before the first one Branching of the line done and preferably takes place at the wellhead.
  • the measurement of the delivery or flow rate is preferably carried out by means of an inductive measuring device and takes place according to a further advantageous embodiment of the invention as the measurement of the lowering of the water level and the pressure stepwise or preferably continuously.
  • a further preferred embodiment of the invention provides that displayed on a screen, the characteristic of the specific power or energy demand of the feed pump, the pump efficiency curve, the current system characteristic and a pump curve for the current input speed of the feed pump and.
  • the pump characteristic curve is a "dynamic" characteristic which, for a specific drive speed or frequency of the feed pump in the above-mentioned diagram or coordinate system, shows its operating points in the form of a delivery or flow rate of the feed pump as a function of the delivery height.
  • the pump curves are in the above-mentioned diagram or coordinate system curved, decreasing with increasing flow or flow rate and increasing head, curves, the slope of which increases usually with increasing flow or flow rate and increasing head.
  • the pump characteristics are converted into electronic form by extracting pairs of values and polynomial regression from drawn diagrams of the manufacturers so that they can be displayed on the screen by means of the software. The representation is made for the respective drive speed of the feed pump, so that the associated frequency is needed.
  • the screen also expediently displays the minimum of the characteristic of the specific power or energy requirement as well as the point of intersection of the pump characteristic with the instantaneous system characteristic and the intersection of the pump efficiency characteristic with the instantaneous system characteristic.
  • the flow Q1 can be read, in which the specific power or energy consumption of the feed pump is the lowest.
  • the Flow Q2 can be read.
  • the on-screen operator can immediately compare whether the flow rate at the minimum of the specific power or energy demand curve or that at the intersection of the pump efficiency curve with the system characteristic is greater or less, thereafter one of the alternatives mentioned above under 2) and 3) to choose.
  • the actual operating point calculated from the intersection of the pump characteristic curve with the system characteristic curve, the desired operating point point calculated from the intersection of the pump efficiency curve with the system curve and the operating point with the lowest specific power or energy requirement of the feed pump are each output in the form of a delivery or flow rate , wherein the former represent the actual flow or flow rate and the latter energetically favorable target flow or flow rates.
  • One of these desired delivery or flow rates is fed to the control unit, as previously described, which generates a control value for the frequency converter.
  • the system characteristic of each pump usually changes, for example, when the water level in the associated wells drops or the line losses in the network change or wells with multiple wells one or more feed pumps are switched on or off.
  • the change in the system characteristic causes a shift in the system characteristic in the above-mentioned diagram or coordinate system. This also results in a different characteristic of the specific power or energy requirement as well as new intersections of the system characteristic with the pump efficiency characteristic.
  • the control or regulation unit determines the new minimum of the characteristic curve of the specific power or energy requirement and the new points of intersection and displays them on the screen.
  • either the minimum of the characteristic of the specific power or energy demand or the intersection of the high-efficiency pump efficiency curve and the system characteristic acts as a reference in the control of the feed pump, the energy saving potential being that the instantaneous actual flow rate expressed as the actual flow rate Operating point of the feed pump this minimum or intersection is tracked.
  • Well system 10 shown essentially consists of a single drinking water well 12 and a well pump 12 installed in the pump 14, which pumps drinking water from the well 12 through a line 18 into a reservoir 16.
  • the pump 14 is a submersible pump, which is submerged within the well 12 in the water and designed, for example, as a centrifugal pump with an electric drive motor 15.
  • the reservoir 16 may be, for example, a high reservoir or a Verdüsung.
  • the well system 10 further comprises means 20 for continuously determining the lowering of the water level in the well 12, a fountain head 22 arranged Pressure gauge 24 for continuously measuring the water pressure in the line 18 behind the pump 14 and also arranged on the wellhead 22 flow rate meter 26 for continuously measuring the delivery or flow rate of the pump 14th
  • the means 20 comprise a pressure gauge 28, which is arranged approximately at the level of the pump 14 in the well 12 and continuously detects the hydrostatic pressure of the water column above the pressure gauge 28.
  • Fig. 1 represented by a hatched area
  • the height of the water column in the well between a water level H 0 which occurs when the pump 14 for a long time does not deliver water from the well 12
  • an operating water level H 1 which is in operation of the feed pump 14th when the amount of water delivered by the pump 14 and the flow of water from the environment into the wells 12 are balanced.
  • the respective lowering of the water level H Abs ( Fig. 1 ), which corresponds to the height difference ⁇ H between the still water level H 0 and the instantaneous actual water level H Ist and is generally between the two values H 0 and H 1 .
  • the well system 10 includes a control and regulation unit 30 for controlling and regulating the drive speed of the feed pump 14.
  • the control unit 30 is connected by signal lines 32 with the measuring devices 24, 26 and the means 20.
  • the control unit 30 communicates on the one hand with a computer 34 of a control room 36 of the well system 10 and on the other hand with a frequency converter 38 which is connected by a power line 40 to the drive motor 15 of the feed pump 14.
  • the computer 34 includes a screen 42, on the characteristics of the well system 10 and the feed pump 14 and the result of the control and regulation of the drive speed for visual inspection can be displayed.
  • the frequency converter 38 By means of the frequency converter 38, the frequency of the drive motor 15 of the pump 14 applied alternating voltage can be changed and thus the drive speed of the pump 14 can be changed continuously from the minimum speed specified by the manufacturer to the rated speed without the drive torque drops.
  • the arranged at the well head 22 pressure gauge 24 measures the water pressure in the line 18 at the level of the well head 22.
  • the measured water pressure in the line 18 is transmitted via the control unit 30 to the computer 34, where the measured Pressure and the hydrostatic pressure of the water column between the output of the feed pump 14 and the measuring point at the wellhead 22 are added to calculate the pressure at the outlet of the feed pump 14.
  • the line losses in the line 18 are in a defined relationship to the pressure at the outlet of the feed pump 14 and can be calculated by the computer 34 from the pressure measured by the pressure gauge 24.
  • the flow rate measuring device 26 is an inductive measuring device, from which the measured delivery or flow rate in the line to the control and regulation unit 30 and to the computer 34 is transmitted. Since the line 18 does not branch in front of the well head 22, the measured delivery or flow rate corresponds to the delivery or flow rate at the outlet of the pump 14.
  • the pressure of the water column measured by the pressure gauge 28 is transmitted to the control unit and from there to the computer, which calculates the lowering of the water level H Abs from the measured pressure.
  • the geodetic height H geod is still required, ie the height difference between the still water level H 0 and the highest point of the riser, as in Fig. 1 shown.
  • the computer 34 generates from the geodetic height H geod , the instantaneous reduction of the water level H Abs and the current pressure at the output of the feed pump 14 each have a characteristic of these variables.
  • Fig. 3 represented in a diagram or coordinate system in which the abscissa indicates the delivery or flow rate of the feed pump in m 3 / h and the ordinate the delivery height of the feed pump 14 in mWS.
  • the characteristic is a straight line parallel to the abscissa, which in Fig. 3 is shown by a dotted line A.
  • the characteristic of the lowering of the water level is also a straight line, but increases in proportion to the delivery or flow rate of the feed pump 14, as in Fig. 3 represented by a broken line B.
  • the characteristic of the line losses is a curved curve which increases due to the increasing line resistance in accordance with the square of the delivery or flow rate, as in FIG Fig. 3 represented by a dash-dotted line C.
  • the system characteristic D is a dynamic characteristic which shifts with each change in the pressure at the outlet of the pump 14 and any change in the lowering of the water level in the diagram.
  • a maximum efficiency pump efficiency curve and a pump characteristic are stored for the same diagram or coordinate system, of which the former is a parabolic rising curve, as in FIG Fig. 4 represented by a broken line E, and the latter is a sloping curved curve, as in Fig. 4 represented by a dotted line F.
  • E and F shows Fig. 4 also the plant characteristic D.
  • the pump efficiency curve E is a static characteristic which indicates the maximum efficiency of the pump 14 as a function of the delivery or flow rate and of the delivery head. For example, in a feed pump 14 designed as a centrifugal pump, the maximum efficiency is about 72 to 78%.
  • the pump characteristic curve F is a dynamic characteristic curve which, for a specific frequency or drive speed of the feed pump 14, shows its operating points in the form of a delivery or flow rate as a function of the delivery head.
  • Fig. 4 is shown schematically for a manufacturer-pump characteristic G for the maximum frequency or drive speed, this is done by extracting a set of value pairs X from the drawn characteristic and then a curve is generated by polynomial regression, which is processed by the software implemented in the computer 34 and can be displayed on screen 42 and in Fig. 4 is shown as a dotted line G.
  • the polynomial regression mentioned is a known method, which therefore need not be described in detail here.
  • the computer In order to operate the feed pump 14 always in an energetically most favorable operating point, the computer continuously calculates the intersections S1 and S2 of the instantaneous system characteristic D with the pump characteristic F for the instantaneous drive speed or frequency and with the pump efficiency curve E for the maximum efficiency.
  • the intersection S1 in Fig. 4 and 5 represents the instantaneous operating point of the pump 14, while the point of intersection S2 in Fig. 4 and 5 represents an energetically favorable operating point.
  • the computer 34 continuously calculates a characteristic curve, the respective specific power or energy requirements of the feed pump 14 including its drive motor 15, its frequency converter 38 and its power line 40 depending on the delivery or flow rate at the output of the feed pump 14 and of the delivery indicates.
  • the minimum of this characteristic represents the operating point with the lowest specific power or energy requirement. This characteristic is in Fig. 7 represented by the curve J.
  • the characteristic J is calculated by the computer 34 in several steps: In the first step, a set of value pairs X is extracted from a drawn manufacturer pump characteristic curve for a maximum pump frequency of 100 Hz, and then a polynomial regression generates a curve G100 which can be processed by the software implemented in computer 34 and displayed on screen 42. From this curve G100 in Fig. 8 Then further pump characteristics G95, G90, G85, G80, G75, G70 and G65 are derived for lower frequencies of 95 Hz, 90 Hz, 85 Hz, 80 Hz, 75 Hz, 70 Hz and 65 Hz, as in Fig. 8 shown. The frequencies mentioned are only examples. Other frequencies may be used.
  • the intersections S100, S95, S90, S85, S80, S75, S70 and S65 of the current system characteristic D are calculated with the pump characteristics G100, G95, G90, G85, G80, G75, G70 and G65 and for each of these intersections S100, S95, S90, S85, S80, S75, S70 and S65 determines the associated flow rate Q100, Q95, Q90, Q85, Q80, Q75, Q70 and Q65 which are on the abscissa below the respective intersection S100, S95, S90, S85 , S80, S75, S70 and S65 can be read.
  • a set of value pairs X is extracted from a drawn manufacturer pump efficiency curve for the maximum pump frequency of 100 Hz, and then a polynomial regression generates a curve K100, which is processed by the software implemented in the computer 34 and displayed on the screen 42 in a diagram can be, where the abscissa indicates the flow rate and the ordinate the efficiency in%.
  • Fig. 9 from this curve K100 then further pump efficiency curves K95, K90, K85, K80, K75, K70 and K65 for the frequencies of 95 Hz, 90 Hz, 85 Hz, 80 Hz, 75 Hz, 70 Hz and 65 Hz are derived.
  • the pump efficiency becomes ⁇ 100, ⁇ 95, ⁇ 90 , ⁇ 85, ⁇ 80, ⁇ 75, ⁇ 70 and ⁇ 65 (not shown) at the respective frequency of 100 Hz, 95 Hz, 90 Hz, 85 Hz, 80 Hz, 75 Hz, 70 Hz and 65 Hz.
  • the seventh step from the overall efficiency characteristic curve M for a plurality of flow rate support points, for example 60 m 3 / h, 65 m 3 / h, 70 m 3 / h, ... 130 m 3 / h, 135 m 3 / h , 140 m 3 / h the corresponding total power calculated.
  • the characteristic curve J of the specific power or energy requirement is calculated from this by dividing the associated total power for each flow rate support point by the associated flow rate and interpolating the resulting values into the characteristic curve J.
  • the computer 34 calculates the delivery or flow rate at the minimum of the characteristic J of the specific power or energy requirement and displays this on the screen 42 by a vertical line Q1. At the same time, the computer 34 also calculates the delivery or flow rate at the intersection S2 of the pump efficiency characteristic E with the system characteristic D and displays it on the screen by a vertical line Q2 as well, as in FIG Fig. 7 shown.
  • the computer 34 compares the two flow rates Q1 and Q2 calculated in this way. If the comparison shows that the delivery or flow rates Q1 and Q2 are identical, then the computer 34 transmits one of these delivery or flow rates Q1, Q2 as the target flow rate to the control unit 30. If the comparison shows that the Flow or flow rate Q1 is greater than the delivery or flow rate Q2, the computer 34 transmits the delivery or flow rate Q1 as a target flow rate to the control unit 30. If the comparison shows that the flow or flow Q1 smaller is as the flow or flow Q2, as in Fig. 7 illustrated, then the computer 34 transmits the delivery or flow rate Q1 as a target flow rate to the control unit 30 as long as this delivery or flow rate Q1 is achieved by the feed pump 14.
  • the computer 34 transmits the delivery or flow rate Q2 as the target flow rate the control unit 30th
  • the setpoint flow rate transmitted by the computer 34 is compared with the instantaneous actual flow rate measured by the flow rate measurement device 26 and transmitted to the control and regulation unit 30.
  • the control unit 30 then generates from a possible difference between the two values a control value for the frequency converter 38, which then changed by a corresponding change in frequency, the drive speed of the feed pump 14 until the actual flow rate coincides with the target flow rate.
  • the computer 34 has transmitted the delivery or flow rate Q1 or Q2 as the target flow rate to the control and regulation unit 30, shifts the change in frequency, the pump characteristic F, until their intersection S1 with the system curve D either exactly is above the minimum of the characteristic J or coincides with the intersection S2.
  • the latter is in Fig. 5 for the pump characteristic H calculated at the new frequency.
  • Fig. 7 displayed diagram displayed on the screen 42 of the computer 34.
  • the operator can on the one hand visually compare which of the delivery or flow rates Q1 or Q2 is greater.
  • the operator can see whether the point of intersection S1 of the pump curve F with the system curve D is as desired exactly above the minimum of the curve J or coincides with the intersection S2 or if the intersection S1 is tracked as desired the minimum or the intersection S2 when the measured pressure at the outlet of the pump 14 and / or the lowering of the water level in the well 12 change and thereby the system curve D shifts.
  • characteristics D, E, F and H are displayed on the screen 42 of the computer 36, the measured actual flow rate and the target flow rate at the output of the pump 14 as numerical values side by side. In this way, the operator can compare the two values at a glance.
  • the current specific power or energy demand of the feed pump 14 the measured pressure at the outlet of the feed pump 14, the instantaneous water level in the well 12, the actual frequency of the feed pump 14 supplied AC and the delivery or flow rate at the output of Feed pump 14 displayed as numerical values.
  • the fountain 50 in Fig. 2 differs from the well system 10 described above in that it comprises a plurality of wells 12 and a plurality of feed pumps 14, which convey through a common line network 52 into the reservoir 16, but controlled by a single control unit 30 and a single computer 34 be managed.
  • the feed pumps 14 can be switched on or off individually if required, if the amount of water to be pumped is to be increased or decreased. By connecting or disconnecting individual feed pumps 14 results for the other currently in operation feed pumps 14 constantly new system characteristics D, which are continuously calculated by the computer 34 using the software.
  • the calculation is done separately for each operating pump 14 and independently of the other operating pumps 14 in operation in the manner previously described by continuously calculating an associated system characteristic D for each of the operating pumps 14 in operation by thereafter the characteristic curve J of the specific power or energy requirement and its minimum and, if appropriate, also the intersections S1 and S2 of the calculated system characteristic D with the associated pump characteristic F and with the associated pump efficiency characteristic E for the maximum efficiency, and finally Flow rate at the intersection S1 of the calculated system characteristic D with the associated pump characteristic F by changing the frequency and the drive speed of the pump 14 by means of the control unit and the associated frequency converter 38 to the target flow rate Q1 and Q respectively 2 in the Minimum of the characteristic J or at the intersection S2 of the calculated system characteristic D with the associated pump efficiency characteristic E is introduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Reduzierung des Energieverbrauchs einer Förderpumpe gemäß dem Oberbegriff des Anspruchs 1 und eine Anlage zum Fördern von Wasser aus mindestens einem Brunnen in ein Leitungsnetz gemäß dem Oberbegriff des Anspruchs 10.The invention relates to a method for reducing the energy consumption of a feed pump according to the preamble of claim 1 and a system for conveying water from at least one well into a pipe network according to the preamble of claim 10.

Verfahren und Anlagen der eingangs genannten Art werden vor allem in Wasserwerken eingesetzt, um aus Trinkwasserbrunnen Trinkwasser in ein Wasserleitungsnetz zu fördern, können jedoch auch in Industrieanlagen eingesetzt werden, die große Frischwassermengen benötigen.Processes and plants of the type mentioned are mainly used in water works to promote drinking water wells in a water supply network, but can also be used in industrial plants that require large amounts of fresh water.

Bei den Förderpumpen handelt es sich zumeist um elektrische Kreiselpumpen, die als Tauchpumpen innerhalb des Brunnens eingesetzt werden. Die Förderpumpen liegen entweder direkt am Netz oder sind mit einem Frequenzumrichter ausgestattet, mit dem die Antriebsdrehzahl der Förderpumpe entsprechend einer Soll-Durchflussmenge geregelt wird.The feed pumps are usually electric centrifugal pumps, which are used as submersible pumps within the well. The feed pumps are located either directly on the mains or are equipped with a frequency converter with which the drive speed of the feed pump is regulated according to a set flow rate.

Während bei direkt am Netz liegenden Förderpumpen der Energieverbrauch überhaupt nicht beeinflussbar ist, stellt er bei Förderpumpen mit Frequenzumrichter zumeist nur einen zweitrangigen Faktor bei der Steuerung oder Regelung der Pumpen dar.While energy consumption can not be influenced at all on feed pumps located directly at the mains, in feed pumps with frequency converters it is usually only a secondary factor in the control or regulation of the pumps.

Da jedoch Förderpumpen zum Fördern von Wasser aus Brunnen einen großen Energiebedarf besitzen, bietet eine Reduzierung des Energieverbrauchs durch einen verbrauchsoptimierten Betrieb der Förderpumpen ein erhebliches Energieeinsparungspotenzial.However, since feed pumps for conveying water from wells have a large energy requirement, a reduction in energy consumption through consumption-optimized operation of the feed pumps offers a considerable energy saving potential.

Die EP 2 610 693 A1 offenbart ein Verfahren zur Optimierung der Energieeffizienz einer Pumpanlage mit mindestens einer den Flüssigkeitsspiegel eines Speichers steuernden Pumpe. Das Verfahren umfasst zwei Stadien, ein Identifizierungs-Stadium und ein Energieoptimierungs-Stadium. Im ersten Stadium wird die Pumpe mit einer Reihe von Strömungsbedingungen betrieben, um Datenpunkte zu bestimmen, auf deren Basis dann Energieeffizienz-Optimierungseigenschaften ermittelt werden. Im nachfolgenden zweiten Stadium wird eine aktuelle geodätische Höhe bestimmt und auf der Grundlage derselben sowie der Optimierungseigenschaften ein Energieverbrauchsminimierungswert für die Pumpensteuerung gewählt.The EP 2 610 693 A1 discloses a method of optimizing the energy efficiency of a pumping system having at least one pump controlling the liquid level of a reservoir. The method includes two stages, an identification stage and an energy optimization stage. In the first stage, the pump is operated with a series of flow conditions to determine data points, on the basis of which energy efficiency optimization properties are determined. In the following second Stage, an actual geodetic altitude is determined and on the basis of it and the optimization properties, an energy minimization value for the pump control is selected.

Die EP 2 944 821 A1 offenbart ein Verfahren zur energieoptimierten Drehzahlregelung eines Pumpenaggregats. In Abhängigkeit von einer vorgegebenen Anlagenkennlinie wird durch Auswertung einer mathematischen Funktion, die einer Soll-Durchflussmenge den dafür benötigten volumenstromspezifischen Energieverbrauch des Pumpenaggregats zuordnet, diejenige Drehzahl berechnet, bei der dieser volumenstromspezifische Energieverbrauch minimal ist, und dann das Pumpenaggregat mit dieser Drehzahl betrieben.The EP 2 944 821 A1 discloses a method for energy-optimized speed control of a pump set. Depending on a given system characteristic curve is calculated by evaluating a mathematical function that assigns a target flow rate required for volume flow energy consumption of the pump unit, the one speed at which this volume flow specific energy consumption is minimal, and then operated the pump unit at this speed.

Aus der JP S54 122401 A ist eine hocheffiziente Steuerung für Entwässerungspumpen bekannt, bei dem die aktuelle Förderhöhe berechnet und dieser entsprechende analoge Signale in einen funktionalen Operator gegeben werden, in dem eine Kennlinie eines maximalen Wirkungsgrades gespeichert ist. Der Operator berechnet dann unter Zugrundelegung der aktuellen Förderhöhe die Pumpendrehzahl für einen Betrieb mit maximalem Wirkungsgrad.From the JP S54 122401 A is a highly efficient control for dewatering pumps is known in which the current head is calculated and these corresponding analog signals are placed in a functional operator in which a maximum efficiency curve is stored. The operator then calculates the pump speed based on the current delivery head for maximum efficiency operation.

Die EP 0 150 068 A2 offenbart ein Verfahren und eine Vorrichtung zur Regelung von verschiedenen Betriebsparametern von Pumpen. Die Regelung erfolgt nach Kennlinien, für deren Beschreibung die Drehzahl und der Leistungsbedarf als elektrische Messgrößen verwendet werden.The EP 0 150 068 A2 discloses a method and apparatus for controlling various operating parameters of pumps. The control is based on characteristic curves, for the description of which the speed and the power requirement are used as electrical measured variables.

Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, ein Verfahren und eine Anlage der eingangs genannten Art dahingehend zu verbessern, dass die Förderpumpe möglichst nahe bei oder in ihrem energetisch günstigsten Betriebspunkt arbeitet.Proceeding from this, the present invention seeks to improve a method and a system of the type mentioned in that the feed pump works as close to or at its lowest energy operating point.

Diese Aufgabe wird bei dem erfindungsgemäßen Verfahren durch die Verfahrensschritte des Anspruchs 1 und bei der erfindungsgemäßen Anlage durch die Merkmale des Anspruchs 10 gelöst.This object is achieved in the method according to the invention by the method steps of claim 1 and in the inventive system by the features of claim 10.

Die erfindungsgemäße Lösung gestattet es auch in komplexeren Brunnenanlagen, im Betrieb für jede Förderpumpe einzeln und unabhängig von den anderen Förderpumpen den zu einem gegebenen Zeitpunkt energetisch günstigsten Betriebspunkt zu ermitteln und diesen Betriebspunkt dann durch eine Veränderung der Antriebsdrehzahl der jeweiligen Förderpumpe einzustellen, um den Energieverbrauch jeder Förderpumpe separat zu minimieren.The solution according to the invention makes it possible, even in complex wells, to determine the operating point of each feed pump individually and independently of the other feed pumps at a given time energetically most favorable operating point and then this operating point by changing the input speed of the respective Adjust pump to minimize the energy consumption of each pump separately.

Dazu ist es lediglich erforderlich, für jede Förderpumpe die Absenkung des Wasserspiegels im Brunnen sowie den Druck und die Förder- oder Durchflussmenge am Ausgang der Pumpe zu ermitteln, wobei die letztere zur Steuerung bzw. Regelung der Förderpumpe und zur Verifizierung der Berechnung benötigt wird.For this it is only necessary to determine for each pump, the lowering of the water level in the well and the pressure and the delivery or flow rate at the output of the pump, the latter being needed to control the feed pump and to verify the calculation.

Vorzugsweise handelt es sich bei der Förderpumpe um eine mit einem Frequenzumrichter ausgestattete elektrische Förderpumpe, deren Antriebsdrehzahl mittels des Frequenzumrichters gesteuert oder geregelt wird, indem die Frequenz des am Antriebsmotor der Förderpumpe anliegenden Wechselstroms und damit die Antriebsdrehzahl der Förderpumpe verändert oder eingestellt wird. Dabei wird die Soll-Durchflussmenge des energetisch günstigsten Betriebspunkts an die Steuer- oder Regeleinheit übertragen, welche die Soll-Durchflussmenge mit einer gemessenen Ist-Durchflussmenge vergleicht und aus der Differenz der beiden Durchflussmengen einen Stellwert für den Frequenzumrichter generiert. Daraufhin verändert der Frequenzumrichter die Frequenz des Wechselstroms so lange, bis die Ist-Durchflussmenge der Soll-Durchflussmenge entspricht.The feed pump is preferably an electric feed pump equipped with a frequency converter whose drive speed is controlled or regulated by the frequency converter by changing or adjusting the frequency of the alternating current applied to the drive motor of the feed pump and thus the drive speed of the feed pump. In this case, the target flow rate of the lowest energy operating point is transmitted to the control or regulating unit, which compares the target flow rate with a measured actual flow rate and generates a control value for the frequency from the difference of the two flow rates. The frequency converter then changes the frequency of the alternating current until the actual flow rate corresponds to the set flow rate.

Grundsätzlich lässt sich der Energieverbrauch der Förderpumpe mit jeder der beiden Durchflussmengen Q1 oder Q2 bereits beträchtlich reduzieren. Um eine maximale Reduzierung des Energieverbrauchs zu erzielen, werden jedoch erfindungsgemäß beide Durchflussmengen Q1 und Q2 ermittelt und miteinander verglichen, um die jeweils optimale Soll-Durchflussmenge zu erhalten. Bei diesem Vergleich sind grundsätzlich drei Ergebnisse möglich:

  1. 1) Die Durchflussmenge Q1 im Betriebspunkt der Förderpumpe mit dem geringsten spezifischen Leistungs- oder Energiebedarf ist identisch mit der Durchflussmenge Q2 im berechneten Schnittpunkt der Pumpenwirkungsgradkennlinie mit hohem Wirkungsgrad und der dynamischen Anlagenkennlinie. In diesem Fall stellt diese identische Durchflussmenge die Soll-Durchflussmenge dar, an welche die Ist-Durchflussmenge der Förderpumpe durch Veränderung von deren Antriebsdrehzahl herangeführt wird.
  2. 2) Die Durchflussmenge Q1 im Betriebspunkt der Förderpumpe mit dem geringsten spezifischen Leistungs- oder Energiebedarf ist größer als die Durchflussmenge Q2 im berechneten Schnittpunkt der Pumpenwirkungsgradkennlinie mit hohem Wirkungsgrad und der dynamischen Anlagenkennlinie. In diesem Fall wird die Durchflussmenge im Betriebspunkt der Förderpumpe mit dem geringsten spezifischen Leistungs- oder Energiebedarf als Soll-Durchflussmenge gewählt, an welche die Ist-Durchflussmenge der Förderpumpe herangeführt wird, weil dann der spezifische Leistungs- oder Energiebedarf trotz der größeren Durchflussmenge Q1 geringer ist.
  3. 3) Die Durchflussmenge Q1 im Betriebspunkt der Förderpumpe mit dem geringsten spezifischen Leistungs- oder Energiebedarf ist kleiner als die Durchflussmenge Q2 im berechneten Schnittpunkt einer Pumpenwirkungsgradkennlinie mit hohem Wirkungsgrad und der dynamischen Anlagenkennlinie. In diesem Fall wird wie folgt vorgegangen: Solange die Durchflussmenge Q1 erreicht wird, wird die Ist-Durchflussmenge der Förderpumpe an diese Durchflussmenge Q1 als Soll-Durchflussmenge herangeführt. Wenn hingegen die Durchflussmenge Q1 von der Förderpumpe nicht mehr erreicht wird, dann wird die Ist-Durchflussmenge der Förderpumpe an die Durchflussmenge Q2 als Soll-Durchflussmenge herangeführt.
In principle, the energy consumption of the feed pump can already be considerably reduced with each of the two flow rates Q1 or Q2. In order to achieve a maximum reduction in energy consumption, however, according to the invention, both flow rates Q1 and Q2 are determined and compared with one another in order to obtain the respective optimum set flow rate. In this comparison basically three results are possible:
  1. 1) The flow rate Q1 at the operating point of the feed pump with the lowest specific power or energy requirement is identical to the flow rate Q2 in the calculated intersection of the high efficiency pump efficiency curve and the dynamic system characteristic curve. In this case, this identical flow rate represents the target flow rate to which the actual flow rate of the feed pump is brought by changing the drive speed.
  2. 2) The flow rate Q1 at the operating point of the feed pump with the lowest specific power or energy requirement is greater than the flow rate Q2 in the calculated intersection of the high efficiency pump efficiency curve and the dynamic system characteristic curve. In this case, the flow rate at the operating point of the feed pump with the lowest specific power or energy demand is selected as the target flow to which the actual flow rate of the feed pump is introduced, because then the specific power or energy demand is lower despite the larger flow Q1 ,
  3. 3) The flow rate Q1 at the operating point of the feed pump with the lowest specific power or energy requirement is smaller than the flow rate Q2 at the calculated intersection of a high efficiency pump efficiency curve and the dynamic system characteristic. In this case, the procedure is as follows: As long as the flow rate Q1 is reached, the actual flow rate of the feed pump is introduced to this flow rate Q1 as a target flow rate. If, however, the flow rate Q1 is no longer reached by the feed pump, then the actual flow rate of the feed pump is brought to the flow rate Q2 as a target flow rate.

Bei dem Betriebspunkt mit dem geringsten spezifischen Leistungs- oder Energiebedarf handelt es sich um denjenigen Betriebspunkt der Förderpumpe, in dem eine Kennlinie des spezifischen Leistungs- oder Energiebedarfs der Förderpumpe, vorzugsweise einschließlich des Antriebsmotors, eines zur Regelung der Förderpumpe dienenden Frequenzumrichters und einer zur Stromzufuhr zum Antriebsmotor dienenden Stromleitung ein Minimum aufweist. Bei der Durchflussmenge, die bei dem Minimum des spezifischen Leistungs- oder Energiebedarfs von der Förderpumpe in die Leitung oder das Leitungsnetz gefördert wird, handelt es sich um die Durchflussmenge Q1.The operating point with the lowest specific power or energy requirement is that operating point of the feed pump in which a characteristic of the specific power or energy demand of the feed pump, preferably including the drive motor, a serving for controlling the feed pump and a power supply to Drive motor serving power line has a minimum. The flow rate that is delivered from the feed pump to the pipe or pipe network at the minimum of the specific power or energy demand is the flow Q1.

Zur Ermittlung des Betriebspunkts mit dem geringsten spezifischen Leistungs- oder Energiebedarf der Förderpumpe wird eine Kennlinie berechnet, die den jeweiligen spezifischen Leistungs- oder Energiebedarf der Förderpumpe in Abhängigkeit von der dynamischen Anlagenkennlinie angibt, die wiederum aus der geodätischen Höhe, der Absenkung des Wasserspiegels im Brunnen und Leitungsverlusten in der Leitung oder im Leitungsnetz berechnet wird. Das Minimum dieser berechneten Kennlinie stellt den Betriebspunkt mit dem geringsten spezifischen Leistungs- oder Energiebedarf dar.To determine the operating point with the lowest specific power or energy consumption of the feed pump, a characteristic curve is calculated which indicates the respective specific power or energy requirements of the feed pump as a function of the dynamic system characteristic curve, which in turn results from the geodetic height, the lowering of the water level in the well and line losses in the line or in the mains network is calculated. The minimum of this calculated characteristic represents the operating point with the lowest specific power or energy requirement.

Zweckmäßig werden die Kennlinie des spezifischen Leistungs- oder Energiebedarfs der Förderpumpe, die Pumpenwirkungsgradkennlinie und die dynamische Anlagenkennlinie in einem zur Kennzeichnung von Förderpumpen in Brunnenanlagen üblichen Diagramm oder Koordinatensystem dargestellt, in dem auf der Abszisse die Förder- oder Durchflussmenge der Förderpumpe und auf der Ordinate die Förderhöhe der Förderpumpe aufgetragen sind, wobei die erstere zweckmäßig in m3/h und die letztere zweckmäßig in mWS (Meter Wassersäule) angegeben wird.Suitably, the characteristic curve of the specific power or energy demand of the feed pump, the pump efficiency curve and the dynamic system characteristic in a usual for marking feed pumps in wells diagram or coordinate system are shown in which the abscissa, the delivery or flow rate of the feed pump and on the ordinate Conveying height of the feed pump are applied, the former expediently in m 3 / h and the latter expediently in mWS (meter water column) is given.

In diesem Diagramm oder Koordinatensystem gibt die Kennlinie des spezifischen Leistungs- oder Energiebedarfs den zur Förderung von einem m3 Wasser aus dem Brunnen in die Leitung oder das Leitungsnetz erforderlichen fördermengenbezogenen Leistungs- oder Energiebedarf an, der zweckmäßig in kWh pro m3 ausgedrückt wird. Bei dieser Kennlinie handelt es sich um eine Kurve, die mit zunehmender Durchflussmenge in der Art einer relativ steilen Parabel bis zu einem Minimum abfällt und dann in Form einer relativ flachen Parabel wieder ansteigt.In this diagram or coordinate system, the specific power or energy demand curve indicates the quantity or volume of power or energy required to extract one m 3 of water from the well into the pipeline or pipeline, which is expediently expressed in kWh per m 3 . This curve is a curve that drops to the minimum with increasing flow in the manner of a relatively steep parabola and then rises again in the form of a relatively flat parabola.

Die nachfolgend auch vereinfacht als Wirkungsgradkennlinie bezeichnete Pumpenwirkungsgradkennlinie ist eine "statische" Kennlinie, die einen bestimmten Wirkungsgrad der Förderpumpe in Abhängigkeit von der Durchflussmenge am Ausgang der Förderpumpe und deren Förderhöhe anzeigt. Die Pumpenwirkungsgradkennlinie ist eine mit zunehmender Förder- oder Durchflussmenge und zunehmender Förderhöhe ansteigende Kurve, deren Steigung mit zunehmender Förder- oder Durchflussmenge und zunehmender Förderhöhe größer wird. Bei der Pumpenwirkungsgradkennlinie handelt es sich bevorzugt um die Wirkungsgradkennlinie für den maximalen Wirkungsgrad der Förderpumpe, der bei Förderpumpen für Brunnenanlagen, wie Kreiselpumpen, gewöhnlich im Bereich von etwa 70 bis 80 Prozent liegt, so dass der energetisch günstigste Betriebspunkt eingestellt werden kann. Beiderseits von der bevorzugten Wirkungsgradkennlinie finden sich jeweils Paare von Wirkungsgradkennlinien, bei denen die Pumpe mit gleichem aber geringerem Wirkungsgrad arbeitet. Wenn eine Wirkungsgradkennlinie verwendet wird, die in einem Toleranzbereich von weniger als etwa 5 Prozent von der Wirkungsgradkennlinie für den maximalen Wirkungsgrad gelegen ist, ist zumeist auch noch eine Energieeinsparung möglich, jedoch ist die Energieeinsparung dann nicht mehr optimal.The hereinafter also simplified referred to as efficiency curve pump efficiency curve is a "static" characteristic that indicates a certain efficiency of the feed pump as a function of the flow rate at the output of the feed pump and the delivery head. The pump efficiency curve is an increasing with increasing flow or flow rate and increasing head, the slope of which increases with increasing flow or flow rate and increasing head. The pump efficiency characteristic is preferably the efficiency curve for the maximum efficiency of the feed pump, which is usually in the range of about 70 to 80 percent in feed pumps for wells, such as centrifugal pumps, so that the most energetically favorable operating point can be set can. On both sides of the preferred efficiency curve are each pairs of efficiency characteristics, in which the pump operates with the same but lower efficiency. When an efficiency curve is used that is within a tolerance range of less than about 5 percent of the maximum efficiency efficiency curve, energy savings are usually still possible, but energy savings are then no longer optimal.

Die dynamische Anlagenkennlinie stellt den Widerstand der Leitung oder des Leitungsnetzes bei einer bestimmten Förder- oder Durchflussmenge am Ausgang der Förderpumpe dar. Die dynamische Anlagenkennlinie ist ebenfalls eine gekrümmte, mit zunehmender Förder- oder Durchflussmenge und zunehmender Förderhöhe ansteigende Kurve, ist jedoch flacher als die Pumpenwirkungsgradkennlinie und schneidet diese.The dynamic system characteristic represents the resistance of the line or the pipeline network at a certain delivery or flow rate at the output of the feed pump. The dynamic system curve is also a curved, rising with increasing delivery or flow rate and increasing head, but is flatter than the pump efficiency curve and cut them.

Das erfindungsgemäße Verfahren wird bevorzugt durch eine geeignete Software implementiert, auf die von der Steuer- oder Regeleinheit zugegriffen wird. Da Wirkungsgradkennlinien von Förderpumpen von den Herstellern der Förderpumpen zumeist in Form von gezeichneten Diagrammen bereitgestellt werden, die von der Software nicht direkt verarbeitet werden können, wird die gewünschte Pumpenwirkungsgradkennlinie aus der entsprechenden gezeichneten Pumpenwirkungsgradkennlinie des Herstellers in eine elektronische Form überführt, die sich mittels der Software auswerten bzw. verarbeiten lässt. Dazu werden gemäß einer bevorzugten Ausgestaltung der Erfindung aus der Pumpenwirkungsgradkennlinie des Herstellers, vorzugsweise aus der Pumpenwirkungsgradkennlinie für den maximalen Wirkungsgrad, Wertepaare extrahiert und mittels einer Polynomregression (polynomiale Regression) in eine für die Berechnung und Anzeige verwendbare elektronische Form umgewandelt. In entsprechender Weise werden auch andere nachfolgend beschriebene Kennlinien in eine mittels der Software auswertbare bzw. zu verarbeitende elektronische Form gebracht.The method according to the invention is preferably implemented by suitable software which is accessed by the control unit. As delivery pump performance characteristics are mostly provided by the suppliers of drawn pumps, which can not be directly processed by the software, the desired pump efficiency curve is converted from the corresponding drawn pump efficiency curve of the manufacturer to an electronic form obtained by software evaluate or process. For this purpose, according to a preferred embodiment of the invention from the pump efficiency curve of the manufacturer, preferably from the pump efficiency curve for the maximum efficiency, value pairs extracted and converted by means of a polynomial regression (polynomial regression) in a usable for the calculation and display electronic form. In a corresponding manner, other characteristics described below are brought into an electronic form that can be evaluated or processed by the software.

Gemäß einer vorteilhaften Ausgestaltung der Erfindung wird zur Berechnung der Kennlinie des spezifischen Leistungs- oder Energiebedarfs eine Gesamtwirkungsgradkennlinie berechnet, die den Gesamtwirkungsgrad der Förderpumpe einschließlich des Antriebsmotors, des Frequenzumrichters und der Stromleitung in Abhängigkeit von der aktuellen Anlagenkennlinie anzeigt oder wiedergibt.According to an advantageous embodiment of the invention, an overall efficiency curve is calculated to calculate the characteristic of the specific power or energy demand, indicating or reproducing the overall efficiency of the feed pump including the drive motor, the frequency converter and the power line as a function of the current system characteristic.

Aus dieser Gesamtwirkungsgradkennlinie wird für jede Durchflussmenge bzw. für eine Mehrzahl von inkrementalen Durchflussmengenstützpunkten die jeweilige Gesamtleistung berechnet. Zur Berechnung der Kennlinie des spezifischen Leistungs- oder Energiebedarfs braucht die jeweilige Gesamtleistung nur noch durch die jeweils zugehörige Durchflussmenge dividiert werden, um die Kennlinie bzw. eine Mehrzahl von inkrementalen Stützpunkten der Kennlinie zu erhalten.From this overall efficiency characteristic, the respective total power is calculated for each flow rate or for a plurality of incremental flow rate support points. In order to calculate the characteristic curve of the specific power or energy requirement, the respective total power only needs to be divided by the respectively associated flow rate in order to obtain the characteristic curve or a plurality of incremental interpolation points of the characteristic curve.

Die Berechnung der Gesamtwirkungsgradkennlinie erfolgt bevorzugt im mehreren Schritten, wobei in einem ersten Schritt aus einer in der Regel vom Hersteller der Förderpumpe zur Verfügung gestellten Pumpenkennlinie für die maximale Frequenz oder Drehzahl Pumpenkennlinien für eine Reihe von anderen Frequenzen oder Drehzahlen abgeleitet werden. Bevorzugt werden dabei Pumpenkennlinien der Förderpumpe für etwa fünf bis zehn verschiedene Frequenzen ermittelt. Diese Frequenzen umfassen zweckmäßig die maximale Frequenz, die vom Frequenzumrichter am Antriebsmotor angelegt wird, sowie eine Reihe von weiteren Frequenzen in vorbestimmten Frequenzabständen zwischen der maximalen Frequenz und der niedrigsten, vom Frequenzumrichter einstellbaren Frequenz, bei der die Förderpumpe noch arbeiten darf. Bei einer Förderpumpe, die für eine maximale Frequenz von 100 Hz ausgelegt ist, beträgt die maximale Frequenz 100 Hz, während die niedrigste Frequenz etwa 65 Hz beträgt.The calculation of the overall efficiency characteristic curve is preferably carried out in several steps, wherein in a first step pump characteristics for a number of other frequencies or speeds are derived from a pump characteristic curve usually provided by the manufacturer of the feed pump for the maximum frequency or speed. Preferably pump characteristics of the feed pump are determined for about five to ten different frequencies. These frequencies suitably include the maximum frequency applied by the frequency converter to the drive motor and a number of other frequencies at predetermined frequency intervals between the maximum frequency and the lowest frequency adjustable by the frequency at which the delivery pump is still allowed to operate. For a feed pump designed for a maximum frequency of 100 Hz, the maximum frequency is 100 Hz, while the lowest frequency is about 65 Hz.

In einem zweiten Schritt werden dann die Schnittpunkte der aktuellen Anlagenkennlinie mit den im ersten Schritt berechneten Pumpenkennlinien berechnet und für jeden dieser Schnittpunkte die zugehörige Durchflussmenge ermittelt.In a second step, the intersection points of the current system characteristic curve are then calculated with the pump characteristic curves calculated in the first step, and the associated flow rate is determined for each of these intersection points.

In einem dritten Schritt werden aus einer in der Regel vom Hersteller der Förderpumpe zur Verfügung gestellten Pumpenwirkungsgradkennlinie für die maximale Frequenz oder Drehzahl Pumpenwirkungsgradkennlinien für eine Reihe von anderen Frequenzen oder Drehzahlen abgeleitet, wie zuvor für die Pumpenkennlinie beschrieben.In a third step, pump efficiency curves for a number of other frequencies or speeds are derived from a maximum efficiency or speed pump efficiency curve typically provided by the pump manufacturer, as previously described for the pump characteristic.

In einem vierten Schritt wird aus jeder der im zweiten Schritt ermittelten Durchflussmengen und aus der zugehörigen im dritten Schritt ermittelten Pumpenwirkungsgradkennlinie der Pumpenwirkungsgrad η bei der jeweiligen Frequenz ermittelt.In a fourth step, the pump efficiency η at each frequency is determined from each of the flow rates determined in the second step and from the associated pump efficiency curve determined in the third step.

In einem fünften Schritt wird aus den erhaltenen Wertepaaren von Durchflussmenge und Pumpenwirkungsgrad η eine Pumpenwirkungsgradkennlinie zu der aktuellen Anlagenkennlinie berechnet. Diese Berechnung erfolgt vorzugsweise durch Polynomregression (polynomiale Regression).In a fifth step, from the obtained value pairs of flow rate and pump efficiency η, a pump efficiency curve becomes the current one Plant characteristic calculated. This calculation is preferably carried out by polynomial regression (polynomial regression).

Aus der Pumpenwirkungsgradkennlinie wird dann in einem sechsten Schritt eine aktuelle, ebenfalls von der Anlagenkennlinie abhängige Gesamtwirkungsgradkennlinie berechnet, in die neben der Pumpenwirkungsgradkennlinie vorzugsweise auch Wirkungsgradkennlinien des elektrischen Antriebsmotors, des Frequenzumrichters und ggf. der Stromleitung eingehen. Die Berechnung der Gesamtwirkungsgradkennlinie erfolgt durch Multiplikation der Pumpenwirkungsgradkennlinie mit den anderen zu berücksichtigenden Wirkungsgradkennlinien.From the pump efficiency curve, a current overall efficiency curve, which is also dependent on the system characteristic curve, is then calculated in a sixth step, into which efficiency characteristics of the electric drive motor, the frequency converter and, if appropriate, the power line are preferably included in addition to the pump efficiency characteristic. The calculation of the overall efficiency characteristic is carried out by multiplying the pump efficiency characteristic with the other efficiency characteristics to be considered.

Die Wirkungsgradkennlinien des elektrischen Antriebsmotors der Förderpumpe, des Frequenzumrichters und der zur Stromzufuhr zum Antriebsmotor dienenden Stromleitung sind in der Regel von den Herstellern dieser Komponenten erhältlich, so dass sie nicht berechnet werden brauchen.The efficiency characteristics of the electric drive motor of the feed pump, the frequency converter and the power line for supplying power to the drive motor are usually available from the manufacturers of these components, so they need not be calculated.

Die aus der Anlagenkennlinie abgeleiteten bzw. von der Anlagenkennlinie abhängigen Kennlinien, wie zum Beispiel die Gesamtwirkungsgradkennlinie und die Kennlinie des spezifischen Leistungs- oder Energiebedarfs werden wie die Anlagenkennlinie ständig neu berechnet, vorzugsweise in kurzen Zeitabständen und/oder immer dann, wenn sich die Anlagenkennlinie verändert.
Dies ist zum Beispiel dann der Fall, wenn sich die Absenkung des Wasserspiegels im Brunnen oder Leitungsverluste in der Leitung oder im Leitungsnetz verändern.
The derived from the plant characteristic curve or dependent on the plant characteristic curves, such as the overall efficiency curve and the characteristic of the specific power or energy demand are constantly recalculated as the plant characteristic, preferably at short intervals and / or whenever the system characteristic changes ,
This is the case, for example, when the lowering of the water level in the well or line losses in the pipeline or pipeline network change.

Die Ermittlung der dynamischen Anlagenkennlinie aus der geodätischen Höhe, der Absenkung des Wasserspiegels im Brunnen und den Rohrleitungsverlusten im Leitungsnetz erfolgt vorzugsweise, indem die Kennlinien dieser Größen in dem oben genannten Diagramm oder Koordinatensystem durch die verwendete Software elektronisch addiert werden.The determination of the dynamic system characteristic from the geodetic height, the lowering of the water level in the well and the pipe losses in the pipe network is preferably carried out by the characteristics of these variables are electronically added in the above diagram or coordinate system by the software used.

Bei der Anlagenkennlinie handelt es sich um eine "dynamische" Kennlinie, in deren Berechnung die konstante geodätische Höhe sowie eine "dynamische" Kennlinie der Absenkung des Wasserspiegels im Brunnen und eine "dynamische" Kennlinie der Leitungsverluste im Leitungsnetz einfließen. Aus der Anlagenkennlinie lässt sich entnehmen, welchen Widerstand das Leitungsnetz der Pumpe bei einer bestimmten Förder- oder Durchflussmenge entgegensetzt, wodurch wiederum berechnet werden kann, welcher Druck notwendig ist, um die bestimmte Förder- oder Durchflussmenge durch das Leitungsnetz zu fördern. Aus der aktuellen Anlagenkennlinie lässt sich entnehmen, welchen Widerstand das Leitungsnetz der Pumpe bei der aktuellen Förder- oder Durchflussmenge entgegensetzt.The system characteristic curve is a "dynamic" characteristic, which includes the calculation of the constant geodetic height as well as a "dynamic" characteristic of the lowering of the water level in the well and a "dynamic" characteristic of the line losses in the line network. From the plant characteristic curve it can be deduced, which resistance the pipeline network of the pump at a certain delivery or Flow rate, which in turn can be calculated, which pressure is necessary to promote the specific flow or flow through the pipe network. From the current system characteristic curve it can be seen which resistance the pump's line network opposes with the current delivery or flow rate.

Bei der geodätischen Höhe handelt es sich um die Höhendifferenz zwischen dem höchstgelegenen Punkt des Leitungsnetzes, in das die Förderpumpe fördert, und dem Ruhewasserspiegel in dem Brunnen, aus dem die Förderpumpe fördert. Der Ruhewasserspiegel ist der Wasserspiegel, der sich in dem Brunnen einstellt, wenn kein Wasser aus dem Brunnen gefördert wird. Die geodätische Höhe ist ein konstanter Wert, der von der Förder- oder Durchflussmenge unabhängig ist. In dem oben genannten Diagramm oder Koordinatensystem ist die nachfolgend auch vereinfacht als geodätische Kennlinie bezeichnete Kennlinie der geodätischen Höhe daher eine parallel zur Abszisse verlaufende Gerade.The geodetic height is the height difference between the highest point of the pipeline network, in which promotes the feed pump, and the water level in the well from which promotes the feed pump. The calm water level is the water level that sets in the well when no water is pumped out of the well. The geodetic height is a constant value that is independent of the flow or flow rate. In the above-mentioned diagram or coordinate system, the characteristic curve of the geodesic height, which is also referred to simply as the geodetic characteristic curve, is therefore a straight line running parallel to the abscissa.

Die nachfolgend auch vereinfacht als Absenkungskennlinie bezeichnete Kennlinie der Absenkung des Wasserspiegels im Brunnen ist eine "dynamische" Kennlinie, die für jeden Brunnen im Normal- oder Regelbetrieb der Förderpumpe durch schrittweise oder bevorzugt kontinuierliche Messungen ermittelt wird. Dabei wird der Ist-Wasserstand im Brunnen zum Beispiel mittels eines Druckmessers am Boden des Brunnens oder in Höhe der Tauchpumpe ermittelt und vom Ruhewasserstand subtrahiert. Die "dynamische" Kennlinie zeigt den Verlauf der Absenkung des Wasserspiegels in Abhängigkeit von der Förder- oder Durchflussmenge und der Förderhöhe der Förderpumpe an. In dem oben genannten Diagramm oder Koordinatensystem ist die Absenkung des Wasserspiegels im Brunnen eine von der Förder- oder Durchflussmenge abhängige Kennlinie, die in der Regel mit der Förder- oder Durchflussmenge linear ansteigt.The characteristic curve of the lowering of the water level in the well, also referred to below as a simplified lowering characteristic curve, is a "dynamic" characteristic which is determined for each well during normal or controlled operation of the feed pump by stepwise or preferably continuous measurements. The actual water level in the well is determined, for example, by means of a pressure gauge at the bottom of the well or at the level of the submersible pump and subtracted from the calm water level. The "dynamic" characteristic shows the course of the lowering of the water level as a function of the delivery or flow rate and the delivery height of the feed pump. In the above diagram or coordinate system, the lowering of the water level in the well is dependent on the flow or flow rate characteristic curve, which usually increases linearly with the flow or flow rate.

Die Leitungsverluste des Leitungsnetzes werden für jede Förderpumpe aus dem am Ausgang der Pumpe herrschenden Druck abgeleitet, der während des Normal- oder Regelbetriebs der Pumpe schrittweise oder bevorzugt kontinuierlich ermittelt wird. Bei der nachfolgend auch vereinfacht als Leitungskennlinie bezeichneten Kennlinie der Leitungsverluste handelt es sich um eine "dynamische" Kennlinie, die in dem oben genannten Diagramm oder Koordinatensystem eine gekrümmte Kurve ist, die mit zunehmender Förder- oder Durchflussmenge und mit zunehmender Förderhöhe ansteigt, wobei die Steigung zunimmt.The line losses of the line network are derived for each pump from the prevailing at the output of the pump pressure, which is determined stepwise or preferably continuously during the normal or regular operation of the pump. In the following also simplified referred to as a line characteristic curve of the line losses is a "dynamic" curve, which is a curved curve in the above diagram or coordinate system, which increases with increasing delivery or flow rate and with increasing head, the slope increases.

Bei Brunnenanlagen mit einer einzigen Förderpumpe steigen die Leitungsverluste des Leitungsnetzes gewöhnlich im Quadrat der Förder- oder Durchflussmenge an. Um die Ermittlung der Leitungsverluste aus dem Druck am Ausgang der Förderpumpe zu erleichtern, wird bevorzugt der Druck in der Leitung vor der ersten Verzweigung des Leitungsnetzes hinter der Förderpumpe gemessen. Das Höhenniveau, in dem der Druck im Leitungsnetz gemessen wird, fließt in die Berechnung ein, wenn der Druck nicht unmittelbar am Ausgang der Förderpumpe gemessen wird, sondern zum Beispiel am Brunnenkopf, der bei Tauchpumpen auf einem höheren Niveau als der Ausgang der Pumpe gelegen ist. Die Messung des Drucks am Brunnenkopf wird bevorzugt, weil sich die Leitung dort noch nicht verzweigt hat und weil die Messung des Drucks dort einfacher als innerhalb des Brunnens am Ausgang der Förderpumpe ist.In well systems with a single pump, the line losses of the network usually increase in square of the flow or flow rate. In order to facilitate the determination of the line losses from the pressure at the outlet of the feed pump, the pressure in the line is preferably measured before the first branching of the line network behind the feed pump. The height level, in which the pressure in the pipeline network is measured, flows into the calculation, if the pressure is not measured directly at the outlet of the feed pump, but for example at the wellhead, which is located at submersible pumps at a higher level than the output of the pump , The measurement of the pressure at the well head is preferred because the line has not yet branched there and because the measurement of the pressure there is easier than inside the well at the output of the feed pump.

Während bei bisherigen Verfahren zum Betrieb von Brunnenanlagen mit Förderpumpen der Absenkung des Wasserspiegels im Brunnen "statisch" durch Pumpversuche ermittelt wird und die Leitungsverluste aus Tabellen oder Diagrammen entnommen werden, werden die Kennlinien der Absenkung des Wasserspiegels und der Leitungsverluste des Leitungsnetzes bei dem erfindungsgemäßen Verfahren "dynamisch" durch Messung von Größen ermittelt, aus denen sich die momentane Absenkung des Wasserspiegels und die momentanen Leitungsverluste des Leitungsnetzes für jede Förderpumpe getrennt ableiten lassen.While in previous methods for operating well systems with feed pumps of the lowering of the water level in the well "static" is determined by pumping tests and the line losses are taken from tables or diagrams, the characteristics of the lowering of the water level and the line losses of the pipe network in the inventive method " dynamically "determined by measuring quantities from which the instantaneous lowering of the water level and the instantaneous line losses of the pipeline network can be derived separately for each delivery pump.

Anders als die bekannte statische Ermittlung der Absenkung des Wasserspiegels im Brunnen durch Pumpversuche gestattet es die erfindungsgemäße dynamische Ermittlung der Absenkung darüber hinaus auch noch, eine Verstopfung des Brunnens zu erkennen. Eine solche Verstopfung, bei der nicht ausreichend Wasser in den Brunnen nachströmen kann, macht sich in der Regel dadurch bemerkbar, dass sich im Betrieb der Förderpumpe nicht nach einiger Zeit ein konstanter Förderwasserspiegel einstellt, bei dem sich die Förder- oder Durchflussmenge der Förderpumpe und der Zufluss in den Brunnen die Waage halten, sondern dass der Förderwasserspiegel immer weiter absinkt.In contrast to the known static determination of the lowering of the water level in the well by pumping tests, the dynamic determination of the subsidence according to the invention also makes it possible to detect a blockage of the well. Such a blockage, in which not enough water can flow into the wells, is usually noticeable in that during operation of the feed pump does not set after some time a constant flow water level at which the delivery or flow rate of the feed pump and the Inflow into the well keep the balance, but that the water level drops further and further.

Wie bereits angegeben, werden für jede Förderpumpe neben der Absenkung des Wasserspiegels im zugehörigen Brunnen noch der Druck und die Förder- oder Durchflussmenge am Ausgang der Pumpe ermittelt. Wie der Druck braucht jedoch auch die Förder- oder Durchflussmenge nicht direkt am Ausgang der Förderpumpe gemessen werden. Stattdessen kann die Messung an einer beliebigen Stelle vor der ersten Verzweigung der Leitung erfolgen und erfolgt bevorzugt am Brunnenkopf. Die Messung der Förder- oder Durchflussmenge wird vorzugsweise mittels eines induktiven Messgeräts vorgenommen und erfolgt gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung wie die Messung der Absenkung des Wasserspiegels und des Drucks schrittweise oder bevorzugt kontinuierlich.As already stated, in addition to the lowering of the water level in the associated well, the pressure and the delivery or flow rate at the outlet of the pump are determined for each delivery pump. However, like the pressure, the delivery or flow rate need not be measured directly at the outlet of the delivery pump. Instead, the measurement can be anywhere before the first one Branching of the line done and preferably takes place at the wellhead. The measurement of the delivery or flow rate is preferably carried out by means of an inductive measuring device and takes place according to a further advantageous embodiment of the invention as the measurement of the lowering of the water level and the pressure stepwise or preferably continuously.

Eine weitere bevorzugte Ausgestaltung der Erfindung sieht vor, dass auf einem Bildschirm die Kennlinie des spezifischen Leistungs- oder Energiebedarfs der Förderpumpe, die Pumpenwirkungsgradkennlinie, die momentane Anlagenkennlinie und eine Pumpenkennlinie für die momentane Antriebsdrehzahl der Förderpumpe sowie angezeigt werden.A further preferred embodiment of the invention provides that displayed on a screen, the characteristic of the specific power or energy demand of the feed pump, the pump efficiency curve, the current system characteristic and a pump curve for the current input speed of the feed pump and.

Bei der Pumpenkennlinie handelt es sich um eine "dynamische" Kennlinie, die für eine bestimmte Antriebsdrehzahl oder Frequenz der Förderpumpe in dem oben genannten Diagramm oder Koordinatensystem deren Betriebspunkte in Form einer Förder- oder Durchflussmenge der Förderpumpe in Abhängigkeit von der Förderhöhe zeigt. Die Pumpenkennlinien sind in dem oben genannten Diagramm oder Koordinatensystem gekrümmte, mit zunehmender Förder- oder Durchflussmenge und zunehmender Förderhöhe abfallende Kurven, deren Steigung zumeist mit zunehmender Förder- oder Durchflussmenge und zunehmender Förderhöhe größer wird. Die Pumpenkennlinien werden wie die Pumpenwirkungsgradkennlinie aus gezeichneten Diagrammen der Hersteller durch Extraktion von Wertepaaren und Polynomregression in elektronische Form umgewandelt, so dass sie sich mittels der Software auf dem Bildschirm darstellen lassen. Die Darstellung erfolgt für die jeweilige Antriebsdrehzahl der Förderpumpe, so dass die zugehörige Frequenz benötigt wird.The pump characteristic curve is a "dynamic" characteristic which, for a specific drive speed or frequency of the feed pump in the above-mentioned diagram or coordinate system, shows its operating points in the form of a delivery or flow rate of the feed pump as a function of the delivery height. The pump curves are in the above-mentioned diagram or coordinate system curved, decreasing with increasing flow or flow rate and increasing head, curves, the slope of which increases usually with increasing flow or flow rate and increasing head. Like the pump efficiency curve, the pump characteristics are converted into electronic form by extracting pairs of values and polynomial regression from drawn diagrams of the manufacturers so that they can be displayed on the screen by means of the software. The representation is made for the respective drive speed of the feed pump, so that the associated frequency is needed.

Zusammen mit den genannten Kennlinien werden auf dem Bildschirm zweckmäßig auch das Minimum der Kennlinie des spezifischen Leistungs- oder Energiebedarfs sowie der Schnittpunkt der Pumpenkennlinie mit der momentanen Anlagenkennlinie und der Schnittpunkt der Pumpenwirkungsgradkennlinie mit der momentanen Anlagenkennlinie angezeigt.Together with the characteristic curves mentioned above, the screen also expediently displays the minimum of the characteristic of the specific power or energy requirement as well as the point of intersection of the pump characteristic with the instantaneous system characteristic and the intersection of the pump efficiency characteristic with the instantaneous system characteristic.

Damit kann vom Bedienungspersonal am Minimum der Kennlinie des spezifischen Leistungs- oder Energiebedarfs die Durchflussmenge Q1 abgelesen werden, bei welcher der spezifische Leistungs- oder Energiebedarf der Förderpumpe am geringsten ist. Am Schnittpunkt der Pumpenwirkungsgradkennlinie mit der Anlagenkennlinie kann weiter die Durchflussmenge Q2 abgelesen werden. Durch die Anzeige des Schnittpunkt der Pumpenkennlinie mit der Anlagenkennlinie, der den berechneten momentanen Ist-Betriebspunkt der Förderpumpe darstellt, ist zudem ersichtlich, ob dieser Ist-Betriebspunkte mit dem erfindungsgemäß ermittelten Soll-Betriebspunkt übereinstimmt oder sich im Falle einer Abweichung an diesen annähert, was eine Kontrolle erleichtert.Thus, the operator at the minimum of the characteristic of the specific power or energy demand, the flow Q1 can be read, in which the specific power or energy consumption of the feed pump is the lowest. At the intersection of the pump efficiency curve with the system characteristic can continue the Flow Q2 be read. By displaying the intersection of the pump curve with the system characteristic curve, which represents the calculated instantaneous actual operating point of the feed pump, it can also be seen whether this actual operating point coincides with the desired operating point determined according to the invention or approaches it in the event of a deviation, which facilitates an inspection.

Außerdem kann das Bedienungspersonal am Bildschirm unmittelbar vergleichen, ob die Durchflussmenge am Minimum der Kennlinie des spezifischen Leistungs- oder Energiebedarfs oder diejenige am Schnittpunkt der Pumpenwirkungsgradkennlinie mit der Anlagenkennlinie größer oder kleiner ist, um danach eine der zuvor unter 2) bzw. 3) genannten Alternativen zu wählen.In addition, the on-screen operator can immediately compare whether the flow rate at the minimum of the specific power or energy demand curve or that at the intersection of the pump efficiency curve with the system characteristic is greater or less, thereafter one of the alternatives mentioned above under 2) and 3) to choose.

Der aus dem Schnittpunkt der Pumpenkennlinie mit der Anlagenkennlinie berechnete Ist-Betriebspunkt, der aus dem Schnittpunkt der Pumpenwirkungsgradkennlinie mit der Anlagenkennlinie berechnete Soll-Betriebspunkt und der Betriebspunkt mit dem geringsten spezifischen Leistungs- oder Energiebedarf der Förderpumpe werden jeweils in Form einer Förder- oder Durchflussmenge ausgegeben, wobei der erstere die Ist-Förder- oder Durchflussmenge und die letzteren energetisch günstigere Soll-Förder- oder Durchflussmengen darstellen. Eine dieser Soll-Förder- oder Durchflussmengen wird der Steuer- oder Regeleinheit zugeführt, wie zuvor bereits beschrieben, die daraus einen Stellwert für den Frequenzumrichter erzeugt.The actual operating point calculated from the intersection of the pump characteristic curve with the system characteristic curve, the desired operating point point calculated from the intersection of the pump efficiency curve with the system curve and the operating point with the lowest specific power or energy requirement of the feed pump are each output in the form of a delivery or flow rate , wherein the former represent the actual flow or flow rate and the latter energetically favorable target flow or flow rates. One of these desired delivery or flow rates is fed to the control unit, as previously described, which generates a control value for the frequency converter.

Im Betrieb einer Brunnenanlage mit einer oder mehreren Brunnen, aus denen jeweils eine Förderpumpe fördert, verändert sich in der Regel die Anlagenkennlinie jeder Förderpumpe dauernd, zum Beispiel wenn der Wasserspiegel im zugehörigen Brunnen absinkt oder sich die Leitungsverluste im Leitungsnetz verändern oder bei Brunnenanlangen mit mehreren Brunnen eine oder mehrere Förderpumpen zu- oder abgeschaltet werden. Die Veränderung der Anlagenkennlinie bewirkt eine Verschiebung der Anlagenkennlinie in dem oben genannten Diagramm oder Koordinatensystem. Dadurch ergeben sich auch eine andere Kennlinie des spezifischen Leistungs- oder Energiebedarfs sowie neue Schnittpunkte der Anlagenkennlinie mit der Pumpenwirkungsgradkennlinie. Die Steuer- oder Regeleinheit ermittelt dann erfindungsgemäß das neue Minimum der Kennlinie des spezifischen Leistungs- oder Energiebedarfs sowie die neuen Schnittpunkte und stellt diese auf dem Bildschirm dar. Zugleich ermittelt sie die zugehörige Soll-Förder- oder Durchflussmenge und vergleicht sie mit der gemessenen Ist-Förder- oder Durchflussmenge, um den Sollwert für den Frequenzumrichter zu erzeugen. Dieser ändert daraufhin die Frequenz und die Antriebsdrehzahl der Förderpumpe, wodurch sich die Pumpenkennlinie und damit der momentane Betriebspunkt der Förderpumpe in dem oben genannten Diagramm oder Koordinatensystem so weit verschiebt, bis die Ist-Förder- oder Durchflussmenge der Soll-Förder- oder Durchflussmenge entspricht. Dies ist dann der Fall, wenn entweder die Ist-Förder- oder Durchflussmenge der Durchflussmenge am Minimum der Kennlinie des spezifischen Leistungs- oder Energiebedarfs entspricht oder wenn der Schnittpunkt der Pumpenkennlinie und der Anlagenkennlinie mit dem Schnittpunkt der Pumpenwirkungsgradkennlinie und der Anlagenkennlinie zusammenfällt.In the operation of a well with one or more wells from each of which promotes a feed pump, the system characteristic of each pump usually changes, for example, when the water level in the associated wells drops or the line losses in the network change or wells with multiple wells one or more feed pumps are switched on or off. The change in the system characteristic causes a shift in the system characteristic in the above-mentioned diagram or coordinate system. This also results in a different characteristic of the specific power or energy requirement as well as new intersections of the system characteristic with the pump efficiency characteristic. According to the invention, the control or regulation unit then determines the new minimum of the characteristic curve of the specific power or energy requirement and the new points of intersection and displays them on the screen. At the same time, it determines the associated desired delivery or flow rate and compares it with the measured actual value. Flow or flow rate to the setpoint for to generate the frequency converter. This then changes the frequency and the drive speed of the feed pump, whereby the pump curve and thus the current operating point of the feed pump in the above diagram or coordinate system shifts until the actual flow or flow rate of the desired flow or flow rate corresponds. This is the case when either the actual flow rate or the flow rate equals the minimum of the characteristic of the specific power or energy demand or if the intersection of the pump characteristic and the system characteristic coincides with the intersection of the pump efficiency characteristic and the system characteristic.

Somit wirkt entweder das Minimum der Kennlinie des spezifischen Leistungs- oder Energiebedarfs oder der Schnittpunkt der Pumpenwirkungsgradkennlinie mit hohem Wirkungsgrad und der Anlagenkennlinie als Führungsgröße bei der Steuerung oder Regelung der Förderpumpe, wobei das energetische Einsparpotenzial darin liegt, dass der jeweilige als Ist-Durchflussmenge ausgedrückte momentane Betriebspunkt der Förderpumpe diesem Minimum oder Schnittpunkt nachgeführt wird.Thus, either the minimum of the characteristic of the specific power or energy demand or the intersection of the high-efficiency pump efficiency curve and the system characteristic acts as a reference in the control of the feed pump, the energy saving potential being that the instantaneous actual flow rate expressed as the actual flow rate Operating point of the feed pump this minimum or intersection is tracked.

Im Folgenden wird die Erfindung anhand von zwei in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert.

  • Fig. 1 zeigt eine schematische Darstellung einer erfindungsgemäßen Brunnenanlage mit einem Brunnen und einer Förderpumpe;
  • Fig. 2 zeigt eine schematische Darstellung einer erfindungsgemäßen Brunnenanlage mit mehreren Brunnen und mehreren Förderpumpen;
  • Fig. 3 zeigt ein Diagramm der aus einer geodätischen Kennlinie, einer Absenkungskennlinie und einer Leitungskennlinie zusammengesetzten Anlagenkennlinie der Brunnenanlage aus Fig. 1 in Abhängigkeit von der Förder- oder Durchflussmenge und der Förderhöhe der Förderpumpe;
  • Fig. 4 zeigt ein entsprechendes Diagramm der Anlagenkennlinie aus Fig. 3 sowie einer Pumpenwirkungsgradkennlinie und zwei Pumpenkennlinien der Förderpumpe der Brunnenanlage aus Fig. 1;
  • Fig. 5 zeigt ein entsprechendes Diagramm der Anlagenkennlinie, der Pumpenwirkungsgradkennlinie und zwei Pumpenkennlinien der Förderpumpe, von denen eine mittels des erfindungsgemäßen Verfahrens so verschoben worden ist, dass sie durch den Schnittpunkt der Pumpenwirkungsgradkennlinie und der Anlagenkennlinie verläuft;
  • Fig. 6 zeigt ein Diagramm entsprechend Fig. 4, das auf einem Bildschirm eines Rechners einer Leitwarte der Brunnenanlage dargestellt wird;
  • Fig. 7 zeigt ein Diagramm entsprechend Fig. 4 und Fig. 6, das jedoch zusätzlich eine Kennlinie des spezifischen Leistungs- oder Energiebedarfs der Förderpumpe sowie die Förder- oder Durchflussmenge im Minimum dieser Kennlinie und die Förder- oder Durchflussmenge am Schnittpunkt der Pumpenwirkungsgradkennlinie und der Anlagenkennlinie anzeigt;
  • Fig. 8 zeigt ein Diagramm mit Pumpenkennlinien bei verschiedenen Frequenzen sowie der Anlagenkennlinie zur Berechnung von Wirkungsgradkennlinien der Förderpumpe;
  • Fig. 9 zeigt ein Diagramm mit den berechneten Wirkungsgradkennlinien der Förderpumpe bei verschiedenen Frequenzen, den Wirkungsgradkennlinien eines Antriebsmotors und eines Frequenzumrichters der Förderpumpe, der Wirkungsgradkennlinie einer Stromleitung zum Antriebsmotor, sowie einer Gesamtwirkungsgradkennlinie, die zur Berechnung der Kennlinie des spezifischen Leistungs- oder Energiebedarfs dient und auf dem Bildschirm dargestellt werden kann.
In the following the invention will be explained in more detail with reference to two embodiments shown in the drawing.
  • Fig. 1 shows a schematic representation of a well system according to the invention with a well and a feed pump;
  • Fig. 2 shows a schematic representation of a well system according to the invention with several wells and several feed pumps;
  • Fig. 3 shows a diagram of the composite of a geodetic characteristic, a lowering curve and a line characteristic curve of the well system Fig. 1 depending on the delivery or flow rate and the delivery head of the feed pump;
  • Fig. 4 shows a corresponding diagram of the system characteristic Fig. 3 and a pump efficiency curve and two pump characteristics of the feed pump of the well Fig. 1 ;
  • Fig. 5 shows a corresponding diagram of the plant characteristic, the pump efficiency curve and two pump characteristics of the feed pump, one of which has been moved by means of the method according to the invention so that it passes through the intersection of the pump efficiency curve and the system characteristic;
  • Fig. 6 shows a diagram accordingly Fig. 4 , which is displayed on a screen of a computer of a control room of the well system;
  • Fig. 7 shows a diagram accordingly Fig. 4 and Fig. 6 but additionally indicating a characteristic curve of the specific power or energy requirement of the feed pump and the delivery or flow rate in the minimum of this characteristic curve and the delivery or flow rate at the intersection of the pump efficiency curve and the system characteristic curve;
  • Fig. 8 shows a diagram with pump characteristics at different frequencies and the system characteristic curve for calculating efficiency characteristics of the feed pump;
  • Fig. 9 shows a diagram with the calculated efficiency characteristics of the feed pump at different frequencies, the efficiency characteristics of a drive motor and a frequency converter of the feed pump, the efficiency curve of a power line to the drive motor, and an overall efficiency curve, which is used to calculate the characteristic of the specific power or energy demand and on the screen can be represented.

Die in Fig. 1 dargestellte Brunnenanlage 10 besteht im Wesentlichen aus einem einzigen Trinkwasserbrunnen 12 und einer im Brunnen 12 installierten Förderpumpe 14, die Trinkwasser aus dem Brunnen 12 durch eine Leitung 18 in einen Vorratsbehälter 16 pumpt.In the Fig. 1 Well system 10 shown essentially consists of a single drinking water well 12 and a well pump 12 installed in the pump 14, which pumps drinking water from the well 12 through a line 18 into a reservoir 16.

Bei der Pumpe 14 handelt es sich um eine Tauchpumpe, die innerhalb des Brunnens 12 im Wasser untergetaucht und zum Beispiel als Kreiselpumpe mit einem elektrischen Antriebsmotor 15 ausgebildet ist. Der Vorratsbehälter 16 kann beispielsweise ein Hochreservoir oder eine Verdüsung sein.The pump 14 is a submersible pump, which is submerged within the well 12 in the water and designed, for example, as a centrifugal pump with an electric drive motor 15. The reservoir 16 may be, for example, a high reservoir or a Verdüsung.

Die Brunnenanlage 10 umfasst weiter Mittel 20 zum kontinuierlichen Ermitteln der Absenkung des Wasserspiegels im Brunnen 12, ein am Brunnenkopf 22 angeordnetes Druckmessgerät 24 zur kontinuierlichen Messung des Wasserdrucks in der Leitung 18 hinter der Pumpe 14 und ein ebenfalls am Brunnenkopf 22 angeordnetes Durchflussmengen-Messgerät 26 zur kontinuierlichen Messung der Förder- oder Durchflussmenge der Pumpe 14.The well system 10 further comprises means 20 for continuously determining the lowering of the water level in the well 12, a fountain head 22 arranged Pressure gauge 24 for continuously measuring the water pressure in the line 18 behind the pump 14 and also arranged on the wellhead 22 flow rate meter 26 for continuously measuring the delivery or flow rate of the pump 14th

Die Mittel 20 umfassen ein Druckmessgerät 28, das etwa in Höhe der Pumpe 14 im Brunnen 12 angeordnet ist und kontinuierlich den hydrostatischen Druck der Wassersäule oberhalb des Druckmessgeräts 28 erfasst. Wie in Fig. 1 durch eine schraffierte Fläche dargestellt, schwankt die Höhe der Wassersäule im Brunnen zwischen einem Ruhewasserspiegel H0, der sich einstellt, wenn die Pumpe 14 längere Zeit kein Wasser aus dem Brunnen 12 fördert, und einem Betriebswasserspiegel H1, der sich im Betrieb der Förderpumpe 14 einstellt, wenn sich die von der Pumpe 14 geförderte Wassermenge und der Wasserzustrom aus der Umgebung in den Brunnen 12 die Waage halten. Aus dem hydrostatischen Druck der Wassersäule im Brunnen lässt sich die jeweilige Absenkung des Wasserspiegels HAbs (Fig. 1) ermitteln, die der Höhendifferenz ΔH zwischen dem Ruhewasserspiegel H0 und dem momentanen Ist-Wasserspiegel HIst entspricht und in der Regel zwischen den beiden Werten H0 und H1 liegt.The means 20 comprise a pressure gauge 28, which is arranged approximately at the level of the pump 14 in the well 12 and continuously detects the hydrostatic pressure of the water column above the pressure gauge 28. As in Fig. 1 represented by a hatched area, the height of the water column in the well between a water level H 0 , which occurs when the pump 14 for a long time does not deliver water from the well 12, and an operating water level H 1 , which is in operation of the feed pump 14th when the amount of water delivered by the pump 14 and the flow of water from the environment into the wells 12 are balanced. From the hydrostatic pressure of the water column in the well, the respective lowering of the water level H Abs ( Fig. 1 ), which corresponds to the height difference ΔH between the still water level H 0 and the instantaneous actual water level H Ist and is generally between the two values H 0 and H 1 .

Darüber hinaus umfasst die Brunnenanlage 10 eine Steuer- und Regeleinheit 30 zum Steuern und Regeln der Antriebsdrehzahl der Förderpumpe 14. Die Steuer- und Regeleinheit 30 ist durch Signalleitungen 32 mit den Messgeräten 24, 26 und den Mitteln 20 verbunden. Außerdem kommuniziert die Steuer- und Regeleinheit 30 einerseits mit einem Rechner 34 einer Steuerwarte 36 der Brunnenanlage 10 und andererseits mit einem Frequenzumrichter 38, der durch eine Stromleitung 40 mit dem Antriebsmotor 15 der Förderpumpe 14 verbunden ist. Der Rechner 34 umfasst einen Bildschirm 42, auf dem Kennlinien der Brunnenanlage 10 und der Förderpumpe 14 sowie das Ergebnis der Steuerung und Regelung der Antriebsdrehzahl zur visuellen Überprüfung dargestellt werden können. Mittels des Frequenzumrichters 38 kann die Frequenz der am Antriebsmotor 15 der Pumpe 14 anliegenden Wechselspannung verändert und damit die Antriebsdrehzahl der Pumpe 14 stufenlos von der vom Hersteller vorgegebenen Mindestdrehzahl bis zur Nenndrehzahl verändert werden, ohne dass das Antriebsdrehmoment absinkt.In addition, the well system 10 includes a control and regulation unit 30 for controlling and regulating the drive speed of the feed pump 14. The control unit 30 is connected by signal lines 32 with the measuring devices 24, 26 and the means 20. In addition, the control unit 30 communicates on the one hand with a computer 34 of a control room 36 of the well system 10 and on the other hand with a frequency converter 38 which is connected by a power line 40 to the drive motor 15 of the feed pump 14. The computer 34 includes a screen 42, on the characteristics of the well system 10 and the feed pump 14 and the result of the control and regulation of the drive speed for visual inspection can be displayed. By means of the frequency converter 38, the frequency of the drive motor 15 of the pump 14 applied alternating voltage can be changed and thus the drive speed of the pump 14 can be changed continuously from the minimum speed specified by the manufacturer to the rated speed without the drive torque drops.

Das am Brunnenkopf 22 angeordnete Druckmessgerät 24 misst den Wasserdruck in der Leitung 18 in Höhe des Brunnenkopfs 22. Der gemessene Wasserdruck in der Leitung 18 wird über die Steuer- und Regeleinheit 30 zum Rechner 34 übertragen, wo der gemessene Druck und der hydrostatische Druck der Wassersäule zwischen dem Ausgang der Förderpumpe 14 und der Messstelle am Brunnenkopf 22 addiert werden, um den Druck am Ausgang der Förderpumpe 14 zu berechnen. Die Leitungsverluste in der Leitung 18 stehen in einer definierten Beziehung zum Druck am Ausgang der Förderpumpe 14 und können vom Rechner 34 aus dem vom Druckmessgerät 24 gemessenen Druck berechnet werden.The arranged at the well head 22 pressure gauge 24 measures the water pressure in the line 18 at the level of the well head 22. The measured water pressure in the line 18 is transmitted via the control unit 30 to the computer 34, where the measured Pressure and the hydrostatic pressure of the water column between the output of the feed pump 14 and the measuring point at the wellhead 22 are added to calculate the pressure at the outlet of the feed pump 14. The line losses in the line 18 are in a defined relationship to the pressure at the outlet of the feed pump 14 and can be calculated by the computer 34 from the pressure measured by the pressure gauge 24.

Bei dem Durchflussmengen-Messgerät 26 handelt es sich um ein induktives Messgerät, von dem aus die gemessene Förder- oder Durchflussmenge in der Leitung zur Steuer- und Regeleinheit 30 und zum Rechner 34 übertragen wird. Da sich die Leitung 18 vor dem Brunnenkopf 22 nicht verzweigt, entspricht die gemessene Förder- oder Durchflussmenge der Förder- oder Durchflussmenge am Ausgang der Pumpe 14.The flow rate measuring device 26 is an inductive measuring device, from which the measured delivery or flow rate in the line to the control and regulation unit 30 and to the computer 34 is transmitted. Since the line 18 does not branch in front of the well head 22, the measured delivery or flow rate corresponds to the delivery or flow rate at the outlet of the pump 14.

Der vom Druckmessgerät 28 gemessene Druck der Wassersäule wird zur Steuer- und Regeleinheit und von dort zum Rechner übertragen, der aus dem gemessenen Druck die Absenkung des Wasserspiegels HAbs berechnet.The pressure of the water column measured by the pressure gauge 28 is transmitted to the control unit and from there to the computer, which calculates the lowering of the water level H Abs from the measured pressure.

Für die Steuerung bzw. Regelung der Förderpumpe 14 wird weiter die geodätische Höhe Hgeod benötigt, d.h. die Höhendifferenz zwischen dem Ruhewasserspiegel H0 und dem höchsten Punkt der Steigleitung, wie in Fig. 1 dargestellt.For the control or regulation of the feed pump 14, the geodetic height H geod is still required, ie the height difference between the still water level H 0 and the highest point of the riser, as in Fig. 1 shown.

Der Rechner 34 erzeugt aus der geodätischen Höhe Hgeod, der momentanen Absenkung des Wasserspiegels HAbs und dem momentanen Druck am Ausgang der Förderpumpe 14 jeweils eine Kennlinie dieser Größen. Zum besseren Verständnis sind diese Kennlinien in Fig. 3 in einem Diagramm oder Koordinatensystem dargestellt, in dem die Abszisse die Förder- oder Durchflussmenge der Förderpumpe in m3/h und die Ordinate die Förderhöhe der Förderpumpe 14 in mWS angibt.The computer 34 generates from the geodetic height H geod , the instantaneous reduction of the water level H Abs and the current pressure at the output of the feed pump 14 each have a characteristic of these variables. For a better understanding these characteristics are in Fig. 3 represented in a diagram or coordinate system in which the abscissa indicates the delivery or flow rate of the feed pump in m 3 / h and the ordinate the delivery height of the feed pump 14 in mWS.

Da es sich bei der geodätischen Höhe Hgeod um eine Konstante handelt, ist die Kennlinie eine zur Abszisse parallele Gerade, die in Fig. 3 durch eine punktierte Linie A dargestellt ist. Bei der Kennlinie der Absenkung des Wasserspiegels handelt es sich ebenfalls um eine Gerade, die aber proportional zur Förder- oder Durchflussmenge der Förderpumpe 14 ansteigt, wie in Fig. 3 durch eine unterbrochene Linie B dargestellt. Die Kennlinie der Leitungsverluste ist eine gekrümmte Kurve, die aufgrund des steigenden Leitungswiderstands entsprechend dem Quadrat der Förder- oder Durchflussmenge ansteigt, wie in Fig. 3 durch eine strichpunktierte Linie C dargestellt.Since the geodesic height H geod is a constant, the characteristic is a straight line parallel to the abscissa, which in Fig. 3 is shown by a dotted line A. The characteristic of the lowering of the water level is also a straight line, but increases in proportion to the delivery or flow rate of the feed pump 14, as in Fig. 3 represented by a broken line B. The characteristic of the line losses is a curved curve which increases due to the increasing line resistance in accordance with the square of the delivery or flow rate, as in FIG Fig. 3 represented by a dash-dotted line C.

Aus diesen drei Kennlinien A, B und C wird vom Rechner 34 als Summe der drei Kennlinien A, B und C eine Anlagenkennlinie berechnet, die in Fig. 3 durch eine durchgezogene Linie D dargestellt ist. Die Anlagenkennlinie D ist eine dynamische Kennlinie, die sich bei jeder Veränderung des Drucks am Ausgang der Pumpe 14 und jeder Veränderung der Absenkung des Wasserspiegels im Diagramm verschiebt.From these three characteristics A, B and C is calculated by the computer 34 as a sum of the three characteristics A, B and C, a system characteristic curve, which in Fig. 3 is shown by a solid line D. The system characteristic D is a dynamic characteristic which shifts with each change in the pressure at the outlet of the pump 14 and any change in the lowering of the water level in the diagram.

Im Rechner 34 sind für dasselbe Diagramm oder Koordinatensystem eine Pumpenwirkungsgradkennlinie mit maximalem Wirkungsgrad und eine Pumpenkennlinie gespeichert, von denen die erstere eine parabolisch ansteigende Kurve ist, wie in Fig. 4 durch eine unterbrochene Linie E dargestellt, und die letztere eine abfallende gekrümmte Kurve ist, wie in Fig. 4 durch eine punktierte Linie F dargestellt. Neben diesen beiden Kurven E und F zeigt Fig. 4 auch die Anlagenkennlinie D.In the computer 34, a maximum efficiency pump efficiency curve and a pump characteristic are stored for the same diagram or coordinate system, of which the former is a parabolic rising curve, as in FIG Fig. 4 represented by a broken line E, and the latter is a sloping curved curve, as in Fig. 4 represented by a dotted line F. Next to these two curves E and F shows Fig. 4 also the plant characteristic D.

Die Pumpenwirkungsgradkennlinie E ist eine statische Kennlinie, die den maximalen Wirkungsgrad der Pumpe 14 in Abhängigkeit von der Förder- oder Durchflussmenge und von der Förderhöhe angibt. Bei einer als Kreiselpumpe ausgebildeten Förderpumpe 14 beträgt der maximale Wirkungsgrad zum Beispiel etwa 72 bis 78 %. Die Pumpenkennlinie F ist eine dynamische Kennlinie, die für eine bestimmte Frequenz oder Antriebsdrehzahl der Förderpumpe 14 deren Betriebspunkte in Form einer Förder- oder Durchflussmenge in Abhängigkeit von der Förderhöhe zeigt.The pump efficiency curve E is a static characteristic which indicates the maximum efficiency of the pump 14 as a function of the delivery or flow rate and of the delivery head. For example, in a feed pump 14 designed as a centrifugal pump, the maximum efficiency is about 72 to 78%. The pump characteristic curve F is a dynamic characteristic curve which, for a specific frequency or drive speed of the feed pump 14, shows its operating points in the form of a delivery or flow rate as a function of the delivery head.

Da sowohl Pumpenwirkungsgradkennlinien und Pumpenkennlinien in der Regel nicht in einer Form vorliegen, die eine Verarbeitung der Kennlinien durch Software zulässt, sondern vom jeweiligen Pumpenhersteller in Form von gezeichneten Diagrammen geliefert werden, ist es erforderlich, diese Kennlinien in eine zur elektronischen Verarbeitung geeignete Form umzuwandeln. Wie in Fig. 4 für eine Hersteller-Pumpenkennlinie G für die maximale Frequenz oder Antriebsdrehzahl schematisch dargestellt ist, erfolgt dies dadurch, dass aus der gezeichneten Kennlinie eine Reihe von Wertepaaren X extrahiert und anschließend durch Polynomregression eine Kurve erzeugt wird, die von der im Rechner 34 implementierten Software verarbeitet und auf Bildschirm 42 dargestellt werden kann und in Fig. 4 als strichpunktierte Linie G dargestellt ist. Bei der genannten Polynomregression handelt es sich um ein bekanntes Verfahren, das daher hier nicht näher beschrieben werden braucht.Since both pump efficiency characteristics and pump characteristics are usually not in a form permitting processing of the characteristics by software, but supplied by the respective pump manufacturer in the form of drawn diagrams, it is necessary to convert these characteristics into a form suitable for electronic processing. As in Fig. 4 is shown schematically for a manufacturer-pump characteristic G for the maximum frequency or drive speed, this is done by extracting a set of value pairs X from the drawn characteristic and then a curve is generated by polynomial regression, which is processed by the software implemented in the computer 34 and can be displayed on screen 42 and in Fig. 4 is shown as a dotted line G. The polynomial regression mentioned is a known method, which therefore need not be described in detail here.

Um die Förderpumpe 14 stets in einem energetisch günstigsten Betriebspunkt zu betreiben, werden vom Rechner kontinuierlich die Schnittpunkte S1 und S2 der momentanen Anlagenkennlinie D mit der Pumpenkennlinie F für die momentane Antriebsdrehzahl oder Frequenz sowie mit der Pumpenwirkungsgradkennlinie E für den maximalen Wirkungsgrad berechnet. Der Schnittpunkt S1 in Fig. 4 und 5 stellt den momentanen Betriebspunkt der Pumpe 14 dar, während der Schnittpunkt S2 in Fig. 4 und 5 einen energetisch günstigeren Betriebspunkt darstellt.In order to operate the feed pump 14 always in an energetically most favorable operating point, the computer continuously calculates the intersections S1 and S2 of the instantaneous system characteristic D with the pump characteristic F for the instantaneous drive speed or frequency and with the pump efficiency curve E for the maximum efficiency. The intersection S1 in Fig. 4 and 5 represents the instantaneous operating point of the pump 14, while the point of intersection S2 in Fig. 4 and 5 represents an energetically favorable operating point.

Darüber hinaus berechnet der Rechner 34 kontinuierlich eine Kennlinie, die den jeweiligen spezifischen Leistungs- oder Energiebedarf der Förderpumpe 14 einschließlich ihres Antriebsmotors 15, ihres Frequenzumrichters 38 und ihrer Stromleitung 40 in Abhängigkeit von der Förder- oder Durchflussmenge am Ausgang der Förderpumpe 14 und von der Förderhöhe angibt. Das Minimum dieser Kennlinie stellt den Betriebspunkt mit dem geringsten spezifischen Leistungs- oder Energiebedarf dar. Diese Kennlinie ist in Fig. 7 durch die Kurve J dargestellt.In addition, the computer 34 continuously calculates a characteristic curve, the respective specific power or energy requirements of the feed pump 14 including its drive motor 15, its frequency converter 38 and its power line 40 depending on the delivery or flow rate at the output of the feed pump 14 and of the delivery indicates. The minimum of this characteristic represents the operating point with the lowest specific power or energy requirement. This characteristic is in Fig. 7 represented by the curve J.

Die Kennlinie J wird vom Rechner 34 in mehreren Schritten berechnet:
Im ersten Schritt wird aus einer gezeichneten Hersteller-Pumpenkennlinie für eine maximale Pumpenfrequenz von 100 Hz eine Reihe von Wertepaaren X extrahiert und anschließend durch Polynomregression eine Kurve G100 erzeugt, die von der im Rechner 34 implementierten Software verarbeitet und auf Bildschirm 42 dargestellt werden kann. Aus dieser Kurve G100 in Fig. 8 werden dann weitere Pumpenkennlinien G95, G90, G85, G80, G75, G70 und G65 für niedrigere Frequenzen von 95 Hz, 90 Hz, 85 Hz, 80 Hz, 75 Hz, 70 Hz und 65 Hz abgeleitet, wie in Fig. 8 dargestellt. Die genannten Frequenzen sind nur Beispiele. Es können auch andere Frequenzen verwendet werden.
The characteristic J is calculated by the computer 34 in several steps:
In the first step, a set of value pairs X is extracted from a drawn manufacturer pump characteristic curve for a maximum pump frequency of 100 Hz, and then a polynomial regression generates a curve G100 which can be processed by the software implemented in computer 34 and displayed on screen 42. From this curve G100 in Fig. 8 Then further pump characteristics G95, G90, G85, G80, G75, G70 and G65 are derived for lower frequencies of 95 Hz, 90 Hz, 85 Hz, 80 Hz, 75 Hz, 70 Hz and 65 Hz, as in Fig. 8 shown. The frequencies mentioned are only examples. Other frequencies may be used.

Im zweiten Schritt werden dann die Schnittpunkte S100, S95, S90, S85, S80, S75, S70 und S65 der aktuellen Anlagenkennlinie D mit den Pumpenkennlinien G100, G95, G90, G85, G80, G75, G70 und G65 berechnet und für jeden dieser Schnittpunkte S100, S95, S90, S85, S80, S75, S70 und S65 die zugehörige Durchflussmenge Q100, Q95, Q90, Q85, Q80, Q75, Q70 und Q65 ermittelt, die auf der Abszisse unterhalb des jeweiligen Schnittpunkts S100, S95, S90, S85, S80, S75, S70 und S65 abgelesen werden kann.In the second step, the intersections S100, S95, S90, S85, S80, S75, S70 and S65 of the current system characteristic D are calculated with the pump characteristics G100, G95, G90, G85, G80, G75, G70 and G65 and for each of these intersections S100, S95, S90, S85, S80, S75, S70 and S65 determines the associated flow rate Q100, Q95, Q90, Q85, Q80, Q75, Q70 and Q65 which are on the abscissa below the respective intersection S100, S95, S90, S85 , S80, S75, S70 and S65 can be read.

Im dritten Schritt wird aus einer gezeichneten Hersteller-Pumpenwirkungsgradkennlinie für die maximale Pumpenfrequenz von 100 Hz eine Reihe von Wertepaaren X extrahiert und anschließend durch Polynomregression eine Kurve K100 erzeugt, die von der im Rechner 34 implementierten Software verarbeitet und auf dem Bildschirm 42 in einem Diagramm dargestellt werden kann, wobei die Abszisse die Durchflussmenge und die Ordinate den Wirkungsgrad in % angibt. Wie in Fig. 9 dargestellt, werden aus dieser Kurve K100 dann weitere Pumpenwirkungsgradkennlinien K95, K90, K85, K80, K75, K70 und K65 für die Frequenzen von 95 Hz, 90 Hz, 85 Hz, 80 Hz, 75 Hz, 70 Hz und 65 Hz abgeleitet.In the third step, a set of value pairs X is extracted from a drawn manufacturer pump efficiency curve for the maximum pump frequency of 100 Hz, and then a polynomial regression generates a curve K100, which is processed by the software implemented in the computer 34 and displayed on the screen 42 in a diagram can be, where the abscissa indicates the flow rate and the ordinate the efficiency in%. As in Fig. 9 from this curve K100 then further pump efficiency curves K95, K90, K85, K80, K75, K70 and K65 for the frequencies of 95 Hz, 90 Hz, 85 Hz, 80 Hz, 75 Hz, 70 Hz and 65 Hz are derived.

Im vierten Schritt wird aus jeder der Durchflussmengen Q100, Q95, Q90, Q85, Q80, Q75, Q70 und Q65 und der zugehörigen Pumpenwirkungsgradkennlinie K 100, K95, K90, K85, K80, K75, K70 und K65 der Pumpenwirkungsgrad η100, η95, η90, η85, η80, η75, η70 und η65 (nicht dargestellt) bei der jeweiligen Frequenz von 100 Hz, 95 Hz, 90 Hz, 85 Hz, 80 Hz, 75 Hz, 70 Hz und 65 Hz ermittelt.In the fourth step, from each of the flow rates Q100, Q95, Q90, Q85, Q80, Q75, Q70 and Q65 and the associated pump efficiency characteristics K100, K95, K90, K85, K80, K75, K70 and K65, the pump efficiency becomes η100, η95, η90 , η85, η80, η75, η70 and η65 (not shown) at the respective frequency of 100 Hz, 95 Hz, 90 Hz, 85 Hz, 80 Hz, 75 Hz, 70 Hz and 65 Hz.

Im fünften Schritt wird aus den erhaltenen Wertepaaren Q100, n100; Q95, η95; Q90, η90; Q85, η85; Q80, η80; Q75, η75 sowie Q65, η65 von Durchflussmenge Q und Pumpenwirkungsgrad η durch Polynomregression eine zugehörige Pumpenwirkungsgradkennlinie (nicht dargestellt) berechnet, die ebenfalls von der aktuellen Anlagenkennlinie D abhängig ist.In the fifth step, the value pairs Q100, n100; Q95, η95; Q90, η90; Q85, η85; Q80, η80; Q75, η75 and Q65, η65 of flow rate Q and pump efficiency η by polynomial regression an associated pump efficiency curve (not shown) is calculated, which is also dependent on the current system characteristic D.

Im sechsten Schritt wird aus dieser Pumpenwirkungsgradkennlinie sowie einer Wirkungsgradkennlinie KM des elektrischen Antriebsmotors 15, einer Wirkungsgradkennlinie KU des Frequenzumrichters 38 und einer Wirkungsgradkennlinie KL der Stromleitung durch Multiplikation eine Gesamtwirkungsgrad-Kennlinie M berechnet, die den Gesamtwirkungsgrad der Förderpumpe 14 einschließlich ihres Antriebsmotors 15, ihres Frequenzumrichters 38 und ihrer Stromleitung 40 in Abhängigkeit von momentanen Anlagenkennlinie D darstellt. Die Kennlinien KM, KU und KL werden entweder vom Hersteller der jeweiligen Komponente 15, 38 bzw. 40 geliefert oder aus gezeichneten Herstellerkennlinien durch Extraktion von Wertepaaren und anschließende Polynomregression in eine Form überführt, die von der Software verarbeitet und auf dem Bildschirm 42 dargestellt werden kann.In the sixth step of this pump efficiency curve and an efficiency curve KM of the electric drive motor 15, an efficiency curve KU of the frequency converter 38 and an efficiency curve KL of the power line multiplication by an overall efficiency curve M is calculated, the overall efficiency of the feed pump 14 including its drive motor 15, its frequency 38 and its power line 40 as a function of current system characteristic D represents. The curves KM, KU and KL are either supplied by the manufacturer of the respective component 15, 38 or 40 or transferred from drawn manufacturer's characteristics by extraction of value pairs and subsequent polynomial regression in a form that can be processed by the software and displayed on the screen 42 ,

Im siebenten Schritt wird aus der Gesamtwirkungsgrad-Kennlinie M für eine Mehrzahl von Durchflussmengenstützpunkten, zum Beispiel 60 m3/h, 65 m3/h, 70 m3/h, ... 130 m3/h, 135 m3/h, 140 m3/h die jeweils zugehörige Gesamtleistung berechnet.In the seventh step, from the overall efficiency characteristic curve M for a plurality of flow rate support points, for example 60 m 3 / h, 65 m 3 / h, 70 m 3 / h, ... 130 m 3 / h, 135 m 3 / h , 140 m 3 / h the corresponding total power calculated.

Im achten Schritt wird daraus die Kennlinie J des spezifischen Leistungs- oder Energiebedarfs berechnet, indem für jeden Durchflussmengenstützpunkt die zugehörige Gesamtleistung durch die zugehörige Durchflussmenge dividiert wird und die resultierenden Werte zu der Kennlinie J interpoliert werden.In the eighth step, the characteristic curve J of the specific power or energy requirement is calculated from this by dividing the associated total power for each flow rate support point by the associated flow rate and interpolating the resulting values into the characteristic curve J.

Zur Ermittlung des energetisch günstigsten Betriebspunkts der Förderpumpe 14 berechnet dann der Rechner 34 die Förder- oder Durchflussmenge am Minimum der Kennlinie J des spezifischen Leistungs- oder Energiebedarfs und zeigt diese auf dem Bildschirm 42 durch eine vertikale Linie Q1 an. Gleichzeitig berechnet der Rechner 34 auch die Förder- oder Durchflussmenge im Schnittpunkt S2 der Pumpenwirkungsgradkennlinie E mit der Anlagenkennlinie D und zeigt diese durch eine vertikale Linie Q2 ebenfalls auf dem Bildschirm an, wie in Fig. 7 dargestellt.To determine the energetically most favorable operating point of the feed pump 14, the computer 34 then calculates the delivery or flow rate at the minimum of the characteristic J of the specific power or energy requirement and displays this on the screen 42 by a vertical line Q1. At the same time, the computer 34 also calculates the delivery or flow rate at the intersection S2 of the pump efficiency characteristic E with the system characteristic D and displays it on the screen by a vertical line Q2 as well, as in FIG Fig. 7 shown.

Anschließend vergleicht der Rechner 34 die beiden auf diese Weise berechneten Förder- oder Durchflussmengen Q1 und Q2. Wenn der Vergleich ergibt, dass die Förder- oder Durchflussmengen Q1 und Q2 identisch sind, dann übermittelt der Rechner 34 eine dieser Förder- oder Durchflussmengen Q1, Q2 als Soll-Durchflussmenge an die Steuer- und Regeleinheit 30. Wenn der Vergleich ergibt, dass die Förder- oder Durchflussmenge Q1 größer ist als die Förder- oder Durchflussmenge Q2, übermittelt der Rechner 34 die Förder- oder Durchflussmenge Q1 als Soll-Durchflussmenge an die Steuer- und Regeleinheit 30. Wenn der Vergleich ergibt, dass die Förder- oder Durchflussmenge Q1 kleiner ist als die Förder- oder Durchflussmenge Q2, wie in Fig. 7 dargestellt, dann übermittelt der Rechner 34 die Förder- oder Durchflussmenge Q1 als Soll-Durchflussmenge an die Steuer- und Regeleinheit 30, solange diese Förder- oder Durchflussmenge Q1 von der Förderpumpe 14 erreicht wird. Wenn die Förderpumpe 14 diese Förder- oder Durchflussmenge Q1 nicht mehr erreicht, weil die spezifischen Gesamtdruckverhältnisse in der Leitung 18 oder dem Leitungsnetz 52 der Brunnenanlage 10 dies nicht mehr ermöglichen, dann übermittelt der Rechner 34 die Förder- oder Durchflussmenge Q2 als Soll-Durchflussmenge an die Steuer- und Regeleinheit 30.Subsequently, the computer 34 compares the two flow rates Q1 and Q2 calculated in this way. If the comparison shows that the delivery or flow rates Q1 and Q2 are identical, then the computer 34 transmits one of these delivery or flow rates Q1, Q2 as the target flow rate to the control unit 30. If the comparison shows that the Flow or flow rate Q1 is greater than the delivery or flow rate Q2, the computer 34 transmits the delivery or flow rate Q1 as a target flow rate to the control unit 30. If the comparison shows that the flow or flow Q1 smaller is as the flow or flow Q2, as in Fig. 7 illustrated, then the computer 34 transmits the delivery or flow rate Q1 as a target flow rate to the control unit 30 as long as this delivery or flow rate Q1 is achieved by the feed pump 14. If the feed pump 14 no longer reaches this delivery or flow rate Q1 because the specific total pressure conditions in the line 18 or the line network 52 of the well system 10 no longer make this possible, then the computer 34 transmits the delivery or flow rate Q2 as the target flow rate the control unit 30th

In der Steuer- und Regeleinheit 30 wird die vom Rechner 34 übermittelte Soll-Durchflussmenge mit der vom Durchflussmengen-Messgerät 26 gemessenen und an die Steuer- und Regeleinheit 30 übermittelten momentanen Ist-Durchflussmenge verglichen. Die Steuer- und Regeleinheit 30 erzeugt dann aus einer eventuellen Differenz der beiden Werte einen Stellwert für den Frequenzumrichter 38, der daraufhin durch eine entsprechende Frequenzänderung die Antriebsdrehzahl der Förderpumpe 14 so lange verändert, bis die Ist-Durchflussmenge mit der Soll-Durchflussmenge übereinstimmt. Je nachdem, ob der Rechner 34 die Förder- oder Durchflussmenge Q1 oder Q2 als Soll-Durchflussmenge an die Steuer- und Regeleinheit 30 übermittelt hat, verschiebt sich durch die Veränderung der Frequenz die Pumpenkennlinie F, bis ihr Schnittpunkt S1 mit der Anlagenkennlinie D entweder genau oberhalb des Minimums der Kennlinie J liegt oder mit dem Schnittpunkt S2 zusammenfällt. Das letztere ist in Fig. 5 für die bei der neuen Frequenz berechnete Pumpenkennlinie H dargestellt.In the control and regulation unit 30, the setpoint flow rate transmitted by the computer 34 is compared with the instantaneous actual flow rate measured by the flow rate measurement device 26 and transmitted to the control and regulation unit 30. The control unit 30 then generates from a possible difference between the two values a control value for the frequency converter 38, which then changed by a corresponding change in frequency, the drive speed of the feed pump 14 until the actual flow rate coincides with the target flow rate. Depending on whether the computer 34 has transmitted the delivery or flow rate Q1 or Q2 as the target flow rate to the control and regulation unit 30, shifts the change in frequency, the pump characteristic F, until their intersection S1 with the system curve D either exactly is above the minimum of the characteristic J or coincides with the intersection S2. The latter is in Fig. 5 for the pump characteristic H calculated at the new frequency.

Zur Überwachung der Brunnenanlage 10 und der energieoptimalen Steuerung bzw. Regelung der Förderpumpe 14 wird außerdem das in Fig. 7 dargestellte Diagramm auf dem Bildschirm 42 des Rechners 34 angezeigt. Auf diese Weise kann das Bedienungspersonal einerseits auch visuell vergleichen, welche der Förder- oder Durchflussmengen Q1 oder Q2 größer ist. Zum anderen kann das Bedienungspersonal sehen, ob der Schnittpunkt S1 der Pumpenkennlinie F mit der Anlagenkennlinie D wie gewünscht genau oberhalb des Minimums der Kennlinie J liegt oder mit dem Schnittpunkt S2 zusammenfällt bzw. ob der Schnittpunkt S1 wie gewünscht dem Minimum oder dem Schnittpunkt S2 nachgeführt wird, wenn sich der gemessene Druck am Ausgang der Pumpe 14 und/oder die Absenkung des Wasserspiegels im Brunnen 12 verändern und sich dadurch die Anlagenkennlinie D verschiebt.To monitor the well system 10 and the energy-optimal control or regulation of the feed pump 14 is also the in Fig. 7 displayed diagram displayed on the screen 42 of the computer 34. In this way, the operator can on the one hand visually compare which of the delivery or flow rates Q1 or Q2 is greater. On the other hand, the operator can see whether the point of intersection S1 of the pump curve F with the system curve D is as desired exactly above the minimum of the curve J or coincides with the intersection S2 or if the intersection S1 is tracked as desired the minimum or the intersection S2 when the measured pressure at the outlet of the pump 14 and / or the lowering of the water level in the well 12 change and thereby the system curve D shifts.

Neben den in Fig. 4 und 5 dargestellten Kennlinien D, E, F und H werden auf dem Bildschirm 42 des Rechners 36 auch die gemessene Ist-Durchflussmenge und die Soll-Durchflussmenge am Ausgang der Pumpe 14 als Zahlenwerte nebeneinander angezeigt. Auf diese Weise kann das Bedienungspersonal die beiden Werte auf einen Blick miteinander vergleichen.In addition to the in Fig. 4 and 5 shown characteristics D, E, F and H are displayed on the screen 42 of the computer 36, the measured actual flow rate and the target flow rate at the output of the pump 14 as numerical values side by side. In this way, the operator can compare the two values at a glance.

Darüber hinaus werden auch der momentane spezifische Leistungs- oder Energiebedarf der Förderpumpe 14, der gemessene Druck am Ausgang der Förderpumpe 14, der momentane Wasserspiegel im Brunnen 12, die Ist-Frequenz des zur Förderpumpe 14 zugeführten Wechselstroms und die Förder- oder Durchflussmenge am Ausgang der Förderpumpe 14 als Zahlenwerte angezeigt.In addition, the current specific power or energy demand of the feed pump 14, the measured pressure at the outlet of the feed pump 14, the instantaneous water level in the well 12, the actual frequency of the feed pump 14 supplied AC and the delivery or flow rate at the output of Feed pump 14 displayed as numerical values.

Die Brunnenanlage 50 in Fig. 2 unterscheidet sich von der zuvor beschriebenen Brunnenanlage 10 dadurch, dass sie mehrere Brunnen 12 und mehrere Förderpumpen 14 umfasst, die durch ein gemeinsames Leitungsnetz 52 in den Vorratsbehälter 16 fördern, jedoch mittels einer einzigen Steuer- und Regeleinheit 30 und eines einzigen Rechners 34 gesteuert bzw. geregelt werden. Die Förderpumpen 14 können bei Bedarf einzeln zu- oder abgeschaltet werden, wenn die zu fördernde Wassermenge vergrößert oder verkleinert werden soll. Durch die Zu- oder Abschaltung einzelner Förderpumpen 14 ergeben sich für die anderen momentan im Betrieb befindlichen Förderpumpen 14 ständig neue Anlagenkennlinien D, die vom Rechner 34 mit Hilfe der Software kontinuierlich berechnet werden.The fountain 50 in Fig. 2 differs from the well system 10 described above in that it comprises a plurality of wells 12 and a plurality of feed pumps 14, which convey through a common line network 52 into the reservoir 16, but controlled by a single control unit 30 and a single computer 34 be managed. The feed pumps 14 can be switched on or off individually if required, if the amount of water to be pumped is to be increased or decreased. By connecting or disconnecting individual feed pumps 14 results for the other currently in operation feed pumps 14 constantly new system characteristics D, which are continuously calculated by the computer 34 using the software.

Die Berechnung erfolgt für jede im Betrieb befindliche Förderpumpe 14 separat und unabhängig von den jeweils anderen im Betrieb befindlichen Förderpumpen 14 in der zuvor beschriebenen Art und Weise, indem für jede einzelne der im Betrieb befindlichen Förderpumpen 14 kontinuierlich eine zugehörige Anlagenkennlinie D berechnet wird, indem danach die Kennlinie J des spezifischen Leistungs- oder Energiebedarfs und deren Minimum sowie darüber hinaus auch ggf. die Schnittpunkte S1 und S2 der berechneten Anlagenkennlinie D mit der zugehörigen Pumpenkennlinie F und mit der zugehörigen Pumpenwirkungsgradkennlinie E für den maximalen Wirkungsgrad ermittelt werden und indem schließlich die Ist-Durchflussmenge im Schnittpunkt S1 der berechneten Anlagenkennlinie D mit der zugehörigen Pumpenkennlinie F durch Veränderung der Frequenz und der Antriebsdrehzahl der Pumpe 14 mittels der Steuer- und Regeleinheit und des zugehörigen Frequenzumrichters 38 an die Soll-Durchflussmenge Q1 bzw. Q2 im Minimum der Kennlinie J oder im Schnittpunkt S2 der berechneten Anlagenkennlinie D mit der zugehörigen Pumpenwirkungsgradkennlinie E herangeführt wird.The calculation is done separately for each operating pump 14 and independently of the other operating pumps 14 in operation in the manner previously described by continuously calculating an associated system characteristic D for each of the operating pumps 14 in operation by thereafter the characteristic curve J of the specific power or energy requirement and its minimum and, if appropriate, also the intersections S1 and S2 of the calculated system characteristic D with the associated pump characteristic F and with the associated pump efficiency characteristic E for the maximum efficiency, and finally Flow rate at the intersection S1 of the calculated system characteristic D with the associated pump characteristic F by changing the frequency and the drive speed of the pump 14 by means of the control unit and the associated frequency converter 38 to the target flow rate Q1 and Q respectively 2 in the Minimum of the characteristic J or at the intersection S2 of the calculated system characteristic D with the associated pump efficiency characteristic E is introduced.

Da die Ermittlung des Drucks am Ausgang jeder Förderpumpe 14 und die momentane Absenkung des Wasserspiegels in jedem Brunnen 12 sowie die Berechnung für jede Förderpumpe 14 unabhängig von den anderen Brunnen 12 bzw. Förderpumpen 14 vorgenommen wird, kann das zuvor beschriebene Verfahren auch zur Steuerung oder Regelung komplexer Brunnenanlagen 50 eingesetzt werden, indem bei allen Förderpumpen 14 der Brunnenanlage 50 auf die zuvor beschriebene Art und Weise kontinuierlich der berechnete energetisch günstigste Betriebspunkt eingestellt wird.Since the determination of the pressure at the outlet of each feed pump 14 and the instantaneous lowering of the water level in each well 12 and the calculation for each feed pump 14 is made independently of the other wells 12 and feed pumps 14, the method described above can also be used for control or regulation Complex wells 50 are used by continuously in all the pump 14 of the well system 50 in the manner described above, the calculated energetically most favorable operating point is set.

Claims (12)

  1. Method for reducing the energy consumption of a delivery pump (14) which delivers water from a well (12) into a line (18) or a line network (52), wherein the actual throughflow rate of the delivery pump (14) is brought to a target throughflow rate by changing of the drive rotational speed of an electric drive motor (15) of the delivery pump (14), wherein the target throughflow rate corresponds either to the throughflow rate (Q1), indicated hereinafter as "first throughflow rate", at the operating point of the delivery pump (14) with the lowest specific power or energy requirement, a characteristic curve (J) of the respective specific power or energy requirement of the delivery pump (14) being calculated in dependence on a dynamic system characteristic curve (D) for the purpose of determining said operating point, or to the throughflow rate (Q2), indicated hereinafter as "second throughflow rate", at the calculated point of intersection (S2) of a pump efficiency characteristic curve (E) with high efficiency and the dynamic system characteristic curve (D), wherein the dynamic system characteristic curve (D) is calculated from the geodetic height (Hgeod), the drop in the water level (Hdrop) in the well (12) and line losses in the line (18) or in the line network (52), and wherein the pump efficiency characteristic curve (E) with high efficiency lies within a tolerance range of 5% of an efficiency characteristic curve for the maximum efficiency,
    wherein the first throughflow rate (Q1) is compared with the second throughflow rate (Q2),
    wherein, if the first throughflow rate (Q1) is greater than the second throughflow rate (Q2), the first throughflow rate (Q1) is selected as the target throughflow rate,
    and wherein, if the first throughflow rate (Q1) is less than the second throughflow rate (Q2), the actual throughflow rate of the delivery pump (14) is brought to the first throughflow rate (Q1) as long as the first throughflow rate (Q1) is reached, and the actual throughflow rate of the delivery pump (14) is brought to the second throughflow rate (Q2) if the first throughflow rate (Q1) is no longer reached.
  2. Method according to Claim 1, characterized in that a minimum of the characteristic curve (J) of the specific power or energy requirement of the delivery pump (14) is calculated in dependence on the dynamic system characteristic curve (D).
  3. Method according to Claim 2, characterized in that, for the purpose of calculating the characteristic curve (J) of the specific power or energy requirement of the delivery pump (14), an overall efficiency characteristic curve (M), which depends on the system characteristic curve (D), is calculated.
  4. Method according to Claim 2 or 3, characterized in that the characteristic curve (J) of the specific power or energy requirement of the delivery pump (14) is recalculated continuously, at short time intervals or whenever the system characteristic curve (D) is changed.
  5. Method according to one of the preceding claims, characterized in that the line losses in the line (18) or in the line network (52) during the operation of the delivery pump (14) are derived from the pressure at the outlet of the delivery pump (14), which pressure is determined continuously or in steps.
  6. Method according to one of the preceding claims, characterized in that the drop (Hdrop) in the water level during the operation of the delivery pump (14) is derived continuously or in steps from a still water level (H0) and an actual water level in the well (12).
  7. Method according to one of the preceding claims, characterized in that the pump efficiency characteristic curve (E) is a dynamic pump efficiency characteristic curve which is derived from a displayed pump efficiency characteristic curve in that value pairs are extracted from the displayed pump efficiency characteristic curve and subjected to transformation by means of polynomial regression.
  8. Method according to one of the preceding claims, characterized in that the actual throughflow rate at the outlet of the delivery pump (14) is determined and is compared with the target throughflow rate at the operating point of the delivery pump (14) with the lowest specific power or energy requirement or with the target throughflow rate at the calculated point of intersection (S2) of the pump efficiency characteristic curve (E) and the dynamic system characteristic curve (D), and in that the drive rotational speed of the delivery pump (14) is regulated by means of a frequency converter (38), which is supplied with an adjustment value calculated from the difference between the target throughflow rate and the actual throughflow rate.
  9. Method according to one of the preceding claims, characterized in that the pump efficiency characteristic curve (E), the instantaneous system characteristic curve (D) and a pump characteristic curve (F) for the instantaneous drive rotational speed of the delivery pump (14), the point of intersection (S1) of the pump characteristic curve (F) and the instantaneous system characteristic curve (D) and the point of intersection (S2) of the pump efficiency characteristic curve (E) and the instantaneous system characteristic curve (D), and the characteristic curve (J) of the specific power or energy requirement of the delivery pump (14), together with the throughflow rate (Q1) at the minimum of the characteristic curve (J), are displayed on a screen (42).
  10. Well system (10, 50) having at least one delivery pump (14) for delivering water from a well (12) into a line (18) or a line network (52), having a control or regulating unit (30) which brings an actual throughflow rate of the delivery pump (14) to a target throughflow rate by changing of the drive rotational speed of an electric drive motor (15) of the delivery pump (14), wherein the target throughflow rate corresponds either to the throughflow rate (Q1), indicated hereinafter as "first throughflow rate", at the operating point of the delivery pump (14) with the lowest specific power or energy requirement, a characteristic curve (J) of the respective specific power or energy requirement of the delivery pump (14) being calculated in dependence on a dynamic system characteristic curve (D) for the purpose of determining said operating point, or to the throughflow rate (Q2), indicated hereinafter as "second throughflow rate", at the calculated point of intersection (S2) of a pump efficiency characteristic curve (E) with high efficiency and the dynamic system characteristic curve (D), wherein the dynamic system characteristic curve (D) is calculated from the geodetic height (Hgeod), the drop in the water level (Hdrop) in the well (12) and line losses in the line (18) or in the line network (52), and wherein the pump efficiency characteristic curve (E) with high efficiency lies within a tolerance range of 5% of an efficiency characteristic curve for the maximum efficiency,
    wherein a processor (34) which communicates with the control and regulating unit (30) compares the first throughflow rate (Q1) with the second throughflow rate (Q2),
    wherein, if the first throughflow rate (Q1) is greater than the second throughflow rate (Q2), the processor (34) selects the first throughflow rate (Q1) as the target throughflow rate,
    and wherein, if the first throughflow rate (Q1) is less than the second throughflow rate (Q2), the processor (34) selects the first throughflow rate (Q1) as the target throughflow rate as long as the delivery pump (14) reaches the first throughflow rate (Q1), and selects the second throughflow rate (Q2) if the delivery pump (14) no longer reaches the first throughflow rate (Q1).
  11. Well system according to Claim 10, characterized by multiple delivery pumps (14), wherein the control or regulating unit (30) brings the.actual throughflow rate of each of the delivery pumps (14) to a target throughflow rate by changing of the drive rotational speed of the electric drive motor (15) thereof, wherein the target throughflow rate corresponds to the throughflow rate (Q1) at the operating point of the respective delivery pump (14) with the lowest specific power or energy requirement or to the throughflow rate (Q2) at the calculated point of intersection (S2) of a pump efficiency characteristic curve (E) with high efficiency and a dynamic system characteristic curve (D) .
  12. Well system according to Claim 10 or 11, characterized by means (24, 34) for determining continuously or in steps the pressure at the outlet of the delivery pump (14) or delivery pumps (14).
EP16000069.1A 2015-01-20 2016-01-13 Reduction of the energy consumption of a variable speed water pump taking into account the current system load Active EP3048305B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015000373.9A DE102015000373A1 (en) 2015-01-20 2015-01-20 Method for reducing the energy consumption of a feed pump, which promotes water from a well into a pipeline network, as well as system for conveying water from at least one well into a pipeline network
DE102015011487.5A DE102015011487A1 (en) 2015-09-08 2015-09-08 Method for reducing the energy consumption of a feed pump, which promotes water from a well into a pipeline network, as well as system for conveying water from at least one well into a pipeline network

Publications (2)

Publication Number Publication Date
EP3048305A1 EP3048305A1 (en) 2016-07-27
EP3048305B1 true EP3048305B1 (en) 2019-08-21

Family

ID=55129524

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16000069.1A Active EP3048305B1 (en) 2015-01-20 2016-01-13 Reduction of the energy consumption of a variable speed water pump taking into account the current system load

Country Status (1)

Country Link
EP (1) EP3048305B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111368246B (en) * 2020-03-30 2023-03-24 河南九域恩湃电力技术有限公司 Condensate pump energy-saving modification evaluation method based on performance actual measurement
CN111597687B (en) * 2020-04-17 2024-03-29 西安理工大学 Variable-speed pumped storage unit water pump working condition efficiency optimizing method
DE102022211200A1 (en) * 2022-10-21 2024-05-02 BSH Hausgeräte GmbH Adaptive speed adjustment of free-flow pumps in water-conducting household appliances

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122401A (en) * 1978-03-16 1979-09-22 Toshiba Corp High-efficiency operation controller for drain pumps
DE3402120A1 (en) * 1984-01-23 1985-07-25 Rheinhütte vorm. Ludwig Beck GmbH & Co, 6200 Wiesbaden METHOD AND DEVICE FOR CONTROLLING DIFFERENT OPERATING PARAMETERS FOR PUMPS AND COMPRESSORS
DK2610693T3 (en) * 2011-12-27 2015-02-02 Abb Oy Process and apparatus for optimizing energy efficiency of pump system
DE102014006828A1 (en) * 2014-05-13 2015-11-19 Wilo Se Method for energy-optimal speed control of a pump set

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3048305A1 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
DE102015000373A1 (en) Method for reducing the energy consumption of a feed pump, which promotes water from a well into a pipeline network, as well as system for conveying water from at least one well into a pipeline network
EP2244348B1 (en) Wind farm with multiple wind energy assemblies and method for regulating the feed-in from a wind farm
EP1286240B1 (en) Method of determining a pump-characteristic
EP2354555B2 (en) Method for optimising the energy of pumps
EP0973082B1 (en) Method for controlling a fluid pressure
EP2944821B1 (en) Method for the energy-optimized regulation of the speed of a pump unit
WO2010139416A1 (en) Method for determining characteristic values, particularly of parameters, of a centrifugal pump aggregate driven by an electric motor and integrated in a system
EP3048305B1 (en) Reduction of the energy consumption of a variable speed water pump taking into account the current system load
DE102007010768B4 (en) Method for optimizing valve position and pump speed in a valve system with PID control without the use of external signals
EP3366925B1 (en) Method for adjusting the operation of a pump system and arrangement of a pump system and electronics for carrying out the method
WO2014023642A1 (en) Method for detecting the flow rate value of a centrifugal pump
EP3495056A1 (en) Improved control of water conservancy of a cooling section
EP3592979B1 (en) Method for controlling the rotational speed of a centrifugal pump
EP2192309A2 (en) Method and regulating switch for regulating a printed material supply for a hydraulic actuator
EP1933097A1 (en) Method for controlling a variable speed circulation pump for heating system
DE19525887C2 (en) Process for adapting the hydraulic performance field of a centrifugal pump unit to the requirements of a heating system
DE102015011487A1 (en) Method for reducing the energy consumption of a feed pump, which promotes water from a well into a pipeline network, as well as system for conveying water from at least one well into a pipeline network
DE102014016791B4 (en) Process for the hydraulic control of several heating circuits on the manifold
EP3267039B1 (en) System and method for controlling a pump station
EP2354554B1 (en) Method for determining the functional relationship of pumps
EP2947325B1 (en) Pump control method
DE3100322A1 (en) Process and appliance for preparing a homogeneous mixture
EP3508730B1 (en) Method for adjusting a pressurisation system
EP3438574A1 (en) Refrigeration system and a method for regulating a refrigeration system
EP3895820A1 (en) Operation of a cooling device with minimum working pressure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170111

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190412

INTG Intention to grant announced

Effective date: 20190412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006146

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1170077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200109

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200127

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016006146

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016006146

Country of ref document: DE

Representative=s name: WEIDNER STERN JESCHKE PATENTANWAELTE PARTNERSC, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200113

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200113

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200113

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016006146

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1170077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821