EP3507515A1 - Rolling element for use in a rolling-element bearing - Google Patents

Rolling element for use in a rolling-element bearing

Info

Publication number
EP3507515A1
EP3507515A1 EP17757538.8A EP17757538A EP3507515A1 EP 3507515 A1 EP3507515 A1 EP 3507515A1 EP 17757538 A EP17757538 A EP 17757538A EP 3507515 A1 EP3507515 A1 EP 3507515A1
Authority
EP
European Patent Office
Prior art keywords
rolling
rolling element
sensor
bore
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17757538.8A
Other languages
German (de)
French (fr)
Other versions
EP3507515B1 (en
Inventor
Gunther Elfert
Bernd LÜNEBURG
Jörg ROLLMANN
Manfred Reimann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Rothe Erde Germany GmbH
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Rothe Erde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Rothe Erde GmbH filed Critical ThyssenKrupp AG
Publication of EP3507515A1 publication Critical patent/EP3507515A1/en
Application granted granted Critical
Publication of EP3507515B1 publication Critical patent/EP3507515B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/004Electro-dynamic machines, e.g. motors, generators, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/008Identification means, e.g. markings, RFID-tags; Data transfer means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • F16C33/366Tapered rollers, i.e. rollers generally shaped as truncated cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4629Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from metal, e.g. cast or machined window cages

Definitions

  • strain gauges and their respective attachment usually a bond, susceptible to wear, especially since they come into contact with the grease and / or other lubricants in the rolling bearings usually, and must therefore be replaced regularly. Therefore, such a load measurement is only possible under laboratory conditions.
  • the document EP 1 795 869 A1 discloses a rolling element with a bore in which two plates are arranged parallel and spaced apart, wherein on the plates opposite each one electrode is attached, the capacitively the distance of the Measure plates to each other.
  • This distance is variable because they bend the plates due to the load-induced deformation of the rolling element.
  • This measurement is limited to a region of the rolling element and is also susceptible to wear due to the bending of the printed circuit boards.
  • an external power supply is again disclosed, which is disadvantageous because it requires a wiring of the rolling bearing.
  • the plates can shift against each other, which leads to measurement inaccuracies.
  • a rolling element for use in a roller bearing, with an outer sheath and a bore, wherein the bore is provided along a central axis of the rolling element, wherein the rolling element at least one disposed in the bore sensor for measuring load and a radio module for transmitting the the sensor measured data, wherein the rolling body comprises a micro-generator, wherein the micro-generator is provided for providing the required for the operation of the sensor and / or the radio module energy.
  • the outer jacket is at least partially provided as a running surface, roll on the bearing rings, in particular an outer ring and an inner ring of the rolling bearing.
  • one of the bearing rings is preferably provided rotationally fixed, in particular the outer ring, while the other bearing ring is provided concentrically thereto and rotatable.
  • the rolling element is cylindrical, barrel-shaped, toroidal and / or conical.
  • the rolling body has a main extension direction, wherein the central axis is arranged parallel to the main extension direction.
  • the rolling body is provided substantially rotationally symmetrical about the central axis, in particular in the region between the bore wall and the outer shell.
  • the outer jacket corresponds in particular to an outer circumferential surface of the rolling element.
  • the rolling element in the form of a 104 mm long cylinder with a diameter of 65 mm.
  • the bore preferably has a diameter of 20 mm.
  • the radio module and / or the microgenerator are at least partially disposed in the bore.
  • a microgenerator in the context of this application is in particular a device with small dimensions, which gains energy from the environment and thus represents an autonomous energy source.
  • the microgenerator particularly preferably uses this at least one method of so-called energy harvesting.
  • the microgenerator obtains energy from a temperature difference, an air pressure difference, an air flow, by means of photovoltaics and / or, in the context of this application, particularly preferably from motion.
  • the microgenerator is thus intended, in particular, to obtain energy from the rolling or rotational movement of the rolling element, which energy is then made available for the operation of the sensor and / or the radio module.
  • the rolling element according to the invention has the advantage over the prior art that the rolling element has an integrated and autonomous power supply and transmits the data wirelessly through the radio module, so that no wiring of the rolling element or one of the bearing rings and thus of the rolling bearing is necessary. Furthermore, the rolling element according to the invention provides precise load measurements and makes this possible in particular also during operation of a rolling bearing equipped with the rolling element according to the invention.
  • the senor is a capacitive sensor, wherein the sensor is provided for measuring a distance between the sensor and the bore wall. Depending on the forces acting on the rolling bearing and thus on the rolling elements of the rolling elements is deformed, which is measurable by changing the cross section of the bore.
  • the sensor is configured to transmit the measured data to the radio module, wherein the radio module is configured to transmit the measured data, for example, to a suitable receiving device.
  • the capacitive sensor comprises a dielectric.
  • the bore wall at least partially comprises an at least partially electrically conductive material.
  • the rolling element is made of an electrically conductive material and / or has an electrically conductive coating on the bore wall. As electrically conductive material is in particular a metallic material in question. As a result, a precise and simple load measurement is made possible in an advantageous manner.
  • At least two sensors spaced from each other along the central axis are arranged in the bore. This makes it possible in an advantageous manner, in addition to forces and a Tilt the rolling element to be measured by the measured data of the sensors evaluated, in particular compared, are.
  • a means for producing a defined distance to the bore wall is provided, wherein the means in particular a magnet and / or a spring means includes.
  • the means is a roller contact block, wherein the roller contact block has a magnet through which it is pulled to the bore wall, in particular such that the roller contact block at the bore wall at least partially rests.
  • the precision of the load measurement is further increased in an advantageous manner, since it is ensured that the sensor can measure the total deformation of the rolling element as a distance.
  • the distance between the sensor and the bore wall is at least 50 ⁇ and a maximum of 150 ⁇ .
  • the capacitive sensor is electrically coupled to the means via a resonant circuit.
  • the resonant circuit is produced by coils arranged between the bore and the outer jacket, in particular on a circular path and / or uniformly spaced. This advantageously makes it possible to measure a frequency with which the system oscillates, which in turn is related to the amount of deformation and thus the load. Such a resonant circuit system is advantageously less sensitive to interference.
  • a circuit board is arranged in the bore, wherein the radio module, the micro-generator, the capacitive sensor and / or the means are attached to the circuit board.
  • the board has a thickness of 1 mm to 2 mm, in particular 1, 6 mm.
  • the rolling element further comprises an energy store, wherein the energy store is provided for storing the energy generated by the microgenerator.
  • the energy store is provided on the board.
  • the energy store is very particularly preferably an accumulator and / or a capacitor, in particular a high-capacitance capacitor, for example a so-called green-cap capacitor.
  • the radio module for transmitting the measured data in a frequency range from 100 MHz to 6 GHz, preferably from 300 MHz to 2 GHz, more preferably from 700 MHz to 1 GHz, in particular with a frequency of 833 MHz is provided.
  • a wireless data transmission is possible in an advantageous manner, which is not disturbed by possibly metallic components of the rolling element or the rolling bearing and has a sufficiently large transmission range.
  • the bore has a diameter of 5 mm to 50 mm, preferably 10 mm to 30 mm, in particular a diameter of 20 mm, and / or that the rolling body is preferably cylindrical and particularly preferred a length of 90 mm to 1 10 mm, in particular 104 mm, and most preferably a diameter of 60 mm to 70 mm, in particular 65 mm.
  • the rolling body is preferably cylindrical and particularly preferred a length of 90 mm to 1 10 mm, in particular 104 mm, and most preferably a diameter of 60 mm to 70 mm, in particular 65 mm.
  • a strain gauge is arranged on the bore wall, in particular in the radial direction at least partially circumferential. This advantageously makes it possible, in addition to the precise capacitive measurement, to implement a redundant and proven measuring method with little effort.
  • the micro-generator is an inductive generator or that the rolling element has an inductive generator.
  • the inductive generator cooperates with magnets and / or coils, which are arranged on a cage of a roller bearing.
  • the rolling body comprises a means for determining position.
  • the means is at least one magnet, in particular a diametral magnet.
  • the rolling bearing comprises the detection means, in particular the inner ring, the outer ring and / or the cage. This makes it possible in a particularly advantageous manner to determine the absolute and / or relative position of the rolling element in the rolling bearing.
  • Another object of the present invention is a rolling bearing, in particular a slewing bearing, with a first bearing ring and a rotatable about a rotation axis, and in particular concentrically arranged to the first bearing ring second bearing ring, and a plurality of arranged between the first bearing ring and the second bearing ring rolling elements wherein at least one rolling element is a rolling element according to the invention.
  • the first bearing ring is an outer ring and / or the second bearing ring is an inner ring.
  • the rolling bearing comprises a detection means for determining the position of the rolling body.
  • the detection means cooperates with a means for determining the position of the rolling body, wherein the rolling body comprises the means for determining position.
  • the inner ring, the outer ring and / or the cage has the detection means. This makes it possible in a particularly advantageous manner to determine the absolute and / or relative position of the rolling element in the rolling bearing.
  • Figure 1 shows a schematic perspective view of a rolling element according to an exemplary embodiment of the present invention.
  • FIG. 2 shows a further schematic perspective view of a rolling element according to an exemplary embodiment of the present invention.
  • Figure 3 shows a schematic sectional view perpendicular to the central axis of a
  • Rolling elements according to an exemplary embodiment of the present invention with a cage of a rolling bearing.
  • Figure 4 shows a schematic sectional view parallel to the central axis of a
  • Figure 5 shows a schematic equivalent circuit of the coils of Figures 3 and 4 according to an exemplary embodiment of the present invention.
  • FIG. 6 shows a schematic cross-section of a bore of a rolling body according to an exemplary embodiment of the present invention.
  • FIG. 7 shows a circuit board of a rolling element according to an exemplary embodiment of the present invention.
  • FIG. 8 is a schematic perspective view of a rolling element according to an exemplary embodiment of the present invention.
  • Figure 9 is a schematic perspective view of a board of a rolling element according to an exemplary embodiment of the present invention.
  • Figure 10 shows a perspective view of a rolling bearing according to an exemplary
  • FIG. 11 shows a perspective detailed view of a roller bearing according to an exemplary embodiment of the present invention.
  • FIG. 1 shows a schematic perspective view of a rolling element 1 according to an exemplary embodiment of the present invention.
  • a rolling element 1 is used in rolling bearings and serves for the movable guidance of a first bearing ring 1 1 and a second bearing ring 12 to each other, in particular one arranged in a rotatably mounted outer ring 1 1 inner ring 12.
  • outer ring 1 1 and inner ring 12 a variety provided by rolling elements, which roll on running surfaces of the outer ring 1 1 and the inner ring 12.
  • it is a so-called measuring roller, so a rolling element 1, which is provided and designed for load measurement in the rolling bearing.
  • the rolling element 1 here comprises a cylindrical or substantially conical body with an outer shell 2 serving as a running surface and on which the outer ring 1 1 and the inner ring 12 roll.
  • the rolling element 1 has in its center a bore 3, which is formed concentrically around the central axis of the rolling element 1 around.
  • the rolling element 1 has a means for position determination 16, here a diametrical magnet, which cooperates with a detection means to determine the absolute and / or relative position of the rolling element 1 in the rolling bearing.
  • a detection means to determine the absolute and / or relative position of the rolling element 1 in the rolling bearing.
  • the cage 13 the detection means.
  • the relative position is the position of the rolling element 1 relative to the cage 13, in particular relative to a reference point.
  • FIG. 2 shows a further schematic perspective view of a rolling element 1 according to an exemplary embodiment of the present invention.
  • the illustrated embodiment substantially corresponds to the embodiment shown in Figure 1, so that reference is made generally to the relevant embodiments. It is good here too recognize that the rolling element 1 is substantially cylindrical.
  • the bore 3 In the bore 3, a measuring arrangement to be explained in more detail below is provided.
  • FIG. 3 shows a schematic sectional view perpendicular to the central axis of a rolling element 1 according to an exemplary embodiment of the present invention with a cage 13 of a roller bearing.
  • the illustrated embodiment substantially corresponds to the embodiments shown in the previous figures, so that reference is generally made to the relevant embodiments.
  • a sensor 5, here a capacitive sensor 5, a radio module 6 and a microgenerator 4 are provided in the bore.
  • the microgenerator is here an inductive microgenerator.
  • the rolling elements are rotatable, but mounted with respect to the cage 13 at fixed positions.
  • the cage 13 comprises magnets 15, here four magnets 5. These magnets 15 allow the microgenerator 4 to induce a current and thus provide a power supply for the sensor 5 and the radio module 6 and the coils 10.
  • the microgenerator is provided such that it can be moved solely by movement, i. the rolling, the rolling element generates energy.
  • the sensor 5 is arranged on a circuit board 8, not shown here.
  • a means 7 for producing a defined distance to the bore wall is arranged on the other side of the board 8, so with respect to the central axis of the sensor 5 opposite.
  • This means 7 is here a roller contact block with a magnet 14 arranged therein. The magnet ensures that the roller contact block comes into contact with the bore wall, since it is alternately attracted by the magnetic fields of the coils 10.
  • the means 7 performs with the circuit board 8 and thus also the sensor 5 from an oscillation whose frequency on the one hand by the coil 10 and the other by the distance between means 7 and the bore wall or the distance between the sensor 5 and the bore wall
  • the capacitive sensor 5 thus measures a frequency corresponding to a distance from the bore wall.
  • the rolling element 1 if deformed by forces acting on the rolling elements 1, so loads, the rolling element 1, so also deforms the bore 3.
  • the distance between the capacitive sensor 5 and the bore wall thus changes and thus the measured frequency.
  • the measured frequency is transmitted to the radio module 6, which wirelessly from the rolling elements transfers. It is also conceivable that a deformation or load is previously determined from the measured data, which is then transmitted.
  • FIG. 4 shows a schematic sectional illustration parallel to the center axis of a rolling element 1 according to an exemplary embodiment of the present invention.
  • the illustrated embodiment substantially corresponds to the embodiment shown in Figure 3, so that reference is made generally to the relevant embodiments.
  • the bore 3 can be seen, as well as schematically the microgenerator 4 and the radio module 6.
  • FIG. 5 shows a schematic equivalent circuit diagram of the coils 10 from FIGS. 3 and 4 according to an exemplary embodiment of the present invention.
  • the coils 10 represent resistors which are connected in series. According to the representations described above, fourteen coils 10, corresponding to fourteen resistors, are provided here.
  • FIG. 6 shows a schematic cross section of a bore 3 of a rolling element 1 according to an exemplary embodiment of the present invention.
  • the board 8 can be seen clearly, wherein on one side of the board 8, the capacitive sensor 5 and on the other side, the means 7 is arranged with the magnet 14.
  • various deformations or distances d are drawn.
  • the distance d 0 between the capacitive sensor 5 and the bore wall in a no-load condition is approximately 100 ⁇ m, with the magnet 14 of the means 7 bringing the roller contact block into contact with the bore wall.
  • the distance ie the deformation between a minimum value d min of 50 ⁇ and a maximum value d max of 150 ⁇ changes.
  • the capacitive sensor 5 and the roller contact block have at least partially an outer contour that follows the contour of the bore wall in a no-load condition, that is concentric with the bore wall.
  • FIG. 7 shows a circuit board 8 of a rolling element 1 according to an exemplary embodiment of the present invention. For reasons of clarity, not all elements are shown here. In the middle of the point is visible, which is provided for mounting the microgenerator 4 On both sides of this point and on both edges of the board 8 attachment points are seen, which serve the attachment of two capacitive sensors 5, 5 '. These two spaced from each other along the central axis sensors 5, 5 'allow a relative measurement to each other and thus in addition to a pure force measurement along three axes and the measurement of tilting of the rolling element 1, so along the central axis different degrees of deformation of the rolling element 1. Furthermore, only a radio module 6 is exemplified.
  • the board 8 is dimensioned such that it fits into the bore 3 and preferably has a low lateral tolerance.
  • FIG. 8 shows a schematic perspective view of a rolling element 1 according to an exemplary embodiment of the present invention.
  • the illustrated embodiment substantially corresponds to the embodiments shown in the previous figures, so that reference is generally made to the relevant embodiments.
  • the sensor 5 and the means 7 can be seen.
  • FIG. 9 shows a schematic perspective view of a circuit board 8 of a rolling element 1 according to an exemplary embodiment of the present invention.
  • the illustrated embodiment substantially corresponds to the embodiment shown in Figure 7, so that reference is made generally to the relevant embodiments.
  • two capacitive sensors 5, 5 'and correspondingly two means 7, T are provided in the form of roller contact blocks.
  • FIG. 10 shows a perspective view of a roller bearing according to an exemplary embodiment of the present invention.
  • This is a slewing bearing with an outer ring 1 1, an inner ring 12, not shown here for reasons of clarity and a cage 13 arranged therebetween, which comprises a plurality of rolling elements and keeps evenly spaced from each other.
  • At least one rolling element is a rolling element 1 in the sense of this application, that is to say a measuring roller.
  • FIG. 11 shows a detailed perspective view of a roller bearing according to an exemplary embodiment of the present invention.
  • an inventive rolling element 1 is shown in addition to two conventional rolling elements.
  • the rolling element 1 has no wiring, it functions autonomously and transmits the measured data wirelessly, so that the rolling bearing can be enclosed, for example, by a housing, and nevertheless a load measurement is possible.
  • the large rolling bearing can be installed, for example, in a wind power plant. transmit and load measurement data to a control unit, so that a need for maintenance can be detected early and without complex intervention in the rolling bearing.

Abstract

The invention relates to a rolling element (1) for use in a rolling-element bearing, comprising an outer shell (2) and a borehole (3), wherein the borehole is provided along a center axis of the rolling element, wherein the rolling element comprises at least one sensor (5) for load measurement, which is arranged in the borehole, and comprises a radio module for transferring the data measured by the sensor, wherein the rolling element comprises a microgenerator, wherein the microgenerator is provided for providing the energy required for the operation of the sensor and/or of the radio module.

Description

BESCHREIBUNG  DESCRIPTION
Titel title
Wälzkörper zur Verwendung in einem Wälzlager Rolling elements for use in a rolling bearing
Stand der Technik State of the art
Auf Großwälzlager, wie sie beispielsweise in Windkraftanlagen zum Einsatz kommen, wirken während des Betriebs erhebliche Kräfte. Daher ist es wünschenswert Belastungsmessungen des Wälzlagers durchführen zu können. On large-diameter bearings, as used for example in wind turbines, considerable forces act during operation. Therefore, it is desirable to be able to perform load measurements of the bearing.
Zu diesem Zweck ist es beispielsweise aus der EP 0 637 734 B1 bekannt, mit Hilfe von Dehnungsmessstreifen, die in einer Bohrung eines Wälzkörpers angeordnet sind, die Verformungen des Wälzkörpers zu messen, wobei aus den Verformungen des Wälzkörpers auf die auf das Wälzlager einwirkenden Kräfte, also die Belastungen, geschlossen werden kann. Um den Dehnungsmessstreifen und einen damit verbundenen Verstärker sowie einen Transmit- ter mit Energie zu versorgen, ist in dem Wälzkörper ferner eine erste Spule angeordnet, die induktiv durch eine an einem nicht drehbaren Lagerring des Wälzlagers angeordnete, zweite Spule mit Energie versorgt wird. For this purpose, it is known, for example, from EP 0 637 734 B1, with the aid of strain gauges, which are arranged in a bore of a rolling element, to measure the deformations of the rolling element, wherein from the deformations of the rolling element acting on the rolling bearing forces, So the burdens can be closed. In order to supply the strain gauge and an associated amplifier and a transmitter with energy, a first coil is further arranged in the rolling body, which is inductively powered by a arranged on a non-rotatable bearing ring of the bearing, the second coil with energy.
Zur Energieversorgung der zweiten Spule ist eine aufwändige und im Betrieb störende Verkabelung des Wälzlagers nötig. Ferner sind die Dehnungsmessstreifen und ihre jeweilige Befestigung, im Regelfall eine Klebung, verschleissanfällig, insbesondere da sie in den Wälzlagern in der Regel mit Fetten und/oder anderen Schmierstoffen in Kontakt kommen, und müssen daher regelmäßig ersetzt werden. Daher ist eine solche Belastungsmessung nur unter Laborbedingungen möglich.  To power the second coil is a complex and disturbing in operation cabling of the bearing required. Furthermore, the strain gauges and their respective attachment, usually a bond, susceptible to wear, especially since they come into contact with the grease and / or other lubricants in the rolling bearings usually, and must therefore be replaced regularly. Therefore, such a load measurement is only possible under laboratory conditions.
Weiterhin ist es aus der EP 1 849 013 B1 bekannt, Sensoren an einem die Wälzkörper in ihrer relativen Lage zueinander fixierenden Käfig anzuordnen, wobei die Sensoren Wirbelströme messen, die in den Wälzkörpern durch Spulen induziert werden. Aus den Wirbelstrommessungen dann auf die herrschenden Belastungen geschlossen werden. Auch hier erfolgt eine Energieversorgung induktiv durch eine im Außenring angeordnete Energieübertragungsspule. Daraus ergeben sich erneut die bereits angesprochenen Nachteile. Furthermore, it is known from EP 1 849 013 B1 to arrange sensors on a cage which fixes the rolling elements in their relative position to one another, the sensors measuring eddy currents which are induced in the rolling elements by means of coils. From the eddy current measurements then be closed to the prevailing loads. Again, a power supply is inductively by a arranged in the outer ring energy transmission coil. This again results in the already mentioned disadvantages.
Alternativ offenbart die Druckschrift EP 1 795 869 A1 einen Wälzkörper mit einer Bohrung, in dem zwei Platten parallel und voneinander beabstandet angeordnet sind, wobei auf den Platten gegenüberliegend jeweils eine Elektrode angebracht ist, die kapazitiv den Abstand der Platten zueinander messen. Dieser Abstand ist veränderlich, da sie die Platten durch die be- lastungsinduzierte Verformung des Wälzkörpers verbiegen. Diese Messung ist auf einen Bereich des Wälzkörpers beschränkt und ist durch die Verbiegung der Platinen ebenfalls verschleißanfällig. Auch wird erneut eine externe Energieversorgung offenbart, welche nachteilig ist, da sie eine Verkabelung des Wälzlagers erfordert. Zudem können die Platten sich gegeneinander verschieben, was zu Messungenauigkeiten führt. Alternatively, the document EP 1 795 869 A1 discloses a rolling element with a bore in which two plates are arranged parallel and spaced apart, wherein on the plates opposite each one electrode is attached, the capacitively the distance of the Measure plates to each other. This distance is variable because they bend the plates due to the load-induced deformation of the rolling element. This measurement is limited to a region of the rolling element and is also susceptible to wear due to the bending of the printed circuit boards. Also, an external power supply is again disclosed, which is disadvantageous because it requires a wiring of the rolling bearing. In addition, the plates can shift against each other, which leads to measurement inaccuracies.
Offenbarung der Erfindung Disclosure of the invention
Es ist also eine Aufgabe der vorliegenden Erfindung Wälzkörper und ein Wälzlager zur Verfügung zu stellen, mit welchen auch während des laufenden Betriebs eine zuverlässige und dauerhafte Belastungsmessung möglich ist, insbesondere ohne dass eine Verkabelung des Wälzlagers erforderlich ist. It is therefore an object of the present invention to provide rolling elements and a roller bearing, with which a reliable and permanent load measurement is possible even during operation, in particular without a cabling of the bearing is required.
Gelöst wird diese Aufgabe mit einem Wälzkörper zur Verwendung in einem Wälzlager, mit einem Außenmantel und einer Bohrung, wobei die Bohrung entlang einer Mittelachse des Wälzkörpers vorgesehen ist, wobei der Wälzkörper wenigstens einen in der Bohrung angeordneten Sensor zur Belastungsmessung und ein Funkmodul zur Übertragung der von dem Sensor gemessenen Daten umfasst, wobei der Wälzkörper einen Mikrogenerator umfasst, wobei der Mikrogenerator zur Bereitstellung der zum Betrieb des Sensors und/oder des Funkmoduls benötigten Energie vorgesehen ist. Vorzugsweise ist der Außenmantel wenigstens teilweise als Laufläche vorgesehen, auf der Lagerringe, insbesondere ein Außenring und ein Innenring, des Wälzlagers abrollen. Dabei ist vorzugsweise einer der Lagerringe drehfest vorgesehen, insbesondere der Außenring, während der andere Lagerring konzentrisch dazu und drehbar vorgesehen ist. Vorzugsweise ist der Wälzkörper zylinderförmig, tonnenförmig, toroidal und/oder kegelförmig ausgebildet. In diesem Fall weist der Wälzkörper eine Haupterstreckungsrichtung auf, wobei die Mittelachse parallel zu der Haupterstre- ckungsrichtung angeordnet ist. Besonders bevorzugt ist der Wälzkörper im Wesentlichen rotationssymmetrisch um die Mittelachse vorgesehen, insbesondere in dem Bereich zwischen der Bohrungswandung und dem Außenmantel. Der Außenmantel entspricht insbesondere einer äußeren Mantelfläche des Wälzkörpers. Beispielsweise weist der Wälzkörper die Form eines 104 mm langen Zylinders auf mit einem Durchmesser von 65 mm. In diesem Fall hat die Bohrung vorzugsweise einen Durchmesser von 20 mm. Vorzugsweise sind auch das Funkmodul und/oder der Mikrogenerator wenigstens teilweise in der Bohrung angeordnet. Ein Mikrogenerator im Rahmen dieser Anmeldung ist dabei insbesondere eine Vorrichtung mit geringen Abmessungen, welche aus der Umgebung Energie gewinnt und somit eine autonome Energiequelle darstellt. Besonders bevorzugt bedient sich der Mikrogenerator dabei wenigstens einem Verfahren des sogenannten Energy Harvesting. Ganz besonders bevorzugt gewinnt der Mikrogenerator Energie aus einem Temperaturunterschied, einem Luftdruckunterschied, einer Luftströmung, mittels Photovoltaik und/oder, im Rahmen dieser Anmeldung besonders bevorzugt, aus Bewegung. Der Mikrogenerator ist also insbesondere dazu vorgesehen, aus der Abroll- bzw. Drehbewegung des Wälzkörpers Energie zu gewinnen, die er dann zum Betrieb des Sensors und/oder des Funkmoduls zur Verfügung stellt. This object is achieved with a rolling element for use in a roller bearing, with an outer sheath and a bore, wherein the bore is provided along a central axis of the rolling element, wherein the rolling element at least one disposed in the bore sensor for measuring load and a radio module for transmitting the the sensor measured data, wherein the rolling body comprises a micro-generator, wherein the micro-generator is provided for providing the required for the operation of the sensor and / or the radio module energy. Preferably, the outer jacket is at least partially provided as a running surface, roll on the bearing rings, in particular an outer ring and an inner ring of the rolling bearing. In this case, one of the bearing rings is preferably provided rotationally fixed, in particular the outer ring, while the other bearing ring is provided concentrically thereto and rotatable. Preferably, the rolling element is cylindrical, barrel-shaped, toroidal and / or conical. In this case, the rolling body has a main extension direction, wherein the central axis is arranged parallel to the main extension direction. Particularly preferably, the rolling body is provided substantially rotationally symmetrical about the central axis, in particular in the region between the bore wall and the outer shell. The outer jacket corresponds in particular to an outer circumferential surface of the rolling element. For example, the rolling element in the form of a 104 mm long cylinder with a diameter of 65 mm. In this case, the bore preferably has a diameter of 20 mm. Preferably, the radio module and / or the microgenerator are at least partially disposed in the bore. A microgenerator in the context of this application is in particular a device with small dimensions, which gains energy from the environment and thus represents an autonomous energy source. The microgenerator particularly preferably uses this at least one method of so-called energy harvesting. Most preferably, the microgenerator obtains energy from a temperature difference, an air pressure difference, an air flow, by means of photovoltaics and / or, in the context of this application, particularly preferably from motion. The microgenerator is thus intended, in particular, to obtain energy from the rolling or rotational movement of the rolling element, which energy is then made available for the operation of the sensor and / or the radio module.
Der erfindungsgemäße Wälzkörper hat gegenüber dem Stand der Technik den Vorteil, dass der Wälzkörper über eine integrierte und autonome Energieversorgung verfügt und durch das Funkmodul die Daten kabellos überträgt, so dass keine Verkabelung des Wälzkörpers oder eines der Lagerringe und damit des Wälzlagers nötig ist. Ferner stellt der erfindungsgemäße Wälzkörper präzise Belastungsmessungen zur Verfügung und ermöglicht dies insbesondere auch während des laufenden Betriebs eines mit dem erfindungsgemäßen Wälzkörper ausgestatteten Wälzlagers. The rolling element according to the invention has the advantage over the prior art that the rolling element has an integrated and autonomous power supply and transmits the data wirelessly through the radio module, so that no wiring of the rolling element or one of the bearing rings and thus of the rolling bearing is necessary. Furthermore, the rolling element according to the invention provides precise load measurements and makes this possible in particular also during operation of a rolling bearing equipped with the rolling element according to the invention.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung können den Unteransprüchen, sowie der Beschreibung unter Bezugnahme auf die Zeichnungen entnommen werden. Advantageous embodiments and further developments of the invention can be taken from the dependent claims, as well as the description with reference to the drawings.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung ist vorgesehen, dass der Sensor ein kapazitiver Sensor ist, wobei der Sensor zur Messung eines Abstands zwischen dem Sensor und der Bohrungswandung vorgesehen ist. Abhängig von den auf das Wälzlager und damit auf den Wälzkörper einwirkenden Kräften wird der Wälzkörper verformt, was anhand einer Änderung des Querschnitts der Bohrung messbar ist. Besonders bevorzugt ist der Sensor zur Übermittlung der gemessenen Daten an das Funkmodul konfiguriert, wobei das Funkmodul zur Übertragung der gemessenen Daten konfiguriert ist, beispielsweise an ein geeignetes Empfangsgerät. Ganz besonders bevorzugt umfasst der kapazitive Sensor ein Dielektrikum. Noch mehr bevorzugt umfasst die Bohrungswandung wenigstens teilweise ein wenigstens teilweise elektrisch leitfähiges Material. Beispielsweise ist der Wälzkörper aus einem elektrisch leitfähigen Material gefertigt und/oder weist auf der Bohrungswandung eine elektrisch leitfähige Beschichtung auf. Als elektrisch leitfähiges Material kommt insbesondere ein metallisches Material in Frage. Hierdurch wird in vorteilhafter Weise eine präzise und einfache Belastungsmessung ermöglicht. According to a preferred embodiment of the present invention, it is provided that the sensor is a capacitive sensor, wherein the sensor is provided for measuring a distance between the sensor and the bore wall. Depending on the forces acting on the rolling bearing and thus on the rolling elements of the rolling elements is deformed, which is measurable by changing the cross section of the bore. Particularly preferably, the sensor is configured to transmit the measured data to the radio module, wherein the radio module is configured to transmit the measured data, for example, to a suitable receiving device. Most preferably, the capacitive sensor comprises a dielectric. Even more preferably, the bore wall at least partially comprises an at least partially electrically conductive material. For example, the rolling element is made of an electrically conductive material and / or has an electrically conductive coating on the bore wall. As electrically conductive material is in particular a metallic material in question. As a result, a precise and simple load measurement is made possible in an advantageous manner.
Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass in der Bohrung wenigstens zwei voneinander entlang der Mittelachse beabstandete Sensoren angeordnet sind. Hierdurch wird es in vorteilhafter Weise ermöglicht, zusätzlich zu Kräften auch eine Verkippung des Wälzkörpers zu messen, indem die gemessenen Daten der Sensoren ausgewertet, insbesondere verglichen, werden. According to a further preferred embodiment, it is provided that at least two sensors spaced from each other along the central axis are arranged in the bore. This makes it possible in an advantageous manner, in addition to forces and a Tilt the rolling element to be measured by the measured data of the sensors evaluated, in particular compared, are.
Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass in axialer Richtung auf der Höhe des Sensors, besonders bevorzugt diesem bezüglich der Mittelachse gegenüberliegend, ein Mittel zum Herstellen eines definierten Abstandes zu der Bohrungswandung vorgesehen ist, wobei das Mittel insbesondere einen Magneten und/oder ein Federmittel umfasst. Ganz besonders bevorzugt ist das Mittel ein Rollenkontaktblock, wobei der Rollenkontaktblock einen Magneten aufweist, durch den er an die Bohrungswandung gezogen wird, insbesondere derart, dass der Rollenkontaktblock an der Bohrungswandung wenigstens teilweise anliegt. Hierdurch wird in vorteilhafter Weise die Präzision der Belastungsmessung weiter erhöht, da sichergestellt wird, dass der Sensor als Abstand die gesamte Verformung des Wälzkörpers messen kann. Vorzugsweise beträgt der Abstand zwischen dem Sensor und der Bohrungswand mindestens 50 μηη und maximal 150 μηη. Besonders bevorzugt beträgt der Abstand zwischen dem Sensor und der Bohrungswandung in einem lastlosen Zustand 100 μηη, wenn das Mittel an der Bohrungswandung anliegt. Vorzugsweise ist der kapazitive Sensor mit dem Mittel elektrisch über einen Schwingkreis gekoppelt. Besonders bevorzugt wird der Schwingkreis durch zwischen der Bohrung und dem Außenmantel, insbesondere auf einer Kreisbahn und/oder gleichmäßig beabstandet, angeordnete Spulen erzeugt. Hierdurch wird es vorteilhafterweise ermöglicht, dass eine Frequenz, mit der das System schwingt, gemessen wird, die wiederum mit dem Betrag der Verformung und damit der Belastung, in Beziehung steht. Ein solches Schwingkreissystem ist vorteilhafterweise unempfindlicher gegenüber Störungen. According to a further preferred embodiment it is provided that in the axial direction at the height of the sensor, particularly preferred with respect to the central axis, a means for producing a defined distance to the bore wall is provided, wherein the means in particular a magnet and / or a spring means includes. Most preferably, the means is a roller contact block, wherein the roller contact block has a magnet through which it is pulled to the bore wall, in particular such that the roller contact block at the bore wall at least partially rests. As a result, the precision of the load measurement is further increased in an advantageous manner, since it is ensured that the sensor can measure the total deformation of the rolling element as a distance. Preferably, the distance between the sensor and the bore wall is at least 50 μηη and a maximum of 150 μηη. Particularly preferably, the distance between the sensor and the bore wall in a no-load state 100 μηη, when the means is applied to the bore wall. Preferably, the capacitive sensor is electrically coupled to the means via a resonant circuit. Particularly preferably, the resonant circuit is produced by coils arranged between the bore and the outer jacket, in particular on a circular path and / or uniformly spaced. This advantageously makes it possible to measure a frequency with which the system oscillates, which in turn is related to the amount of deformation and thus the load. Such a resonant circuit system is advantageously less sensitive to interference.
Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass in der Bohrung eine Platine angeordnet ist, wobei das Funkmodul, der Mikrogenerator, der kapazitive Sensor und/oder das Mittel an der Platine befestigt sind. Besonders bevorzugt weist die Platine eine Dicke von 1 mm bis 2 mm, insbesondere 1 ,6 mm, auf. Hierdurch wird in vorteilhafter Weise eine einfache Installation der einzelnen Komponenten in dem Wälzkörper ermöglicht. According to a further preferred embodiment it is provided that a circuit board is arranged in the bore, wherein the radio module, the micro-generator, the capacitive sensor and / or the means are attached to the circuit board. Particularly preferably, the board has a thickness of 1 mm to 2 mm, in particular 1, 6 mm. As a result, a simple installation of the individual components in the rolling body is made possible in an advantageous manner.
Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass der Wälzkörper ferner einen Energiespeicher umfasst, wobei der Energiespeicher zur Speicherung der von dem Mikrogenerator erzeugten Energie vorgesehen ist. Besonders bevorzugt ist der Energiespeicher auf der Platine vorgesehen. Ganz besonders bevorzugt ist der Energiespeicher ein Akkumulator und/oder ein Kondensator, insbesondere ein hochkapazitiver Kondensator, z.B. ein sogenannter Green-Cap-Kondensator. Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass das Funkmodul zur Übertragung der gemessenen Daten in einem Frequenzbereich von 100 MHz bis 6 GHz, vorzugsweise von 300 MHz bis 2 GHz, besonders bevorzugt von 700 MHz bis 1 GHz, insbesondere mit einer Frequenz von 833 MHz, vorgesehen ist. Hierdurch wird in vorteilhafter Weise eine kabellose Datenübertragung ermöglicht, die auch durch ggf. metallische Komponenten des Wälzkörpers oder des Wälzlagers nicht gestört wird und eine hinreichend große Übertragungsreichweite aufweist. According to a further preferred embodiment, it is provided that the rolling element further comprises an energy store, wherein the energy store is provided for storing the energy generated by the microgenerator. Particularly preferably, the energy store is provided on the board. The energy store is very particularly preferably an accumulator and / or a capacitor, in particular a high-capacitance capacitor, for example a so-called green-cap capacitor. According to a further preferred embodiment, it is provided that the radio module for transmitting the measured data in a frequency range from 100 MHz to 6 GHz, preferably from 300 MHz to 2 GHz, more preferably from 700 MHz to 1 GHz, in particular with a frequency of 833 MHz , is provided. As a result, a wireless data transmission is possible in an advantageous manner, which is not disturbed by possibly metallic components of the rolling element or the rolling bearing and has a sufficiently large transmission range.
Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass die Bohrung einen Durchmesser von 5 mm bis 50 mm, vorzugsweise von 10 mm bis 30 mm, insbesondere einen Durchmesser von 20 mm, aufweist, und/oder dass der Wälzkörper vorzugsweise zylinderförmig ausgebildet ist und besonders bevorzugt eine Länge von 90 mm bis 1 10 mm, insbesondere 104 mm, sowie ganz besonders bevorzugt einen Durchmesser von 60 mm bis 70 mm, insbesondere 65 mm, aufweist. Hierdurch wird einerseits eine hinreichend große Bohrung zur Unterbringung sämtlicher Komponenten zur Verfügung gestellt, andererseits ist bei einer Bohrung mit den oben genannten Maßen der zur Verfügung stehende Verformungsspielraum groß genug für eine präzise Messung, insbesondere ohne die strukturelle Stabilität des Wälzkörpers zu beeinträchtigen. According to a further preferred embodiment it is provided that the bore has a diameter of 5 mm to 50 mm, preferably 10 mm to 30 mm, in particular a diameter of 20 mm, and / or that the rolling body is preferably cylindrical and particularly preferred a length of 90 mm to 1 10 mm, in particular 104 mm, and most preferably a diameter of 60 mm to 70 mm, in particular 65 mm. In this way, on the one hand a sufficiently large bore for accommodating all components is provided, on the other hand, in a hole with the above dimensions of the available deformation margin is large enough for precise measurement, in particular without affecting the structural stability of the rolling element.
Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass an der Bohrungswandung, insbesondere in radialer Richtung wenigstens teilweise umlaufend, ein Dehnungsmessstreifen angeordnet ist. Hierdurch ist es vorteilhafterweise möglich, zusätzlich zu der präzisen kapazitiven Messung, eine redundante und bewährte Messmethode mit geringem Aufwand zu implementieren. According to a further preferred embodiment, it is provided that a strain gauge is arranged on the bore wall, in particular in the radial direction at least partially circumferential. This advantageously makes it possible, in addition to the precise capacitive measurement, to implement a redundant and proven measuring method with little effort.
Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass der Mikrogenera- tor ein induktiver Generator ist oder dass der Wälzkörper einen induktiven Generator aufweist. Besonders bevorzugt wirkt der induktive Generator mit Magneten und/oder Spulen zusammen, die an einem Käfig eines Wälzlagers angeordnet sind. Hierdurch ist es in besonders vorteilhafter Weise möglich, eine autonome Energieversorgung bereitzustellen, die insbesondere auch nur dann Energie zur Verfügung stellt, wenn sie benötigt wird, nämlich bei einer Drehung des Wälzkörpers. In dem Fall, dass der Wälzkörper zusätzlich zu dem Mikro- generator einen induktiven Generator aufweist, ist es vorteilhaft möglich eine redundante Stromversorgung vorzusehen für den Fall einer Störung oder eines Ausfalls des Mikrogene- rators. Insbesondere in Kombination mit Magneten ist dabei vorteilhafterweise weiterhin keine Verkabelung des Wälzlagers nötig. Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass der Wälzkörper ein Mittel zur Positionsbestimmung umfasst. Besonders bevorzugt ist das Mittel wenigstens ein Magnet, insbesondere ein Diametralmagnet. Dieser wirkt ganz besonders bevorzugt mit einem Detektionsmittel zur Bestimmung der Position des Wälzkörpers zusammen, wobei das Wälzlager das Detektionsmittel umfasst, insbesondere der Innenring, der Außenring und/oder der Käfig. Hierdurch ist es in besonders vorteilhafter Weise möglich, die absolute und/oder relative Position des Wälzkörpers in dem Wälzlager zu bestimmen. According to a further preferred embodiment, it is provided that the micro-generator is an inductive generator or that the rolling element has an inductive generator. Particularly preferably, the inductive generator cooperates with magnets and / or coils, which are arranged on a cage of a roller bearing. This makes it possible in a particularly advantageous manner to provide an autonomous power supply, which provides energy only when it is needed, especially when a rotation of the rolling body. In the event that the rolling element has an inductive generator in addition to the micro-generator, it is advantageously possible to provide a redundant power supply in the event of malfunction or failure of the microgenerator. In particular, in combination with magnets while advantageously no cabling of the bearing is necessary. According to a further preferred embodiment it is provided that the rolling body comprises a means for determining position. Particularly preferably, the means is at least one magnet, in particular a diametral magnet. This very particularly preferably cooperates with a detection means for determining the position of the rolling body, wherein the rolling bearing comprises the detection means, in particular the inner ring, the outer ring and / or the cage. This makes it possible in a particularly advantageous manner to determine the absolute and / or relative position of the rolling element in the rolling bearing.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Wälzlager, insbesondere ein Großwälzlager, mit einem ersten Lagerring und einem um eine Drehachse drehbaren, und insbesondere konzentrisch zu dem ersten Lagerring angeordneten zweiten Lagerring, sowie einer Vielzahl von zwischen dem ersten Lagerring und dem zweiten Lagerring angeordneten Wälzkörpern, wobei wenigstens ein Wälzkörper ein erfindungsgemäßer Wälzkörper ist. Vorzugsweise ist der erste Lagerring ein Außenring und/oder der zweite Lagerring ein Innenring. Hierdurch ist es vorteilhaft möglich, ein Wälzlager bereitzustellen, welches ohne zusätzlichen Montageaufwand eine, insbesondere dauerhafte, kabellose Belastungsmessung ermöglicht. Another object of the present invention is a rolling bearing, in particular a slewing bearing, with a first bearing ring and a rotatable about a rotation axis, and in particular concentrically arranged to the first bearing ring second bearing ring, and a plurality of arranged between the first bearing ring and the second bearing ring rolling elements wherein at least one rolling element is a rolling element according to the invention. Preferably, the first bearing ring is an outer ring and / or the second bearing ring is an inner ring. As a result, it is advantageously possible to provide a roller bearing, which allows a, in particular permanent, wireless load measurement without additional installation effort.
Gemäß einer bevorzugten Ausführungsform ist vorgesehen, dass das Wälzlager ein Detektionsmittel zur Bestimmung der Position des Wälzkörpers umfasst. Besonders bevorzugt wirkt das Detektionsmittel mit einem Mittel zur Positionsbestimmung des Wälzkörpers zusammen, wobei der Wälzkörper das Mittel zur Positionsbestimmung umfasst. Ganz besonders bevorzugt ist vorgesehen, dass der Innenring, der Außenring und/oder der Käfig das Detektionsmittel aufweist. Hierdurch ist es in besonders vorteilhafter Weise möglich, die absolute und/oder relative Position des Wälzkörpers in dem Wälzlager zu bestimmen. According to a preferred embodiment, it is provided that the rolling bearing comprises a detection means for determining the position of the rolling body. Particularly preferably, the detection means cooperates with a means for determining the position of the rolling body, wherein the rolling body comprises the means for determining position. Most preferably, it is provided that the inner ring, the outer ring and / or the cage has the detection means. This makes it possible in a particularly advantageous manner to determine the absolute and / or relative position of the rolling element in the rolling bearing.
Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus den Zeichnungen, sowie aus der nachfolgenden Beschreibung von bevorzugten Ausführungsformen anhand der Zeichnungen. Die Zeichnungen illustrieren dabei lediglich beispielhafte Ausführungsformen der Erfindung, welche den wesentlichen Erfindungsgedanken nicht einschränken. Further details, features and advantages of the invention will become apparent from the drawings, as well as from the following description of preferred embodiments with reference to the drawings. The drawings illustrate only exemplary embodiments of the invention, which do not limit the essential inventive idea.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Figur 1 zeigt eine schematische Perspektivansicht eines Wälzkörpers gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung. Figur 2 zeigt eine weitere schematische Perspektivansicht eines Wälzkörpers gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung. Figure 1 shows a schematic perspective view of a rolling element according to an exemplary embodiment of the present invention. FIG. 2 shows a further schematic perspective view of a rolling element according to an exemplary embodiment of the present invention.
Figur 3 zeigt eine schematische Schnittdarstellung senkrecht zur Mittelachse eines Figure 3 shows a schematic sectional view perpendicular to the central axis of a
Wälzkörpers gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung mit einem Käfig eines Wälzlagers.  Rolling elements according to an exemplary embodiment of the present invention with a cage of a rolling bearing.
Figur 4 zeigt eine schematische Schnittdarstellung parallel zu der Mittelachse eines Figure 4 shows a schematic sectional view parallel to the central axis of a
Wälzkörpers gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung.  Rolling elements according to an exemplary embodiment of the present invention.
Figur 5 zeigt ein schematisches Ersatzschaltbild der Spulen aus den Figuren 3 und 4 gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung. Figure 5 shows a schematic equivalent circuit of the coils of Figures 3 and 4 according to an exemplary embodiment of the present invention.
Figur 6 zeigt einen schematischen Querschnitt einer Bohrung eines Wälzkörpers gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung. FIG. 6 shows a schematic cross-section of a bore of a rolling body according to an exemplary embodiment of the present invention.
Figur 7 zeigt eine Platine eines Wälzkörpers gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung. FIG. 7 shows a circuit board of a rolling element according to an exemplary embodiment of the present invention.
Figur 8 zeigt eine schematische Perspektivansicht eines Wälzkörpers gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung. FIG. 8 is a schematic perspective view of a rolling element according to an exemplary embodiment of the present invention.
Figur 9 zeigt eine schematische Perspektivansicht einer Platine eines Wälzkörpers gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung. Figure 9 is a schematic perspective view of a board of a rolling element according to an exemplary embodiment of the present invention.
Figur 10 zeigt eine Perspektivansicht eines Wälzlagers gemäß einer beispielhaften Figure 10 shows a perspective view of a rolling bearing according to an exemplary
Ausführungsform der vorliegenden Erfindung.  Embodiment of the present invention.
Figur 11 zeigt eine perspektivische Detailansicht eines Wälzlagers gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung. Ausführungsformen der Erfindung FIG. 11 shows a perspective detailed view of a roller bearing according to an exemplary embodiment of the present invention. Embodiments of the invention
In den verschiedenen Figuren sind gleiche Teile stets mit den gleichen Bezugszeichen versehen und werden daher in der Regel auch jeweils nur einmal benannt bzw. erwähnt. In the various figures, the same parts are always provided with the same reference numerals and are therefore usually named or mentioned only once in each case.
In Figur 1 ist eine schematische Perspektivansicht eines Wälzkörpers 1 gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung dargestellt. Ein derartiger Wälzkörper 1 wird in Wälzlagern eingesetzt und dient der beweglichen Führung eines ersten Lagerrings 1 1 und eines zweiten Lagerrings 12 zueinander, insbesondere eines in einem drehfest angeordneten Außenring 1 1 angeordneten Innenrings 12. Dabei sind üblicherweise zwischen Außenring 1 1 und Innenring 12 eine Vielzahl von Wälzkörpern vorgesehen, die auf Laufflächen des Außenrings 1 1 und des Innenrings 12 abrollen. Vorliegend handelt es sich um eine sogenannte Messrolle, also einen Wälzkörper 1 , der zur Belastungsmessung in dem Wälzlager vorgesehen und ausgebildet ist. 1 shows a schematic perspective view of a rolling element 1 according to an exemplary embodiment of the present invention. Such a rolling element 1 is used in rolling bearings and serves for the movable guidance of a first bearing ring 1 1 and a second bearing ring 12 to each other, in particular one arranged in a rotatably mounted outer ring 1 1 inner ring 12. Here are usually between outer ring 1 1 and inner ring 12 a variety provided by rolling elements, which roll on running surfaces of the outer ring 1 1 and the inner ring 12. In the present case, it is a so-called measuring roller, so a rolling element 1, which is provided and designed for load measurement in the rolling bearing.
Der Wälzkörper 1 umfasst hier einen zylindrischen oder im Wesentlichen kegelförmigen Körper mit einem Außenmantel 2 der als Lauffläche dient und auf der der Außenring 1 1 und der Innenring 12 abrollen. Der Wälzkörper 1 weist in seiner Mitte eine Bohrung 3 auf, die konzentrisch um die Mittelachse des Wälzkörpers 1 herum ausgebildet ist. Zu sehen sind zudem eine Vielzahl von Spulen 10, die hier auf einer Kreisbahn zwischen der Bohrung 3 und dem Außenmantel 2 angeordnet sind. Hierbei handelt es sich um vierzehn Spulen 10, die jeweils um ca. 25° versetzt angeordnet sind, wobei durch Anlegen eines Stroms bzw. einer Spannung benachbarte Spulen ein jeweils entgegengesetzt gerichtetes Magnetfeld erzeugen. Durch Anlegen einer Wechselspannung wird ein Schwingkreis erzeugt. Dieser wird im Zusammenhang mit den nachfolgenden Figuren näher erläutert. The rolling element 1 here comprises a cylindrical or substantially conical body with an outer shell 2 serving as a running surface and on which the outer ring 1 1 and the inner ring 12 roll. The rolling element 1 has in its center a bore 3, which is formed concentrically around the central axis of the rolling element 1 around. You can also see a variety of coils 10, which are arranged here on a circular path between the bore 3 and the outer shell 2. These are fourteen coils 10, which are each arranged offset by approximately 25 °, wherein by applying a current or a voltage adjacent coils generate a respective oppositely directed magnetic field. By applying an alternating voltage, a resonant circuit is generated. This will be explained in more detail in connection with the following figures.
Ferner weist der Wälzkörper 1 ein Mittel zur Positionsbestimmung 16 auf, hier ein Diametralmagnet, der mit einem Detektionsmittel zusammenwirkt, um die absolute und/oder relative Position des Wälzkörpers 1 in dem Wälzlager zu bestimmen. Dabei weist beispielsweise der Käfig 13 das Detektionsmittel auf. In diesem Fall ist die relative Position die Position des Wälzkörpers 1 relativ zu dem Käfig 13, insbesondere relativ zu einem Referenzpunkt. Further, the rolling element 1 has a means for position determination 16, here a diametrical magnet, which cooperates with a detection means to determine the absolute and / or relative position of the rolling element 1 in the rolling bearing. In this case, for example, the cage 13, the detection means. In this case, the relative position is the position of the rolling element 1 relative to the cage 13, in particular relative to a reference point.
In Figur 2 ist eine weitere schematische Perspektivansicht eines Wälzkörpers 1 gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung dargestellt. Dabei entspricht die dargestellte Ausführungsform im Wesentlichen der in Figur 1 dargestellten Ausführungsform, so dass generell auf die diesbezüglichen Ausführungen verwiesen wird. Es ist hier gut zu erkennen, dass der Wälzkörper 1 im Wesentlichen zylinderförmig ist. In der Bohrung 3 ist dabei eine im Folgenden näher zu erläuternde Messanordnung vorgesehen. FIG. 2 shows a further schematic perspective view of a rolling element 1 according to an exemplary embodiment of the present invention. In this case, the illustrated embodiment substantially corresponds to the embodiment shown in Figure 1, so that reference is made generally to the relevant embodiments. It is good here too recognize that the rolling element 1 is substantially cylindrical. In the bore 3, a measuring arrangement to be explained in more detail below is provided.
In Figur 3 ist eine schematische Schnittdarstellung senkrecht zur Mittelachse eines Wälzkörpers 1 gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung mit einem Käfig 13 eines Wälzlagers dargestellt. Dabei entspricht die dargestellte Ausführungsform im Wesentlichen den in den vorherigen Figuren dargestellten Ausführungsformen, so dass generell auf die diesbezüglichen Ausführungen verwiesen wird. In der Bohrung ist ein Sensor 5, hier ein kapazitiver Sensor 5, ein Funkmodul 6 und ein Mikrogenerator 4 vorgesehen. Der Mikrogenerator ist hier ein induktiver Mikrogenerator. Damit die Wälzkörper eines Wälzlagers für eine gleichmäßige Lastverteilung regelmäßig beabstandet bleiben, ist zwischen dem Außenring 1 1 und dem Innenring 12 ein Käfig 13 angeordnet, der die Wälzkörper umfasst. D.h. die Wälzkörper sind drehbar, aber bezüglich des Käfigs 13 an festen Positionen gelagert. An der Stelle des Wälzkörpers 1 umfasst der Käfig 13 Magnete 15, hier vier Magnete 5. Diese Magnete 15 ermöglichen es dem Mikrogenerator 4 einen Strom zu induzieren und somit eine Energieversorgung für den Sensor 5 und das Funkmodul 6 sowie die Spulen 10 bereitzustellen. Alternativ oder zusätzlich und im Rahmen der vorliegenden Erfindung bevorzugt ist der Mikrogenerator derart vorgesehen, dass er alleine aus der Bewegung, d.h. dem Abrollen, des Wälzkörpers Energie generiert. FIG. 3 shows a schematic sectional view perpendicular to the central axis of a rolling element 1 according to an exemplary embodiment of the present invention with a cage 13 of a roller bearing. In this case, the illustrated embodiment substantially corresponds to the embodiments shown in the previous figures, so that reference is generally made to the relevant embodiments. In the bore, a sensor 5, here a capacitive sensor 5, a radio module 6 and a microgenerator 4 are provided. The microgenerator is here an inductive microgenerator. Thus, the rolling elements of a rolling bearing regularly spaced for a uniform load distribution, a cage 13 is disposed between the outer ring 1 1 and the inner ring 12, which includes the rolling elements. That the rolling elements are rotatable, but mounted with respect to the cage 13 at fixed positions. At the location of the rolling element 1, the cage 13 comprises magnets 15, here four magnets 5. These magnets 15 allow the microgenerator 4 to induce a current and thus provide a power supply for the sensor 5 and the radio module 6 and the coils 10. Alternatively or additionally, and within the scope of the present invention, the microgenerator is provided such that it can be moved solely by movement, i. the rolling, the rolling element generates energy.
Der Sensor 5 ist auf einer hier nicht dargestellten Platine 8 angeordnet. Auf der anderen Seite der Platine 8, also bezüglich der Mittelachse dem Sensor 5 gegenüberliegend, ist ein Mittel 7 zum Herstellen eines definierten Abstandes zu der Bohrungswandung angeordnet. Dieses Mittel 7 ist hier ein Rollenkontaktblock mit einem darin angeordneten Magneten 14. Der Magnet sorgt dafür, dass der Rollenkontaktblock in Kontakt mit der Bohrungswandung gerät, da er von den Magnetfeldern der Spulen 10 wechselnd angezogen wird. Hierdurch führt das Mittel 7 mit der Platine 8 und somit auch dem Sensor 5 eine Oszillation aus, deren Frequenz zum Einen durch die Spulen 10 und zum Anderen von dem Abstand zwischen Mittel 7 und der Bohrungswandung bzw. dem Abstand zwischen dem Sensor 5 und der Bohrungswandung abhängt, sowie natürlich von den Eigenschafften des Rollenkontaktblocks, z.B. seiner Masse und der Stärke des Magneten 14. Der kapazitive Sensor 5 misst also eine Frequenz, die mit einem Abstand von der Bohrungswandung korrespondiert. Wird nun durch auf den Wälzkörper 1 wirkende Kräfte, also Belastungen, der Wälzkörper 1 verformt, so verformt sichauch die Bohrung 3. Der Abstand zwischen dem kapazitiven Sensor 5 und der Bohrungswandung verändert sich also und damit auch die gemessene Frequenz. Die gemessene Frequenz wird an das Funkmodul 6 übermittelt, welche sie aus dem Wälzkörper kabellos überträgt. Denkbar ist auch, dass zuvor aus den gemessenen Daten eine Verformung bzw. Belastung ermittelt wird, die dann übertragen wird. The sensor 5 is arranged on a circuit board 8, not shown here. On the other side of the board 8, so with respect to the central axis of the sensor 5 opposite, a means 7 for producing a defined distance to the bore wall is arranged. This means 7 is here a roller contact block with a magnet 14 arranged therein. The magnet ensures that the roller contact block comes into contact with the bore wall, since it is alternately attracted by the magnetic fields of the coils 10. As a result, the means 7 performs with the circuit board 8 and thus also the sensor 5 from an oscillation whose frequency on the one hand by the coil 10 and the other by the distance between means 7 and the bore wall or the distance between the sensor 5 and the bore wall The capacitive sensor 5 thus measures a frequency corresponding to a distance from the bore wall. Now, if deformed by forces acting on the rolling elements 1, so loads, the rolling element 1, so also deforms the bore 3. The distance between the capacitive sensor 5 and the bore wall thus changes and thus the measured frequency. The measured frequency is transmitted to the radio module 6, which wirelessly from the rolling elements transfers. It is also conceivable that a deformation or load is previously determined from the measured data, which is then transmitted.
In Figur 4 ist eine schematische Schnittdarstellung parallel zu der Mittelachse eines Wälzkörpers 1 gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung dargestellt. Dabei entspricht die dargestellte Ausführungsform im Wesentlichen der in Figur 3 dargestellten Ausführungsform, so dass generell auf die diesbezüglichen Ausführungen verwiesen wird. Hier ist insbesondere die Bohrung 3 zu erkennen, sowie schematisch der Mikroge- nerator 4 und das Funkmodul 6. FIG. 4 shows a schematic sectional illustration parallel to the center axis of a rolling element 1 according to an exemplary embodiment of the present invention. In this case, the illustrated embodiment substantially corresponds to the embodiment shown in Figure 3, so that reference is made generally to the relevant embodiments. Here, in particular, the bore 3 can be seen, as well as schematically the microgenerator 4 and the radio module 6.
In Figur 5 ist ein schematisches Ersatzschaltbild der Spulen 10 aus den Figuren 3 und 4 gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung dargestellt. Die Spulen 10 stellen dabei Widerstände dar, die in Reihe geschaltet sind. Gemäß den zuvor beschriebenen Darstellungen sind hier vierzehn Spulen 10, entsprechend vierzehn Widerständen, vorgesehen. FIG. 5 shows a schematic equivalent circuit diagram of the coils 10 from FIGS. 3 and 4 according to an exemplary embodiment of the present invention. The coils 10 represent resistors which are connected in series. According to the representations described above, fourteen coils 10, corresponding to fourteen resistors, are provided here.
In Figur 6 ist ein schematischer Querschnitt einer Bohrung 3 eines Wälzkörpers 1 gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung dargestellt. Hier ist deutlich die Platine 8 zu erkennen, wobei auf der einen Seite der Platine 8 der kapazitive Sensor 5 und auf der anderen Seite das Mittel 7 mit dem Magneten 14 angeordnet ist. Zudem sind verschiedene Verformungen bzw. Abstände d eingezeichnet. In der dargestellten Ausführungsform beträgt der Abstand d0 zwischen kapazitiven Sensor 5 und der Bohrungswandung in einem lastlosen Zustand ca. 100 μηη, wobei der Magnet 14 des Mittels 7 den Rollenkontaktblock in Kontakt zu der Bohrungswandung gebracht hat. Je nachdem, ob die Bohrung gestaucht oder gedrückt wird, ändert sich der Abstand, also die Verformung zwischen einem minimalen Wert dmin von 50 μηη und einem maximalen Wert dmax von 150 μηη. Auf der linken Seite der Darstellung ist schematisch ein Schwingkreis dargestellt. Diesbezüglich wird auf die Ausführungen zu Figur 4 verwiesen. Der kapazitive Sensor 5 und der Rollenkontaktblock haben dabei wenigstens teilweise eine Außenkontur, die der Kontur der Bohrungswandung in einem lastlosen Zustand folgt, also zu der Bohrungswandung konzentrisch ist. FIG. 6 shows a schematic cross section of a bore 3 of a rolling element 1 according to an exemplary embodiment of the present invention. Here, the board 8 can be seen clearly, wherein on one side of the board 8, the capacitive sensor 5 and on the other side, the means 7 is arranged with the magnet 14. In addition, various deformations or distances d are drawn. In the illustrated embodiment, the distance d 0 between the capacitive sensor 5 and the bore wall in a no-load condition is approximately 100 μm, with the magnet 14 of the means 7 bringing the roller contact block into contact with the bore wall. Depending on whether the bore is compressed or pressed, the distance, ie the deformation between a minimum value d min of 50 μηη and a maximum value d max of 150 μηη changes. On the left side of the illustration, a resonant circuit is shown schematically. In this regard, reference is made to the comments on Figure 4. The capacitive sensor 5 and the roller contact block have at least partially an outer contour that follows the contour of the bore wall in a no-load condition, that is concentric with the bore wall.
In Figur 7 ist eine Platine 8 eines Wälzkörpers 1 gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung dargestellt. Aus Gründen der Übersichtlichkeit sind dabei nicht alle Elemente dargestellt. In der Mitte ist die Stelle sichtbar, die zur Anbringung des Mikrogenerators 4 vorgesehen ist Zu beiden Seiten dieser Stelle und an beiden Rändern der Platine 8 sind Befestigungsstellen zu sehen, die der Befestigung von zwei kapazitiven Sensoren 5, 5' dienen. Diese zwei voneinander entlang der Mittelachse beabstandeten Sensoren 5 ,5' ermöglichen eine relative Messung zueinander und damit zusätzlich zu einer reinen Kräftemessung entlang dreier Achsen auch die Messung einer Verkippung des Wälzkörpers 1 , also einer entlang der Mittelachse unterschiedlich starken Verformung des Wälzkörpers 1. Ferner ist lediglich beispielshaft ein Funkmodul 6 dargestellt. Die Platine 8 ist derart bemessen, dass sie in die Bohrung 3 passt und vorzugsweise eine geringe seitliche Toleranz aufweist. FIG. 7 shows a circuit board 8 of a rolling element 1 according to an exemplary embodiment of the present invention. For reasons of clarity, not all elements are shown here. In the middle of the point is visible, which is provided for mounting the microgenerator 4 On both sides of this point and on both edges of the board 8 attachment points are seen, which serve the attachment of two capacitive sensors 5, 5 '. These two spaced from each other along the central axis sensors 5, 5 'allow a relative measurement to each other and thus in addition to a pure force measurement along three axes and the measurement of tilting of the rolling element 1, so along the central axis different degrees of deformation of the rolling element 1. Furthermore, only a radio module 6 is exemplified. The board 8 is dimensioned such that it fits into the bore 3 and preferably has a low lateral tolerance.
In Figur 8 ist eine schematische Perspektivansicht eines Wälzkörpers 1 gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung dargestellt. Dabei entspricht die dargestellte Ausführungsform im Wesentlichen den in den vorherigen Figuren dargestellten Ausführungsformen, so dass generell auf die diesbezüglichen Ausführungen verwiesen wird. Hier ist insbesondere gut die in die Bohrung 3 eingesetzte Platine 8 mit dem Sensor 5 und dem Mittel 7 erkennbar. FIG. 8 shows a schematic perspective view of a rolling element 1 according to an exemplary embodiment of the present invention. In this case, the illustrated embodiment substantially corresponds to the embodiments shown in the previous figures, so that reference is generally made to the relevant embodiments. Here, in particular well inserted into the bore 3 board 8 with the sensor 5 and the means 7 can be seen.
In Figur 9 ist eine schematische Perspektivansicht einer Platine 8 eines Wälzkörpers 1 gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung dargestellt. Dabei entspricht die dargestellte Ausführungsform im Wesentlichen der in Figur 7 dargestellten Ausführungsform, so dass generell auf die diesbezüglichen Ausführungen verwiesen wird. Auch hier sind zwei kapazitive Sensoren 5, 5' und entsprechend zwei Mittel 7, T in Form von Rollenkontaktblöcken vorgesehen. Außerdem ist gut zu erkennen, wo der Magnet 14 in das Mittel 7 eingesetzt wird, wobei es sich dabei lediglich um eine beispielhafte Anbringungsmöglichkeit handelt. FIG. 9 shows a schematic perspective view of a circuit board 8 of a rolling element 1 according to an exemplary embodiment of the present invention. In this case, the illustrated embodiment substantially corresponds to the embodiment shown in Figure 7, so that reference is made generally to the relevant embodiments. Again, two capacitive sensors 5, 5 'and correspondingly two means 7, T are provided in the form of roller contact blocks. In addition, it is easy to see where the magnet 14 is inserted into the means 7, which is merely an exemplary mounting option.
In Figur 10 ist eine Perspektivansicht eines Wälzlagers gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung dargestellt. Hier handelt es sich dabei um ein Großwälzlager mit einem Außenring 1 1 , einem hier aus Gründen der Übersichtlichkeit nicht dargestellten Innenring 12 und einem dazwischen angeordneten Käfig 13, der eine Vielzahl von Wälzkörpern umfasst und gleichmäßig voneinander beabstandet hält. Wenigstens ein Wälzkörper ist dabei ein Wälzkörper 1 im Sinne dieser Anmeldung, also eine Messrolle. FIG. 10 shows a perspective view of a roller bearing according to an exemplary embodiment of the present invention. This is a slewing bearing with an outer ring 1 1, an inner ring 12, not shown here for reasons of clarity and a cage 13 arranged therebetween, which comprises a plurality of rolling elements and keeps evenly spaced from each other. At least one rolling element is a rolling element 1 in the sense of this application, that is to say a measuring roller.
In Figur 11 ist eine perspektivische Detailansicht eines Wälzlagers gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung dargestellt. Hier ist insbesondere ein erfindungsgemäßer Wälzkörper 1 neben zwei herkömmlichen Wälzkörpern dargestellt. Wie aus der Darstellung ersichtlich wird, weist der Wälzkörper 1 keine Verkabelung auf, er funktioniert autonom und übermittelt die Messdaten kabellos, so dass das Wälzlager beispielsweise von einem Gehäuse umschlossen sein kann und dennoch eine Belastungsmessung möglich ist. Hierdurch kann das Großwälzlager beispielsweise in einer Windkraftanlage eingebaut wer- den und Belastungsmessdaten an eine Kontrolleinheit übermitteln, so dass ein Wartungsbedarf frühzeitig und ohne aufwändige Eingriffe in das Wälzlager erkannt werden kann. FIG. 11 shows a detailed perspective view of a roller bearing according to an exemplary embodiment of the present invention. Here, in particular, an inventive rolling element 1 is shown in addition to two conventional rolling elements. As can be seen from the illustration, the rolling element 1 has no wiring, it functions autonomously and transmits the measured data wirelessly, so that the rolling bearing can be enclosed, for example, by a housing, and nevertheless a load measurement is possible. As a result, the large rolling bearing can be installed, for example, in a wind power plant. transmit and load measurement data to a control unit, so that a need for maintenance can be detected early and without complex intervention in the rolling bearing.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
1 Wälzkörper 1 rolling element
2 Außenmantel  2 outer jacket
3 Bohrung  3 hole
4 Mikrogenerator  4 microgenerator
5, 5" Sensor  5, 5 "sensor
6 Funkmodul  6 radio module
7, 7' Mittel zum Herstellen eines definierten Abstandes zu der Bohrungswandung 7, 7 'means for establishing a defined distance to the bore wall
8 Platine 8 board
9 Dehnungsmessstreifen  9 strain gauges
10 Spulen  10 coils
1 1 Außenring  1 1 outer ring
12 Innenring  12 inner ring
13 Käfig  13 cage
14 Magnet  14 magnet
15 Käfigmagneten  15 cage magnets
16 Mittel zur Positionsbestimmung d Verformung  16 Positioning means d Deformation

Claims

PATENTANSPRÜCHE
1 . Wälzkörper (1 ) zur Verwendung in einem Wälzlager, mit einem Außenmantel (2) und einer Bohrung (3), wobei die Bohrung (3) entlang einer Mittelachse des Wälzkörpers (1 ) vorgesehen ist, wobei der Wälzkörper (1 ) wenigstens einen in der Bohrung (3) angeordneten Sensor (5) zur Belastungsmessung und ein Funkmodul (6) zur Übertragung der von dem Sensor (5) gemessenen Daten umfasst, dadurch gekennzeichnet, dass der Wälzkörper einen Mikrogenerator (4) umfasst, wobei der Mikrogenerator (4) zur Bereitstellung der zum Betrieb des Sensors (5) und/oder des Funkmoduls (6) benötigten Energie vorgesehen ist. 1 . Rolling elements (1) for use in a roller bearing, with an outer casing (2) and a bore (3), wherein the bore (3) is provided along a central axis of the rolling element (1), wherein the rolling element (1) has at least one in the Bore (3) arranged sensor (5) for load measurement and a radio module (6) for transmitting the sensor (5) measured data comprises, characterized in that the rolling body comprises a microgenerator (4), wherein the microgenerator (4) for Provision of the operation of the sensor (5) and / or the radio module (6) required energy is provided.
2. Wälzkörper (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass der Sensor (5) ein kapazitiver Sensor ist, wobei der Sensor (5) zur Messung eines Abstands zwischen dem Sensor und der Bohrungswandung vorgesehen ist. 2. Rolling element (1) according to claim 1, characterized in that the sensor (5) is a capacitive sensor, wherein the sensor (5) is provided for measuring a distance between the sensor and the bore wall.
3. Wälzkörper (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Bohrung (3) wenigstens zwei voneinander entlang der Mittelachse beabstandete Sensoren (5, 5') angeordnet sind. 3. rolling elements (1) according to any one of the preceding claims, characterized in that in the bore (3) at least two spaced apart along the central axis sensors (5, 5 ') are arranged.
4. Wälzkörper (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in axialer Richtung auf der Höhe des Sensors (5), vorzugsweise diesem bezüglich der Mittelachse gegenüberliegend, ein Mittel (7) zum Herstellen eines definierten Abstandes zu der Bohrungswandung vorgesehen ist, wobei das Mittel (7) insbesondere einen Magneten (14) umfasst. 4. rolling elements (1) according to any one of the preceding claims, characterized in that in the axial direction at the level of the sensor (5), preferably this with respect to the central axis opposite, a means (7) for producing a defined distance to the bore wall is provided , wherein the means (7) in particular comprises a magnet (14).
5. Wälzkörper (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Bohrung (3) eine Platine (8) angeordnet ist, wobei das Funkmodul (6), der Mikrogenerator (4), der kapazitive Sensor (5) und/oder das Mittel (7) an der Platine (8) befestigt sind. 5. Rolling element (1) according to one of the preceding claims, characterized in that in the bore (3) a circuit board (8) is arranged, wherein the radio module (6), the micro-generator (4), the capacitive sensor (5) and / or the means (7) on the board (8) are attached.
6. Wälzkörper (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Funkmodul (6) zur Übertragung der gemessenen Daten in einem Frequenzbereich von 100 MHz bis 6 GHz, vorzugsweise von 300 MHz bis 2 GHz, besonders bevorzugt von 700 MHz bis 1 GHz, insbesondere mit einer Frequenz von 833 MHz, vorgesehen ist. 6. rolling elements (1) according to any one of the preceding claims, characterized in that the radio module (6) for transmitting the measured data in a frequency range of 100 MHz to 6 GHz, preferably from 300 MHz to 2 GHz, more preferably from 700 MHz to 1 GHz, in particular with a frequency of 833 MHz, is provided.
7. Wälzkörper (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bohrung (3) einen Durchmesser von 5 mm bis 50 mm, vorzugsweise von 10 mm bis 30 mm, insbesondere einen Durchmesser von 20 mm, aufweist, und/oder wobei der Wälzkörper vorzugsweise zylinderförmig ausgebildet ist und besonders bevorzugt eine Länge von 90 mm bis 1 10 mm, insbesondere 104 mm, sowie ganz besonders bevorzugt einen Durchmesser von 60 mm bis 70 mm, insbesondere 65 mm, aufweist. 7. rolling elements (1) according to any one of the preceding claims, characterized in that the bore (3) has a diameter of 5 mm to 50 mm, preferably from 10 mm to 30 mm, in particular a diameter of 20 mm, and / or wherein the rolling element is preferably cylindrical in shape and particularly preferably has a length of 90 mm to 1 10 mm, in particular 104 mm, and most preferably a diameter of 60 mm to 70 mm, in particular 65 mm.
8. Wälzkörper (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an der Bohrungswandung, insbesondere in radialer Richtung wenigstens teilweise umlaufend, ein Dehnungsmessstreifen (9) angeordnet ist. 8. Rolling element (1) according to one of the preceding claims, characterized in that at the bore wall, in particular in the radial direction at least partially circumferential, a strain gauge (9) is arranged.
9. Wälzkörper (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wälzkörper (1 ) ein Mittel zur Positionsbestimmung umfasst. 9. Rolling element (1) according to one of the preceding claims, characterized in that the rolling body (1) comprises a means for determining position.
10. Wälzlager, insbesondere Großwälzlager, mit einem ersten Lagerring und einem um eine Drehachse drehbaren, und insbesondere konzentrisch zu dem ersten Lagerring (1 1 ) angeordneten zweiten Lagerring (12), sowie einer Vielzahl von zwischen dem ersten Lagerring (1 1 ) und dem zweiten Lagerring (12) angeordneten Wälzkörpern, dadurch gekennzeichnet, dass wenigstens ein Wälzkörper ein Wälzkörper (1 ) gemäß einem der vorhergehenden Ansprüche ist. 10. Rolling, in particular slewing bearings, with a first bearing ring and a rotatable about an axis of rotation, and in particular concentrically to the first bearing ring (1 1) arranged second bearing ring (12), and a plurality of between the first bearing ring (1 1) and the Second bearing ring (12) arranged rolling elements, characterized in that at least one rolling element is a rolling body (1) according to one of the preceding claims.
EP17757538.8A 2016-08-30 2017-08-24 Rolling element for use in a rolling-element bearing Active EP3507515B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016116118.7A DE102016116118A1 (en) 2016-08-30 2016-08-30 Rolling elements for use in a rolling bearing
PCT/EP2017/071301 WO2018041704A1 (en) 2016-08-30 2017-08-24 Rolling element for use in a rolling-element bearing

Publications (2)

Publication Number Publication Date
EP3507515A1 true EP3507515A1 (en) 2019-07-10
EP3507515B1 EP3507515B1 (en) 2021-10-13

Family

ID=59699698

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17757538.8A Active EP3507515B1 (en) 2016-08-30 2017-08-24 Rolling element for use in a rolling-element bearing

Country Status (7)

Country Link
US (1) US11226004B2 (en)
EP (1) EP3507515B1 (en)
CN (1) CN109642612A (en)
DE (1) DE102016116118A1 (en)
DK (1) DK3507515T3 (en)
ES (1) ES2903217T3 (en)
WO (1) WO2018041704A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110848261B (en) * 2018-07-27 2021-06-04 舍弗勒技术股份两合公司 Rolling element for a rolling bearing and rolling bearing
DE102018216252A1 (en) * 2018-09-24 2020-03-26 RS Schwarze Elektrotechnik Moderne Industrieelektronik GmbH Rolling elements with integrated electronics for use in a rolling bearing
DE102018216253A1 (en) * 2018-09-24 2020-03-26 RS Schwarze Elektrotechnik Moderne Industrieelektronik GmbH Rolling elements with sensor for use in a rolling bearing
DE102019205796B4 (en) 2019-04-23 2023-05-04 Thyssenkrupp Ag Generator device for the energy supply of electronic components arranged within a rolling body of a rolling bearing
BE1027297B1 (en) 2019-04-23 2020-12-21 Thyssenkrupp Rothe Erde Gmbh Generator device for the energy supply of electronic components arranged within a rolling element of a rolling bearing
AT522787B1 (en) * 2019-11-26 2021-02-15 Miba Gleitlager Austria Gmbh Bearing arrangement
DE102020202692A1 (en) * 2020-03-03 2021-09-09 Aktiebolaget Skf Sensor roller for a bearing that has an integrated energy harvesting device
BE1029282B1 (en) * 2021-04-08 2022-11-17 thyssenkrupp rothe erde Germany GmbH Rolling elements with measuring device
EP4320363A1 (en) * 2021-04-08 2024-02-14 thyssenkrupp rothe erde Germany GmbH Rolling body with measuring device
US11933364B2 (en) * 2021-05-21 2024-03-19 Aktiebolaget Skf Self-powered sensorized rolling element
CN113586602B (en) * 2021-07-23 2022-06-24 上海交通大学 Bearing roller self-power supply and roller state monitoring device and working method
WO2023217691A1 (en) 2022-05-10 2023-11-16 thyssenkrupp rothe erde Germany GmbH Rolling bearing with measuring roller
DE102022204576A1 (en) 2022-05-10 2023-11-16 Thyssenkrupp Ag Rolling bearing with measuring roller
BE1030511B1 (en) 2022-05-10 2023-12-11 thyssenkrupp rothe erde Germany GmbH Rolling bearing with measuring roller

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175430A (en) * 1977-04-04 1979-11-27 Utah Development Company Load measuring apparatus
SE501814C2 (en) * 1993-08-06 1995-05-22 Skf Ab Device for load measurement in rolling bearings
FR2769673B1 (en) 1997-10-10 1999-12-24 Rks Sa ROLLING BEARING
JP4942665B2 (en) 2005-02-01 2012-05-30 ザ ティムケン カンパニー Bearing with sensor mounted on cage
EP1795869A1 (en) 2005-12-09 2007-06-13 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Device for determining deformation in a bearing roller
DE102007009093A1 (en) * 2007-02-24 2008-08-28 Schaeffler Kg Roller bearing, comprises two sliding surfaces and rolling element is arranged between sliding surfaces, where rolling element is formed as cylinder roller, ball caster and barrel-shaped roller
JP5540728B2 (en) 2010-01-25 2014-07-02 株式会社ジェイテクト Roller bearing device
DE102010038393A1 (en) 2010-07-26 2012-01-26 Aktiebolaget Skf Rolling elements for a roller bearing
DE102012200778A1 (en) 2012-01-20 2013-07-25 Aktiebolaget Skf Device having at least one rolling element and method for outputting a signal
DE102012200783B4 (en) 2012-01-20 2013-11-07 Aktiebolaget Skf Rolling elements and rolling bearings
JP2013151975A (en) * 2012-01-25 2013-08-08 Ntn Corp Bearing with rfid function and bearing seal
JP6119227B2 (en) 2012-12-12 2017-04-26 株式会社ジェイテクト Bearing roller state detecting device, roller bearing device with sensor, and wind power generator
DE102013214703A1 (en) 2013-07-29 2015-01-29 Zf Friedrichshafen Ag Rolling bearings for a transmission
DE112013007412T5 (en) 2013-09-09 2016-06-16 Aktiebolaget Skf Bearing assembly comprising a sensor roller
WO2015032445A1 (en) * 2013-09-09 2015-03-12 Aktiebolaget Skf Sensor roller and bearing assembly
DE102015216472B4 (en) * 2015-08-28 2018-05-17 Aktiebolaget Skf Bearing arrangement with a Sensorwälzkörper
DE102017210289A1 (en) * 2016-06-29 2018-01-04 Aktiebolaget Skf Roller with integrated load cell

Also Published As

Publication number Publication date
US20210277954A1 (en) 2021-09-09
CN109642612A (en) 2019-04-16
WO2018041704A1 (en) 2018-03-08
EP3507515B1 (en) 2021-10-13
ES2903217T3 (en) 2022-03-31
US11226004B2 (en) 2022-01-18
DE102016116118A1 (en) 2018-03-01
DK3507515T3 (en) 2022-01-17

Similar Documents

Publication Publication Date Title
EP3507515B1 (en) Rolling element for use in a rolling-element bearing
DE10017572B4 (en) Rolling bearings with remote sensing units
EP3013613B1 (en) Air spring with level measuring device integrated in the bellows
AT506925B1 (en) LOAD MEASUREMENT DEVICE, DEVICE MANUFACTURING METHOD AND CONTROL PROCESS USING THE DEVICE
DE102010020759B4 (en) Sensed rolling elements
EP2153077A1 (en) Device for detecting and monitoring damage to rolling bearings
EP3857197B1 (en) Rolling element having a sensor for use in a rolling-element bearing
EP3857087B1 (en) Sliding bearing assembly
EP2798226A2 (en) Method for determining a position of a piston in a piston pressure accumulator by means of inductive sensors and suitably designed piston pressure accumulator
EP2456594B1 (en) Electromechanical joining module having a force transducer
EP2473818B1 (en) Device for measuring and/or detecting distances and distance changes and device for measuring and/or detecting mechanical loads
EP3728880B1 (en) Device and method for determining a state variable
DE102011053277A1 (en) Stabilizer for compensating movements of motor car, has measuring arrangement arranged between driven shafts and stabilizer parts and designed as rotational torque sensor for acquisition of torsion between driven shafts and stabilizer parts
DE102011085711A1 (en) Roller bearing for use as e.g. grooved ball bearing, has force measuring unit provided with force sensor held in bearing cage in place of roller bodies, where force sensor wirelessly transmits sensor signals to evaluation device
WO2021058516A1 (en) Device and method for monitoring a tablet press machine, preferably during continuous operation, by means of a measuring device attached to a press punch
EP3094954A1 (en) System for determining operating parameters of a gear element
EP4065853B1 (en) Bearing assembly
DE202010011758U1 (en) Sensor arrangement for contactless determination of the current angular position of a shaft
DE102020132081A1 (en) Sensor unit for forming a sensor node in a wireless sensor network and wireless sensor network comprising such a sensor node
AT522972B1 (en) Bearing arrangement
WO2020069688A1 (en) Method for capturing usage data of rollers
EP3231045A1 (en) Rotary coupling arrangement with a rotor arrangement for a slip-ring assembly
DE102006004253A1 (en) Device for monitoring machine elements
EP0583649A1 (en) Electrical position sensor
AT524189B1 (en) bearing element

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP ROTHE ERDE GMBH

Owner name: THYSSENKRUPP AG

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP ROTHE ERDE GERMANY GMBH

Owner name: THYSSENKRUPP AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201201

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210701

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017011737

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1438407

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220112

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2903217

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017011737

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017011737

Country of ref document: DE

Owner name: THYSSENKRUPP ROTHE ERDE GERMANY GMBH, DE

Free format text: FORMER OWNERS: THYSSENKRUPP AG, 45143 ESSEN, DE; THYSSENKRUPP ROTHE ERDE GERMANY GMBH, 44137 DORTMUND, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017011737

Country of ref document: DE

Owner name: THYSSENKRUPP AG, DE

Free format text: FORMER OWNERS: THYSSENKRUPP AG, 45143 ESSEN, DE; THYSSENKRUPP ROTHE ERDE GERMANY GMBH, 44137 DORTMUND, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017011737

Country of ref document: DE

Owner name: RS SCHWARZE INDUSTRIEELEKTRONIK GMBH, DE

Free format text: FORMER OWNERS: THYSSENKRUPP AG, 45143 ESSEN, DE; THYSSENKRUPP ROTHE ERDE GERMANY GMBH, 44137 DORTMUND, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220824

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230821

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1438407

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230822

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230828

Year of fee payment: 7

Ref country code: DK

Payment date: 20230823

Year of fee payment: 7

Ref country code: DE

Payment date: 20230821

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231027

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170824