EP3502797B1 - Uhrwerksanordnung, die einen mechanischen oszillator umfasst, der mit einer einstellvorrichtung verbunden ist - Google Patents

Uhrwerksanordnung, die einen mechanischen oszillator umfasst, der mit einer einstellvorrichtung verbunden ist Download PDF

Info

Publication number
EP3502797B1
EP3502797B1 EP17209121.7A EP17209121A EP3502797B1 EP 3502797 B1 EP3502797 B1 EP 3502797B1 EP 17209121 A EP17209121 A EP 17209121A EP 3502797 B1 EP3502797 B1 EP 3502797B1
Authority
EP
European Patent Office
Prior art keywords
voltage
storage unit
lobe
time
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17209121.7A
Other languages
English (en)
French (fr)
Other versions
EP3502797A1 (de
Inventor
Lionel TOMBEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP17209121.7A priority Critical patent/EP3502797B1/de
Priority to JP2018233294A priority patent/JP6873094B2/ja
Priority to US16/220,232 priority patent/US11422510B2/en
Priority to CN201811555788.7A priority patent/CN109991834B/zh
Publication of EP3502797A1 publication Critical patent/EP3502797A1/de
Application granted granted Critical
Publication of EP3502797B1 publication Critical patent/EP3502797B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • G04C3/06Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance
    • G04C3/065Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance the balance controlling gear-train by means of static switches, e.g. transistor circuits
    • G04C3/067Driving circuits with distinct detecting and driving coils
    • G04C3/068Driving circuits with distinct detecting and driving coils provided with automatic control
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C10/00Arrangements of electric power supplies in time pieces
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G19/00Electric power supply circuits specially adapted for use in electronic time-pieces
    • G04G19/02Conversion or regulation of current or voltage
    • G04G19/06Regulation

Definitions

  • the present invention relates to a timepiece comprising a mechanical oscillator associated with a system for regulating its average frequency.
  • the regulation is of the electronic type, that is to say that the regulation system comprises an electronic circuit connected to an auxiliary oscillator which is arranged to supply an electric clock signal of high precision.
  • the regulation system is arranged to correct a possible temporal drift of the mechanical oscillator relative to the auxiliary oscillator.
  • the mechanical oscillator comprises a mechanical resonator formed by a balance-spring and a maintenance device formed by a conventional escapement, for example with Swiss anchor.
  • the auxiliary oscillator is formed in particular by a quartz resonator or by a resonator integrated in the electronic regulation circuit.
  • Movements forming timepieces as defined in the field of the invention have been proposed in some prior documents.
  • the patent CH 597 636 published in 1977, proposes such a movement with reference to its figure 3 .
  • the movement is equipped with a resonator formed by a balance-spring and a conventional maintenance device comprising an anchor and an escape wheel in kinematic connection with a barrel provided with a spring.
  • This watch movement includes a system for regulating the frequency of the mechanical oscillator.
  • This regulation system comprises an electronic circuit and an electromagnetic assembly formed by a flat coil, arranged on a support under the pendulum serge, and two magnets mounted on the pendulum and arranged close to each other so as to both pass over the coil when the oscillator is activated.
  • the electronic circuit comprises a time base comprising a quartz resonator and serving to generate a reference frequency signal FR, this reference frequency being compared with the frequency FG of the mechanical oscillator.
  • the detection of the frequency FG is carried out via the electrical signals generated in the coil by the pair of magnets.
  • the regulating circuit is arranged to be able to temporarily generate a braking torque via a magnetic magnet-coil coupling and a switchable load connected to the coil.
  • the document CH 597 636 gives the following teaching: "The resonator thus formed must have a variable oscillation frequency according to the amplitude on either side of the frequency FR (lack of isochronism)".
  • the load is formed by a switchable rectifier via a transistor which recharges a storage capacity during the pulses of braking, to recover electrical energy in order to power the electronic circuit.
  • the constant teaching given in the document CH 597 636 is as follows: When FG> FR the transistor is conductive; a power Pa is then taken from the generator / oscillator. When FG ⁇ FR, the transistor is non-conductive; Onne therefore takes more energy from the generator / oscillator. In other words, we only regulate when the frequency of the generator / oscillator is higher than the reference frequency FR.
  • This regulation consists in braking the generator / oscillator in order to decrease its FG frequency.
  • the mechanical oscillator a person skilled in the art understands that regulation is only possible when the barrel spring is heavily armed and that the free oscillation frequency (natural frequency) of the oscillator mechanical is greater than the reference frequency FR, as a result of a desired isochronism defect in the selected mechanical oscillator.
  • the mechanical oscillator is selected for what is normally a defect in a mechanical movement and the electronic regulation is functional only when the natural frequency of this oscillator is greater than a nominal frequency.
  • the patent application EP 1521 142 also deals with the electronic regulation of a balance spring.
  • the regulation system proposed in this document is similar in its general operation to that of the patent CH 597 636 .
  • a piezoelectric system is associated with the escapement to detect a tilting of its anchor in each period of oscillation. Thanks to such a detection system, it is planned, on the one hand, to compare the oscillation period with a reference period, defined by a quartz oscillator, to determine whether the running of the timepiece presents a advance or a delay and, on the other hand, to determine in an alternation on two the passage of the mechanical oscillator by its neutral point.
  • the time drift corresponds to an advance or a delay
  • the electromagnetic assembly is that given to figures 2 and 4 of the document and the electronic circuit is shown schematically in the Figure 5 of this document.
  • the coils are made conductive during constant time intervals which are centered on respective passages of the mechanical resonator (balance-spring) by its neutral position (middle position alternations); 2) during these time intervals an induced current is rectified and stored in the capacitor; and 3) during said intervals of time, the period of oscillation of the balance spring can be effectively regulated by adjusting the value of the power generated by the induced current, without further details given.
  • the induced voltage and the current induced in the coils vary in intensity with the angular speed of the balance-spring, this intensity decreasing when moving away from a neutral position where the angular speed is maximum.
  • the electromagnetic assembly disclosed makes it possible to determine the form of the induced voltage / induced current signal.
  • a general objective within the framework of the development which led to the present invention, was to produce a timepiece, comprising a mechanical movement with a mechanical oscillator and an electronic regulation system of this mechanical oscillator, for which it is not necessary to initially adjust the mechanical oscillator so that it advances, so as to have a timepiece which has the precision of an auxiliary electronic oscillator (in particular provided with a quartz resonator) when the regulation system is functional and, if not, the precision of the mechanical oscillator corresponding to its best setting.
  • an attempt is made to add electronic regulation to a mechanical movement which is moreover regulated as precisely as possible so that it remains functional, with the best possible operation, when the electronic regulation is not active.
  • the main objective of the present invention is to provide a timepiece of the type described above and which is capable of correcting a delay or an advance in the temporal drift of the mechanical oscillator while allowing efficient self-supply of the regulation system.
  • a particular objective is to provide such a timepiece which is capable, for a defined electromagnetic assembly, of supplying continuous or almost continuous electrical supply voltage which remains above a supply voltage which is sufficient to supply the regulating device, and this independently of the regulation of the average frequency of the mechanical oscillator, in particular of the electric energy generated by the regulation, and therefore also in the absence of correction of a time drift (case where it remains weak, even zero).
  • Another particular objective is to ensure the self-supply of the regulation system without inducing a parasitic temporal drift, in particular in the absence of a correction of temporal drift, or for the less so that such a possible parasitic temporal drift remains minimal and negligible.
  • Another objective is to use the regulating electric energy to supply an auxiliary function and therefore an auxiliary charge, by efficiently accumulating this electric energy without inducing instability in the operation of the regulation device or disturbance of the regulation.
  • 'voltage lobe' is meant a voltage pulse which is located entirely above or entirely below a zero value (defining a zero voltage), i.e. a voltage variation in a certain time interval with either a positive voltage whose value positive goes up then goes back down, that is to say a negative tension whose negative value goes down then goes up.
  • the transfer of a first electrical charge into a first time zone as defined is provided to increase the recharging of the supply capacity during the appearance of a first voltage lobe following this transfer, relative to the case where no transfer would not take place.
  • This increase in recharging means greater mechanical energy taken up by the mechanical oscillator by the braking system and therefore greater braking of this mechanical oscillator.
  • braking in a first half-wave before the mechanical resonator passes through its neutral position generates a negative time shift in the oscillation of the resonator, and thus the duration of the half-cycle in question is increased .
  • the instantaneous frequency of the mechanical oscillator is therefore momentarily reduced and this results in a certain delay in the operation of the mechanism which at least partially corrects the advance detected by the measuring device.
  • the transfer of a second electric charge into a second time zone as defined is provided to increase the recharging of the supply capacity when a second voltage lobe appears following this sampling, relative to the case where no withdrawal would take place. As will be understood later, this generates a positive time phase shift in the oscillation of the resonator, and thus the duration of the alternation in question is reduced.
  • the instantaneous frequency of the mechanical oscillator is therefore temporarily increased and this results in a certain advance in the operation of the mechanism which at least partially corrects the delay detected by the measuring device.
  • the timepiece comprises a main load connected or capable of being regularly connected to the electric converter in order to be supplied by the primary accumulation unit, the main load notably comprising the regulation device.
  • the timepiece comprises an auxiliary load connected or capable of being connected intermittently to the secondary accumulation unit so as to be able to be powered by this secondary accumulation unit.
  • the charge pump device is arranged so as to form a voltage booster which is arranged so that an auxiliary supply voltage across the terminals of the secondary storage unit is greater than a voltage of main power supply at the terminals of the primary storage unit.
  • the regulating device comprises at least one dissipative circuit for dissipating electrical energy accumulated in the primary storage unit, at least one switch associated with the dissipative circuit in order to be able to connect this dissipative circuit momentarily to the primary storage unit and a measuring circuit arranged to detect if the voltage across the secondary storage unit is greater than a first voltage limit or if the filling level of the secondary storage unit is greater than a first filling limit.
  • control logic circuit is arranged so as to be able, when the voltage across the terminals of the secondary accumulation unit is greater than the first voltage or filling limit, momentarily connect said at least one dissipative circuit to the primary accumulation unit so as to effect, when the measured temporal drift corresponds to said at least a certain advance, a first dissipative discharge from the primary accumulation unit so that a recharge thereof, following this first discharge, or generated for the most part by at least one first tension lobe among said plurality of first tension lobes, and so as to effect, when the measured temporal drift corresponds to said at least a certain delay, a second discharge of the primary accumulation unit so that a recharge thereof, following this second discharge, is generated for the most part by at least one second tension lobe among said plurality of second tension lobes.
  • the timepiece further comprises a measurement circuit arranged to detect whether the voltage across the terminals of the secondary accumulation unit is less than a second voltage limit (lower at the first voltage limit mentioned above) or if the filling level of the secondary accumulation unit is lower than a second filling limit (lower than the first filling limit mentioned above).
  • control logic circuit is arranged so as to be able, when the voltage across the terminals of the secondary accumulation unit is less than the second voltage or filling limit and when the measured time drift is between said at least a certain delay and said at least a certain advance, activating the charge pump device so that it transfers a third electrical charge from the primary accumulation unit to the secondary accumulation unit, so that a recharge of the primary accumulation unit following this transfer of a third electrical charge is generated for the most part by at least one first voltage lobe among said plurality of first voltage lobes, and a transfer of a fourth electrical charge from the primary storage unit in the secondary storage unit, so that a recharge of the primary storage unit following this transfer of a fourth electrical charge is mainly generated by at least one second tension lobe among said plurality of second tension lobes, the fourth electric charge being substantially equal to the third electric charge.
  • the Figure 1 is a partial plan view of a timepiece 2 comprising a mechanical movement 4, equipped with a mechanical resonator 6, and a regulation system 8.
  • the maintenance means 10 for the mechanical resonator are conventional. They include a barrel 12 with a mainspring, an exhaust 14 formed by an escape wheel and a pallet anchor, as well as an intermediate train 16 kinematically connecting the barrel to the escape wheel.
  • the resonator 6 comprises a balance 18 and a usual balance spring, the balance being pivotally mounted about an axis of rotation 20 between a plate and a bridge.
  • the mechanical resonator 6 and the maintenance means 10 also called excitation means
  • together form a mechanical oscillator.
  • the gear train 16 is part of a mechanism of the watch movement whose progress is clocked by the mechanical oscillator. This mechanism comprises, in addition to the train 16, other mobiles and analog indicators (not shown) kinematically connected to this train 16, the movement of these analog indicators being rhythmic by the mechanical oscillator.
  • Various mechanisms known to those skilled in the art can be provided.
  • the Figure 2 is a partial view of the Figure 1 , in horizontal section at the balance 18, showing a magnet 22 and a coil 28 forming an electromagnetic assembly 27 according to the invention.
  • the coil 28 is preferably of the wafer type (disc shape having a relatively small thickness). It is arranged on the plate of the watch movement and conventionally comprises two connection ends E1 and E2.
  • the electromagnetic assembly comprises at least one coil and a magnetized structure formed by at least one magnet generating a magnetic flux, in the direction of a general plane of the coil, which passes through the latter when the mechanical resonator oscillates with an amplitude within a useful operating range.
  • the pendulum 18 carries, preferably in an area located near its outer diameter defined by its serge, the bipolar magnet 22 which has a magnetization axis oriented axially. It will be noted that it is preferable to confine the magnetic flux of the magnet or magnets carried by the balance using a shield formed by parts of the balance, in particular by magnetic parts arranged on both sides of the magnet in the axial direction so that the coil is partially located between these two magnetic parts.
  • the balance 18 defines a half-axis 24, from its axis of rotation 20 and perpendicular to the latter which passes through the center of the magnet 22.
  • the half-axis 24 defines a neutral position (angular rest position of the balance spring corresponding to a zero angle) around which the balance spring can oscillate at a certain frequency, in particular at a free frequency F0 corresponding to the natural oscillation frequency of the mechanical oscillator , i.e. not subject to external force torques (other than that supplied periodically via the exhaust).
  • the mechanical resonator 6 shown without its hairspring which is located above the cutting plane
  • the mechanical resonator 6 is shown in its neutral position, corresponding to its state of minimum potential mechanical energy.
  • the half-axis 24 defines a reference half-axis 48 which is angularly offset by an angle ⁇ relative to the fixed half-axis 50 which perpendicularly intercepts the axis of rotation 20 and the central axis of the coil 28.
  • the center of the coil 28 has an angular offset ⁇ relative to the reference half-axis 48.
  • this angular offset equals 120 ° in absolute value.
  • the angular offset ⁇ is between 30 ° and 120 ° in absolute value.
  • Each oscillation of the mechanical resonator defines a period of oscillation and it has a first alternation followed by a second alternation each between two extreme positions defining the amplitude of oscillation of the mechanical resonator (note that we consider here the oscillating resonator and therefore the mechanical oscillator as a whole, the amplitude of oscillation of the balance-spring being defined among other things by the means of maintenance).
  • Each alternation has a passage of the mechanical resonator through its neutral position at a median instant and a certain duration between an initial instant and a final instant which are defined respectively by the two extreme positions occupied by the mechanical resonator respectively at the start and at the end of this alternation.
  • Each alternation thus consists of a first half-cycle ending at said median instant and a second half-cycle starting at this median instant.
  • the system 8 for regulating the frequency of the mechanical oscillator comprises an electronic circuit 30 and an auxiliary oscillator 32, this auxiliary oscillator comprising a clock circuit and for example a quartz resonator connected to this clock circuit. It will be noted that in a variant, the auxiliary oscillator is integrated at least partially into the electronic circuit.
  • the regulation system further comprises the electromagnetic assembly 27 described above, namely the coil 28 which is electrically connected to the electronic circuit 30 and the bipolar magnet 22 mounted on the balance.
  • the various elements of the regulation system 8, with the exception of the magnet are arranged on a support 34 with which they form an independent module. of the watch movement. Thus, this module can be assembled or associated with the mechanical movement 4 only when they are mounted in a watch case.
  • the aforementioned module is fixed to a casing circle 36 which surrounds the watch movement. It is understood that the regulation module can therefore be associated with the timepiece movement once the latter is fully assembled and adjusted, the assembly and disassembly of this module being able to intervene without having to intervene on the mechanical movement itself.
  • the mechanical resonator 40 of which only the pendulum 42 has been shown in Figures 4A-4C and 6A-6C , carries a single bipolar magnet 44 whose magnetization axis is substantially parallel to the axis of rotation 20 of the balance, that is to say with an axial orientation.
  • the considered half-axis 46 of the mechanical resonator 40 passes through the center of rotation 20 and the center of the magnet 44.
  • the angle ⁇ between the reference half-axis 48 and the half-axis 50 has a value of approximately 90 °.
  • the two half-axes 48 and 50 are fixed relative to the timepiece movement, while the half-axis 46 oscillates with the balance wheel and gives the angular position ⁇ of the magnet mounted on this balance wheel relative to the reference half-axis, the latter defining the zero angular position for the mechanical resonator.
  • the angular offset ⁇ is such that an induced voltage signal generated in the coil when the magnet passes opposite this coil is located, during a first half-wave of any oscillation, before the passage of the median half-axis by the reference half-axis (therefore in a first half-cycle) and, during a second half-cycle of any oscillation, after the passage of this median half-axis by the reference half-axis (so in a second half-cycle).
  • the Figure 3 shows four graphs.
  • the first graph gives the voltage in the coil 28 as a function of time when the resonator 40 oscillates, i.e. when the mechanical oscillator is activated.
  • the second graph indicates the instant t P1 at which a braking pulse is applied to the resonator 40 to effect a correction in the operation of the mechanism clocked by the mechanical oscillator.
  • the instant of the application of a pulse of rectangular shape (that is to say of a binary signal) is considered here as the time position of the middle of this pulse.
  • each oscillation has two successive alternations which are defined in the present text as the two half-periods during which the pendulum undergoes respectively an oscillation movement in one direction and then an oscillation movement in the other direction.
  • an alternation corresponds to a rocking of the pendulum in one direction or the other direction between its two extreme positions defining the amplitude of oscillation.
  • braking pulse an application, substantially during a limited time interval, of a certain torque of force to the mechanical resonator to brake it, that is to say of a torque of force which opposes the oscillation movement of this mechanical resonator.
  • the braking torque can be of various kinds, in particular magnetic, electrostatic or mechanical.
  • the braking torque is obtained by the magnet-coil coupling and it therefore corresponds to a magnetic braking torque exerted on the magnet 44 via the coil 28 which is controlled by a regulating device.
  • Such braking pulses can for example be generated by temporarily short-circuiting the coil.
  • the oscillation period T0 corresponds to a 'free' oscillation (that is to say without the application of regulation pulses) of the mechanical oscillator.
  • Each of the two half-waves of an oscillation period has a duration T0 / 2 without disturbance or external constraint (in particular by a regulation pulse).
  • the braking pulse is generated between the start of a half-wave and the passage of the resonator through its neutral position, that is to say in a first half-wave of this half-wave.
  • the angular speed in absolute value decreases at the time of the braking pulse P1.
  • This induces a negative time shift Tci in the oscillation of the resonator, as shown by the two graphs of the angular velocity and the angular position at the Figure 3 , or a delay relative to the undisturbed theoretical signal (shown in broken lines).
  • the duration of the alternation A1 is increased by a time interval T C1 .
  • the oscillation period T1, including the alternation A1 is therefore extended relative to the value T0. This generates a punctual decrease in the frequency of the mechanical oscillator and a momentary slowdown in the walking of the associated mechanism.
  • the braking pulse is therefore generated, in an alternation, between the median instant at which the resonator passes through its neutral position and the final instant at which this alternation ends.
  • the angular speed in absolute value decreases at the time of the braking pulse P2.
  • the braking pulse here induces a positive time phase shift T C2 in the oscillation period of the resonator, as shown by the two graphs of the angular velocity and the angular position at the Figure 5 , or an advance relative to the undisturbed theoretical signal (shown in dashed lines).
  • the duration of the alternation A2 is reduced by the time interval T C2 .
  • the oscillation period T2 comprising the alternation A2 is therefore shorter than the value T0. This consequently generates a “punctual” increase in the instantaneous frequency of the mechanical oscillator and a momentary acceleration of the operation of the associated mechanism.
  • the electromagnetic assembly 27 also partly forms the measuring device.
  • This measurement device further comprises a bidirectional counter CB and a comparator 64 (of the Schmidt trigger type).
  • the comparator receives at one input the induced voltage signal Ui (t) and at the other input a threshold voltage signal U th whose value is positive in the example given.
  • the comparator outputs a signal 'Comp' having two pulses S1 and S2 ( Fig. 10C ) per period of oscillation.
  • This signal 'Comp' is supplied on the one hand to a logic control circuit 62 and on the other hand to a flip-flop 66 which inhibits one pulse out of two so as to supply a single pulse per period of oscillation to a first input ' UP 'of the bidirectional counter CB.
  • the bidirectional counter includes a second 'Down' input which receives a clock signal S hor at a nominal frequency / set frequency for the oscillation frequency, this clock signal being derived from the auxiliary oscillator which supplies a signal digital reference defining a reference frequency.
  • the auxiliary oscillator comprises a clock circuit CLK used to energize the quartz resonator 58 and to provide in return the reference signal which is composed of a succession of pulses corresponding respectively to the periods of oscillation of the quartz resonator.
  • the clock circuit supplies its reference signal to a divider DIV1 & DIV2 which divides the number of pulses in this reference signal by the ratio between the nominal period of the mechanical oscillator and the nominal reference period of the oscillator auxiliary.
  • the divider thus supplies a clock signal S hor defining a set frequency (for example 4 Hz) and having one pulse per set period (for example 250 ms) to the counter CB.
  • S hor defining a set frequency (for example 4 Hz) and having one pulse per set period (for example 250 ms) to the counter CB.
  • the state of the counter is supplied to a logic control circuit 62 which is arranged to determine whether this state corresponds to at least a certain advance (CB> N1, N1 being a natural number) or to at least a certain delay (CB ⁇ -N2, N2 being a natural number).
  • the electrical converter 56 comprises an electrical energy accumulation circuit D1 & C AL which is arranged, in the variant described, to be able to recharge the supply capacity C AL only with a positive voltage at the input of the electrical converter, c ' that is to say only with a positive induced voltage supplied by the coil 28.
  • This supply capacity here alone forms a primary accumulation unit.
  • a main load is connected or capable of being regularly connected to the electric converter 56 and supplied by the supply capacitor which supplies the main supply voltage U AL (t), shown in the Figure 10A , between the two supply terminals V DD and V SS , this main load notably comprising the regulation circuit 54.
  • the timepiece 2 is remarkable in that the regulating circuit 54 of the regulating device comprises a charge pump 60 arranged to be able to transfer on command a certain electric charge from the supply capacity C AL into a unit of secondary accumulation formed here of a capacity C Aux .
  • This capacitor C Aux is provided as a secondary power source for an auxiliary load, for example a light diode, an RFID circuit, a temperature sensor, or another electronic unit which can be incorporated in the timepiece according to the invention.
  • the capacitor C Aux has at its two terminals respectively a lower potential V L and an upper potential V H defining an auxiliary supply voltage.
  • An alternative embodiment of such a charge pump is shown in the Figure 8 .
  • the charge pump 60 comprises an input switch Sw1 and an output switch Sw2 with a transfer capacity C Tr .
  • the switches Sw1 and Sw2 are controlled by the logic control circuit 62 according to a regulation method ( Figure 9 ) implemented in the first embodiment of the timepiece according to the invention and which will be described later.
  • the induced voltage signal Ui (t) corresponds to that generated by the electromagnetic assembly 27 associated with the mechanical resonator 6 when the latter oscillates within a useful operating range.
  • the braking device 27 & 56 is arranged so that, in each period of oscillation of the mechanical resonator 6 at least when the amplitude of oscillation of this mechanical resonator is within the useful operating range, the induced voltage signal Ui (t) has a first voltage lobe LU 1 involved in a first half-wave DA1 1 , DA1 P and a second voltage lobe LU 2 involved in a second half-wave DA2 1 , DA2 P.
  • the induced voltage signal thus alternately presents a succession of first voltage lobes LU 1 and second voltage lobes LU 2 .
  • Each first voltage lobe LU 1 has a first maximum value UM 1 at a first instant ti of the corresponding first half-wave and each second lobe of voltage LU 2 has a second maximum value UM 2 at a second instant t 2 of the corresponding second half-wave.
  • the first and second tension lobes define, on the one hand, first time zones ZT1 each located before the first instant ti of a first different tension lobe and after the second instant t 2 of the second tension lobe preceding this first lobe voltage and, on the other hand, second time zones ZT2 each located before the second time t 2 of a second different voltage lobe and after the first time ti of the first voltage lobe preceding this second voltage lobe.
  • the first voltage lobes LU 1 generate pulses S1 in the signal 'Comp' at the output of comparator 64, while the second voltage lobes LU 2 generate pulses S2 in this signal 'Comp' ( Fig. 10C ).
  • the lobes considered for the generation of signals S1 and S2 are the positive voltage lobes because the threshold voltage U th has been chosen positive.
  • the braking device is arranged so that, at least when no time drift is detected by the measuring device and at least when said main load, connected to the terminals Vss and V DD , consumes continuously or so almost continuous electrical energy accumulated in the supply capacity C AL (during a normal operating phase of the timepiece, as shown in the Figure 10A where the supply voltage U AL (t) has a certain negative slope in the absence of correction of the operation of the mechanical oscillator), the first voltage lobes LU 1 and the second voltage lobes LU 2 alternately generate pulses induced current P1 and P2 ( Fig. 10B ) which recharge the supply capacity.
  • the electrical converter 56 comprises a diode D1 arranged to so that only the positive voltage lobes are capable of recharging the capacitance C AL .
  • the electrical converter may have a diode arranged so as to define a single-wave rectifier so that it is then the negative voltage lobes which are capable of recharging the capacity C AL . In this case, it is thus the negative voltage lobes which generate the pulses of induced current and which are considered to determine the time zones for sampling a certain electrical charge as a function of the measured time drift, as set out below.
  • the converter can comprise a full-wave converter.
  • the charge pump 60 is arranged so as to be able to take a certain electric charge on command from the supply capacity C AL and transfer it to the auxiliary capacity C Aux , so as to momentarily decrease the voltage level U AL (t) of the supply capacity C AL .
  • the control logic circuit 62 receives as input a measurement signal supplied by the measurement device, namely from the bidirectional counter CB.
  • This logic control circuit is arranged to activate the charge pump 60 so that it performs, when the measured time drift corresponds to at least a certain advance (CB> N1), a sampling of a first electrical charge from the supply capacity C AL in a first time zone ZT1 and a transfer of this first charge into the auxiliary capacity which forms a secondary supply source. This results in a drop in the voltage U AL (t).
  • the logic control circuit is arranged to activate the charge pump 60 so that it performs, when the measured time drift corresponds to at least a certain delay (CB ⁇ -N2), a sampling of a second charge electric power supply C AL in a second time zone ZT2, to lower the voltage U AL (t), and a transfer of this second electric charge in the auxiliary capacity.
  • the regulation method implemented in the first embodiment of the invention is given in the form of a flowchart to the Figure 9 .
  • the counter CB is reset.
  • the logic circuit 62 Upon detection of the aforementioned second rising edge in the signal 'Comp', the logic circuit 62 transfers the state / value of the time counter CT in a register and compares this value with a differentiation value Tdiff which is selected to be less than a first time interval between a first pulse S1 and a second pulse S2 and greater than a second time interval between a second pulse S2 and a first pulse S1. As soon as the state of the time counter CT is transferred to the register, this time counter is reset and a timer associated with the logic circuit 62 is started to measure a certain delay whose value T C1 or T D1 is selected according to the result of comparing the value of the counter CT with the value Tdiff.
  • the regulating device therefore comprises a detection device, arranged to be able to detect the successive appearance alternately of first voltage lobes and second voltage lobes, and a time counter CT associated with the control logic circuit 62 to allow the latter to distinguish a first interval of time, separating a first tension lobe from a second tension lobe that follows, and a second time interval separating a second tension lobe from a first tension lobe that follows, the first and second time intervals being different due to the arrangement of the electromagnetic assembly.
  • the curve of the induced voltage signal Ui (t) shown in the Figure 10A follows from the electromagnetic assembly 27 described above.
  • the coil 28 has at its center an angular offset ⁇ relative to the reference half-axis 48 ( Fig.
  • the angular offset ⁇ is between 30 ° and 120 ° in absolute value.
  • the timer associated with the logic circuit waits for either a delay Tci when the value of the time counter CT is greater than the differentiation value Tdiff, or a delay T D1 when the value of the time counter CT is less than the differentiation value Tdiff.
  • the comparison makes it possible to know that the detected pulse is a S2 pulse generated by a second voltage lobe LU 2 and the delay T C1 is chosen so that it ends in a first time zone ZT1 following this second lobe Of voltage.
  • the comparison makes it possible to know that the detected pulse is a pulse S1 generated by a first lobe of voltage LU 1 and the delay T D1 is chosen so that it ends in a second time zone ZT2 following this first lobe Of voltage.
  • the regulation device comprises a timer associated with the logic control circuit to allow the latter to activate, if necessary, the charge pump device after a first delay determined since the detection of a second lobe of voltage, this first delay being selected so that it ends in a first time zone, or after a second delay determined since the detection of a first voltage lobe, this second delay being selected so that it ends in a second time zone.
  • the instantaneous frequency of the mechanical oscillator is momentarily reduced and this results in a certain delay in the operation of the mechanism which it cadences, which at least partially corrects the advance detected by the measuring device.
  • the instantaneous frequency of the mechanical oscillator is temporarily increased and this results in a certain advance in the operation of the mechanism which it cadences, which at least partially corrects the delay detected by the measuring device.
  • the Figure 11 is similar to the Figure 2 , but for an electromagnetic assembly 29 forming the electromagnetic transducer of a timepiece according to the second embodiment. It shows the mechanical resonator 6a in horizontal section at the level of its balance 18a, this mechanical resonator being incorporated in a watch movement, similar to that of the Figure 1 , instead of the resonator 6 shown in this Figure 1 .
  • the references already described will not be described again here.
  • a set electromagnetic which comprises at least the coil 28 and a magnetized structure formed of at least one magnet and having at least one pair of magnetic poles, of opposite polarities, each generating a magnetic flux towards a general plane of the coil, this pair of magnetic poles being arranged so that, when the mechanical resonator 6a oscillates with an amplitude comprised within a useful operating range, their respective magnetic fluxes cross the coil with a time shift but with at least in part a simultaneity of the incoming magnetic flux and outgoing magnetic flux, so as to form a central tension lobe having a peak value which is maximum.
  • the balance 18a carries a pair of bipolar magnets 22 and 23 having magnetization axes oriented axially with opposite polarities.
  • This pair of magnets and the coil 28 form the electromagnetic assembly 29 which is part of the regulation system.
  • the magnets are arranged close to each other, at a distance allowing an addition of their respective interactions with the coil 28 with regard to the voltage induced in it (more precisely for the generation of central voltage lobes) .
  • a single bipolar magnet can be arranged with its magnetization axis parallel to the plane of the pendulum and oriented tangentially to a geometric circle centered on the axis of rotation 20.
  • the voltage signal induced in the coil can have substantially the same profile as for the pair of magnets described above, but with a smaller amplitude since only part of the magnetic flux of the magnet crosses the coil.
  • Elements for conduction of the magnetic flux can be associated with the single magnet to direct its magnetic flux substantially towards the general plane of the coil.
  • the pendulum 18a defines a half-axis 26, from its axis of rotation 20 and perpendicular to the latter, which passes through the middle of the pair of magnets.
  • the semi-axis 26 defines a neutral position around which the balance spring can oscillate.
  • the mechanical resonator 6a is shown in its neutral position at the Figure 11 and its half-axis 26 defines a reference half-axis 48 which is angularly offset by an angle ⁇ relative to the fixed half-axis 50 which intercepts the axis of rotation 20 and the central axis of the coil 28.
  • the angular offset ⁇ is between 30 ° and 120 ° in absolute value.
  • the induced voltage signal Ui (t) generated by the electromechanical assembly 29 has, in each period of oscillation of the mechanical oscillator, a first central voltage lobe LUC 1 (also called first voltage lobe) having a voltage maximum negative UM 1 and a second voltage lobe LUC 2 (also called second voltage lobe) having a maximum positive voltage UM 2 .
  • a first central voltage lobe LUC 1 also called first voltage lobe
  • LUC 2 also called second voltage lobe
  • AN 1 , N being a natural number
  • AN 2 , N being a natural number
  • the polarities of the tension lobes are opposite, that is to say that the first tension lobes have a positive tension while the second tension lobes have a negative tension.
  • a simple inversion of the terminals E1 and E2 of the coil 28 or, in an equivalent manner, of the direction of winding of the wire forming this coil generates a change of polarity for the induced voltage so that such an inversion makes it possible to switch from one variant to another.
  • the electromagnetic assembly 29 also partly forms the measuring device, as in the first embodiment.
  • the part of the electrical diagram of the Figure 12 relating to the device for measuring a possible time drift of the mechanical oscillator will not be described again in detail.
  • the comparator 64 delivers a signal 'Comp', shown at Figure 14 , which presents a pulse S2 per period of oscillation.
  • this signal can be directly supplied to the bidirectional counter CB.
  • the electric converter 57 comprises a first circuit D1 & C1 of accumulation of electric energy which is arranged to be able to recharge a first supply capacity C1 of the primary accumulation unit only with a positive voltage at the input of the electric converter and a second electrical energy accumulation circuit D2 & C2 which is arranged to be able to recharge a second supply capacity C2 of the primary accumulation unit only with a negative voltage at the input of the electric converter.
  • the quantity of electrical energy selectively supplied by the braking device to the first supply capacity and to the second supply capacity is greater the higher the voltage level in absolute value of this first supply capacity, respectively of this second supply capacity is low.
  • a main load is connected or capable of being regularly connected at the output of the electric converter 57 and supplied by the primary supply unit which supplies the supply voltages V DD and V SS .
  • This main load notably comprises the regulation circuit 55.
  • the first and second supply capacities have substantially the same capacity value.
  • the regulating circuit 55 of the regulating device 53 comprises a charge pump device 61 formed by two charge pumps PC1 and PC2, advantageously identical, which are arranged to transfer on command electrical charges respectively from the first supply capacity C1 and of the second supply capacity C2 in the auxiliary capacity C Aux .
  • this auxiliary capacity forms a secondary accumulation unit which supplies an auxiliary supply voltage between its two terminals V L and V H.
  • the two charge pumps PC1 and PC2 are controlled by the logic control circuit 62a.
  • An alternative embodiment of a load that can form each of the two charge pumps has already been described with reference to the Figure 8 .
  • the two charge pumps are replaced by a single charge pump which then includes switches controlled by the control circuit 62a so as to be able to transfer electric charges into the auxiliary capacity by selectively removing these electric charges in the first capacitor C1 and in the second capacitor C2 as a function of the desired correction, as will be described later in the description of the regulation method implemented in the control circuit 62a in the context of the second embodiment.
  • the regulation circuit 55 further comprises two dissipative circuits each formed by a resistor and a switch Sw3, respectively Sw4. These two dissipative circuits include a certain resistance and are respectively arranged in parallel with the two capacitors C1 and C2, between these and the two charge pumps PC1 and PC2.
  • the positive voltage Vci at the upper terminal (defining V DD ) of the supply capacity C1 and the negative voltage V C2 at the lower terminal (defining V SS ) of the supply capacity C2 are also represented (the zero voltage being that of the end E1 of the coil connected between the two capacitors arranged in series).
  • the available supply voltage V AL is therefore given by V C1 - V C2 , ie the addition of the respective voltages of the first and second capacitors C1 and C2.
  • a main load is arranged at the output of the electric converter. It includes in particular the regulation circuit 55 which is supplied by the first and second supply capacitors arranged in series and delivering the supply voltage V AL .
  • the voltage lobes LUC 1 and LUC 2 which respectively have the maximum negative induced voltage UM 1 (in absolute value) and the maximum positive induced voltage UM 2 are used to recharge the capacitors C2 and C1 respectively.
  • the voltage lobes LUC 1 and LUC 2 which respectively have the maximum negative induced voltage UM 1 (in absolute value) and the maximum positive induced voltage UM 2 are used to recharge the capacitors C2 and C1 respectively.
  • an induced current pulse I1 2 recharges the capacity C1 in a second half-wave and an induced current pulse I1 1 recharges the capacity C2 in a first half-cycle.
  • These induced current pulses correspond to electrical powers generated by the electromechanical transducer in the electromagnetic assembly 29 and absorbed by the electrical converter 57. These electrical powers thus correspond to mechanical powers supplied by the mechanical oscillator. They are converted by the electric converter and consumed by the main load associated with it.
  • the induced current pulses IN 2 each intervening in a second half-wave, cause a reduction in the duration of the half-waves during which they occur, and therefore an increase in the instantaneous frequency of the mechanical oscillator
  • the pulses of induced current IN 1 each involved in a first half-wave, generate an increase in the duration of the half-waves during which they occur, and therefore a decrease in the instantaneous frequency of the mechanical oscillator.
  • the positive time phase shift which occurs globally in the two second half-wave is compensated by the negative time phase which occurs globally in the first two half-wave of each period of oscillation.
  • the positive time shift which occurs in the first half-wave A0 1 is compensated by the negative time shift which occurs in the second half-wave A0 2 of the corresponding oscillation period. It is therefore understood that, although the duration of the first half-wave is different from that of the second half-wave, their sum is equal to a period of natural oscillation T0 of the mechanical oscillator not subjected to a regulating action.
  • the regulation method implemented in the logic control circuit 62a of the charge pump device 61 is given by the flowchart of the Figure 13 .
  • a certain delay is expected, that is to say a certain time interval, for example a period T0 or several periods T0, and the control circuit 62a determines whether at least a certain advance (CB> N1) has occurred in the running of the timepiece.
  • the regulation circuit is arranged so that the control circuit can detect whether the voltage V AC across the terminals of the auxiliary capacity is greater than a voltage threshold V th , which corresponds at a certain voltage for which the auxiliary capacity is filled to a level such that the charge pumps do not can no longer transfer significant electrical charges from one or other of the capacities C1 and C2 into the auxiliary capacity.
  • the switch Sw2 is closed for a short time interval ⁇ t to generate a certain discharge of the capacitor C2 through the corresponding dissipative circuit, indicated by the step D C2 (which is falling in absolute value because the voltage of the capacitor C2 decreases) in the voltage V C2 at the Figure 14 .
  • the control circuit activates the charge pump PC2 so that it performs a transfer of a first electric charge from the second supply capacity C2 into the capacity auxiliary C Aux .
  • This regulation action also results in a reduction in the voltage V C2 indicated by the downward movement D C2 .
  • This reduction in the voltage V C2 generates, at least in an oscillation period following such a transfer, an increase in the recharging of the second capacitor C2 relative to the hypothetical case where such a transfer of the first electric charge would not take place .
  • the reduction in the voltage V C2 operated by the control circuit in the alternation A1 1 generates at the appearance of the next voltage lobe LUC 1 in the following alternation A1 2 an induced current pulse I2 1 whose amplitude (value of the voltage peak) is greater than that of the previous I1 1 . Since this induced current pulse I2 1 occurs in a first half-wave, like all the induced current pulses which recharge the capacitor C2, a reduction in the voltage of this capacitor C2 always generates at least one regulation pulse which generates a negative phase shift in the oscillation of the mechanical resonator and therefore which momentarily decreases the frequency of oscillation to at least partially correct the advance detected in the running of the timepiece (positive time drift).
  • the pulses I1 2 and I2 2 have an amplitude, in absolute value, substantially equal to that of the pulse I1 1 , these pulses each corresponding to an induced current pulse. generated by the consumption of the main load only. These are therefore standard / nominal charging pulses.
  • the control circuit determines whether at least a certain delay (CB ⁇ -N2) has occurred in the running of this timepiece. If this is the case, the regulation circuit detects whether the voltage V AC at the terminals of the auxiliary capacity is greater than the voltage threshold V th . In this case, to correct the detected delay, the switch Sw1 is closed for a short time interval ⁇ t to generate a certain discharge of the capacitor C1 through the corresponding dissipative circuit, indicated by the step D C1 (which is falling in absolute value because the voltage of the capacitor C2 decreases) in the voltage V C2 at the Figure 15 .
  • the control circuit activates the charge pump PC1 so that it performs a transfer of a second electrical charge from the first supply capacity C1 into the auxiliary capacity C Aux .
  • This regulation action also results in a reduction in the voltage Vci indicated by the step D C1 .
  • This reduction in the voltage V C1 generates, at least in an oscillation period following such a transfer, an increase in the recharging of the second capacity C1 relative to the hypothetical case where such a transfer of the second electric charge would not take place .
  • the reduction in the voltage V C1 operated by the control circuit in the alternation A1 1 generates, when the next voltage lobe LUC 2 appears in this same alternation, an induced current pulse I3 2 whose amplitude is greater than that of the previous I1 2 . Since this induced current pulse I3 2 intervenes in a second half-wave, like all the induced current pulses which recharge the capacitor C1, a reduction in the voltage of this capacitor C1 always generates at least one regulation pulse which generates a positive phase shift in the oscillation of the mechanical resonator and therefore momentarily increases the oscillation frequency to at least partially correct the delay detected in the running of the timepiece (negative time drift).
  • the next pulse I3 1 again has substantially a standard / nominal amplitude.
  • the second embodiment has an important advantage in that the selective removal of an electric charge in the capacity C1 or C2 according to a time drift detected in the running of the timepiece can occur at any time since the first voltage lobes, which occur only in first half-waves, have the same first polarity while the second voltage lobes, which occur only in second half-waves, have the same second polarity opposite to the first polarity and by the fact that the capacities C1 and C2 can only be recharged respectively by induced voltages of opposite polarities.
  • the logic control circuit knows which polarity, first or second, is capable of recharging which capacity, C1 or C2, to selectively sample a certain electrical charge from one or the other of these two capacities as a function of the nature of a time drift detected, advance or delay, by a transfer of this certain electrical charge into the auxiliary capacity or by its dissipation through one of the two dissipative circuits provided if the auxiliary capacity is full.
  • a timer is provided which determines a certain delay following the appearance of a pulse S2 in the signal 'Comp' to carry out the selective removal of an electrical charge.
  • the number of cycles of transfer of lower electrical charges by a charge pump is increased when the voltage V AC at the terminals of the auxiliary capacity increases, so as to take a charge substantially constant electrical capacity of C1 and C2 by sequence of the regulation precedent.
  • the increase in the voltage V AC generally generates a reduction in the first or second electrical charge taken and therefore less correction by regulation sequence.
  • the regulation system is configured to be able to easily correct drifts in a standard drift range for the watch movement in question, a decrease in the value of the first and second electrical charges per regulation sequence, for a drift given time, will generate an increase in regulation sequences per time unit.
  • the remarks above relate to conventional capacities and also to super-capacities whose characteristic curve voltage - electric charge is substantially linear.
  • the electric charges transferred by the charge pump (s) are substantially constant regardless of the charge level of this secondary accumulation unit.
  • the regulation method described above can vary as regards the decision to transfer a certain electrical charge in the secondary storage unit or to consume this electrical charge in the dissipative circuit provided.
  • the regulating device will generally include means for determining the filling level of the secondary accumulation unit.
  • the electromagnetic assembly includes two pairs 82 and 84 of bipolar magnets 90 and 91, respectively 92 and 93, which are mounted on a balance 18b of the mechanical resonator 6b and which have respective magnetization axes which are parallel to the axis of rotation 20 of the balance, and a coil 28 which is integral with the support of the mechanical resonator.
  • Each of the two pairs 82, 84 of magnets, with its two bipolar magnets having respective opposite polarities, is similar to the pair of magnets 22, 23 of the electromagnetic assembly of the second embodiment and their interaction with the coil 28 is identical.
  • Each pair of bipolar magnets defines a median half-axis 24a, 24b starting from the axis of rotation 20 of the pendulum and passing through the middle of the pair of bipolar magnets considered.
  • Each median half-axis defines a respective reference half-axis 48a, 48b when the resonator 6a is at rest and thus in its neutral position, as shown in FIG. Figure 16 .
  • the coil 28 has in its center a first angular offset ⁇ relative to the first reference half-axis 48a and a second angular offset - ⁇ (same absolute value as the first angular offset, but opposite mathematical sign) relative to the second half-axis of reference 48a, so as to generate in each alternation of the mechanical resonator, in a useful operating range, two central voltage lobes LUC 1 and LUC 2 having opposite polarities (negative and positive) and substantially the same amplitude UM 1 , UM 2 in absolute value and forming respectively a first tension lobe and a second tension lobe ( Fig. 20A ).
  • the first and second voltage lobes LUC 1 and LUC 2 occur respectively in first half-vibrations and second half-vibrations.
  • the first and second angular phase shifts have an absolute value of 90 ° (variant shown in the Figure 16 ).
  • the two pairs of magnets 82 and 84 are arranged so that the polarities of the magnets of a pair are symmetrical to the polarities of the magnets of the other pair relative to a plane passing through the center of the coil and comprising the axis of rotation 20 (this plane comprising the half-axis 50 passing through the center of the coil and perpendicularly intercepting the axis of rotation 20).
  • the variant of the third embodiment described with reference to the figures is an improved variant.
  • a single pair of magnets having an angular offset of between 30 ° and 120 ° (in absolute value).
  • This other variant comprises a regulation circuit without the flip-flop 66.
  • the regulation method remains similar and the person skilled in the art will know how to adapt it to this particular variant.
  • the induced voltage signal Ui (t), shown in the Figure 20A alternately has voltage lobes LUC 1 having a negative voltage and voltage lobes LUC 2 having a positive voltage.
  • the electrical converter 76 comprises a full-wave rectifier 78 formed by a bridge of four diodes well known to those skilled in the art.
  • the first tension lobes are rectified, which is shown in the Figure 20A by the lobes in broken lines.
  • the first and second voltage lobes LUC 1 and LUC 2 alternately recharge the supply capacity C AL which in particular supplies the regulation circuit 74.
  • each half wave has a first voltage lobe in a first half wave and a second voltage lobe in a second half wave.
  • a flip-flop 66 is provided upstream of the bidirectional counter CB so as to inhibit one pulse out of two in the signal supplied to this counter.
  • the variant shown in Figures 20A and 20C provides a positive threshold voltage U th while the first voltage lobes are negative.
  • the threshold voltage can be chosen positive or negative.
  • the regulation device comprises a detection device which is arranged to be able to detect the successive appearance of first tension lobes or second tension lobes. Note that it is also possible to alternately detect these first and second voltage lobes using two comparators having respectively a positive voltage threshold and a negative voltage threshold. Those skilled in the art will be able to adapt the regulation method implemented in the logic control circuit 62b accordingly, in particular for determining the delays T C2 and T D2 .
  • the charge pump device is formed by a charge pump 60b which defines a voltage booster and which is arranged between the supply capacity C AL (primary storage unit) and an electric capacitor (secondary storage unit ) so that electrical charges can be transferred from the primary storage unit to the secondary storage unit.
  • the charge pump 60b quadruples the main supply voltage U AL delivered by the primary supply so that the voltage of the auxiliary supply V AC of the electric capacitor can be higher, in particular twice the voltage U AL .
  • the construction and operation of such a voltage booster are well known to those skilled in the art.
  • the electrical diagram of a variant is given in Figure 18 . It includes four transfer capacities C Tr , two input switches Sw1, six switches 82, three switches 84 and two output switches Sw2.
  • the switches Sw1 and 82 are closed while the switches Sw2 and 84 are open (the capacities C Tr are then arranged in parallel).
  • the switches Sw1 and 82 are open while the switches Sw2 and 84 are closed (the capacitors C Tr are then arranged in series).
  • the primary storage unit of this third embodiment is identical to that of the first embodiment with a single capacity C AL which receives all of the induced currents supplied by the electromagnetic transducer, the fact that the electromagnetic assembly 86 is arranged in a similar manner to that of the second embodiment, with the first voltage lobes and the second voltage lobes having opposite polarities, allows the comparator 64 to directly detect either the first tension lobes, i.e. the second tension lobes (case shown in the Fig. 20A ).
  • the Figure 19 is a flowchart of the regulation method implemented in the logic control circuit 62b of the third embodiment. We will no longer describe in detail all the elements, all the electrical signals and the consequences of the various events which occur, since they follow from the explanations already given previously and the results are easily understood in the light of these explanations.
  • the regulation circuit 74 When the regulation device is put into operation, the regulation circuit 74 is initialized to 'POR', in particular the bidirectional counter CB. The logic circuit then waits for the appearance of a pulse S2, namely in particular its rising edge in the signal 'Comp'. The detection of this rising edge triggers the timer which measures a first time interval T C2 the duration of which is chosen so that its end occurs in a first time zone ZT1 situated temporally between a second voltage lobe LUC 2 and a first voltage lobe LUC 1 , in particular between instant t 2 and instant ti where these two lobes respectively present their maximum values UM 2 and UM 1 ( Fig. 20A ).
  • the logic circuit detects whether the value of the counter bidirectional CB is greater than a natural number N1 to determine if there is an advance in the progress of the mechanism considered. If this is the case, the control circuit waits for the end of the delay T C2 and, in an equivalent manner to the regulation method of the second embodiment, determines whether the electric capacitor C Acc is full (that is to say detects if its level of electrical charge accumulation is above a certain given limit). If the electric capacitor C Acc is full, it discharges the supply capacity C AL of a first electrical charge by closing the switch Sw5 of the dissipative circuit comprising a certain resistance and provided in parallel with the charge pump for a certain interval time ⁇ t ( Fig. 17 ).
  • a sampling of a first electric charge generates a downward movement PC 1 in the supply voltage U AL (t) and the following induced current pulse P1 PC , which occurs in a first half-wave, then has a higher amplitude to that of a P1 pulse in the absence of prior removal of an electrical charge (see right-hand side of Fig. 20A to Fig. 20C ), so that the mechanical oscillator then undergoes greater braking in the first half-cycle considered.
  • the logic circuit waits for a second delay T D2 , directly following the first delay T C2 , to come to an end ( Fig. 20C ). To do this, at the end of a first time interval T C2 , the timer begins to measure a second time interval T D2 .
  • This second delay T D2 is chosen so that its end occurs in a second time zone ZT2 situated between a first voltage lobe LUC 1 and a second voltage lobe LUC 2 .
  • the logic circuit detects whether the value of the bidirectional counter CB is less than a number - N2, N2 being a natural number, to determine whether there is a delay in the operation of the mechanism considered. If this is the case, the control circuit waits for the end of the delay T C2 + T D2 and determines whether the electric capacitor C Acc is full. Depending on whether the capacitor is full or not, the control circuit then operates in a similar manner to that described above in the case of the detection of an advance.
  • a delay or an advance observed in the operation of the mechanism considered is corrected by the temporally selective removal of an electric charge in the capacity C AL forming the unit primary accumulation of the regulating device.
  • the regulation method of the third embodiment further includes an improvement in connection with the fact that the secondary accumulation unit continuously or intermittently supplies an auxiliary load by supplying an auxiliary supply voltage V AC to this auxiliary load .
  • the auxiliary load is preferably associated with a useful auxiliary function of the timepiece, so that it is desirable to be able to supply this auxiliary load.
  • the control circuit 62b determines using appropriate means whether the capacitor is empty or not.
  • the control circuit performs an operation of recharging the electric capacitor by taking a first charge in a first time zone ZT1 and a second electric charge, substantially of the same value as the first electric charge, in a second time zone ZT2. These two events generate phase shifts in the oscillation of the mechanical resonator which compensate each other, so that a double electrical charge is transferred from the primary storage unit to the secondary storage unit without causing any time drift in the timepiece market.
  • the control logic circuit waits for the detection of the rising edge of the next pulse S2 to carry out the next regulation sequence.
  • the transfer of a first electric charge, respectively of a second electric charge can be carried out by a plurality of transfer cycles of lower electric charges by the charge pump in the same regulation sequence, in particular in a same time zone ZT1, respectively ZT2.
  • the control logic circuit is arranged so as to be able to carry out, when the measured time drift corresponds to at least a certain advance, a plurality of samples of electrical charges respectively in a plurality of first time zones during a same regulatory sequence. Similarly, when the measured temporal drift corresponds to at least a certain delay, a plurality of samples of electrical charges respectively from a plurality of second time zones are carried out.
  • the resonator 106 is formed by a balance 18c which comprises two plates of ferromagnetic material 112 and 114.
  • the upper plate 112 carries on the side of its lower face the two bipolar magnets 22 and 23. This upper plate also serves to close the lines of the upper fields of the two magnets.
  • the lower plate 114 serves to close the field lines of the two magnets below.
  • the two balance plates thus axially form a magnetic shield for the two magnets so that their respective magnetic fields remain substantially confined in a volume located between the respective external surfaces of these two plates.
  • the coil 28 is partially arranged between the two plates which are fixedly mounted on a cylindrical piece 116 of non-magnetic material, this piece being fixedly mounted on a shaft 118 of the pendulum.
  • the part 116 can be made of steel and thus conduct a magnetic field, which can be an advantage in a variant provided with a single bipolar magnet, having its magnetic axis oriented axially, on one of the two plates or on each of the two trays.
  • the cylindrical connecting piece is non-magnetic
  • at least one plate may have a ferromagnetic part which approaches the other or touches it to close the field lines of each magnet through the two plates and thus allow the coil or coils to be crossed axially by substantially the entire magnetic field produced by each magnet when the balance oscillates.
  • the plates can be made only partially by a material with high magnetic permeability which forms two parts situated respectively above and below the magnet or, where appropriate, magnets, these two parts being arranged in so as to allow the coil or, where applicable, the coils of the control system to pass between them when the balance oscillates.
  • the resonator 106 also comprises a spiral spring 110, one end of which is conventionally fixed to the shaft 118.
  • the spiral spring is preferably made of non-magnetic material, for example silicon, or paramagnetic material.
  • an escape mechanism formed by a pin arranged on a small plate secured to the balance shaft, an anchor 120 and an escape wheel 122 (shown partially).
  • magnets are also carried by the lower plate. Such magnets are preferably arranged opposite the magnets carried by the upper plate.
  • the balance generally includes a magnetic structure which is arranged so as to define a magnetic shield for the magnet or magnets carried by the balance while promoting coupling. magnetic of this magnet or these magnets with the coil or coils provided.

Claims (22)

  1. Uhr (2), umfassend:
    - einen Mechanismus,
    - einen mechanischen Resonator (6; 6a; 6b), der geeignet ist, um eine neutrale Position zu schwingen, die seinem Zustand minimaler mechanischer potentieller Energie entspricht, wobei jede Schwingung des mechanischen Resonators eine Schwingungsperiode definiert und zwei aufeinander folgende Halbschwingungen jeweils zwischen zwei Extrempositionen aufweist, die die Schwingungsamplitude des mechanischen Resonators definieren, wobei jede Halbschwingung einen Durchgang des mechanischen Resonators durch seine neutrale Position zu einem mittleren Zeitpunkt (TNi, i=1, 2, 3...) darstellt und aus einer ersten Viertelschwingung (DA1) zwischen einem Anfangszeitpunkt dieser Halbschwingung und ihrem mittleren Zeitpunkt und einer zweiten Viertelschwingung (DA2) zwischen diesem mittleren Zeitpunkt und einem Endzeitpunkt dieser Halbschwingung gebildet ist,
    - eine Erhaltungsvorrichtung (14) des mechanischen Resonators, die mit diesem mechanischen Resonator einen mechanischen Oszillator bildet, der den Takt des Gangs des Mechanismus definiert,
    - einen elektromechanischen Wandler, der dazu vorgesehen ist, die mechanische Leistung des mechanischen Oszillators in elektrische Leistung umzuwandeln, wenn der mechanische Resonator mit einer Amplitude in einem Nutzbetriebsbereich schwingt, wobei dieser elektromagnetische Wandler durch eine elektromagnetische Baueinheit (27; 29; 86) gebildet ist, die mindestens eine Spule (28), die an einem Element aus der mechanischen Baueinheit montiert ist, das aus dem mechanischen Resonator und seinem Träger gebildet ist, und mindestens einen Magneten (22; 90) umfasst, der am anderen Element dieser mechanischen Baueinheit montiert ist, wobei die elektromagnetische Baueinheit dazu vorgesehen ist, ein Signal einer induzierten Spannung Ui(t) zwischen den zwei Ausgangsklemmen (E1, E2) des elektromechanischen Wandlers zumindest dann bereitzustellen, wenn der mechanische Resonator mit einer Amplitude im Nutzbetriebsbereich schwingt,
    - einen elektrischen Wandler (56; 57; 76), der mit den zwei Ausgangsklemmen des elektromechanischen Wandlers derart verbunden ist, dass er von diesem elektromechanischen Wandler einen induzierten elektrischen Strom (IREC) empfangen kann, wobei dieser elektrische Wandler eine primäre Speichereinheit (CAL; C1, C2) umfasst, die dazu vorgesehen ist, die von dem elektromechanischen Wandler gelieferte elektrische Energie zu ackumulieren, wobei dieser elektromechanische Wandler und der elektrische Wandler gemeinsam eine Bremsvorrichtung des mechanischen Resonators bilden,
    - eine Vorrichtung (52; 53; 72) zum Einstellen der Frequenz des mechanischen Oszillators, wobei diese Einstellvorrichtung einen Hilfsoszillator (58) und eine Messvorrichtung (64, 66, CB) umfasst, die dazu vorgesehen ist, eine eventuelle zeitliche Abweichung des mechanischen Oszillators in Bezug auf den Hilfsoszillator erfassen zu können, wobei die Einstellvorrichtung dazu vorgesehen ist, festzustellen, ob die gemessene zeitliche Abweichung mindestens einer bestimmten Voreilung entspricht;
    wobei die Uhr dadurch gekennzeichnet ist, dass die Einstellvorrichtung (52; 53; 72) dazu vorgesehen ist, ebenfalls bestimmen zu können, ob die gemessene zeitliche Abweichung mindestens einer bestimmten Verzögerung entspricht; und dass die Bremsvorrichtung so beschaffen ist, dass in jeder Schwingungsperiode des mechanischen Resonators, dann, wenn dessen Schwingungsamplitude im Nutzbetriebsbereich liegt, das Signal der induzierten Spannung mindestens eine erste Spannungskeule (LU1, LUC1), die zumindest größtenteils in einer ersten Viertelschwingung (DA1) auftritt und geeignet ist, in dieser ersten Viertelschwingung einen ersten Impuls eines induzierten Stroms (P1; In1, n=1, 2, 3) zum Wiederaufladen der primären Speichereinheit nach einer bestimmten Entnahme einer elektrischen Ladung von dieser zu erzeugen, und mindestens eine zweite Spannungskeule (LU2, LUC2) aufweist, die zumindest größtenteils in einer zweiten Viertelschwingung (DA2) auftritt und geeignet ist, in dieser zweiten Viertelschwingung einen zweiten Impuls eines induzierten Stroms (P2; In2, n=1, 2, 3) zum Wiederaufladen der primären Speichereinheit nach einer bestimmten Entnahme einer elektrischen Ladung von dieser zu erzeugen, wobei das Signal der induzierten Spannung somit mehrere derartige erste Spannungskeulen und mehrere derartige zweite Spannungskeulen aufweist; und dass die Einstellvorrichtung eine Ladungspumpenvorrichtung (60; 61; 60b) umfasst, die dazu vorgesehen ist, auf Befehl eine bestimmte elektrische Ladung von der primären Speichereinheit (CAL; C1, C2) in eine sekundäre Speichereinheit (CAux; CAcc) übertragen zu können; und dass die Einstellvorrichtung ferner eine Steuerlogikschaltung (62; 62a; 62b) umfasst, die am Eingang ein durch die Messvorrichtung geliefertes Messsignal empfängt, und die dazu vorgesehen ist, die Ladungspumpenvorrichtung zu aktivieren, so dass sie, wenn die gemessene zeitliche Abweichung der mindestens einen bestimmten Voreilung entspricht, eine Übertragung einer ersten elektrischen Ladung von der primären Speichereinheit in die sekundäre Speichereinheit durchführt, so dass ein Wiederaufladen der primären Speichereinheit im Anschluss an diese Übertragung der ersten elektrischen Ladung größtenteils durch mindestens eine erste Spannungskeule aus den mehreren ersten Spannungskeulen erzeugt wird, wobei die Steuerlogikschaltung ferner dazu vorgesehen ist, die Ladungspumpenvorrichtung zu aktivieren, so dass sie, wenn die gemessene zeitliche Abweichung der mindestens einen bestimmten Verzögerung entspricht, eine Übertragung einer zweiten elektrischen Ladung von der primären Speichereinheit in die sekundäre Speichereinheit durchführt, so dass ein Wiederaufladen der primären Speichereinheit im Anschluss an diese Übertragung der zweiten elektrischen Ladung größtenteils durch mindestens eine zweite Spannungskeule aus den mehreren zweiten Spannungskeulen erzeugt wird.
  2. Uhr nach Anspruch 1, dadurch gekennzeichnet, dass sie eine Hauptladungseinrichtung (54; 55; 74) umfasst, die mit dem elektrischen Wandler verbunden ist oder regelmäßig verbindbar ist, um durch die primäre Speichereinheit versorgt zu werden, wobei die Hauptladungseinrichtung die Einstellvorrichtung umfasst.
  3. Uhr nach Anspruch 2, dadurch gekennzeichnet, dass es eine Hilfsladungseinrichtung umfasst, die mit der sekundären Speichereinheit verbunden ist oder phasenweise verbindbar ist, um durch diese sekundäre Speichereinheit versorgt werden zu können.
  4. Uhr nach Anspruch 3, dadurch gekennzeichnet, dass die Ladungspumpenvorrichtung (60b) dazu vorgesehen ist, einen Spannungsverstärker zu bilden, der derart beschaffen ist, dass eine Hilfsversorgungsspannung an den Klemmen der sekundären Speichereinheit (CAcc) höher ist als eine Hauptversorgungsspannung an den Klemmen der primären Speichereinheit.
  5. Uhr nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die primäre Speichereinheit durch eine Versorgungskapazität (CAL) gebildet ist, die durch jede erste Spannungskeule der mehreren ersten Spannungskeulen und der mehreren zweiten Spannungskeulen nach einer Entnahme einer elektrischen Ladung in dieser Versorgungskapazität wiederaufladbar ist; und dass jede erste Spannungskeule im Absolutwert einen ersten maximalen Wert (UM1) zu einem ersten Zeitpunkt (t1) der entsprechenden ersten Viertelschwingung aufweist und jede zweite Spannungskeule im Absolutwert einen zweiten maximalen Wert (UM2) zu einem zweiten Zeitpunkt (t2) der entsprechenden zweiten Viertelschwingung aufweist, wobei die ersten und zweiten Spannungskeulen einerseits erste Zeitzonen (ZT1), die jeweils vor dem ersten Zeitpunkt einer unterschiedlichen ersten Spannungskeule und nach dem zweiten Zeitpunkt der zweiten Spannungskeule liegen, die dieser ersten Spannungskeule vorangeht, und andererseits zweite Zeitzonen (ZT2) definieren, die jeweils vor dem zweiten Zeitpunkt einer unterschiedlichen zweiten Spannungskeule und nach dem ersten Zeitpunkt der ersten Spannungskeule liegen, die dieser zweiten Spannungskeule vorangeht; und dass die Übertragung einer ersten elektrischen Ladung eine Entnahme dieser ersten elektrischen Ladung von der Versorgungskapazität in einer ersten Zeitzone aus den ersten Zeitzonen (ZT1) umfasst und die Übertragung einer zweiten elektrischen Ladung eine Entnahme einer zweiten elektrischen Ladung von der Versorgungskapazität in einer zweiten Zeitzone aus den zweiten Zeitzonen (ZT2) umfasst.
  6. Uhr nach Anspruch 5, dadurch gekennzeichnet, dass die Einstellvorrichtung (52; 72) ferner einen Zeitgeber umfasst, der der Steuerlogikschaltung (62; 62b) zugeordnet ist, um letzterer zu ermöglichen, gegebenenfalls die Ladungspumpe (60; 60b) nach einer ersten bestimmten Zeitspanne (TC1; TC2) seit dem Erfassen einer ersten Spannungskeule oder einer zweiten Spannungskeule oder nach einer zweiten bestimmten Zeitspanne (TD1; TC2 + TD2) seit dem Erfassen einer ersten Spannungskeule oder einer zweiten Spannungskeule zu aktivieren.
  7. Uhr nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Ladungspumpenvorrichtung aus einer Ladungspumpe (60; 60b) gebildet ist, wobei diese Ladungspumpe und die Steuerlogikschaltung derart beschaffen sind, dass die Entnahme der ersten elektrischen Ladung und die Entnahme der zweiten elektrischen Ladung jeweils in mehreren Übertragungszyklen einer geringeren elektrischen Ladung zwischen der Versorgungskapazität (CAL) und der sekundären Speichereinheit (CAux; CAcc) durch die Ladungspumpe durchgeführt werden.
  8. Uhr nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Steuerlogikschaltung (60; 60b) dazu vorgesehen ist, wenn die gemessene zeitliche Abweichung der mindestens einen bestimmten Voreilung oder mindestens einer gegebenen Voreilung entspricht, die höher ist als diese letztere, mehrere Übertragungen erster elektrischer Ladungen jeweils im Verlauf mehrerer erster Zeitzonen durchführen zu können und, wenn die gemessene zeitliche Abweichung der mindestens einen bestimmten Verzögerung oder mindestens einer Verzögerung entspricht, die höher ist als diese letztere, mehrere Entnahmen zweiter elektrischer Ladungen jeweils im Verlauf mehrerer zweiter Zeitzonen durchführen zu können.
  9. Uhr nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die elektromagnetische Baueinheit (26) einen bipolaren Magneten (22), der an einer Unruh (18) des mechanischen Resonators (6) montiert ist und eine Magnetisierungsachse in einer geometrischen Ebene mit der Drehachse der Unruh aufweist, und eine Spule (28) umfasst, die mit dem Träger des mechanischen Resonators fest verbunden ist und so angeordnet ist, dass sie durch den Magnetfluss des bipolaren Magneten durchquert wird, wobei eine Mittelhalbachse (24), die von der Drehachse (20) der Unruh ausgeht und durch die axiale Magnetisierungsachse verläuft, eine Referenzhalbachse (48) definiert, wenn sich der Resonator in Ruhe und somit in seiner neutralen Position befindet; und dass die Spule in ihrer Mitte einen Winkelversatz (θ) in Bezug auf die Referenzhalbachse aufweist, und der bipolare Magnet an der Unruh angeordnet ist, so dass die einzige Kopplung zwischen diesem bipolaren Magneten und der Spule in jeder Schwingungsperiode des mechanischen Resonators in dem Nutzbetriebsbereich zwei Spannungskeulen (LU1, LU2) mit gleicher Polarität erzeugen kann, die eine der ersten Spannungskeulen bzw. eine der zweiten Spannungskeulen bilden.
  10. Uhr nach Anspruch 9, dadurch gekennzeichnet, dass der Winkelversatz im Absolutwert zwischen 30° und 120° liegt.
  11. Uhr nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Einstellvorrichtung eine Detektionsvorrichtung (64), die dazu vorgesehen ist, abwechselnd das aufeinander folgende Auftreten der ersten Spannungskeulen (LU1) und der zweiten Spannungskeulen (LU2) erfassen zu können, und einen Zeitzähler (CT) umfasst, der der Steuerlogikschaltung (62) zugeordnet ist, um dieser letzteren zu ermöglichen, ein erstes Zeitintervall, das eine erste Spannungskeule von einer nachfolgenden zweiten Spannungskeule trennt, und ein zweites Zeitintervall, das eine zweite Spannungskeule von einer nachfolgenden ersten Spannungskeule trennt, zu unterscheiden, wobei das erste und das zweite Zeitintervall aufgrund der Anordnung der elektromagnetischen Baueinheit verschieden sind.
  12. Uhr nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die primäre Speichereinheit eine erste Versorgungskapazität (C2) und eine zweite Versorgungskapazität (C1) umfasst, die beide dazu vorgesehen sind, die Hauptladungseinrichtung zu versorgen; und dass der elektromagnetische Wandler (6a, 29) derart beschaffen ist, dass die mehreren ersten Spannungskeulen (LUC1) jeweils eine erste Polarität aufweisen und die mehreren zweiten Spannungskeulen (LUC2) jeweils eine zur ersten Polarität entgegengesetzte zweite Polarität aufweisen; dass der elektrische Wandler (57) durch eine erste Speicherschaltung (D2, C2) für elektrische Energie gebildet ist, die die erste Versorgungskapazität umfasst und die dazu vorgesehen ist, diese erste Versorgungskapazität nur mit einer Spannung mit der ersten Polarität am Eingang des elektrischen Wandlers wiederaufladen zu können, und durch eine zweite Speicherschaltung (D1, C1) für elektrische Energie, die die zweite Versorgungskapazität umfasst und die dazu vorgesehen ist, diese zweite Versorgungskapazität nur mit einer Spannung mit der zweiten Polarität am Eingang des elektrischen Wandlers wiederaufladen zu können, wobei die Menge an elektrischer Energie, die bei einem Wiederaufladen durch die Bremsvorrichtung zur ersten Versorgungskapazität bzw. zur zweiten Versorgungskapazität geliefert wird, umso größer ist, je niedriger der Spannungspegel dieser ersten Versorgungskapazität bzw. dieser zweiten Versorgungskapazität ist; und dass die Einstellvorrichtung derart beschaffen ist, dass die Übertragung der ersten elektrischen Ladung aus einer Übertragung dieser ersten elektrischen Ladung von der ersten Versorgungskapazität in die sekundäre Speichereinheit besteht und die Übertragung der zweiten elektrischen Ladung aus einer Übertragung dieser zweiten elektrischen Ladung von der zweiten Versorgungskapazität in die sekundäre Speichereinheit besteht.
  13. Uhr nach Anspruch 12, dadurch gekennzeichnet, dass die erste und die zweite Versorgungskapazität (C2, C1) im Wesentlichen einen gleichen Kapazitätswert aufweisen und dazu vorgesehen sind, gemeinsam die Hauptladungseinrichtung zu versorgen.
  14. Uhr nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die erste und die zweite Versorgungskapazität dazu vorgesehen sind, eine Versorgungsspannung zu liefern, die der Summe der jeweiligen Spannungen (VC1, -VC2) dieser ersten und zweiten Versorgungskapazität entspricht.
  15. Uhr nach einem der Ansprüche 5 bis 8 und 12 bis 14, dadurch gekennzeichnet, dass die elektromagnetische Baueinheit (86) ein Paar von bipolaren Magneten (22, 23; 82), die an einer Unruh (18a; 18b) des mechanischen Resonators (6a; 6b) montiert sind und zwei jeweilige zu einer geometrischen Ebene mit der Drehachse (20) der Unruh parallele Magnetisierungsachsen mit jeweiligen entgegengesetzten Polaritäten aufweisen, und eine Spule (28), die mit dem Träger des mechanischen Resonators fest verbunden ist, umfasst, wobei die zwei bipolaren Magneten (22, 23; 90, 91) des Paars an der Unruh angeordnet sind, so dass ihre jeweiligen Magnetflüsse die Spule mit einem Zeitversatz, aber mit teilweise gleichzeitig eintretendem Magnetfluss und austretendem Magnetfluss durchqueren, so dass ein Impuls einer induzierten Spannung, der zwischen den zwei Enden (E1, E2) der Spule beim Passieren des Magnetpaars gegenüber dieser Spule erzeugt wird, eine zentrale Keule (LUC1, LUC2) mit maximaler Amplitude aufweist, die aus einer gleichzeitigen Kopplung der zwei Magnete des Magnetpaars mit der Spule resultiert; und dass eine Mittelhalbachse (26; 24a), die von der Drehachse der Unruh ausgeht und durch die Mitte des Paars bipolarer Magnete verläuft, eine Referenzhalbachse (48; 48a) definiert, wenn der Resonator sich in Ruhe und somit in seiner neutralen Position befindet, wobei die Spule in ihrer Mitte einen Winkelversatz (θ) in Bezug auf die Referenzhalbachse aufweist, um in jeder Schwingungsperiode des mechanischen Resonators in dem Nutzbetriebsbereich zwei zentrale Spannungskeulen (LUC1, LUC2) mit entgegengesetzten Polaritäten zu erzeugen, die die erste Spannungskeule bzw. die zweite Spannungskeule bilden.
  16. Uhr nach Anspruch 15, dadurch gekennzeichnet, dass der Winkelversatz im Absolutwert zwischen 30° und 120° liegt.
  17. Uhr nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass die Einstellvorrichtung (53; 72) mindestens eine Detektionsvorrichtung (64) umfasst, die dazu vorgesehen ist, das aufeinander folgende Auftreten erster Spannungskeulen (LUC1) und/oder zweiter Spannungskeulen (LUC2) erfassen zu können.
  18. Uhr nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Einstellvorrichtung (53; 72) mindestens eine Ableitungsschaltung zum Ableiten von in der primären Speichereinheit akkumulierter elektrischer Energie mindestens einen der Ableitungsschaltung zugeordneten Schalter (Sw3, Sw4; Sw5), um diese Ableitungsschaltung momentan mit der primären Speichereinheit verbinden zu können, und eine Messschaltung umfasst, die dazu vorgesehen ist, festzustellen, ob die Spannung an den Klemmen der sekundären Speichereinheit oberhalb einer ersten Spannungsgrenze oder ob der Füllstand der sekundären Speichereinheit oberhalb einer ersten Füllgrenze liegt; und dass die Steuerlogikschaltung ferner dazu vorgesehen ist, wenn die Spannung an den Klemmen der sekundären Speichereinheit höher als oder gleich der ersten Spannungs- oder Füllgrenze ist, die mindestens eine Ableitungsschaltung momentan mit der primären Speichereinheit verbinden zu können, um, wenn die gemessene zeitliche Abweichung der mindestens einen bestimmten Voreilung entspricht, eine erste Ableitungsentladung der primären Speichereinheit durchzuführen, so dass ihr Wiederaufladen im Anschluss an diese erste Entladung größtenteils durch mindestens eine erste Spannungskeule aus den mehreren ersten Spannungskeulen erfolgt, und um, wenn die gemessene zeitliche Abweichung der mindestens einen bestimmten Verzögerung entspricht, eine zweite Entladung der primären Speichereinheit durchzuführen, so dass ihr Wiederaufladen im Anschluss an diese zweite Entladung größtenteils durch mindestens eine zweite Spannungskeule aus den mehreren zweiten Spannungskeulen erfolgt.
  19. Uhr nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sie eine Messschaltung umfasst, die dazu vorgesehen ist, festzustellen, ob die Spannung an den Klemmen der sekundären Speichereinheit unterhalb einer zweiten Spannungsgrenze liegt oder ob der Füllstand der sekundären Speichereinheit unterhalb einer zweiten Füllgrenze liegt; und dass die Steuerlogikschaltung dazu vorgesehen ist, wenn die Spannung an den Klemmen der sekundären Speichereinheit unterhalb der zweiten Spannungs- oder Füllgrenze liegt und wenn die gemessene zeitliche Abweichung zwischen der mindestens einen bestimmten Verzögerung und der mindestens einen bestimmten Voreilung liegt, die Ladungspumpenvorrichtung aktivieren zu können, so dass sie eine dritte elektrische Ladung von der primären Speichereinheit in die sekundäre Speichereinheit überträgt, so dass ein Wiederaufladen der primären Speichereinheit im Anschluss an diese Übertragung einer dritten elektrischen Ladung größtenteils durch mindestens eine erste Spannungskeule aus den mehreren ersten Spannungskeulen erfolgt, und eine vierte elektrische Ladung von der primären Speichereinheit in die sekundäre Speichereinheit überträgt, so dass ein Wiederaufladen der primären Speichereinheit im Anschluss an diese Übertragung einer vierten elektrischen Ladung größtenteils durch mindestens eine zweite Spannungskeule aus den mehreren zweiten Spannungskeulen erfolgt, wobei die vierte elektrische Ladung im Wesentlichen gleich der dritten elektrischen Ladung ist.
  20. Uhr nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die sekundäre Speichereinheit durch eine Superkapazität oder einen elektrischen Kondensator gebildet ist.
  21. Uhr nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der mechanische Resonator eine Unruh-Spiralfeder umfasst; und dass die Vorrichtung zum Betreiben eine Hemmung (14) umfasst, die kinematisch mit einem Federhaus (12) verbunden ist, das mit einer Zugfeder ausgestattet ist, wobei die Hemmung zur Unruh mit Spiralfeder ein mechanisches Moment zum Aufrechterhalten ihrer Schwingungen liefern kann.
  22. Uhr nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die elektromagnetische Baueinheit (26; 86) auch teilweise die Messvorrichtung bildet.
EP17209121.7A 2017-12-20 2017-12-20 Uhrwerksanordnung, die einen mechanischen oszillator umfasst, der mit einer einstellvorrichtung verbunden ist Active EP3502797B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17209121.7A EP3502797B1 (de) 2017-12-20 2017-12-20 Uhrwerksanordnung, die einen mechanischen oszillator umfasst, der mit einer einstellvorrichtung verbunden ist
JP2018233294A JP6873094B2 (ja) 2017-12-20 2018-12-13 調速システムと連携した機械式発振器を備える時計
US16/220,232 US11422510B2 (en) 2017-12-20 2018-12-14 Timepiece comprising a mechanical oscillator associated with a regulation system
CN201811555788.7A CN109991834B (zh) 2017-12-20 2018-12-19 包括与调节系统相关联的机械振荡器的钟表

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17209121.7A EP3502797B1 (de) 2017-12-20 2017-12-20 Uhrwerksanordnung, die einen mechanischen oszillator umfasst, der mit einer einstellvorrichtung verbunden ist

Publications (2)

Publication Number Publication Date
EP3502797A1 EP3502797A1 (de) 2019-06-26
EP3502797B1 true EP3502797B1 (de) 2020-07-08

Family

ID=60702429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17209121.7A Active EP3502797B1 (de) 2017-12-20 2017-12-20 Uhrwerksanordnung, die einen mechanischen oszillator umfasst, der mit einer einstellvorrichtung verbunden ist

Country Status (4)

Country Link
US (1) US11422510B2 (de)
EP (1) EP3502797B1 (de)
JP (1) JP6873094B2 (de)
CN (1) CN109991834B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502798B1 (de) * 2017-12-20 2020-06-24 The Swatch Group Research and Development Ltd Uhrwerksanordnung, die einen mechanischen oszillator umfasst, der mit einer einstellvorrichtung verbunden ist
EP3502796B1 (de) * 2017-12-20 2020-05-20 The Swatch Group Research and Development Ltd Uhrwerksanordnung, die einen mechanischen oszillator umfasst, der mit einer einstellvorrichtung verbunden ist

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124731A (en) * 1964-03-10 Electronic time pieces
US3407344A (en) * 1964-09-26 1968-10-22 Shigeru Kakubari Electronic timekeeper
US3568431A (en) * 1969-07-07 1971-03-09 Voumard Machines Co Sa Electric time piece with balance wheel and hairspring
US3618311A (en) * 1970-01-13 1971-11-09 Timex Corp Synchronized horological system
JPS5535587Y1 (de) * 1970-02-17 1980-08-22
US3803829A (en) * 1970-03-31 1974-04-16 Suwa Seikosha Kk Coil structure for electric watches
CH1691872A4 (de) * 1972-11-21 1977-05-31
ES430659A1 (es) * 1973-10-24 1976-11-01 Jauch Un procedimiento y un dispositivo para la sincronizacion deun sistema oscilante accionado por un acumulador mecanico deenergia, en especial de un reloj.
JPS5129027Y1 (de) * 1975-04-16 1976-07-22
JPS5236066A (en) * 1975-09-16 1977-03-19 Rhythm Watch Co Ltd Balance device
CN87203228U (zh) * 1987-05-06 1988-06-01 李刚 一种可自动充电的电子手表
WO1989006834A1 (en) * 1988-01-25 1989-07-27 Seiko Epson Corporation Electronic wrist watch with power generator
JP3335986B2 (ja) * 1994-08-03 2002-10-21 セイコーエプソン株式会社 電子制御時計
EP1164441A1 (de) 1999-12-24 2001-12-19 Seiko Instruments Inc. Mechanische uhr mit einer räderwerkssteuerungseinheit
DE60314143T2 (de) * 2003-10-01 2008-01-31 Asulab S.A. Uhr mit einem mechanischen Uhrwerk, das mit einem elektronischen Regulator gekoppelt ist
JP5079366B2 (ja) * 2007-03-28 2012-11-21 本田技研工業株式会社 回動工具
EP2561409B1 (de) * 2010-04-21 2019-08-28 Team Smartfish GmbH Regelorgan für ein uhrwerk, und entsprechendes verfahren
EP3339982B1 (de) * 2016-12-23 2021-08-25 The Swatch Group Research and Development Ltd Regulierung durch mechanisches bremsen eines mechanischen oszillators einer uhr

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6873094B2 (ja) 2021-05-19
CN109991834A (zh) 2019-07-09
US11422510B2 (en) 2022-08-23
US20190187623A1 (en) 2019-06-20
JP2019113547A (ja) 2019-07-11
EP3502797A1 (de) 2019-06-26
CN109991834B (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
EP1521141B1 (de) Uhr mit einem mechanischen Uhrwerk, das mit einem elektronischen Regulator gekoppelt ist
EP1521142B1 (de) Uhr mit einem mechanischen Uhrwerk, das mit einem elektronischen Regulator gekoppelt ist
EP3339982B1 (de) Regulierung durch mechanisches bremsen eines mechanischen oszillators einer uhr
EP3620867B1 (de) Uhr, die einen mechanischen oszillator umfasst, dessen durchschnittliche frequenz mit der eines elektronischen referenzoszillators synchronisiert ist
EP3629104B1 (de) Mechanische uhr umfassend eine elektronische vorrichtung zur regulierung der ganggenauigkeit der uhr
EP3502797B1 (de) Uhrwerksanordnung, die einen mechanischen oszillator umfasst, der mit einer einstellvorrichtung verbunden ist
CH713306A2 (fr) Ensemble horloger comprenant un oscillateur mécanique associé à un dispositif de régulation de sa fréquence moyenne.
WO2015140332A2 (fr) Organe tournant horloger, oscillateur horloger
WO2018177779A1 (fr) Pièce d'horlogerie comprenant un mouvement mécanique dont la marche est améliorée par un dispositif de correction
EP3502796B1 (de) Uhrwerksanordnung, die einen mechanischen oszillator umfasst, der mit einer einstellvorrichtung verbunden ist
WO2018177774A1 (fr) Piece d'horlogerie mecanique comprenant un mouvement dont la marche est amelioree par un dispositif de correction
EP3502798B1 (de) Uhrwerksanordnung, die einen mechanischen oszillator umfasst, der mit einer einstellvorrichtung verbunden ist
CH714484A2 (fr) Pièce d'horlogerie comprenant un oscillateur mécanique associé à un système de régulation.
EP0024737B1 (de) Detektor für die Fortbewegung eines Schrittmotors
CH714485A2 (fr) Pièce d'horlogerie comprenant un oscillateur mécanique associé à un système de régulation.
CH714483A2 (fr) Pièce d'horlogerie comprenant un oscillateur mécanique associé à un système de régulation.
EP4009119B1 (de) Uhrwerk, das einen generator und eine schaltung zur regulierung der drehfrequenz dieses generators umfasst
EP1544692A1 (de) Elektromechanischer Uhr, der mit einem Gangreserveanzeiger ausgerüstet ist
WO2014090830A2 (fr) Organe régulateur pour montre-bracelet
WO2021121711A1 (fr) Piece d'horlogerie munie d'un mouvement mecanique et d'un dispositif de correction d'une heure affichee
CH713332A2 (fr) Ensemble horloger comprenant un oscillateur mécanique associé à un dispositif de régulation.
EP0848306B1 (de) Zeitmessgerät mit einem Generator zur Erzeugung elektrischer Energie
CH718138A2 (fr) Mouvement horloger muni d'une génératrice et d'un circuit de régulation de la fréquence de rotation de cette génératrice.
CH713637A2 (fr) Pièce d'horlogerie comprenant un mouvement mécanique dont la marche est améliorée par un dispositif de correction.
CH715295A2 (fr) Pièce d`horlogerie comprenant un oscillateur mécanique dont la fréquence moyenne est synchronisée sur celle d`un oscillateur électronique de référence.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

17P Request for examination filed

Effective date: 20200102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G04C 3/04 20060101ALI20200117BHEP

Ipc: G04C 10/00 20060101AFI20200117BHEP

INTG Intention to grant announced

Effective date: 20200204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1289112

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017019317

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1289112

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200708

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017019317

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

26N No opposition filed

Effective date: 20210409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230101

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 7

Ref country code: DE

Payment date: 20231121

Year of fee payment: 7